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The residual flow in well-optimized stellarators
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The gyrokinetic theory of the residual flow, in the electrostatic limit, is revisited, with
optimized stellarators in mind. We consider general initial conditions for the problem,
and identify cases that lead to a non-zonal residual electrostatic potential, i.e. one having
a significant component that varies within a flux surface. We investigate the behaviour
of the ‘intermediate residual’ in stellarators, a measure of the flow that remains after
geodesic acoustic modes have damped away, but before the action of the slower damping
that is caused by unconfined particle orbits. The case of a quasi-isodynamic stellarator
is identified as having a particularly large such residual, owing to the small orbit width
achieved by optimization.
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1. Introduction

The work of Rosenbluth & Hinton (Rosenbluth & Hinton 1998; Hinton & Rosenbluth
1999) established the idea of an undamped ‘residual’ potential in tokamaks. The idea is
to initialize an electrostatic potential, varying only in the radial direction, and track its
value over a time much longer than the transit period over which particles move along the
magnetic field lines. Initially, the potential oscillates and diminishes in amplitude, due to
geodesic acoustic mode activity, but eventually a steady residual signal emerges. Because
all of this happens due to a collisionless dynamics, it was argued that full gyrokinetics is
needed to properly model the turbulence, which remains the prevailing attitude to this day.

The residual proved very popular in part due to the fact that it admits exact predictions,
commonly used to benchmark gyrokinetic codes. However, the question of what such
calculations imply for the behaviour of fully developed turbulence, where a strongly
nonlinear dynamics prevails, is a difficult one to grapple with. Part of the difficulty is
that the dynamics of the driven potential cannot be easily separated from that of the
turbulence that drives it. Indeed, modelling the turbulence as a steady source leads to
unbounded growth of the residual (Rosenbluth & Hinton 1998). Other basic questions
arise as to whether the residual is relevant in cases where the damped solutions called
geodesic acoustic modes (GAMs) may be effectively driven by the turbulence (Waltz &
Holland 2008).
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2 G.G. Plunk and P. Helander

There is a vast body of work concerning zonal flows in magnetic fusion (see for instance
Diamond et al. (2005) for a start), with many simple limits having been considered
theoretically, and a multitude of sometimes disparate models and explanations having
been proposed. There is, however, broad agreement that zonal flows have a beneficial
influence on turbulence, lowering fluctuation levels by shearing turbulent eddies (Hahm
et al. 1999), promoting transport of energy to small scales and inducing coupling between
unstable and stable eigenmodes (Makwana, Terry & Kim 2012). Zonal flows are also
responsible for the Dimits shift, whereby turbulence is all but eliminated for a finite
range above the threshold of the linear instability (Dimits et al. 2000; Rogers, Dorland
& Kotschenreuther 2000; St-Onge 2017; Pueschel, Li & Terry 2021; Hallenbert & Plunk
2022). In the context of stellarators, it is clear that the strength of the geodesic curvature,
related to both GAM damping and residual levels, has a strong effect on the overall
turbulence levels (Xanthopoulos et al. 2011), and variation in the linear response of zonal
flows is believed to underlie confinement differences between different configurations of
the Large Helical Device (LHD) (Watanabe, Sugama & Ferrando-Margalet 2008). The
neoclassical radial electric field in a stellarator can also stabilize turbulence via shearing
etc., and is experimentally associated with enhanced confinement (see for instance Lore
et al. 2010), but its origins are distinct from zonal flows, and there is not yet evidence to
support such a role in the W-7X stellarator (Xanthopoulos et al. 2020). Overall, there is
a strong motivation to deepen the understanding of the theoretical foundations of zonal
flows in stellarators, of which the residual is a key part, especially to aid in the design of
future devices.

On the most fundamental theoretical level, one observes that, according to gyrokinetic
theory, the entire ‘kα = 0 component’ of the fluctuations is stable (k⊥ = kψ∇ψ + kα∇α
is the wavenumber perpendicular to the magnetic field, where α and ψ are defined such
that B = ∇ψ × ∇α is the magnetic field), having no source of free energy. That is, in
addition to the zonal potential, which by definition is constant within a flux surface, there
are also components that vary within a flux surface by virtue of smooth dependence along
the field line, including the electrostatic potential and other moments such as parallel ion
flow or temperature perturbations. What is the fate of these components, and do they also
have a role in regulating the turbulence?

In the present work we focus on the residual in the context of stellarators instead of
tokamaks (although we note that our findings apply equally to the latter). The above issues
also arise in a stellarator, and it is even more unclear for which cases the residual is a useful
quantity as a predictor of the turbulence. Indeed, as was found by Mishchenko, Helander &
Könies (2008) and Helander et al. (2011a), the residual in a stellarator is strongly affected
by the presence of unconfined particle orbits, i.e. trapped particles bouncing back and
forth in magnetic wells that drift radially between magnetic surfaces; see also Monreal
et al. (2016). If this drift is non-zero, however small, it was found that the residual is
sharply reduced, an apparent strike against the stellarator.

However, in cases where the radial drift is sufficiently small, such as optimized
stellarators, the additional stellarator-specific damping must necessarily act on a time scale
much longer that the drive and saturation of the turbulence. For such cases, we identify
an ‘intermediate’ residual, namely, the solution that is found at times much longer than
the transit time and much smaller than the time scale of the stellarator-specific damping.
To calculate this residual, we revisit the initial value problem of gyrokinetics, this time
without assuming the initial condition or the final state to be well approximated by a
zonal potential. Indeed, we find that the residual is generally non-zonal, but we do identify
conditions under which such assumptions are valid.
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Residual flow 3

This calculation casts the optimized stellarator in a more positive light, showing that
it can exhibit a large residual, especially in the case that the widths of particle orbits
are small, which, as we demonstrate, is especially true in a particular class, so-called
quasi-isodynamic stellarators. Indeed, in such stellarators the residual is found to be much
larger than that in tokamaks, which could have significant consequences for the regulation
of plasma turbulence.

2. Gyrokinetic solution of the initial value problem

We will follow some of the notation conventions of Helander et al. (2011a), but
with some adaptations due to the fact that the derivation will use gyrokinetics instead
of drift kinetics. We are interested in solving the gyrokinetic system of equations in
the electrostatic limit for the time evolution of a linear mode with wavenumber k⊥ =
kr∇r + kα∇α, where r(ψ) is an arbitrary radial coordinate that is constant on magnetic
surfaces, and the magnetic field is expressed as B = ∇ψ × ∇α in terms of the toroidal
flux function ψ and Clebsch angle α. Here, we are concerned only in the case kα = 0,
where there is no source of free energy for the perturbation, so the linear mode is stable.
The collisionless gyrokinetic equation in this limit is

∂ga

∂t
+ v‖∇‖ga + iωdaga = eaFa0

Ta

∂φ

∂t
J0a, (2.1)

with ∇‖ = b̂ · ∇ = ∂/∂l, where b̂ = B/B and l is the arc length along field
line. Here, ga is the gyrocentre distribution function for species ‘a’ and Fa0 =
na(ma/2πTa)

3/2 exp(−mav
2/2Ta), with na and Ta the bulk density and temperature, ma

the particle mass, and v its velocity. The electrostatic potential φ is found from the
quasi-neutrality constraint

∑
a

na
e2

a

Ta
φ =

∑
a

ea

∫
gaJ0a d3v, (2.2)

where Jna = Jn(k⊥v⊥/Ωa), withΩa = eaB/ma, with ea the particle charge, and the velocity
element is expressed in gyrokinetic phase space variables as

d3v = 2πv⊥ dv⊥v‖ =
∑
σ

2πB dEa dμa

m2
a|v‖| =

∑
σ

πBv2 dv dλ√
1 − λB , (2.3)

where we define v⊥ = |b̂ × v|, v‖ = b̂ · v, Ea = mav
2/2, μa = mav

2
⊥/(2B), v = |v| and

λ = μa/Ea. In what follows, we mostly use phase space variables v and λ, and express the
parallel velocity as v‖ = σv

√
1 − λB where σ = v‖/|v‖| = ±1. Following Helander et al.

(2011a), the drift frequency is defined as ωda = krvda · ∇r with

vda · ∇r = v̄ra + v‖∇‖δra, (2.4)

where v̄ra denotes the transit-averaged radial drift, which is zero for passing particles and,
in the case of tokamaks and omnigenous stellarators, also for trapped particles. The term
v‖∇‖δra is zero under the orbit average, so δra is the radial excursion, or ‘orbit width’, of
particles, a periodic function on the torus. Equation (2.4) simply represents the splitting
of the radial drift into mean and oscillatory behaviour with respect to the transit/bounce
average. The quantities v̄ra and δra are defined by this equation, and may be obtained as
solutions of it, with the appropriate boundary condition for δra in l; for this, we take δra = 0
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4 G.G. Plunk and P. Helander

at bounce points of trapped-particle orbits, or at the field maximum for passing particles,
implying that δra is odd in v‖. The transit average, which is designed to annihilate the
operator v‖∇‖, is defined as

f̄ = 1
2

∑
σ

∫ l2

l1

f√
1 − λB(l) dl

/∫ l2

l1

1√
1 − λB(l) dl, (2.5)

where, for trapped particles, l1 and l2 are the bounce points (where v‖ = 0) such that
B(l1) = B(l2) = 1/λ, while for passing particles (λ < 1/Bmax) the average is understood
in the limiting sense, as l1 → −∞ and l2 → ∞.1 We also define the flux-surface average
(Helander 2014)

〈· · · 〉 = lim
L→∞

∫ L

−L
(· · · )dl

B

/∫ L

−L

dl
B
. (2.6)

Following previous works, we take the Laplace transform of (2.1), defining ĝa =∫∞
0 dt exp(−pt)ga(t), and introduce an integrating factor to absorb the orbit width term,

defining ha = exp(ikrδra)ga

( p + ikrv̄ra)ĥa + v‖∇‖ĥa =
[

p
eaφ̂

Ta
J0aFa0 + δFa(0)

]
eikrδra, (2.7)

where δFa(0) is the initial value of the gyrocentre distribution function

δFa = ga − eaφ

Ta
J0aFa0. (2.8)

We are interested in times much longer that the transit/bounce time scale ωbĥ ∼ v‖∇‖ĥ,
which we order similar to the non-secular part of the drift frequency, i.e. ωb ∼ krv‖∇‖δr,
but p ∼ krv̄r 
 ωb. This implies that, at dominant order, we have ∂ ĥ/∂l = 0. At next order,
we transit average and use continuity of ga at bounce points, which, because δra = 0 at such
points, implies ha|σ=1 = ha|σ=−1 at all l, yielding

( p + ikrv̄ra)ĥa =
(

p
eaφ̂

Ta
J0aeikrδra Fa0 + δFa(0)eikrδra

)
. (2.9)

The solution for ĝa is therefore

ĝa = 1
p + ikrv̄ra

(
p

eaφ̂

Ta
J0aeikrδra Fa0 + δFa(0)eikrδra

)
e−ikrδra . (2.10)

This is the same as the result of Helander et al. (2011a) except that it retains the
gyro-average (J0a) and keeps φ and δFa under the orbit average, allowing them to vary
within the flux surface. A similar comparison can be made with the result of Monreal
et al. (2016), which also retains the full gyro-average but not the mentioned flux-surface

1The factor of 1/2 is chosen so that the summation is evaluated 1
2
∑
σ = 1 for the typical case when f is independent

of σ . Note that transit-averaged quantities depend on λ and also the ‘well’ index denoted j. We reserve the zeroth index
j = 0 to denote the unbounded domain of passing particles; see Appendix D.
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dependence. To obtain an equation simply for φ, we substitute this expression into the
quasi-neutrality condition (2.2), which gives

∑
a

e2
a

Ta

(
naφ̂ −

∫
d3vJ0aFa0

p
p + ikrv̄ra

φ̂J0aeikrδra e−ikrδra

)

=
∑

a

ea

∫
d3vJ0a

1
p + ikrv̄ra

δFa(0)eikrδra e−ikrδra . (2.11)

Solving this equation, which can be compared with equation (6) of Helander et al. (2011a)
(see also Appendix A), would give the fully general solution for the post-GAM zonal-flow
dynamics, allowing for arbitrary orbit widths (kδr ∼ kρ ∼ 1). One would like to be able
to solve (2.11) for φ̂ then invert the Laplace transform and obtain φ(t). Unfortunately, the
situation is rather complicated, as φ̂ appears under an orbit average involving a resonant
velocity integral, so we will have to take some limits to make further progress.

2.1. Limit of small orbit width and ion Larmor radius
Following previous works, we now consider the limit

krδra ∼ k⊥ρa 
 1. (2.12)

We will later take k⊥ρe = krδre = 0, since ρe 
 ρi and δre 
 δri. Some care is needed
here as the polarization effects arising in the gyrokinetic equation enter at the same order
as those which appear in the quasi-neutrality constraint, which itself is singular. This is
made clear by recasting the quasi-neutrality condition (2.2) in terms of the gyrocentre
distribution function,∑

a

na
e2

a

Ta
[1 − Γ0(ba)]φ =

∑
a

ea

∫
δFaJ0a d3v =

∑
a

eaδna, (2.13)

where Γ0(x) = I0(x)e−x and ba = k2
⊥ρ

2
a = k2

⊥Ta/(maΩ
2
a ). Note that, in the final expression,

we introduce the ‘gyrocentre density’ δna. The point is that the gyrocentre density is small
in the limit bi 
 1, i.e. taking Γ0(b) ≈ 1 − b, one sees that δn/n ∼ O(bieiφ/Ti)∑

a

eaδna = bini
e2

i φ

Ti
, (2.14)

where bi = k2
⊥ρ

2
i = k2

⊥miTi/(e2
i B2), which means that it is necessary to include terms of

order bi to solve for the electrostatic potential in this limit.
We now perform the expansion on (2.11), ordering bieiφ/Ti ∼ δna/na. To put the final

expression in a more convenient form, we rewrite the resonant term on the left-hand side
using p/( p + ikrv̄ra) = 1 − ikrv̄ra/( p + ikrv̄ra), and thus obtain

∑
a

na
e2

a

Ta

(
φ̂ − 1

na

∫
d3vFa0

¯̂
φ

)
+
∑

a

e2
a

Ta

∫
d3v

ikrv̄ra

p + ikrv̄ra
Fa0

¯̂
φ

+
∑

a

e2
a

Ta

∫
d3vFa0

[ ¯̂
φbax2

⊥/2 + φ̂bax2
⊥/2 − k2

r φ̂δraδra + k2
r φ̂δ

2
ra/2 + k2

r
¯̂
φδ2

ra/2
]

= 1
p

∑
a

ea

∫
d3vJ0a

(
1 − ikrv̄ra

p + ikrv̄ra

)
δFa(0)eikrδra e−ikrδra, (2.15)
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6 G.G. Plunk and P. Helander

where we have written x2
⊥ = mav

2
⊥/(2Ta), expanded the Bessel function as J0a(k⊥v⊥/Ωa) �

1 − bax2
⊥/2 and recognized that terms that are linear in δra are odd in v‖ and vanish

upon integration. This equation is still fairly complicated, but the terms can be identified.
On the left-hand side, the first term shows contributions from the non-zonal part of
the potential: it is zero under zonal average and also for the case φ = 〈φ〉; we return
to this later. The second term contains the resonance that yields zonal-flow oscillations
and damping in stellarators with v̄ra = 0 (Mishchenko et al. 2008; Helander et al. 2011a;
Monreal et al. 2017). This is not the focus of the present work, although we discuss it
briefly in Appendix A. Note that the finite orbit effects on this term are neglected, which
is justified in the limit of small krv̄ra/p. On the second line we encounter all the finite
orbit width (FOW) and finite Larmor radius (FLR) terms associated with the residual.
These expressions will simplify significantly (and become more familiar) in limits when
the potential is mostly zonal. Finally, on the right-hand side we have the contribution from
the initial condition; note the separation into a resonant term and another which can be
evaluated using quasi-neutrality in terms of the initial potential. We keep this term exact,
for now, since we would like to discuss the consequences of several possible orderings for
the initial condition itself, δFa(0) in the following section; see also Appendix C.

3. The residual potential

Let us consider the limit where the resonance can be neglected, i.e. let us take p � krv̄ra.
Here, we neglect damping special to stellarators, which includes both exponential and
algebraic decay (Helander et al. 2011a). Although that damping process is slow, it can still
manage to deplete most of the zonal amplitude. Indeed, as shown by equations (16)–(17)
of Helander et al. (2011a), the final residual is independent of the size of the damping
rate when that rate is small, i.e. any non-zero value of v̄ra results in a strong correction to
the residual that depends on the fraction of trapped particles. Therefore, the ‘residual’ that
arises before this decay takes effect may be more relevant for understanding the interaction
between zonal flows and turbulence, especially in optimized stellarators where v̄ra is made
to be as close to zero as possible. We therefore focus on the ‘intermediate residual’ defined
to be the value of the potential long after the GAMs have decayed, τG ∼ 1/γGAM, but long
before the final residual is obtained, on the time scale of the stellarator-specific damping
of Mishchenko and Helander, τM ∼ 1/(krv̄ra)

φres ≡ lim
τM

t →∞

(
lim
t
τG

→∞
φ(t)

)
. (3.1)

For tokamaks (and perfectly omnigenous stellarators) this quantity coincides with the
conventional definition of the residual, as defined by Rosenbluth & Hinton (1998), as
shown in what follows.

To be slightly more formal, we note that the inner limit of (3.1) has already been
taken much earlier in our calculation to obtain (2.9), and additional limits are to be
considered subsidiary to that one. In particular, (tωb)

−1 
 krv̄rt 
 1, with the latter
condition expressing the outer limit of (3.1). According to these orderings, t is assumed
to be both large and small, i.e. t � ω−1

b but t 
 (krv̄r)
−1 (implying krv̄r/ωb 
 1), which,

because v̄r = 0 is never exactly true in an actual stellarator, can only ever approximately
be satisfied within a finite time interval, between ω−1

b and (krv̄r)
−1. The observation of

φres may therefore be a challenge in some cases, for instance in gyrokinetic simulations of
stellarators for which these time scales are not well separated.

Obtaining the desired limit in our calculation is, however, a simpler matter, as we need
only apply krv̄ra/p → 0 to (2.15). The only remaining dependence on p is the factor of 1/p
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on the source term, and the Laplace transform may be inverted to obtain

∑
a

e2
a

Ta

∫
d3vFa0

[
φ̄bax2

⊥/2 + φbax2
⊥/2 − k2

rφδraδra + k2
rφδ

2
ra/2 + k2

r φ̄δ
2
ra/2

]

+
∑

a

na
e2

a

Ta

(
φ − 1

na

∫
d3vFa0φ̄

)
= S, (3.2)

where the right-hand side denotes the source term (not yet expanded for small orbit width)

S =
∑

a

ea

∫
d3vJ0aδFa(0)eikrδra e−ikrδra . (3.3)

Equation (2.15) can be compared with previous results in the small orbit width and small
Larmor radius limits (for completeness, the result valid for arbitrary k2δ2

r and bi is given
in Appendix B). We note differences coming from the fact that potential is kept under the
bounce average, because we allow for φ = 〈φ〉, and the FLR terms take a similar form.

Let us consider what can be said about the general solution of (2.15). The final term on
the left-hand side of (2.15) has the form of a linear operator on φ, defined by

∑
a

na
e2

a

Ta

(
φ − 1

na

∫
d3vFa0φ̄

)
=
∑

a

na
e2

a

Ta
Lφ, (3.4)

which is zero if and only if φ = 〈φ〉; see Appendix E. As a consequence, this operator is
invertible on the non-zonal part of the potential, δφ, defined by the following:

φ = δφ +Φ, (3.5)

where Φ = 〈φ〉. We may formally expand both Φ = Φ(0) + εΦ(1) + · · · , δφ = δφ(0) +
εδφ(1) + · · · and δFa = δF(0)

a + · · · in our small parameter (ε ∼ bi ∼ k2
r δ

2
ri); it will not

be necessary to keep these extra superscripts in what follows because we will only use
zeroth quantities in our final expressions. With this expansion, the dominant contributions
to (2.15) come from the right-hand side and the term

∑
a na(e2

a/Ta)Lφ on the left-hand
side. The resulting equation can be formally solved for δφ(0) by use of the inverse L−1,
yielding the non-zonal part of the residual potential

δφres =
(∑

a

na
e2

a

Ta

)−1

L−1 [S0 − 〈S0〉], (3.6)

where S0 = ∑
a ea

∫
d3vδF(0)

a (0). This equation implies that the residual potential
essentially derives its non-zonal component from non-uniformity of initial charge
distribution on the surface (or to be more precise, the charge density of the transit average
of the gyro-average of the initial distribution functions). The main conclusion here, which
may or may not be surprising, is that this component does not in fact decay away to zero.

At next order in our expansion, (2.15), the contributions from δφ(1) appearing under the
operator L are eliminated by flux-surface average, leaving an equation for the zonal part
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8 G.G. Plunk and P. Helander

of the potential, Φ(0)

Φres =
〈biφ(0)〉 + Φ̃S − (2ni)

−1
〈∫

d3vFi0

[
δφresbix2

⊥ + δφresbix2
⊥ + k2

r δφresδ2
r + k2

r δφresδ
2
r

]〉
〈bi〉 + n−1

i
〈∫

d3vFi0k2
r δ

2
r
〉 ,

(3.7)

where we use δre 
 δri ≡ δr (dropping indices), ρe 
 ρi, the identity 〈f̄ 〉 = 〈 f 〉 (D2), δra =
0 (due to oddness in σ for trapped particles, and by choice of convention for passing
particles) and quasi-neutrality for the initial condition. The latter can be written at each
order in terms of the nth-order initial condition δF(n)

a (0), but these details are left for
Appendix C. Additional contributions from the source at this order are included in the
term

Φ̃S = Ti

2niei

〈∫
d3v

(
2ikrδrδFi(0)+

(
δFi(0)− δFi(0)

)
bix2

⊥ − k2
r δFi(0)δ2

r − k2
r δFi(0)δ2

r

)〉
. (3.8)

Note the mixed orders of the terms: here, it is possible to consider, just for example,
contributions to the initial condition δFi(0) ∼ O(δrkr) that are odd in v‖, as done by
Rosenbluth & Hinton (1998), or make even contributions at order δFi(0) ∼ O(1), for
instance due to pressure perturbations. However, we emphasize that such cases are
generally inconsistent with the assumption that the residual is zonal, and the rather
unwieldy expression of (3.7) must then be considered to determine the residual. The
conditions under which this general solution prevails depend on details of the turbulence,
and this will be discussed more later.

We note that a closed form expression for the zonal part of the residual (Φres) in terms
of the source may be obtained by substituting the solution for δφres, (3.6), into (3.7); we
do not do this here as the resulting expression is not enlightening, especially without an
explicit form of L−1.

3.1. Recovering the residual zonal flow
If the contribution to the charge from the initial gyro-centre distribution, i.e. the right-hand
size of (2.15), is constant on a flux surface (to zeroth order), then the δφ term must balance
with the small (FLR, FOW) terms, and we can conclude

δφ ∼ O(biΦ), (3.9)

and δφ can be safely neglected in (3.7); those from Φ̃S can also be neglected if δFi(0) ∼
O(bi) is assumed. Solving the equation for Φ we then obtain the residual

φres = 〈biφ(0)〉
〈bi〉 + n−1

i

〈∫
d3vFi0k2

r δ
2
r

〉 . (3.10)

We see that, even in this limit, we do not exactly recover the result of Rosenbluth & Hinton
(1998), as we do not assume the initial potential to be zonal. The Rosenbluth–Hinton (RH)
result can be written in our notation as follows:

φRH
res = Φ(0)

〈bi〉
〈bi〉 + n−1

i

〈∫
d3vFi0k2

r δ
2
r

〉 , (3.11)

where we have used that Rosenbluth & Hinton (1998) assumed the initial potential to
be zonal to write this result in terms of φ(0) = 〈φ(0)〉 = Φ(0). Evidently, there is one
limit (for arbitrary φ(0)) in which the RH result is obtained from (3.10), which is when
〈bi〉 ≈ bi, e.g. for the circular tokamak model.
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3.2. Dependence of residual zonal flow on initial potential
More generally, we note that there is a class of initial conditions consistent with (3.9),
including that traditionally assumed in calculations of the residual, φ(0) = 〈φ(0)〉 =
Φ(0). Indeed, allowing non-zonal φ(0), (3.10) exhibits a certain variation in what can
be obtained for the ratio φres/Φ(0), as compared with the RH expression, i.e.

φres

φRH
res

= 〈biφ(0)〉
〈bi〉 〈φ(0)〉 , (3.12)

which arises only from the variation in bi. An interesting and possibly useful case is
that of initially zonal distribution functions (a convenient way to initialize a gyrokinetic
simulation and therefore a good test case). In this case the initial charge is also zonal and
from (C4) we have

〈biφ(0)〉 = biφ(0). (3.13)
Dividing by bi and averaging we can solve for this for the zonal potential, Φ(0) = 〈φ(0)〉,
and obtain

φres = Φ(0)

〈
b−1

i

〉−1

〈bi〉 + n−1
i

〈∫
d3vFi0k2

r δ
2
r

〉 . (3.14)

Because of the inequality between the harmonic and arithmetic means, we find that the
residual expressed by (3.14) is less than or equal to the RH expression, in particular
φres/Φ(0) ≤ φRH

res /Φ(0), with equality only in the case of uniform bi.

4. The residual in stellarators and tokamaks

Having demonstrated how to calculate the intermediate residual for stellarators, the
natural question arises about how different stellarators fare with respect to this measure,
how they compare with tokamaks and in particular whether anything can be said about the
different classes of optimized stellarators.

4.1. Tokamaks and quasi-symmetric stellarators
The residual is inversely proportional to a weighted average of δ2

r and will thus be
particularly large in a field where the radial width of most particle orbits is small. In a
standard large-aspect-ratio tokamak with circular cross-section – the case considered by
Rosenbluth & Hinton (1998) – circulating ion orbits have radial excursions of order qρi
whereas trapped ones have larger banana orbits of width

δr ∼ qρi

ε1/2
, (4.1)

where ε 
 1 denotes the inverse aspect ratio and q = ι−1 the inverse rotational transform
(Helander & Sigmar 2002). Although the latter only constitute a small fraction ft ∼ ε1/2 

1 of the total number of particles, they dominate the average of δ2

r , which becomes of order

1
ni

∫
d3vFi0δ

2
r ∼ (1 − ft)q2ρ2

i + ft

( qρi

ε1/2

)2
∼ q2ρ2

i

ε1/2
, (4.2)

and qualitatively explains the RH result

φRH
res = Φ(0)

1 + 1.64q2ε−1/2
. (4.3)

Since, in a typical tokamak, the term 1.64q2ε−1/2 is considerably larger than unity, this
residual is relatively weak.
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In quasisymmetric stellarators, particle trajectories are similar those in tokamaks
(Boozer 1983; Nührenberg & Zille 1988), and the calculation is therefore mathematically
identical if the symbols are suitably re-interpreted. In quasi-axisymmetric stellarators,
the orbit width is equal to that in a tokamak, and the residual is therefore given by an
expression like (4.3), except that the numerical factor 1.64 needs to be adjusted if the
magnetic field strength does not vary sinusoidally along the field. A similar adjustment
is required in shaped tokamaks (Xiao & Catto 2006). In quasihelically symmetric
stellarators, the banana orbit width

δr ∼ ρi

|N − ι| , (4.4)

is smaller than that in a tokamak by a factor |N/ι− 1| > 1. Such stellarators thus have a
larger residual than quasi-axisymmetric ones and tokamaks.

4.2. Quasi-isodynamic stellarators
The smallest orbit widths, and thus the largest residuals, are realized in so-called
quasi-isodynamic stellarators,2 which are omnigenous stellarators with poloidally closed
contours of constant field strength. Such stellarators usually do not carry any significant
amount of net toroidal current, and the magnetic field can be written as (Helander 2014)

B = G(ψ)∇ϕ + K(ψ, α, ϕ)∇ψ, (4.5)

in Boozer coordinates, and the radial drift velocity becomes

vr = v2
‖ + v2

⊥/2

Ω
(b × ∇ ln B) · ∇r = −v

2r′(ψ)
Ω

(
1 − λB

2

)(
∂B
∂α

)
ψ,ϕ

, (4.6)

where Ω = eB/m denotes the gyrofrequency. Equation (2.4) can be solved for the radial
excursion

δr = 1
v

∫
vr dt, (4.7)

where we use v̄r = 0 and define dt = dl/
√

1 − λB with t a time-like variable along the
orbit. The lower limit of integration can be chosen so that δr = 0. For magnetically
trapped orbits, i.e. for values of λ less than 1/Bmax, this is achieved by choosing the lower
integration limit to correspond to a bounce point and for passing orbits to the point of
maximum field strength. In the latter case

δr = lim
L→∞

∫ L

0

δr dl√
1 − λB

/∫ L

0

dl√
1 − λB =

〈
Bδr√

1 − λB

〉/〈
B√

1 − λB

〉
, (4.8)

vanishes thanks to the α-derivative in (4.6), because the flux-surface average can be
written as (Helander & Nührenberg 2009)

〈· · · 〉 = 1
V ′

∫ 2π

0
dα
∫ L

0

dl
B
(· · · ), (4.9)

2Zero orbit width is theoretically achieved in an isodynamic magnetic field, which is, however, impossible to realize
in practice (Helander 2014).
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where

V ′(ψ) =
∫ 2π

0
dα
∫ L

0

dl
B
. (4.10)

Here, an integral over the arc length l is taken over one period of the device from one
maximum of B to the next, and the distance L between them is independent of α, which is
true for perfectly quasi-isodynamic fields.

We shall not endeavour to calculate the zonal-flow response (3.10) explicitly but rather
show that it is relatively large in quasi-isodynamic stellarators by finding an upper bound
on the quantity

D = 1
n

〈∫
d3vF0δ

2
r

〉
= 1

nV ′

∫ 2π

0
dα
∫ L

0

dl
B

∫ ∞

0
F02πv2 dv

∫ 1/B

0

δ2
r B dλ√
1 − λB . (4.11)

By interchanging the integrals over λ and l, and replacing the latter by t, we find

D = 1
nV ′

∫ ∞

0
F02πv2 dv

∫ 2π

0
dα
∫ 1/Bmin

0
dλ
∫
δ2

r dt, (4.12)

where the t-integral is taken over the region where 1 − λB is positive, i.e. over the entire
range for passing orbits and over the magnetic trapping well(s) for trapped ones. At the
end points of each t-integral, the function δr vanishes. As a consequence of the Poincaré
inequality ∫ τb

0
g2(t) dt ≤ τ 2

b

π2

∫ τb

0

(
dg
dt

)2

dt, (4.13)

for functions such that g(0) = g(τb) = 0, we thus conclude that D is bounded from above
by

D ≤ 2
πnV ′

∫ ∞

0
F0 dv

∫ 2π

0
dα
∫ 1/Bmin

0
τ 2

b dλ
∫
v2

r dt, (4.14)

where

τb(λ) =
∫
λB(l)<1

dl√
1 − λB(l) . (4.15)

Substituting (4.6) finally results in the rigorous inequality

D ≤ 3 m T
2π2e2V ′

(
dr
dψ

)2 ∫ 2π

0
dα
∫ L

0

(
∂ ln B
∂α

)2

ψ,ϕ

dl
∫ 1/B

0
τ 2

b

(
1 − λB

2

)2 dλ√
1 − λB .

(4.16)

The integrals in this expression depend on details in the spatial variation in the magnetic
field strength, but we note that, generally, the λ-integral is of order L2/B and the l-integral
of order ε2L, where ε denotes the relative poloidal variation of B at constant ϕ. Since
dψ/dr ∼ rB and V ′ ∼ 2πL/B, we thus obtain

D � 3
2π2

(
ερiL

r

)2

. (4.17)

In a quasi-isodynamic stellarator, the level curves of constant magnetic field strength close
poloidally, rather than toroidally, on each flux surface. The field strength varies along
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the magnetic axis, where it is a function only of ϕ, and in its vicinity, the quantity ε =
∂ ln B/∂α = ∂ ln B/∂θ appearing in (4.17) is thus small. In the typical large-aspect-ratio
scenario, we can estimate ε ∼ rκ , where κ is the curvature of the magnetic axis; see for
example Plunk, Landreman & Helander (2019). A conservative bound for this curvature
is κ � 1/L (optimization may achieve somewhat lower values), yielding ε � r/L. We
therefore expect from (4.17) that D � ρ2

i for a quasi-isodynamic stellarator, and the
residual (3.10) is therefore comparable to the initial perturbation, i.e. much larger than
in a tokamak.

5. Conclusions

Although the long-time-asymptotic residual potential is expected to be small in a
stellarator (Mishchenko et al. 2008; Helander et al. 2011a), we have argued that a
well-optimized stellarator exhibits a larger effective residual on time scales important for
turbulence. To assess this ‘intermediate’ residual, we have revisited the general initial
value problem, allowing for arbitrary initial condition, and derive the resulting form of
the residual, whether zonal or non-zonal. We identify two cases (in the limit of small orbit
width and Larmor radius) depending on the charge induced by the double-orbit-averaged
(bounce- and gyro-averaged) initial distribution functions, which can be described as
follows.

If this charge is zonal (constant on a flux surface), we find that the residual potential
is also zonal, and depends only on the initial potential, i.e. it is insensitive to other
details of the initial distribution functions. In that case, we note that a large ‘intermediate’
residual is indeed possible in stellarators, even in cases when the ‘true’ time-asymptotic
residual is negligibly small. It is argued that the intermediate residual will be largest
in quasi-isodynamic stellarators, smaller in quasi-helically symmetric stellarators and
smallest in tokamaks and quasi-axisymmetric stellarators. This may be counter-intuitive
to some readers, as it is known that undamped equilibrium flows can be sustained
on time scales exceeding the ion collision time in quasi-symmetric stellarators but not
in quasi-isodynamic ones (Helander & Simakov 2008; Helander, Geiger & Maaßberg
2011b), but there is a distinction between those equilibrium flows and the small-scale
zonal flows that arise spontaneously with micro-turbulence. For the latter flows, which
regulate turbulence at low collisionality, it is the quasi-isodynamic stellarator that
performs the best. These stellarators exhibit a much larger residual than tokamaks and
quasi-axisymmetric stellarators, where the RH factor 1.6q2ε−1/2 substantially exceeds
unity. The collisional damping that occurs in quasi-isodynamic fields (but not in
quasisymmetric ones) due to the lack of intrinsic ambipolarity only takes place on the
longer time scale of ion collisions.

Formal complications arise in the calculation of the residual when the charge induced
by the initial condition has a significant non-zonal component. We show in this case that
the residual potential is non-zonal, i.e. varies in the flux surface, and generally depends on
details of the initial distribution functions. We work out the general form of the complete
solution, leaving its more detailed analysis for later, but note that its understanding may
allow the consideration of a broader class of nonlinear drives, in other words a more
general source for the kα = 0 component.

Although we derive the source (S) of the residual from the initial condition, i.e. a
delta function in time, the actual source in the gyrokinetic equation is the nonlinear term,
which provides free energy to the kα = 0 component. In the absence of a fully nonlinear
theory describing the steady-state dynamics of the stable and unstable components of the
turbulence, it is reasonable, in interpreting the result of the residual calculation, to consider
what form a realistic turbulent source might take.
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One possibility is that the source has a significant non-zonal temperature perturbation,
as expected from secondary instability theory (Plunk & Navarro 2017), one mechanism by
which zonal flows may be driven, which predicts that the temperature perturbation is both
non-zonal δT = 〈δT〉 and acquires its size and spatial dependence from the instabilities
(ion temperature gradient) that drive it. Other hints can be obtained directly from
turbulence simulations. Although the perpendicular temperature of the kα = 0 components
is generally observed to be small (Rogers et al. 2000), it is also observed to grow in relative
amplitude at strong drive (Plunk, Navarro & Jenko 2015). It is therefore unclear whether
the temperature perturbations of our source should be expected to be large enough to drive
a strongly non-zonal potential (δT/(eiφ) ∼ 1), but it seems unlikely that they will always
be so small that the non-zonal part of the residual can be assumed asymptotically small
(δT/(eiφ) ∼ bi). Similar questions also apply concerning other components of the source,
such as parallel ion flow, and these will all have to be explored further in the future.

The work leaves ample opportunity for further studies, especially involving gyrokinetic
simulations. Fully nonlinear simulations of the turbulence may help identify cases where
the non-zonal solutions described by (3.6)–(3.7) may arise. On a more basic level, linear
initial value simulations should also be conducted to verify the quantitative validity of
these expressions, especially for recently found designs that satisfy the quasi-isodynamic
condition to high precision (Goodman et al. 2023). It should be noted that the predictions
of this work apply also for the much simpler context of tokamak geometry. In particular,
(3.10) gives a prediction for the residual when the initial condition is non-zonal, which
may already be tested for simple model tokamak geometries with spatially varying flux
compression (|∇ψ |). The inequality derived to bound the residual, (4.16), might also be
further investigated in some limits, and it, along with related estimates, could prove useful
in stellarator optimization for reduced turbulence.
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Appendix A. Zonal-flow oscillations in non-omnigenous stellarators

The works of Mishchenko et al. (2008) and Helander et al. (2011a), etc. identified zonal
flow behaviour special to (non-omnigenous) stellarators, involving the secular radial drifts;
see also Monreal et al. (2017) for generalizations. To give a sense of how such oscillatory
solutions arises in the present work, we consider (2.15), focusing on the non-resonant limit,
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with the specific ordering kv̄ra/p ∼ b1/2
a ∼ krδra

∑
a

na
e2

a

Ta

(
φ̂ − 1

na

∫
d3vFa0

¯̂
φ

)
+
∑

a

e2
a

Ta

∫
d3v

k2
r v̄

2
ra

p2
Fa0

¯̂
φ

+
∑

a

e2
a

Ta

∫
d3vFa0

[ ¯̂
φbax2

⊥/2 + φ̂bax2
⊥/2 + k2

r φ̂δraδra − k2
r φ̂δ

2
ra − k2

r
¯̂
φδ2

ra

]
= S

p
. (A1)

By the same arguments made in the main text, we can consider S such that the potential
φ̂ is zonal to dominant order, and we can pull out a factor of the zonal potential Φ̂. We
need only consider the right-hand side of the resulting equation whose roots (analytically
continued) in the complex p-plane yield the damping rate and frequency of the modes
of interest, in particular the imaginary part (giving the real frequency of the mode) is
obtained from the zeros of

∑
a

e2
a

Ta

(∫
d3vFa0

k2
r v̄

2
ra

p2
+
〈∫

d3vFa0

(
b2

ax2
⊥ + k2

r (δ
2
ra − δra

2
)
)〉)

. (A2)

Appendix B. Residual for general Larmor radius and orbit width

The limit kv̄ra 
 p can be easily applied to (2.11) to give an integral equation for the
(‘intermediate’) residual potential without any assumptions about the size of krδra or k⊥ρa

∑
a

e2
a

Ta

(
naφres −

∫
d3vJ0aFa0φresJ0aeikrδra e−ikrδra

)

=
∑

a

ea

∫
d3vJ0aδFa(0)eikrδra e−ikrδra . (B1)

An equation similar to this was given by Rosenbluth & Hinton (1998) (see equation (8)
therein), where it was argued that a solution must exist due to the associated variational
principle. The expression can also be compared with the results of Monreal et al. (2016),
specializing to the cases where the approximation φres ≈ 〈φres〉 is accurate.

Appendix C. Ordering of the initial condition and the source term

At zeroth order, and at order δrkr ∼ b1/2
i , quasi-neutrality for the initial condition is

trivial

∑
a

ea

∫
d3vδF(0)

a (0) = 0, (C1)

∑
a

ea

∫
d3vδF(1/2)

a (0) = 0, (C2)

implying 〈S0〉 = ∑
a ea〈

∫
d3vδF(0)

a (0)〉 = 0, and 〈S1/2〉 = ∑
a ea〈

∫
d3vδF(1/2)

a (0)〉 = 0.
We note that this does not require either δF(0)

a (0) or δF(1/2)
a (0) to vanish, but strongly
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constrains their form. At first order, we obtain

∑
a

ea

∫
d3vδF(1)

a (0) = ni
e2

i

Ti
biφ(0)+ ei

∫
d3vδF(0)

a (0)bix2
⊥/2. (C3)

Finally, averaging this first-order constraint over a flux surface yields the terms that are
needed to compute the source to second order, contributing to Φ̃S

∑
a

ea

〈∫
d3vδF(1)

a (0)
〉

= ni
e2

i

Ti
〈biφ(0)〉 + ei

〈∫
d3vδF(0)

a (0)bix2
⊥/2

〉
. (C4)

Comparing with a case studied by Rosenbluth & Hinton (1998), we mention the possibility
of retaining a non-zero δF(1/2)

a (0) which is odd in v‖, and therefore consistent with
quasi-neutrality being zero to this order, and also with the condition S0 = 0, needed to
neglect δφres in (3.7). This does, however, assume δFa(0) to be much larger than the typical
ordering, which is linear in bi.

Appendix D. Useful identities

First, a note on the notation: the infinite domain of the arc length variable l can be
divided into a set of intervals that we call ‘wells’. Each well consists of all the bounce
points for the set of trapped particles with 1/Bmax,j < λ < 1/Bmin,j. Thus the integration
over the domain is written as a sum of averages over such wells. In the simple case where
there is a single maximum and minimum of the magnetic field strength on the flux surface,
this classification is straightforward, as each maximum marks the division between the
wells. For more complicated cases, the way of making the division is not uniquely
determined, but it is straightforward to set the boundaries according to all the local maxima
that occur along the field lines. After this tedious task is done, the summation over all
wells includes all points along the field line. In the sum over well indices, it is convenient
to reserve the j = 0 ‘well’ as the domain of the passing particles, i.e. the entire interval
(−L,L) over which the limit is taken L → ∞. Thus, for λ < 1/Bmax, with Bmax the global
maximum of B(l), the bounds of the transit average are (l1, l2) = (−L,L), and the average
is understood in the limiting sense as L → ∞.

Following the above discussion, it is possible to exchange the order of integration over
the field line with integration over the phase space variable λ as follows:

∫ L

−L

dl
B

∫
B dλ√

1 − λB(l) =
∑

j

∫
dλ
∫ l2(λ,j)

l1(λ,j)

dl√
1 − λB . (D1)

From this identity it is straightforward to derive the following:

〈∫
d3vf̄

〉
= lim

L→∞
1
V

∫ L

−L

dl
B

∫
d3vf̄ =

〈∫
d3vf

〉
, (D2)

where V = ∫ L
−L dl/B, and we have used

d3v =
∑
σ

πBv2 dλ dv√
1 − λB . (D3)
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Appendix E. Positivity of L
The operator L can be defined, using Fa0 = na exp(−v2/v2

Ta)/(v
3
Taπ

3/2) and vTa =√
2Ta/ma, as

Lφ ≡ φ − B
2

∫ 1/B

0

dλ√
1 − λB φ̄. (E1)

Multiplying this equation by φ∗, integrating over the flux surface and using the identity
(D2) we obtain ∫

dl
B
φ∗Lφ =

∫
dl
B
φ∗
(
φ − B

2

∫ 1/B

0

φ̄ dλ√
1 − λB

)
(E2)

= 1
2

∑
j

∫ 1/B

0
τj

(
|φ|2 − |φ̄|2

)
dλ, (E3)

where τj denotes the quantity (4.15) for the jth trapping well. Because of the Schwarz
inequality, |φ|2 − |φ̄|2 ≥ 0, (E3) is always greater or equal to zero, with equality only for
the case that φ = φ̄ for all l, i.e. φ = 〈φ〉. This is what was already shown by Helander,
Proll & Plunk (2013), but with the trivial modification of including passing part of phase
space λ < 1/Bmax.

REFERENCES

BOOZER, A.H. 1983 Transport and isomorphic equilibria. Phys. Fluids 26 (2), 496–499.
DIAMOND, P.H., ITOH, S.-I., ITOH, K. & HAHM, T.S. 2005 Zonal flows in plasma—a review. Plasma

Phys. Control. Fusion 47 (5), R35.
DIMITS, A.M., BATEMAN, G., BEER, M.A., COHEN, B.I., DORLAND, W., HAMMETT, G.W., KIM,

C., KINSEY, J.E., KOTSCHENREUTHER, M., KRITZ, A.H., et al. 2000 Comparisons and physics
basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969–983.

GOODMAN, A.G., MATA, K.C., HENNEBERG, S.A., JORGE, R., LANDREMAN, M., PLUNK, G.G.,
SMITH, H.M., MACKENBACH, R.J.J., BEIDLER, C.D. & HELANDER, P. 2023 Constructing
precisely quasi-isodynamic magnetic fields. J. Plasma Phys. 89 (5), 905890504.

HAHM, T.S., BEER, M.A., LIN, Z., HAMMETT, G.W., LEE, W.W. & TANG, W.M. 1999 Shearing rate
of time-dependent E × B flow. Phys. Plasmas 6, 922–926.

HALLENBERT, A. & PLUNK, G.G. 2022 Predicting the Z-pinch dimits shift through gyrokinetic tertiary
instability analysis of the entropy mode. J. Plasma Phys. 88 (4), 905880402.

HELANDER, P. 2014 Theory of plasma confinement in non-axisymmetric magnetic fields. Rep. Prog. Phys.
77 (8), 087001.

HELANDER, P., GEIGER, J. & MAAßBERG, H. 2011b On the bootstrap current in stellarators and
tokamaks. Phys. Plasmas 18 (9), 092505.

HELANDER, P., MISHCHENKO, A., KLEIBER, R. & XANTHOPOULOS, P. 2011a Oscillations of zonal
flows in stellarators. Plasma Phys. Control. Fusion 53 (5), 054006.

HELANDER, P. & NÜHRENBERG, J. 2009 Bootstrap current and neoclassical transport in
quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 51 (5), 055004.

HELANDER, P., PROLL, J.H.E. & PLUNK, G.G. 2013 Collisionless microinstabilities in stellarators. I.
Analytical theory of trapped-particle modes. Phys. Plasmas 20 (12), 122505.

HELANDER, P. & SIGMAR, D.J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge
Universisty Press.

HELANDER, P. & SIMAKOV, A.N. 2008 Intrinsic ambipolarity and rotation in stellarators. Phys. Rev. Lett.
101, 145003.

HINTON, F.L. & ROSENBLUTH, M.N. 1999 Dynamics of axisymmetric and poloidal flows in tokamaks.
Plasma Phys. Control. Fusion 41 (3A), A653.

https://doi.org/10.1017/S002237782400031X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400031X


Residual flow 17

LORE, J., GUTTENFELDER, W., BRIESEMEISTER, A., ANDERSON, D.T., ANDERSON, F.S.B., DENG,
C.B., LIKIN, K.M., SPONG, D.A., TALMADGE, J.N. & ZHAI, K. 2010 Internal electron transport
barrier due to neoclassical ambipolarity in the Helically Symmetric Experimenta). Phys. Plasmas
17 (5), 056101.

MAKWANA, K.D., TERRY, P.W. & KIM, J.-H. 2012 Role of stable modes in zonal flow regulated
turbulence. Phys. Plasmas 19 (6), 062310.

MISHCHENKO, A., HELANDER, P. & KÖNIES, A. 2008 Collisionless dynamics of zonal flows in
stellarator geometry. Phys. Plasmas 15 (7), 072309.

MONREAL, P., CALVO, I., SÁNCHEZ, E., PARRA, F.I., BUSTOS, A., KÖNIES, A., KLEIBER, R. &
GÖRLER, T. 2016 Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths.
Plasma Phys. Control. Fusion 58 (4), 045018.

MONREAL, P., SÁNCHEZ, E., CALVO, I., BUSTOS, A., PARRA, F.I., MISHCHENKO, A., KÖNIES, A. &
KLEIBER, R. 2017 Semianalytical calculation of the zonal-flow oscillation frequency in stellarators.
Plasma Phys. Control. Fusion 59 (6), 065005.

NÜHRENBERG, J. & ZILLE, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129 (2),
113–117.

PLUNK, G.G., LANDREMAN, M. & HELANDER, P. 2019 Direct construction of optimized stellarator
shapes. Part 3. Omnigenity near the magnetic axis. J. Plasma Phys. 85 (6), 905850602.

PLUNK, G.G. & NAVARRO, A.B. 2017 Nonlinear growth of zonal flows by secondary instability in general
magnetic geometry. New J. Phys. 19 (2), 025009.

PLUNK, G.G., NAVARRO, A.B. & JENKO, F. 2015 Understanding nonlinear saturation in
zonal-flow-dominated ion temperature gradient turbulence. Plasma Phys. Control. Fusion 57 (4),
045005.

PUESCHEL, M.J., LI, P.-Y. & TERRY, P.W. 2021 Predicting the critical gradient of itg turbulence in fusion
plasmas. Nucl. Fusion 61 (5), 054003.

ROGERS, B.N., DORLAND, W. & KOTSCHENREUTHER, M. 2000 Generation and stability of zonal flows
in ion-temperature-gradient mode turbulence. Phys. Rev. Lett. 85, 5336–5339.

ROSENBLUTH, M.N. & HINTON, F.L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence
in tokamaks. Phys. Rev. Lett. 80, 724–727.

ST-ONGE, D.A. 2017 On non-local energy transfer via zonal flow in the dimits shift. J. Plasma Phys.
83 (5), 905830504.

WALTZ, R.E. & HOLLAND, C. 2008 Numerical experiments on the drift wave-zonal flow paradigm for
nonlinear saturation. Phys. Plasmas 15 (12), 122503.

WATANABE, T.-H., SUGAMA, H. & FERRANDO-MARGALET, S. 2008 Reduction of turbulent transport
with zonal flows enhanced in helical systems. Phys. Rev. Lett. 100, 195002.

XANTHOPOULOS, P., BOZHENKOV, S.A., BEURSKENS, M.N., SMITH, H.M., PLUNK, G.G.,
HELANDER, P., BEIDLER, C.D., ALCUSÓN, J.A., ALONSO, A., DINKLAGE, A., et al. 2020
Turbulence mechanisms of enhanced performance stellarator plasmas. Phys. Rev. Lett. 125, 075001.

XANTHOPOULOS, P., MISCHCHENKO, A., HELANDER, P., SUGAMA, H. & WATANABE, T.-H. 2011
Zonal flow dynamics and control of turbulent transport in stellarators. Phys. Rev. Lett. 107, 245002.

XIAO, Y. & CATTO, P.J. 2006 Plasma shaping effects on the collisionless residual zonal flow level. Phys.
Plasmas 13 (8), 082307.

https://doi.org/10.1017/S002237782400031X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782400031X

	1 Introduction
	2 Gyrokinetic solution of the initial value problem
	2.1 Limit of small orbit width and ion Larmor radius

	3 The residual potential
	3.1 Recovering the residual zonal flow
	3.2 Dependence of residual zonal flow on initial potential

	4 The residual in stellarators and tokamaks
	4.1 Tokamaks and quasi-symmetric stellarators
	4.2 Quasi-isodynamic stellarators

	5 Conclusions
	Appendix A. Zonal-flow oscillations in non-omnigenous stellarators
	Appendix B. Residual for general Larmor radius and orbit width
	Appendix C. Ordering of the initial condition and the source term
	Appendix D. Useful identities
	Appendix E. Positivity of L
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


