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On mean values and non-vanishing of derivatives

of L-functions in a nonlinear family

Ritabrata Munshi

Abstract

We prove a mean-value result for derivatives of L-functions at the center of the critical
strip for a family of forms obtained by twisting a fixed form by quadratic characters
with modulus which can be represented as sum of two squares. Such a family of forms is
related to elliptic fibrations given by the equation q(t)y2 = f(x) where q(t) = t2 + 1 and
f(x) is a cubic polynomial. The aim of the paper is to establish a prototype result for
such quadratic families. Though our method can be generalized to prove similar results
for any positive definite quadratic form in place of sum of two squares, we refrain from
doing so to keep the presentation as clear as possible.

1. Introduction

Let f be a primitive form with trivial central character, and let Λ(s, f) denote the completed
L-function associated with it. The function Λ(s, f) has analytic continuation to the whole of
the complex plane and satisfies a functional equation with s 7→ 1− s. (Here and elsewhere we
normalize all the functional equations so that s= 1/2 is the center of the critical strip.) The
non-vanishing of the L-function at the center s= 1/2 is of arithmetic importance, and has been
extensively studied in the literature. The prototype problem in this field is the following: given a
family of forms F show that there exists a form f ∈ F such that the lth derivative Λ(l)(1/2, f) 6= 0.
Often one is interested in proving a more quantitative result regarding the density of such forms
in the family (like infinitely many non-vanishing or, better, a positive proportion non-vanishing).

One way of proving such a non-vanishing result is by forming a filtration F =
⋃
Y F(Y ), with

|F(Y )|<∞, and asymptotically computing the mean value (or the moment)∑
f∈F(Y )

Λ(l)(1/2, f), (1)

as Y →∞. Sometimes it is also useful to introduce certain weights, e.g. spectral weights or
smooth cut-off functions, in (1). To obtain an asymptotic formula for (1) we usually require
some sort of ‘spectral completeness’ for the family F , so that we have a precise estimate for
the sum ∑

f∈F(Y )

q−1
f λf (n), (2)

where λf (n) stands for the nth normalized Fourier coefficient of f and qf denotes the level.
Examples of such families include

Ftwist = {g ⊗ χ : χ},
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the family of twists of a fixed form g by all characters χ, and also the subfamily Freal twist

consisting of all twists of g by real (quadratic) characters. For Ftwist one can utilize the
orthogonality of the characters to compute (2). However, when one restricts to the subfamily
of quadratic twists, this crucial orthogonality relation is lost. Nevertheless, we still have enough
harmonics in the family, and the Poisson summation formula can be used instead to compute (2).
This yields the following mean value result∑

f∈Freal twist

Λ(l)(1/2, f)F
(
qf
Y

)
= YPl(log Y ) + E(Y ),

where F is a smooth compactly supported function, Pl is a polynomial of degree l and E(Y )
stands for the error term. It is not difficult to show that E(Y ) = o(Y ), and with some work one
may prove the stronger bound (see [Mun09, MM91]),

E(Y ) =O(Y 3/4+ε).

The polynomial Pl depends on both the form g and the smooth cut-off function F . In particular,
the leading coefficient is related to the value of the symmetric square L-function of g at s= 1,
which is non-zero. (Some other interesting subfamilies of Ftwist are given by restricting to twists
by special characters like cyclotomic characters, cubic characters, quadratic characters with prime
modulus etc.)

Other examples of interesting families which have been in the focus of research [IS00, KMV00]
include: (i) the collection of all primitive forms of a given level and varying weight; and (ii)
primitive forms of a given weight and varying level. In such cases we can evaluate the sum (2)
using the spectral theorem of automorphic forms (e.g. the Petersson formula). The results that
we get in these cases are even better, compared with Freal twist, as the summation formula is
much stronger. For example, in these families we can show that a positive proportion of the
central values do not vanish (see [IS00]).

The purpose of this paper is to study the family of forms given by

F = {f ⊗ χ : χ= χd primitive real, p|d =⇒ p≡ 1 (mod 4)}, (3)

i.e. the family of twists of a primitive form f by real primitive characters χd such that d is odd
and is a sum of two squares. This is a nonlinear algebraic subfamily of Freal twist. For example, if
f is a modular form associated with an elliptic curve E : y2 = f(x), then this family is associated
with the quadratic elliptic fibration (t2 + 1)y2 = f(x) with t ∈Q. In general we can also consider
fibrations given by q(t)y2 = f(x) where q(t) is a quadratic polynomial. In this context the family
Freal twist corresponds to linear elliptic fibrations of the form l(t)y2 = f(x) where l(t) is a linear
polynomial.

It turns out that the usual (as in the case of Freal twist) direct application of the Poisson
summation formula is not sufficient to prove a mean value result for such a family. Let me briefly
explain the problem. Let r(d) denote the number of representations of d as a sum of two squares.
Then we are interested in evaluating the following sum:∑

d

r(d)L(1/2, f, χd)F (d/Y ),

where L(1/2, f, χd) is the L-function associated with the form f ⊗ χd. Using the approximate
functional equation and interchanging the order of summation we reduce the problem to
evaluating the sum ∑

d

r(d)χd(n)F (d/Y )
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Non-vanishing of derivatives of L-functions

where, in the worst case scenario, n is as large as Y . Notice that without the arithmetic weights
r(d) this sum can be evaluated using the Poisson summation formula, as the length of the sum
(i.e. Y ) is much larger than the square root of the modulus of the character (i.e.

√
n). However,

if we use the Poisson (or Voronoi) summation formula with the weights r(d), then the dual sum
is roughly the same as the original sum (in length and complexity), and as such we do not gain
anything from such a summation formula. Recall that it is useful to apply the twisted Voronoi
summation formula for GL2 only if the length of the sum is longer than the size of the modulus
of the character, which is not the case here. In fact, the new input that we need is an upper
bound for certain bilinear forms involving real characters. We now state the main result of this
paper. (The notation 2 stands for a non-zero square integer.)

Theorem 1. Let f be a primitive form of level q, and let r(d) denote the number of
representations of d as a sum of two squares. Then we have∑

(d,2q)=1
d 2-free

r(d)Λ(l)(1/2, f, χd)F (d/Y ) = Y Ql(log Y ) + E(Y ),

where Ql is a polynomial of degree l and the error term E(Y ) is bounded by

E(Y )� Y (log Y )7+ 1
2 .

The error term is smaller than the leading term if the order of the derivative l is larger than
seven. In such a case we may explicitly calculate the leading coefficient of the polynomial Ql and
hope to show that it is non-zero. This will imply that there are infinitely many twists f ⊗ χd
with d= 2 + 2 such that the lth derivative of the completed L-function does not vanish at the
central point. We also remark that r(d) can be replaced by the more general rQ(d) which counts
the number of representation of d by the positive definite binary quadratic form Q. (Of course
there will be extra complications related to class number. But such problems can be tackled
(see [IM10]).)

It will be apparent that our method can be carefully tuned to obtain a better bound for the
error term. Such an endeavor, though possible, would increase the length of the paper to twice
its present size. What is more discouraging is the fact that it might not be possible to beat the
bound E(Y )� Y (log Y )1+ε without any new ideas. So the most interesting cases of the central
value and the first derivative would still remain out of reach. (We will briefly describe the possible
improvements in the last section.)

Recently, double Dirichlet series have been used to prove various mean value results about
L-functions and their derivatives. In particular, the mean value for the quadratic twist family
Freal twist can be proved this way. The main advantage of this method is its ready adaptability
with higher number fields and twists by higher order residue symbols. For the family F defined
in (3), the ‘model’ double Dirichlet series is given by∑

d

r(d)L(s, f ⊗ χd)
dw

. (4)

Using the standard heuristics (see [CFH06]) we may expect to obtain a modified double
Dirichlet series with analytic continuation if the ‘expected’ functional equations of (4) generate
a finite group. One of the expected functional equations for (4) is given by s 7→ 1− s and
w 7→ w + 2s− 1. To get another functional equation we expand the L-function as a series
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and interchange the order of summation. Then we get a double Dirichlet series of the form∑
n

λf (n)L(w, χn)ζ(w)
ns

.

This gives the expected functional equation given by w 7→ 1− w and s 7→ s+ 2w − 1.
Observe that these two functional equations generate an infinite group. (This is exactly the
same deadlock that we encountered when we tried to use the Voronoi summation formula.) So
we do not expect to get a modified double Dirichlet series with analytic continuation. Hence it
seems that results of the form given in Theorem 1 are not well adapted in the double Dirichlet
series scenario.

Finally, let us point out that we choose to work with the derivatives of the completed
L-function Λ(s, f) not just for the sake of convenience. Indeed our result cannot be translated to
yield a similar mean-value theorem for the central derivatives L(l)(1/2, f), for any l. The usual
yoga of expressing L(l)(1/2, f) as a linear combination of Λ(j)(1/2, f) with j = 1, . . . , l, does not
work, as the coefficients in this linear combination involve powers of log q and this blows up the
error term in Theorem 1. This is an extreme example where the symmetry of the functional
equation is so crucial that a slight perturbation ruins the result completely. The lth derivative
of the completed L-function Λ(l)(s, f) satisfies a symmetric functional equation for any l. This
is not the case with the derivatives of the non-completed L-function L(s, f).

2. Approximate functional equation

Let f be a primitive form of weight k and level q (which for convenience we assume to be odd),
given by a Fourier expansion

f(z) =
∞∑
n=1

n(k−1)/2λ(n)e(nz)

with normalized Fourier coefficients λ(n). Deligne has proved that |λ(n)|6 τ(n) where τ is the
divisor function. (Note that Deligne’s bound will play a crucial role in our analysis and so
our result does not hold for a Maass form.) For a Dirichlet character χ we define the twisted
L-function

L(s, f, χ) =
∞∑
n=1

λ(n)χ(n)n−s,

which is absolutely convergent in the region σ := <(s)> 1. It is well-known that L(s, f, χ) can
be extended to an entire function. In this paper we will focus on twists by quadratic characters.
For integers d≡ 0, or 1 (mod 4) we put χd(n) = (d/n). So χd is a real character with conductor
less than or equal to |d|. If d is a fundamental discriminant then χd is a primitive character
of conductor |d| associated with the quadratic field Q(

√
d). If in addition (d, 2q) = 1 then

the twisted L-function L(s, f, χd) satisfies a functional equation. More precisely we define the
completed L-function by

Λ(s, f, χd) = (q̂|d|)s−1/2Γ
(
s+

k − 1
2

)
L(s, f, χd) where q̂ =

√
q

2π
, (5)

then we have
Λ(s, f, χd) = εfχd(−q)Λ(1− s, f, χd)

where εf is the sign of the functional equation of L(s, f). To study the L-function inside the
critical strip we can use the functional equation to get a rapidly decaying series expansion called
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the approximate functional equation. For the lth derivative at the center we have

Λ(l)(1/2, f, χd) = (1 + (−1)lεfχd(−q))
∞∑
n=1

λ(n)χd(n)√
n

V

(
n

q̂|d|

)
, (6)

where the smooth function V is given by

V (y) =
1

2πi

∫
(3)

(
Γ(s+ k/2)

ys

)(l)ds

s
.

This function decays rapidly as y gets larger; in fact we have

V (y)�N y−N

for all N > 1. This implies that in (6) the terms with n� d (the tail) make a very small
contribution, or in other words the first � d terms of the sum give a very good approximation
for the central value. In addition, when y is small

V (y) = Γ(k/2)(−log y)l + P (−log y) +O(y),

where P is a polynomial of degree at most l − 1. This fact will play an important role in our
analysis. Observe that this implies that the beginning terms in the sum in (6) are weighted by
(log |d|)l, whereas near the end, i.e. when n∼ |d|, the terms are unweighted. This gives us the
bound (14) which is crucial in the analysis of the error term in § 4.

We are interested in the sum

S =
∑[

(d,2q)=1

r(d)Λ(l)(1/2, f, χd)F (d/Y ), (7)

where r(d) denotes the number of representation of d as a sum of two squares, and F is a non-
negative smooth function with compact support. (The notation

∑[ indicates that the sum is over
square-free integers.) Notice that only square-free positive odd integers d≡ 1 (mod 4) contribute
to the sum S. Consequently we have χd(−q) = χd(q). Using the approximate functional equation
we can write

S = S1 + (−1)lεfS2

where

S1 =
∑[

(d,2q)=1

r(d)
∞∑
n=1

λ(n)χd(n)√
n

Gn(d/Y ),

S2 =
∑[

(d,2q)=1

r(d)χd(q)
∞∑
n=1

λ(n)χd(n)√
n

Gn(d/Y ),

and

Gn(y) = V

(
n

q̂yY

)
F (y).

Since F is compactly supported and smooth, the analytic nature of Gn is inherited from V , in
particular we have

Gn(y)� (n/Y )−N

for any N > 1. So the computation of S boils down to computing sums of the form∑[

(d,2q)=1

r(d)χd(a)
∞∑
n=1

λ(n)χd(n)√
n

Gn(d/Y ), (8)

23

https://doi.org/10.1112/S0010437X10004732 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004732


R. Munshi

for a given odd positive integer a (which in our case is either 1 or q). For simplicity we will
assume that a is square-free. Observe that since d≡ 1 (mod 4) we can use reciprocity to write
χd(a) = (a/d) and χd(n) = (n/d) in terms of the Jacobi symbol. Since the weight r(d) is given
by the convolution r(d) = 4

∑
δ|d(−1/δ), we get that (8) is given by

4
∑
d1,d2

(d1d2,2q)=1

µ(d1d2)2
(
−a
d1

)(
a

d2

)∑
n

λ(n)√
n

(
n

d1d2

)
Gn(d1d2/Y ). (9)

To free the sum over d1 and d2 from the coprimality and square-free conditions we use the
standard method involving the Möbius function. This leads us to consider sums of the form

T =
∑
d1 odd

∑
d2 odd

(
−a
d1

)(
a

d2

)∑
n

λ(n)√
n

(
n

rd1d2

)
Gn(rd1d2/Y ),

where r is a small positive odd integer; in fact we will have r� Y δ for any small δ > 0. The
larger values of r contribute a negligible amount. To see why this is so, observe that r = r1r

2
2

where r1 is essentially a divisor of q2 and r2 is the variable that is unbounded. Then one uses
the Cauchy–Schwarz inequality and the upper bound∑

d

|L(1/2, f, χd)|2F (d/Y )� Y 1+ε

for the second moment (where the sum is over square-free odd integers d) and the fact that∑
r>A r

−2�A−1. This upper bound for the second moment follows easily from the mean value
estimate given in [Hea95] for real characters.

Next we separate the variables d1 and d2 from each other using an inverse Mellin transform.
To this end we define the Mellin transform

Hn(s) =
∫ ∞

0
Gn(y)ys

dy

y
.

Since Gn(y) is compactly supported, the function Hn(s) is entire and in any vertical strip the
function decays faster than =(s)−N for any N > 1. In fact we have the bound

Hn(σ + it)�σ,N,M (n/Y )−N |t|−M .

Now the inverse Mellin transform yields

Gn(y) =
1

2πi

∫
(σ)
Hn(s)y−s ds,

for any σ. Taking σ > 1 and replacing in the expression for T , and interchanging the order of
summations and integration we get

T =
1

2πi

∫
(σ)

(
Y

r

)s{∑
n

λ(n)Hn(s)√
n

(
n

r

)
L(s, χ4an)L(s, χ−4an)

}
ds. (10)

Observe that the inner sum over n converges absolutely and uniformly in any given compact
domain for s, away from the possible poles coming from the L-function (i.e. away from s= 1).
Hence the sum defines an analytic function with a possible pole at s= 1.

We shift the contour of integration to the critical line σ = 1/2 and in the process we pick up
residue at the only possible pole at s= 1. This gives

T =M + E

24
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where M is coming from the residue at s= 1 and, as we will see in the next section, it contributes
to the main term. The term E is given by the integral over the central line σ = 1/2 and it
contributes to the error term. We observe that in our analysis of E the terms with n > Y 1+ε

for any ε > 0 contribute a negligible quantity compared to the other terms, and hence can be
ignored. So it follows that

E�
∫

(1/2)

√
Y

r

{ ∑
n�Y 1+ε

|λ(n)||Hn(s)|√
n

|L(s, χ4an)||L(s, χ−4an)|
}
|ds|.

3. The main term

In this section we analyze the main term,

M =
∑
n

λ(n)√
n

(
n

r

)
Ress=1

{
Hn(s)L(s, χ4an)L(s, χ−4an)

(
Y

r

)s}
.

The L-function L(s, χ−4an) is entire for any n, whereas the other L-function L(s, χ4an) has a
simple pole at s= 1 for an= 2. Hence it follows that

M =
Y

r

∑
n

an=2

λ(n)Hn(1)√
n

(
n

r

)
L(1, χ−4an) Ress=1L(s, χ4an).

The residue is given by

Ress=1L(s, χ4an) =
∏
p|2an

(
1− 1

p

)
.

If a is square-free then the condition an= 2 is equivalent to n= am2 for some m, from which
we get

M =
Y

r

L(1, χ−4)√
a

(
a

r

) ∑
(m,r)=1

λ(am2)Ham2(1)
m

∏
p|2am

(
1− 1

p

)(
1− χ−4(p)

p

)
.

We will write lp for the local L-factor (1− p−1)(1− χ−4(p)p−1). We seek to evaluate the above
sum using contour integration. To this end recall that Hn(1) is given by

Hn(1) =
∫ ∞

0
V

(
n

q̂yY

)
F (y) dy

=
1

2πi

∫ ∞
0

∫
(3)

(
Γ(s+ k/2)(q̂yY )s

ns

)(l)ds

s
F (y) dy.

Both the integrals appearing above are absolutely convergent. This, together with the absolute
convergence of the Dirichlet series

D(s) =
∑

(m,r)=1

λ(am2)
∏
p|2am lp

as+1/2m2s+1

in the half-plane σ > 0, justify the interchange in the order of summation and integration, and
also the term-by-term differentiation which yields

M =
YL(1, χ−4)

r

(
a

r

)
1

2πi

∫ ∞
0

∫
(3)

(Γ(s+ k/2)(q̂yY )sD(s))(l)
ds

s
F (y) dy. (11)

25
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Now we will shift the contour of integration to the left and in the process pick up the residue
at the pole s= 0. The residue will of course give us the leading term and the integral over the
vertical line to the left of s= 0 will contribute to the error term. To make this precise we need to
analyze the Dirichlet series D(s). First using the multiplicativity of the Fourier coefficient we get

Dodd(s) =
∏
p|a

{
λ(p3)lp

(p3)s+1/2
+

λ(p5)lp
(p5)s+1/2

+ · · ·
} ∏
p - 2ar

{
1 +

λ(p2)lp
(p2)s+1/2

+
λ(p4)lp

(p4)s+1/2
+ · · ·

}
,

where Dodd(s) is the Dirichlet series obtained from D(s) by removing the Euler factor at p= 2.
Hence the Dirichlet series D(s) is related to the symmetric square L-function of the form f . There
is a Dirichlet series D2(s) which is absolutely convergent and has a Euler product expression in
the half-plane σ >−1/4, such that

D(s) = L(2s+ 1, Sym2f)D2(s).

Notice that D2(0) 6= 0, as it is given by a convergent Euler product. It is a well-known fact
that the symmetric square L-function L(s, Sym2f) has analytic continuation to the whole of the
complex plane and it does not vanish at s= 1. Hence D(0) 6= 0.

We use the expansion

Y s = 1 + s log Y +
(s log Y )2

2!
+ · · ·

to conclude that the lth coefficient in the power series expansion of the holomorphic function
Γ(s+ k/2)(4q̂yY )sD(s) around the origin is given by a polynomial in log Y of degree l,

cl = (l!)−1Γ(k/2)(log Y )lD(0) + lower degree terms in log Y.

Hence the residue of the integrand in (11) at s= 0 is also a polynomial in log Y of degree l,
given by

Ress=0s
−1(Γ(s+ k/2)(q̂yY )sD(s))(l) = l!cl.

By contour integration we get

M =
D(0)
r

(
a

r

)
Γ(k/2)L(1, χ−4)Y (log Y )l

∫ ∞
0
F (y) dy + Y Q(log Y ) +R, (12)

where Q is a polynomial of degree l − 1, and the remainder term R is given by the same integral as
in (11), but now over the vertical line σ =−1/4 + ε. Hence it follows from standard estimates that

R� Y 3/4

r
(Y r)ε.

The first two terms in the right of the expression (12) give the the leading term in Theorem 1.
Also observe that the leading term in M is of size Y (log Y )l and the coefficient is given by a nice
formula. In particular the coefficient is a multiplicative function in r. So we can easily execute
the sum over the variable r. Recall that the variable r appears when we use the Möbius function
to deal with the coprimality and the square-free conditions in the sum (8).

4. The error term

We now turn to the analysis of the error term E which we have already seen to be bounded
above by

E�
∫

(1/2)

√
Y

r

{ ∑
n�Y 1+ε

|λ(n)||Hn(s)|√
n

|L(s, χ4an)||L(s, χ−4an)|
}
|ds|. (13)
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Notice that we have already sacrificed the hope of getting any cancellation from the sign changes
of the Fourier coefficient λ(n). Experience shows that such a desire is insatiable because we do not
have any information about how the L-functions behave inside the critical strip. The only way
to get cancellation would be to use an approximate functional equation to open the L-functions
and in the process lose Y 1/4 each for the two L-functions. Then of course the cancellation in the
n-sum gives us back this loss, but nothing more. So we are again back to where we started. In
short, in a double sum of equal lengths with joint oscillation one may not hope to get more than
one-fourth cancellation (i.e. one-half cancellation from one sum of one’s choice).

Owing to the fast decay of the function Hn(s) in the vertical line the outer integral is
convergent. The main task is to give a sharp upper bound for the weighted average of the
L-functions. To this end we will break up the inner sum into dyadic blocks and in the block
N 6 n < 2N we will use the bound Hn(s)�H(N)(1 + |t|)−4, where

H(N) =

{
1 + logl(Y/N) if N 6 Y,

(Y/N) if Y < N � Y 1+ε.
(14)

Then using the Cauchy–Schwarz inequality we get that

E�
√
Y/r

∑
dyadic blocks

H(N)N−1/2

∫
R
U(N, t)(1 + |t|)−4 dt, (15)

where the sum is over log Y many dyadic blocks, and

U(N, t) =
∑

N6n<2N

|λ(n)|
∣∣∣∣L(1

2
+ it, χ4n

)∣∣∣∣2. (16)

The above deduction may need some explanations. First, we are replacing an by n and in the
process increasing the n-sum by the fixed factor a (thanks to positivity). Also U(N, t) should in
fact be defined as the maximum of the expression in the right of (16) and a similar expression with
χ−4n in place of χ4n. A moments reflection convinces us that this does not alter the magnitude
of U(N, t). Now to expand the L-function in the critical line, we first reduce the modulus n to
a square-free number. Writing n as km2 with k square-free we observe that

U(N, t)�
∑

m6
√
N

τ(m2)τ(m)
∑[

k∼N/m2

|λ(k)|
∣∣∣∣L(1

2
+ it, χk

)∣∣∣∣2. (17)

(Note the slight abuse of notation. Indeed χk stands for the character associated with the field
Q(
√
k).) Here we have used the Deligne bound but this is not the crucial usage that we mentioned

above. The inner sum being over square-free numbers k, we can use approximate functional
equation to replace the L-function by a sum of two rapidly decaying series. We will continue our
analysis with one such series

Lk(t) =
∑
d

χk(d)

d
1
2
+it

Wt

(
d√
k

)
.

Here the smooth function is given by

Wt(y) =
1

2πi

∫
(3)
G(u)

Γ((1/4) + (it/2) + (u/2))
Γ((1/4) + (it/2))

(
√
πy)−u

du

u
(18)

where G(u) is any function which is holomorphic in the strip −4< <(u)< 4, even and normalized
by G(0) = 1 (see [IK04, Theorem 5.3]).
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Let

U∗(N, t) =
∑[

N6n<2N

|λ(n)|
∣∣∣∣∑
d

χn(d)
d1/2+it

Wt

(
d√
n

)∣∣∣∣2.
Notice that in the inner sum, terms up to d�

√
N(1 + |t|) contribute to the sum, while the

other terms of the sum make a negligible contribution. (This follows from the exponential decay
of the function Wt (see [IK04]).) Our job is now reduced to producing a decent upper bound for
U∗(N, t). An application of Deligne bound at this point yields

U∗(N, t)�
∑[

N6n<2N

τ(n)
∣∣∣∣∑
d

χn(d)
d1/2+it

Wt

(
d√
n

)∣∣∣∣2.
Observe that the expression in the right-hand side of the above inequality is actually comparable
with the original sum (7); the only gain that we have accomplished is that we no more have the lth
derivative, i.e. we have saved a power of log Y . If we now open the absolute square, interchange
the order of summation and try to evaluate the sum over n using a summation formula, we will
face the same problem that we faced before, and the dual sum is roughly the same as the original
sum. This happens as the modulus of the character ( .

d1d2
) in the worst case scenario is as large

as N(1 + |t|), which is roughly the length of the n-sum. This is the deadlock case in the twisted
Voronoi summation formula as we have mentioned in the introduction. To break this deadlock we
will first replace the weight |λ(n)| by an upper bound, which will have the advantage of breaking
the n-sum into two parts: a short sum and a long sum. The shorter sum is more complicated and
we do not hope to gain anything from this part, i.e. we will evaluate this sum trivially. However
the longer sum is without any arithmetic weights and we can execute this sum using the Poisson
summation formula.

We use the following inequality (see [IM10]) for the multiplicative function |λ(n)| for square-
free n

|λ(n)| �
∑[

a|n
a6n1/7

|λ(a)|3. (19)

For the sake of completeness we include a proof of the above inequality. The starting point is
the following simple combinatorial inequality:

τ7(n) =
∑

d1...d7=n

1 6 7
∑

d1...d7=n
d16n1/7

1 = 7
∑
d1|n

d16n1/7

τ6

(
n

d1

)
= 7τ6(n)

∑
d1|n

d16n1/7

1
τ6(d1)

.

(Recall that τk(n) =
∑

d1...dk=n 1.) We can assume that |λ(p)|> 1 for all primes p|n, otherwise
|λ(n)|6 |λ(n/p)| and it is enough to prove (19) for n/p. Now we set V (d) = |λ(d)|3 for any d|n,
and apply Hölder’s inequality to obtain∑

d|n
d6n1/7

V (d)1/(t+1)

τ6(d)V (d)1/(t+1)
6

[ ∑
d|n

d6n1/7

V (d)
]1/(t+1)[∑

d|n

1
τ6(d)(t+1)/tV (d)1/t

]t/(t+1)

for any t > 0. Combining the above two inequalities we get[
τ7(n)
τ6(n)

]t+1[∑
d|n

1
τ6(d)(t+1)/tV (d)1/t

]−t
6 7t+1

[ ∑
d|n

d6n1/7

V (d)
]
.
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Observe that the left-hand side is multiplicative. Therefore, to establish (19) we have to show
that there is a t > 0 (not depending on p) such that

|λ(p)|6
[

7
6

]t+1[
1 +

1
6(t+1)/tV (p)1/t

]−t
.

Since 1< |λ(p)|6 2 (using Deligne’s bound), we are only required to show that there is a t > 0
such that

1
x

6

[
7
6

]t+1[
1 +

x3/t

6(t+1)/t

]−t
for all x ∈ [1/2, 1]. The above inequality is equivalent to

1 6
7x
6

[
1 +

1
6

(
1− x2/t

71/t

)]t
.

As t→∞ the right-hand side of the above expression converges uniformly to (7x/6)(7/x2)1/6,
which is larger than 1 for x> 1/2. This concludes the proof of (19).

The inequality (19) is of outmost importance in this paper and so Deligne’s bound is
absolutely necessary. (Also note that the exponent 3 in the right-hand side of (19) is not optimum,
and there is a slight room of improvement (see [IM10]).) After using this inequality we remove
the square-free condition from n, and also smooth out the sharp cut-off using an appropriate
smooth function K and obtain

U∗(N, t)�
∑[

a6N1/7

|λ(a)|3U∗(N, t, a) (20)

where

U∗(N, t, a) =
∑
b

∣∣∣∣∑
d

1
d1/2+it

(
ab

d

)
Wt

(
d√
ab

)∣∣∣∣2K(abN
)
.

We will evaluate the above sum using the Poisson summation formula.

Now opening the absolute square of the inner sum and interchanging the order of summation
we get

U∗(N, t, a) =
∑
d1,d2

1

d
1/2+it
1 d

1/2−it
2

(
a

d1d2

)∑
b

(
b

d1d2

)
Jd1,d2,t

(
ab

N

)
,

where

Jd1,d2,t(y) =Wt

(
d1√
yN

)
Wt

(
d2√
yN

)
K(y).

Using the Poisson summation formula for the b-sum and then interchanging the order of
summation we obtain

U∗(N, t, a) =
N

a

∑
k

∑
d1,d2

g(k, d1d2)

d
3/2+it
1 d

3/2−it
2

(
a

d1d2

)
J̆d1,d2,t

(
kN

ad1d2

)
,

where J̆d1,d2,t stands for the Fourier transform

J̆d1,d2,t(y) =
∫

R
Jd1,d2,t(x)e(−xy) dx,
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and

g(k, d1d2) =
∑

α(mod d1d2)

(
α

d1d2

)
e

(
kα

d1d2

)
is the Gauss sum. We will show that the principal contribution to the above sum comes from the
zero frequency k = 0 and the frequencies corresponding to ak = 2. The other terms contribute
to the error term. Let us begin by giving an upper bound for the principal term,

P (N, t, a) =
N

a

∑
d1,d2

g(0, d1d2)

d
3/2+it
1 d

3/2−it
2

(
a

d1d2

)
J̆d1,d2,t(0).

Recall that g(0, d1d2) = 0 if d1d2 6= 2, and g(0, d1d2) = φ(d1d2) if d1d2 = 2. Hence it follows that

P (N, t, a)� N

a

∑
d1,d2
d1d2=2

(d1d2,a)=1

φ(d1d2)

d
3/2
1 d

3/2
2

|J̆d1,d2,t(0)|. (21)

Now using an appropriate test function G(u) in (18) we can show that for any A> 0 we have

J̆d1,d2,t(0)�
(

1 +
d1√

N(1 + |t|)

)−A(
1 +

d2√
N(1 + |t|)

)−A
. (22)

This implies that essentially the terms in (21) with d1, d2�
√
N(1 + |t|) contribute to the sum

and the other terms make a negligible contribution. Replacing the above bound for the Fourier
transform in (21) and executing the sum over d1 and d2 we obtain

P (N, t, a)� N(log N)3

a
(1 + |t|)2.

Next we compute the contribution of the terms with ak = 2 to U∗(N, t, a). This is given by

P2(N, t, a) =
N

a

∑
ak=2
k 6=0

∑
d1,d2

g(k, d1d2)

d
3/2+it
1 d

3/2−it
2

(
a

d1d2

)
J̆d1,d2,t

(
kN

ad1d2

)
.

As we do not expect to get any cancellation in this case, we will evaluate the sum trivially.
Writing each di as lidi with li|k∞ and (di, k) = 1, we see that the above sum is dominated by

N

a

∑
ak=2
k 6=0

∑
l1,l2|k∞

(l1l2,a)=1

|g(k, l1l2)|
(l1l2)3/2

∑
d1,d2

(d1d2,ak)=1

|g(1, d1d2)|
(d1d2)3/2

∣∣∣∣J̆l1d1,l2d2,t( kN

al1d1l2d2

)∣∣∣∣. (23)

(The notation a|b∞ means that every prime divisor of a is a prime divisor of b, or equivalently a
divides some power of b.) We need an estimate for the Fourier transform. The bound given in (22)
is not enough, as we need to have a bound which restricts the contribution from the k-sum. We
derive from the analytic nature of the Fourier transform J̆d1,d2,t that frequencies k of large size,
namely |k| � aN ε, can be ignored from analysis as they make a negligible contribution. For
smaller non-zero frequencies we use integration by parts (as k 6= 0) to obtain

J̆d1,d2,t

(
kN

ad1d2

)
� ad1d2

kN

(
1 +

d1√
N(1 + |t|)

)−A(
1 +

d2√
N(1 + |t|)

)−A
.

Also we have square-root cancellation in the Gauss sum, i.e.,

g(1, d1d2)�
√
d1d2.

30

https://doi.org/10.1112/S0010437X10004732 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004732


Non-vanishing of derivatives of L-functions

Using the above bounds we can now evaluate the inner sum in (23). The sum over li can be
evaluated trivially. Finally to execute the sum over k we use the observation that the condition
ak = 2 is equivalent to having k = am2 for some m 6= 0 (as a is square-free). It follows that the
contribution from the non-zero square frequencies is smaller in magnitude than the contribution
from the zero frequency, and we get

P (N, t, a) + P2(N, t, a)� N(log N)3

a
(1 + |t|)2.

5. The remainder terms

It remains for us to evaluate the contribution of the remaining frequencies. It turns out that we
cannot estimate this trivially as we have done for the square frequencies. Of course, if we do so
then we are off by an amount aN ε. This is the amount we have to save utilizing the cancellation
in the sum over di, as in the present case we have oscillation in these sums. Also the length of the
sum over any of the di is roughly

√
N which is satisfactory compared to the modulus of oscillation.

Now since the frequencies k with |k|> κ := a(1 + |t|)2N ε make a negligible contribution, our job
reduces to estimating

R(N, t, a) =
N

a

∑
ak 6=2

0<|k|<κ

∑
d1,d2

g(k, d1d2)

d
3/2+it
1 d

3/2−it
2

(
a

d1d2

)
J̆d1,d2,t

(
kN

ad1d2

)
. (24)

We write d1 = ln with l|(2kd2)∞ and (n, 2kd2) = 1. We want to estimate∑
(n,2kd2)=1

g(1, n)
n3/2+it

(
ak

n

)
J̆nl,d2,t

(
kN

anld2

)
(25)

using partial summation. Recall that g(1, n) = 0 if n is not square-free and g(1, n) =
√
n if n is

square-free. Now we will use the Polya–Vinogradov inequality or the convexity bound for the
Dirichlet L-function to evaluate the character sum over square-free integers. This gives us
the inequality ∑[

n6y

(
akd2

2

n

)
� (ak)1/4y1/2(akd2)ε.

(Of course one may use Burgess’ bound instead of the Polya–Vinogradov inequality. This will
lead to a longer allowable range for the a-sum in (19). In fact, instead of a6 n1/7 we will have
a6 n1/6, the optimum value of the exponent for this range is given by η = 2.099 . . . and hence
we will be able to save a fractional power of log Y when we use the Rankin bound below.) Also,
for the smooth function

f(y) = y−1−itJ̆yl,d2,t

(
kN

yald2

)
we have the bound for the derivative,

f ′(y)� ald2

ykN

(
1 +

ly√
N(1 + |t|)

)−A(
1 +

d2√
N(1 + |t|)

)−A
(1 + |t|),

so it follows using partial summation that the sum in (25) is dominated by

a5/4l1/2d2

k3/4N3/4
(1 + |t|)5/4

(
1 +

d2√
N(1 + |t|)

)−A
(akd2)ε.
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Plugging this into expression (24) we get

R(N, t, a)� a1/4N1/4(1 + |t|)5/4
∑

0<|k|<κ

∑
d2

∑
l|(2kd2)∞

|g(k, ld2)|
ld

1/2
2 k3/4

(
1 +

d2√
N(1 + |t|)

)−A
(akd2)ε.

We now use the standard explicit bound for the Gauss sum to execute the summation over l, d2

and k. We obtain
R(N, t, a)� a1/2N3/4(1 + |t|)3(aN)ε.

We have therefore established that

U∗(N, t, a)� P (N, t, a) + P2(N, t, a) +R(N, t, a)

� N

a
(1 + |t|)3(log N)3 + a1/2N3/4(1 + |t|)3(aN)ε.

We now substitute this bound into expression (20). The second term after the sum over a is
dominated by N27/28+ε(1 + |t|)3, which is negligible. Now we will use the following bound due
to Rankin [Ran95]: ∑

a6y

|λ(a)|3� y(log y)
√

2−1.

To have a neat expression we will replace the upper bound by y
√

log y. Then using partial
summation it follows that

U∗(N, t)�N(1 + |t|)3(log N)9/2.
Now from the expression given in (17) we get that

U(N, t)�
∑

m6
√
N

τ(m2)τ(m)U∗(N/m2, t)

� N(1 + |t|)3(log N)9/2
∑

m6
√
N

τ(m2)τ(m)
m2

� N(1 + |t|)3(log N)9/2.

Replacing this bound in (15) and computing the integral over t, we get that the error term

E�
√
Y/r

∑
dyadic blocks

H(N)
√
N(log N)9/2� Y (log Y )9/2√

r
.

Observe that we do not lose an extra log Y for breaking the sum over n into dyadic segments.
From the above bound we can derive the claimed bound for E(Y ) in Theorem 1. Recall that

r = r1r
2
2 with r1|q2 and hence bounded so the sum over r1 does not alter the size of the error

term. However, the variable r2 is a product of three independent variables, r2 = l1l2l3, where
l1 and l2 are the variables used to free the sum (9) from the square-free condition on d1 and
d2 respectively. The third variable l2 was introduced to free (9) from the coprimality condition
(d1, d2) = 1. Therefore, when we do the sum over r2 we will lose (log Y )3. Hence

E(Y )� Y (log Y )7+ 1
2 .

Notice that if we had used Burgess’ bound instead of the Polya–Vinogradov inequality we
would have got E(Y )� Y (log Y )7.07..., and so the integral part of the exponent would remain
unchanged. Of course there are many possibilities of improvements as we indicate in the next
section.
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6. Concluding remarks

In this section we briefly indicate how we may obtain a better bound for the error term E(Y )
using a more delicate analysis. There is lots of room for improvement and in several points. First
when we use the Möbius function to free the sum in (8) from the coprimality and the square-free
conditions, and obtain the expression in (9), we are forfeiting one log Y for each of the Möbius
functions. However, this is not essential and we can continue our analysis in § 2 with

T =
1

2πi

∫
(σ)

Y s

{∑
n

λ(n)Hn(s)√
n

L(s, χ4an)L(s, χ−4an)ζ(2s)−3Dn(s)
}
ds,

instead of the expression (10). Here Dn(s) is a Dirichlet series which has an Euler product
expression and converges absolutely for σ > 1/3. Observe that this minor change does not hamper
the shift of the contour integral to σ = 1/2. Of course the analysis of the main term in § 3 goes
through with some minor changes, Dn(s) being quite amiable.

In our analysis of the error term, already in the expression on the right of (13) we have lost
a power of Y . Indeed we are not trying to get a cancellation in the sum over n in E. However, a
closer analysis shows that we really do not need the b-sum (in (20)) to be that long (the level
of distribution for a GL2 L-function is at least 1/2 (see [Mun09])), so we can use the following
inequality:

|λ(n)||Dn(1/2 + it)| �
∑[

a|n
a6n1/4

|λ(a)|
∏
p|a

(
1 +

1
p

)3

.

This can be proved in the same spirit as (19) coupled with the observation that |Dn(1/2 + it)| �∏
p|n(1 + 1/p)3. In this case Hölder’s inequality together with Rankin’s mean-value result [Ran95]

gives ∑
a6y

|λ(a)|
∏
p|a

(
1 +

1
p

)3

�
[∑
a6y

|λ(a)|3/2
]2/3[∑

a6y

∏
p|a

(
1 +

1
p

)9]1/3

� y(log y)2F (3/4)/3,

where

F (3/4) =
2−1/4

5
(23/4 + 35/4)− 1 =−0.053 . . . .

Hence, instead of losing a power of log Y in the sum over a, we will in fact gain a fractional
power of log Y . This will of course come as a boon when we are right at the threshold and need
to save a fractional power of log Y .

Also, one can show that for t away from zero, we have∑
N6n<2N

∣∣∣∣L(1
2

+ it, χ4n

)∣∣∣∣2�N(log N).

(Of course the uniformity of the bound in the t-aspect is an issue here. Indeed for any fixed
t 6= 0 we can take a smooth version of the sum appearing on the left-hand side and evaluate it
asymptotically. The leading term is of the form a(N, t)N log N + b(N, t)N where the functions
a(N, t) and b(N, t) contain oscillatory terms, comparable with (N it − 1)/t, which as t→ 0 yields
extra powers of log N . It follows that for t� (log N)−1 the true order of magnitude is N(log N)3.
We take up this analysis in detail in the forthcoming work [Mun] where we establish Theorem 1
with an error term O(Y (log Y )9/10) in the special case of dihedral form f .) Hence it will follow
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if we choose to be very careful that

U(N, t)�N(1 + |t|)3(log N)2−δ,

for some δ in the range (0, 1) and t 6= 0, and the final bound will turn out to be

E(Y )� Y (log Y )2−δ. (26)

Therefore, we will have a non-vanishing result from the second derivative onwards. Of course the
most interesting case is the first derivative, as it is related to the existence of fibers of rank one
in the quadratic elliptic fibration q(t)y2 = f(x).

It seems that (26) is the limit of the method and any improvement over this will require new
ideas. One may conjecture that the right-hand side of (13) is bounded by O(Y (log Y )1−δ) for
some δ ∈ (0, 1). Indeed, this is what we get if we replace each of the L-functions and the Fourier
coefficients appearing in (13) by their respective average sizes, but unfortunately the inequalities
of the type (19), which we employ to break the deadlock, cost us an extra log Y .
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