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The high dietary protein requirements of salmonid fish are met with fishmeal-based feed in commercial aquaculture. The sustainability of
this practice is questionable and, therefore, the feasibility of substituting fishmeal with plant-based products needs to be investigated. We
investigated growth and metabolism in rainbow trout (Oncorhynchus mykiss) fed a diet composed of a mixture of plant proteins compared
with those fed a fishmeal-based diet. Using two-dimensional gel electrophoresis of liver protein extracts, we showed that the liver protein
profile changed in response to the alteration in the diet. A number of metabolic pathways were identified as sensitive to the protein source
substitution. These included pathways involved in primary energy generation, maintenance of reducing potential, bile acid synthesis, and
transport and cellular protein degradation. Interestingly, the pathways shown to be affected in the present study were somewhat different
from those identified in our previous work with soyabean-based-protein replacement of fishmeal, with the effects on the abundance of
several stress response proteins notably absent. We conclude, therefore, that the metabolic effects of plant protein replacement in aqua-
culture feed varies with plant-protein source.

Proteome: Mass spectrometry: Two-dimensional gel electrophoresis: Plant protein

Most teleost fish species are adapted to use amino acids as
the preferred energy source over carbohydrate, and thus
require high levels of dietary amino acids (300–600 g/kg;
Cowey, 1995). In commercial aquaculture, this require-
ment is met with fishmeal-based feed. The sustainability
of this practice, which requires large inputs of wild fish
for feed, has been questioned (Naylor et al. 2000). Thus,
the replacement of fishmeal as the major protein source
with proteins of plant origin is a major objective for sus-
tainable aquaculture in the future. Progress has been
made on the replacement of fishmeal with a number of
different ingredients, including soyabean, lupin, peas and
sunflower (Gomes et al. 1995a,b; Kaushik et al. 1995;
Burel et al. 2000; Carter & Hauler, 2000). When formulat-
ing a replacement for fishmeal, the amino acid compo-
sition, especially of the ten essential amino acids for
teleost fish, has been shown to be an important consider-
ation (Gomes et al. 1995b; M Mambrini and S Kaushik,
unpublished results). The essential amino acid require-
ments of fish correlate well with the amino acid compo-
sition of the whole animal and to a certain extent that of
the muscle tissue alone (Wilson & Cowey, 1985; Cowey,
1995). No single agricultural crop source will yield feed
of a suitable amino acid composition (Kaushik, 1990).

Supplementation of agricultural crop sources with syn-
thetic amino acids can improve growth and protein utilis-
ation, but this requires precise knowledge of the ideal
protein composition (Médale et al. 1998; Yamamoto et al.
2002; Cheng et al. 2003).

A second consideration is the presence of anti-nutritional
factors, such as protease inhibitors, lectins, antigenic pro-
teins, phenolic compounds, oligosaccharides and phytates,
which are present to varying degrees in plant products
such as soyabean meal (Kaushik, 1990; Davies & Morris,
1997; Francis et al. 2001). Anti-nutritional factors are
known to affect performance of salmonid fish, with
decreased digestion and reduced utilisation of proteins
leading to decreased growth rates (Moyano et al. 1991;
Krogdahl et al. 1994; Vielma et al. 2000). However,
when rainbow trout were fed soyabean-protein concentrate
containing comparatively low concentrations of anti-nutri-
tional factors, comparable growth rates were observed with
fish fed a fishmeal-based diet (Kaushik et al. 1995; Mam-
brini et al. 1999). Recently, it was found that rainbow trout
fed a diet containing soyabean protein at 30 % total protein
content had a substantially altered liver protein profile
when compared with those fed a diet where 30 % total pro-
tein was derived from non-soyabean plant sources (Martin
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et al. 2003). These differences included altered levels of
several known stress proteins, indicating an effect on the
fish’s stress response mechanism, presumably in response
to the presence of anti-nutritional factors (Martin et al.
2003).

The liver is a important organ for the metabolism of N
and other metabolites, making it an obvious choice of
focus. Not surprisingly, considering the numerous meta-
bolic pathways and other functions taking place in the
liver, it expresses thousands of gene products, many in
comparatively high abundance. For characterising the
effects of a dietary change at a global level, methods that
focus on single or a few enzymes or metabolic pathways
at a time are clearly impractical. A proteomic approach,
based on two-dimensional gel electrophoresis (2DE) of
crude liver tissue extracts, was therefore taken. This
approach gives us the ability to analyse up- and downregu-
lation of different, possibly unrelated, metabolic pathways
without making any assumptions regarding which types of
pathways are likely to be affected. Until recently, proteo-
mic research on salmonid fish was hampered by the limited
availability of salmonid protein data in the public databases
such as SWISS-PROT or the non-redundant GenBank data-
base (Martin et al. 2001; Hogstrand et al. 2002). However,
the recent availability of a large number of salmonid
expressed sequences (about 169 000) within GenBank has
rendered proteomic research on salmonids much more
practical. In recent work in our laboratory, we have been
able to match peptide mass spectra against a much larger
database than before, yielding a protein identification suc-
cess rate .70 % (Martin et al. 2003).

In the present study, we investigated growth variables,
efficiency of protein deposition and liver protein profiles
of rainbow trout (Oncorhynchus mykiss); the trout were
fed a diet where fishmeal was substituted with a formu-
lation that met the amino acid requirements and contained
maize gluten meal, wheat gluten, extruded peas, rapeseed
meal and extruded whole wheat.

Methods

Fish husbandry and growth

Rainbow trout were grown as described previously (Martin
et al. 2003) at an experimental freshwater fish farm belong-
ing to INRA (Donzacq, Landes, France) under a natural
photoperiod in a flow-through system at 17^18C. The
feeding trial lasted for 12 weeks (21 March to 7 June
2002). For each diet, four groups of seventy-five fish
each (initial mean body weight 19 g) were reared into
1 m3 circular glass-fibre tanks. Every 3 weeks, fish were
counted and weighed in groups after a 24 h starvation
period. The diet composition is shown in Table 1. Both
diets, the plant-protein-based diet (PP100) and fishmeal-
based diet (FM), met the amino acid requirements of rain-
bow trout (National Research Council, 1993). Feed was
analysed using standard procedures: DM content after
drying at 1108C for 24 h, fat content after light petroleum
(40–608C) extraction, crude protein (N £ 6·25) content
by the Kjeldahl method after acid digestion, and energy
content after combustion in an adiabatic bomb calorimeter.

Two-dimensional separation of proteins

Liver sampling and protein extraction was performed as
described by Martin et al. (2001). Briefly, fish were
killed by benzocaine overdose followed by decapitation.
Livers were removed, segmented, frozen in liquid N2 and
stored at 2708C. Frozen tissue was homogenised in lysis
buffer (9 M-urea, 3-((3-cholamidopropyl)dimethylammio-
niol)-1-propane-sulfonate (20 /l), 25 mM-Tris-HCl pH 7·5,
3 mM-EDTA, 50 mM-KCl, 50 mM-1,4-dithiothreitol, Reso-
lytee (Merck, Whitehouse Station, NJ, USA; 20 ml/l),
40mM-leupeptin) at room temperature using a Dounce
Teflon homogeniser (Polytron, Luzern, Switzerland). Fol-
lowing homogenisation, the tissue lysates were centrifuged
at 30 000 g for 20 min at 158C to remove any insoluble par-
ticles. The supernatant fraction was then stored at 2708C
until 2DE was performed. Soluble trout liver proteins
(15ml) were mixed with 115ml re-swelling buffer (7 M-
urea, 2 M-thiourea, 3-((3-cholamidopropyl)dimethylammio-
niol)-1-propane-sulfonate (40 ml/l), 1,4-dithiothreitol (3 ml/
l)), and then added to a 70 mm pH 4–7 immobilised pH

Table 1. Experimental diets for rainbow trout
(Oncorhynchus mykiss)

Diet. . . FM PP100

Ingredients (g/kg)
Fish meal 638·0 0
Maize gluten meal 0 232·4
Wheat gluten 0 200·0
Extruded peas* 0 163·3
Rapeseed meal† 0 100·0
Extruded whole wheat 203·4 0
Fish oil 128·7 158·7
Binder (sodium alginate) 10·0 10·0
Mineral premix‡ 10·0 10·0
Vitamin premix‡ 10·0 10·0
CaHPO4.2H2O§ 0 40·0
L-amino acid mixture 0 75·7

Approximate composition
DM (g/kg) 944 916
Protein (g/kg DM) 515 486
Lipid (g/kg DM) 197 192
Gross energy (kJ/g DM) 22·7 23·6
Amino acids (g/kg DM)

Arg 35·9 33·2
Lys 40·3 35·1
His 9·2 12·6
Ile 18·5 22·6
Leu 33·9 42·0
Val 21·8 28·6
Met 12·1 9·9
Phe 16·8 20·4
Thr 24·1 23·2
Tyr 14·0 15·7
Asp 42·7 21·0
Glu 74·6 128·9
Ser 21·3 21·1
Pro 21·1 33·1
Gly 31·2 14·1
Ala 29·8 20·4

Sum amino acid 447·3 481·5

* Aquatex, Sopreche, Boulogne sur Mer, France.
† Primor 00, Sopreche, Boulogne sur Mer, France.
‡ National Research Council (1993).
§ 180 g P/kg.
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gradient strip (Amersham-Pharmacia Biotech, Amersham,
Bucks, UK). Isoelectric focusing was performed at 200 V
for 1 min and 3500 V for 1 h 30 min (at 2 mA and 5 W).
For the 2DE the immobilised pH gradient strip was laid
onto a 10–1 % gradient polyacrylamide slab gel
(80 £ 70 mm) and the proteins electrophoresed at 150 V
for 450 Volt hours (Cash et al. 1999). The resolved pro-
teins were detected using colloidal Coomassie Blue G250
staining (Anderson et al. 1991). Molecular masses of the
proteins were determined by co-electrophoresis with stan-
dard protein markers. Isoelectric points were determined
based on the linearity of the immobilised pH gradient strip.

Analysis of two-dimensional gels

The gels were scanned at a resolution of 200 dpi using a
Hewlett Packard Scanjet 3p flat bed scanner and stored as
TIF files. Subsequent analysis of the gel images was per-
formed using the software package Phoretix 2-D (version
5.1; NonLinear Dynamics, Gateshead, Tyne & Wear,
UK). Protein spots were detected using automated routines
from the software combined with manual editing to remove
artifacts. The spots were matched against 559 reference
spots, numbered from 24 to 773 using the reference gel
described by Martin et al. (2001). Matching was performed
using a combination of seed-matching and automatic
matching by the Phoretix program (Nonlinear Dynamics).
All matches were verified by eye. The proteins had molecu-
lar masses of approximately 10–100 kDa and isoelectric
point 4–7. Individual protein spot abundance was deter-
mined by the area of the spot multiplied by the density
and referred to as the volume. Background was removed
and the spot volumes were normalised to the total volume
of all proteins detected on each gel. The normalised spot
volume is described as the abundance of a particular protein
spot relative to the total. Five replicate gels were analysed
for each treatment group. Proteins that were found to vary
more than twofold in abundance between the diets were
analysed for significance using Student’s t test.

Protein identification by peptide mass mapping

Proteins were excised from stained gels representing fish
fed on FM and PP100 and subjected to in-gel trypsin diges-
tion (Jensen et al. 1999). Excised spots were washed,
reduced, S-alkylated and digested within the gel using
trypsin (sequencing grade modified trypsin; Promega,
Southampton, Hants., UK) as described elsewhere (Shev-
chenko et al. 1996; Wilm et al. 1996). A portion of the
peptide extract produced by this process was passed
through a GELoader tip containing a small volume of
POROS R2 sorbent (PerSeptive BioSystems, Foster City,
CA, USA) (Wilm et al. 1996). The adsorbed peptides
were eluted in 0·5ml saturated solution of a-cyanol-4-
hydroxycinnamic acid in acetonitrile–formic acid (50:5,
v/v). The mass spectra of the peptide fragments were
obtained on a PerSeptive Biosystems Voyager-DE STR
MALDI-TOF MS. The instrument was operated in the
reflection delayed extraction mode. Spectra were internally
calibrated using trypsin auto-digestion products.

For protein identification, peptide masses from trypsin
digests were used to search against the National Centre for
Biotechnology Information non-redundant sequences data-
base and an in-house generated database containing all sal-
monid cDNA sequences available (as of 14 July 2003;
169 000 sequences). Search programs used were Mascot
(Perkins et al. 1999) and Protein Prospector MS-Fit (Clauser
et al. 1999). The Mascot search variables were: (1) peptide
mass accuracy 50mg/l; (2) protein modifications: cysteine
as S-carbamidomethyl-derivative, oxidation of methionine
allowed. Variables for searching MS-Fit were: all six
frames to be searched; cysteine as S-carbamidomethyl-
derivative; oxidation of methionine allowed.

Results

Growth trial

Fish fed on FM grew to a significantly larger (P,0·05) than
those fed on PP100 (Table 2). Intake of digestible energy
and digestible N were not found to vary significantly

Table 2. Growth performance, feed intake and feed efficiency of rainbow trout (Oncorhynchus
mykiss) fed the experimental diets for 12 weeks†

(Mean values with their standard errors for four fish per group)

Diet. . .
FM PP100

Mean SE Mean SE

Growth:
Initial body weight (g) 19·2 0·2 19·2 0·1
Final body weight (g) 147·1 1·8 111·1* 2·5
SGR (%) 2·61 0·03 2·25* 0·02

Feed intake:
Digestible energy intake (kJ/kg per d) 354·3 2·9 354·8 2·8
Digestible N intake (mg N/kg ABW per d) 1305·9 8·7 1320·8 8·6
Feed efficiency‡ 1·33 0·03 1·17* 0·01
Protein efficiency ratio§ 2·58 0·05 2·42* 0·01

FM, fishmeal-based diet; PP100, plant-protein based diet; SGR, specific growth rate (((ln (final weight) 2 ln (initial
weight))/84(d)) £ 100; Ricker, 1979; ABW, average body weight ((final weight þ initial weight)/2).

Mean values were significantly different from those for the FM group (Student’s t test): *P,0·05.
† For details of diets and procedures, see Table 1 and p. 72.
‡ Feed efficiency ¼ wet weight gain/dry feed intake.
§ Protein efficiency ratio ¼ wet weight gain/crude protein (N £ 6·25) intake.
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between diets. Feed efficiency and protein efficiency were
significantly decreased in fish fed on PP100 (Table 2).

Proteomics

Liver protein extracts from five individual fish for each diet
(PP100 1–5 and FM 1–5) were subjected to 2DE, yielding
2DE gels each containing from 694 to 980 protein spots,
varying in abundance from 0·006 to 8·100 % total protein
on the gel.

The protein profile in Fig. 1 shows a representative
example of liver proteins separated by 2DE. The reference
gel for the present study, against which the ten gel profiles
were matched, was the same as in our previous study
(Martin et al. 2003). The same reference numbers were
used, with new numbers added for protein spots not
reported earlier.

Abundance levels of individual spots varied consider-
ably among samples, as may be seen from the error mar-
gins (^1 SE) presented in Table 3, in some cases
confounding analysis of whether abundance was affected
by the diet. However, thirty protein spots (Table 3, Fig. 1)
were consistently and significantly (more than twofold
difference in abundance, P,0·05) altered in abundance
between the diets. Of these, one (no. 764) was only present
in fish fed on PP100, twenty-three others were present in
greater abundance in the fish fed on PP100 (upregulated
by intake of plant protein), and six were in greater abun-
dance in fish fed on FM (downregulated by the presence
of plant protein).

Of the thirty protein spots affected by the diet, twenty-
three were deemed to be of sufficient abundance

(.0·05 % total gel volume) to permit peptide mass
fingerprinting. They were excised from the gels and sub-
jected to trypsin digestion and MS. The peptide fragments
produced were matched against predicted peptide mass fin-
gerprints derived from public databases (Table 4). Of the
twenty-three mass fingerprints obtained, fourteen yielded
significant protein identities, whereof six were obtained
by searching against a publicly available protein database
and thirteen by searching against a database created from
169 000 salmonid nucleotide sequences (Table 4). In all
five cases where both search methods gave positive hits,
the same identity was obtained. For further corroboration,
molecular mass and isoelectric point values observed on
the 2DE gels were compared with those predicted by
ExPASy (http://ca.expasy.org/tools/pi_tool.html) for the
matched polypeptides (Table 5).

Discussion

Trout fed on PP100 grew more slowly than those fed on FM
(Table 2). This was not a consequence of reduced feed
intake, as both groups of fish consumed similar amounts
of energy and N. However, there was a significant differ-
ence in protein efficiency ratios between the two groups
and, hence, the difference was likely to be a result of
poorer utilisation of consumed N. Among possible nutri-
tional causes for reduced protein utilisation are the presence
of anti-nutritional factors (Francis et al. 2001) and limited
availability of essential amino acids (Cowey & Walton,
1989). Although care was taken that the amino acid compo-
sition of PP100 closely matched that of the control diet,
levels of three essential amino acids (arginine, lysine and

Fig. 1. A representative two-dimensional gel of rainbow trout (Oncorhynchus mykiss) liver proteins. PI, isoelectric point. A total liver protein
extract was separated by charge between PI 4 and 7, second dimension was by size on a 10–15 % gradient gel. The protein spots were
stained with colloidal Coomassie Blue G250. Protein spots ( # ) were found to increase or decrease in abundance in response to dietary protein
source substitution. For details of procedures, see p. 72.
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methionine) were slightly lower (results not shown), but
high enough to meet the requirements of rainbow trout
(National Research Council, 1993).

Proteomics

The identities of the proteins observed to be up- or down-
regulated (Table 4) by the plant-protein substitution indi-
cate that several processes are affected, most notably
those of primary energy metabolism, as discussed later.
The protein identities obtained are presented with good
confidence, since Mowse and Mascot scores are generally
high, expectancy values for BLASTx searches of expressed
sequence tags are low (Table 4), and calculated molecular
mass and isoelectric point values (Table 5) display an
acceptable level of agreement with the observed values,
considering that post-translational modifications may sig-
nificantly affect these values and that some of the identities
are based on proteins from distantly related species (Table
4). Furthermore, all of the identities are proteins that would
be expected to be present in the liver in detectable
quantities.

Enzymes affecting NADPH levels

Interestingly, two isoforms of transaldolase were detected
in the present study, an acidic one (spot 356, isoelectric
point 6·2) and a less acidic one (spot 761, isoelectric
point 6·3). Abundance of both was affected by the diet
(Fig. 2, Table 3). Presumably, spot 356 represents a phos-
phorylated form of this protein. Transaldolase possesses
several putative phosphorylation sites (Banki et al. 1994)
and its activity correlates with phosphorylation state
(Lachaise et al. 2001). Furthermore, it has been shown
that phosphorylated and non-phosphorylated forms of
transaldolase can be distinguished by 2DE (Lachaise et al.
2001). The less acidic (non-phosphorylated) form is upreg-
ulated when fish are fed the plant-protein-based diet,
whereas the more acidic (phosphorylated) form is
downregulated. However, total transaldolase levels (spot
356 þ spot 761) remained essentially unaltered (Table 4),
suggesting that transaldolase gene expression was unaf-
fected. Assuming, therefore, that the more acidic form rep-
resents the active enzyme, our present results indicate that
transaldolase activity may be lower in livers of fish
fed PP100. Transaldolase is a key enzyme of primary

Table 3. Protein spots affected by dietary plant protein substitution*

(Mean values with their standard errors for five determinations)

Normalised volume
diet FM†

Normalised volume
diet PP100†

Fold
Statistical

significance
Spot reference no. PI MM (kDa) Mean SE Mean SE difference of effect: P‡

Downregulated:
128 6·3 66 303 57 60 19 5·1 0·026
291 6·4 42 521 37 273 30 2·0 0·004
356 6·3 38 161 37 44 19 3·6 0·031
747 5·6 43 101 19 19 11 2·2 0·040
760 6·3 39 41 6 21 5 2·0 0·040
766 4·8 27 12 1 6 1 2·1 0·004

Upregulated:
80 4·4 82 9 4 47 8 5·0 0·007
87 5·7 75 58 14 262 21 4·5 ,0·001
138 5·5 67 99 16 267 39 2·7 0·009
144 5·4 63 26 6 265 66 10·2 0·018
190 5·9 54 6 2 50 9 8·5 0·018
199 5·9 53 60 16 156 13 2·6 0·020
275 6·1 45 1 0·6 11 0·6 9·1 ,0·001
387 5·6 35 97 3 251 49 2·6 0·035
389 5·8 35 192 45 414 54 2·2 0·027
399 6·8 33 59 12 130 10 2·2 0·028
457 4·7 29 26 7 57 5 2·2 0·021
461 4·7 27 75 9 190 12 2·5 0·004
517 4·4 22 15 6 135 29 9·0 0·013
539 4·9 19 7 3 18 3 2·5 0·033
551 4·1 17 40 11 143 28 3·6 0·018
563 5·2 15 814 198 3762 984 4·6 0·039
639 6·4 84 10 6 28 5 2·9 0·047
648 6·1 55 17 5 154 46 8·9 0·040
678 5·3 48 26 7 69 15 2·7 0·044
746 4·4 46 45 13 107 15 2·4 0·012
754 4·1 15 6 2 36 4 6·5 ,0·001
761 6·1 36 44 21 204 34 4·6 0·006
764 6·2 65 0 102 17 N/A N/A
770 5·0 21 4 1 18 4 4·4 0·026

PI, isoelectric point; MM, molecular mass; FM, fishmeal-based diet; PP100, plant-protein-based diet.
* For details of diets and procedures, see Table 1 and p. 72.
† Values are mean normalised protein abundance.
‡ Student’s t test.
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metabolism, controlling the balance between the oxidative
and non-oxidative branches of the pentose phosphate path-
way and, thus, the output of NADPH and ribose 5-phos-
phate (Banki et al. 1996; Kruger & von Schaewen, 2003).

In a parallel study using the same diets, glucose-6-phos-
phate dehydrogenase activity was increased in fish fed on
PP100 (F Médale, unpublished results). Taken together,
increased glucose-6-phosphate dehydrogenase activity
and decreased transaldolase activity indicate that while

the oxidative phase of the pentose phosphate pathway is
increased in activity, that of the non-oxidative phase is
decreased. This will generate high levels of NADPH,
while the resulting pentose sugar intermediates can be
reconverted to glucose 6-phosphate for repeated passage
through the oxidative phase or entry into the glycolytic
pathway. Indeed, abundance of aldolase B (spot 399), an
enzyme of the glycolytic pathway, was also increased
(Table 3).

Table 5. Observed v. predicted molecular masses and isoelectric points of identified proteins*

Observed Predicted

Reference spot no. PI MM (kDa) PI MM (kDa)

Downregulated:
291 6·4 42 b-Ureidopropionase 6·1 43
356 6·3 38 Transaldolase 7·0 37

Upregulated:
87 5·7 75 Transferrin 5·9 75
144 5·4 63 L-plastin 5·4 64
190 5·9 54 Malate dehydrogenase 6·4 64
387 5·6 35 Electron transfer flavoprotein, a subunit 6·9 39
389 5·8 35 Electron transfer flavoprotein, a subunit 6·9 39
399 6·8 33 Aldolase B 8·0 39
461 4·7 27 Proteasome subunit a 2 6·0 26
517 4·4 22 Cytochrome c oxidase 4·7 26
563 5·2 15 Fatty acid binding protein H 5·8 14
648 6·1 55 HMGCoA synthase 5·4 58
678 5·3 48 Proteasome 26S ATPase subunit 4 6·3 58
761 6·1 36 Transaldolase 7·0 37

PI, isoelectric point; MM, molecular mass; HMG, hydroxymethylglutaryl.
* For details of procedures, see p. 72.

Fig. 2. (A), changes in abundance of the two protein spots (356 and 761) representing transaldolase. + , Spot 356; # , spot 761; FM, fish-
meal-based diet; PP100, plant-protein-based diet. (B), abundance of the two transaldolase spots was compared between fish fed the two
diets. A, FM; p, PP100. Values are means with their standard errors shown by vertical bars. For details of diets and procedures, see Table 1
and p. 72.
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Further evidence of increased NADPH production in fish
fed on PP100 can be seen in that abundance of malate
dehydrogenase (malic enzyme; spot 190) was increased
in fish fed PP100 (Table 3), as was its activity (F
Médale, unpublished results). Taken together, this strongly
indicates that trout fed on PP100 generate a greater amount
of NADPH than do trout fed on FM, which may affect
lipogenic pathways and ATP production.

Other enzymes of energy metabolism

Two protein spots identified as the a subunit of electron-
transferring flavoprotein (spots 387 and 389) were upregu-
lated in trout fed PP100 (Table 3). Electron-transferring
flavoprotein is involved in the early part of b-oxidation
of fatty acids, receiving electrons from fatty acyl-CoA
dehydrogenase and transferring them to ubiquinone
(Eaton et al. 1996). The electrons are then carried down
the respiratory chain, which includes cytochrome c oxidase
(spot 517), whose levels are also increased in fish fed on
PP100 (Table 3). It thus appears that livers of trout fed
on PP100 have a greater capacity for fatty acid breakdown,
presumably to supply ATP and acetyl-CoA for energy and
biosynthesis.

Biosynthetic enzymes

Hydroxymethylglutaryl-CoA synthase (spot 648) was
increased in abundance in fish fed on PP100 (Table 3). It
catalyses the condensation of acetoacetyl-CoA and
acetyl-CoA to form hydroxymethylglutaryl-CoA and free
CoA. While the mitochondrial isoform of this enzyme is
involved in ketogenesis (Hegardt, 1999), the cytosolic iso-
form works with hydroxymethylglutaryl-CoA reductase to
generate mevalonate and thus start the cholesterol-generat-
ing isoprenoid pathway (Kattar-Cooley et al. 1990; Sato &
Takano, 1995; Hegardt, 1999). The protein extracts used in
the present study were expected to comprise mainly cyto-
solic proteins, and the trypsin digest fingerprint of protein
648 showed the greatest similarity to a cytosolic hydroxy-
methylglutaryl-CoA synthase, indicating that sterol biosyn-
thesis may be increased in fish fed on PP100. Furthermore,
the H-fatty acid binding protein (spot 563), involved in
transport of taurine-conjugated bile salts (Dietrich et al.
1995), was also increased in abundance in fish fed on
PP100. Taken together, these results suggest the possibility
that the increased production of NADPH, ATP and acetyl-
CoA, discussed earlier, is used partly for increased bile
production.

Nitrogen metabolism

Previous studies on plant-protein substitution in feed for
rainbow trout have shown an increase in activity of
enzymes involved in amino acid metabolism (Moyano
et al. 1991; Martin et al. 2003). In the present study,
however, we did not observe any changes in abundance
of known amino acid metabolising enzymes and, in a
parallel study (F Médale, unpublished results) where
the same diets were used as in the present study, no
appreciable difference was observed in the activities of

three key enzymes of amino acid metabolism. Recent
work on the gilthead sea bream (Sparus aurata) indicated
that effects of protein source substitution on amino acid
metabolising enzymes may be in part due to the essen-
tial:non-essential amino acid ratio in the diet (Gomez-
Requeni et al. 2003). It seems plausible, therefore, that
the lack of impact on amino acid metabolism in the pre-
sent study reflects the similar amino acid composition of
the two diets (Table 1).

Proteolysis

Two subunits of the proteasome (spots 461 and 678), a
major protein degradation engine, were observed to be
increased in abundance in the PP100-fed fish (Table 3).
Interestingly, starved fish were also found to have
increased protein degradation compared with fed fish, but
through an increase in the lysosome-associated protease
cathepsin D (Martin et al. 2001). While proteasome
activity increases under conditions of starvation in warm-
blooded animals (Medina et al. 1995; Wing et al. 1995),
in rainbow trout it is decreased (Martin et al. 2002).
Recent work in our laboratory has shown a negative corre-
lation between growth efficiency and proteasome activity
in the liver (Dobly et al. 2004). The fish fed on PP100
had a lower growth efficiency than the control fish, con-
firming this finding.

Comparison with a previous study

Martin et al. (2003), studying partial substitution of fish-
meal with soyabean meal, found thirty-three proteins up-
or downregulated in response to the diet change, seven-
teen of which were identified. We note that there are sur-
prisingly few similarities to the present study. Most of the
seventeen identified proteins affected by the dietary pre-
sence of soyabean meal were not affected in the present
study (Table 6). Only the downregulation of transaldolase
and upregulation of aldolase B were observed in both
studies. In the previous study, rainbow trout fed on a
diet where 30 % of the fishmeal was substituted with
soyabean meal had altered levels of several stress pro-
teins, e.g. HSP70, HSP108 and aryl sulfotransferase
(Martin et al. 2003), indicating a stress response that
was not observed in the present study. Indeed, most of
the proteins whose levels were altered compared with
fish fed the control diet were proteins directly involved
in primary energy metabolism (Table 4). Thus, the ‘stress-
ful’ effects of the soyabean-meal diet are not experienced
by fish fed on PP100, even though it contained no fish-
meal at all.

In conclusion, the fish fed on PP100 did not perform as
well as the fish fed on FM. The majority of the proteins
affected by the diet are involved in primary functions,
such as maintenance of reducing potential and energy gen-
eration. From this, we conclude that rainbow trout fed a
diet containing plant proteins have higher energy demands
than those fed fishmeal-based diets, a conclusion supported
by a parallel study where the heat increment of feeding was
found to be significantly higher in fish fed on PP100 than in
those fed on FM (F Médale, unpublished results). These

O. T. Vilhelmsson et al.78

https://doi.org/10.1079/BJN
20041176  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1079/BJN20041176


findings constitute the first ever demonstration of multiple
metabolic consequences of changes in dietary protein
source in fish. Further insight on such considerations will
be of great value when formulating feed from plant-derived
proteins as substitutes for fishmeal for the sustainable
development of aquaculture.
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