
1
Introduction and Definitions

This book provides an introduction to basic aspects of uncertainty analysis
as used in the physical sciences and engineering. We focus on one objective:
enabling readers to determine appropriate uncertainty limits for measured and
calculated quantities. Better conclusions can be drawn from results when they
are reported with the appropriate uncertainty limits.

The topic of data uncertainty is often called error analysis, a phrase
that has the unfortunate connotation that some error has been made in the
measurement or calculation. When something has been done incorrectly, we
call that a blunder or a mistake. Known mistakes should always be corrected.
Due to limitations in both the precision and accuracy of experiments, however,
uncertainty is present even when a measurement has been carried out correctly.
In addition, there may be hard-to-eliminate random effects that prevent a
measurement from being exactly reproducible. Our goal in this book is to
present a system for recognizing, quantifying, and reporting uncertainty in
measurements and calculations.

It is straightforward to use replication and statistics to assess uncertainty
when only random errors are present in a measurement – errors that are equally
likely to increase or decrease the observed value. We discuss random error and
the use of statistics in error analysis in Chapter 2. While replication techniques
are powerful, they cannot directly quantify many nonrandom errors, which are
very common and which often dominate the uncertainty. It is much harder
to account for nonrandom or systematic errors because they originate from a
wide variety of sources and their effects often must be estimated. In dealing
with systematic errors it helps if we, too, are systematic, so that we can keep
track of both our assumptions and how well our assumptions compare with
reality. By following an orderly system, we zero in on good error estimates
and build confidence in our understanding of the quality and meaning of our
measurements.
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2 1 Introduction and Definitions

In this book we focus on three categories of error: random (Chapter 2),
reading (Chapter 3), and calibration (Chapter 4). For all three types we
provide worksheets (Appendix A) that guide our choices about the likely error
magnitudes. If, as is often the case, an experimental result is to be used in
a follow-on calculation, we must propagate the errors from each variable to
obtain the uncertainty in the calculated result. This process is explained in
Chapter 5, and again a worksheet is provided. The worksheet format for error
propagation is easily translated to a computer for repeated calculations. In
Chapter 6, we provide an introduction to determining error measures when
using software to produce curve fits (Microsoft Excel’s LINEST or MATLAB).

Through the use of the error-analysis methods discussed in this text, one can
determine plausible error limits for experimental results. The techniques are
transparent, with the worksheets keeping track of assumptions made as well as
the relative impacts of the various assumptions. Keeping track of assumptions
facilitates the ever-so-important process of revisiting error estimates, when, for
example, seeking a more precise answer, seeking to improve a measurement
process, or trying to improve the error estimates previously made.

Having stated our goals, we now devote the rest of this chapter to discussing
how four important concepts relate to our error-analysis system: precision and
accuracy; significant figures; error limits; and types of uncertainty or error. In
Chapter 2 we turn to the statistics of random errors – the statistics of random
processes form the basis of all error analyses.

1.1 Precision and Accuracy

In common speech the words “precision” and “accuracy” are nearly syn-
onyms, but in terms of experimentally determined quantities, we use these
words to describe two different types of uncertainty. Accuracy describes how
close a measurement is to its true value. If your weight is 65 kg and your
bathroom scale says that you weigh 65 kg, the scale is accurate. If, however,
your scale reports 75 kg as your weight, it fails to reflect your true weight and
the scale is inaccurate. To assess accuracy, we must know the true value of a
measured quantity.

To assess accuracy, we must know
the true value of a measured quantity.

https://doi.org/10.1017/9781108777513.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.002


1.2 Significant Figures 3

Precision is also a measure of the quality of a measurement, but precision
makes no reference to the true value. A measurement is precise if it may be
distinguished from another, similar measurement of a quantity. For example,
a bathroom scale that reports weight to one decimal place as 75.3 kg is more
precise than a scale that reports no decimal places, 75 kg. Precise numbers
have more digits associated with them. With a precise bathroom scale, we can
distinguish between something that weighs 75.2 kg and something that weighs
75.4 kg. These two weights would be indistinguishable on a scale that reads
only to the nearest kilogram.

From this discussion we see that accuracy and precision refer to very
different things: a three-digit weight is precise, but knowing three digits does
not ensure accuracy, since the highly precise scale may be functioning poorly
and thus reporting an incorrect weight. Measurement precision and accuracy
both affect how certain we are in a quantity. In this book, precision is associated
with random and reading error (discussed in Chapters 2 and 3, respectively),
while accuracy is addressed in calibration error (discussed in Chapter 4).

1.2 Significant Figures

An important convention used to communicate the quality of a result is the
number of significant figures reported. The significant-figures convention (sig
figs) is a short-hand adopted by the scientific and engineering communities to
communicate an estimate of the quality of a measured or calculated value.
Under the sig-figs convention, we do not report digits beyond the known
precision of a number. The rules of the sig-figs convention are provided in
Appendix B.

The rules of significant figures allow the reporting of all certain digits and,
in addition, one uncertain digit. The idea behind this is that we likely know
a number no better than give-or-take “1” in the last digit. For example, if
we say we weigh 65 kg, that probably means we know we weigh in the 60s
of kilograms, but our best estimate of the exact value is no better than the
range 64–66 kg (65 ± 1 kg). As we discuss in this book, determining the
true uncertainty in a measurement is more complicated than just making
the “±1 in the last digit” assumption (it must involve knowing how the
quantity was measured, for example). The sig-figs convention is therefore only
a rough, optimistic indication of certainty. The limited goal of the sig-figs
convention is to prevent ourselves reporting results to more precision than is
justified.
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4 1 Introduction and Definitions

The significant-figures convention is
a rough, optimistic indication of certainty.

A person making a calculation often faces the difficulty of assigning the
correct number of significant figures to a result. This occurs, for example,
when extra digits are generated by arithmetic. For example, if we use a precise
bathroom scale to weigh 12 apples as 2.3 kg (two significant figures in both
numbers), we can use a calculator to determine that the average mass of an
apple is

average apple mass = 2.3 kg

12
= 0.19166666666667 kg

The calculator shows a large number of digits to accurately convey the
arithmetic result. It would be inappropriate, however, to report the average
mass of these apples to 14 digits. The rules of significant figures guide us to the
most optimistic number of digits to report. As discussed in Appendix B, there
are rules for how significant figures propagate through calculations, depending
on whether we are adding/subtracting or multiplying/dividing numbers in
the calculation. The sig-fig rules are based on the error-propagation methods
discussed in Chapter 5. In the case of the average mass of an apple, we assign
the answer as 0.19 kg/apple (two sig figs). This is because the sig-figs rule
when multiplying/dividing is that the result may have no more sig figs than the
least number of sig figs in the numbers in the calculation – in this case, two
(see Appendix B).1

Learning and using the significant-figures rules allows us to write results
more correctly. The principal advantage of following the sig-figs convention
is that it is easy, and it prevents us from inadvertently reporting significantly
more precision than we should. However, because the sig-figs convention
is approximate and may still greatly overestimate precision and accuracy
(see Example 1.1), we cannot rely solely on sig-figs rules for scientific and
engineering results. When important decisions depend on our calculations, we
must perform rigorous error analysis to determine their reliability – this is the
topic of this book.

1
In intermediate calculations we retain all digits to avoid round-off error. It is only the final
reported result that is subjected to the sig-figs truncation. For greater arithmetic accuracy,
intermediate calculations made by calculators and computers automatically employ all available
digits. If the number obtained is itself an intermediate calculation, all digits should be employed
in downstream calculations.
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1.3 Error Limits 5

Example 1.1: Temperature displays and significant figures. A thermocou-
ple is used to register temperature in an experiment to determine the melting
point of a compound. If the compound is pure, the literature indicates it will
melt at 46.2 ± 0.1oC. A sample of the chemical is melted on a hot plate and a
thermocouple placed in the sample reads 45.2oC when the compound melts. Is
the compound pure?

Solution: The tenths place of temperature is displayed by the electronics
connected to the thermocouple. Assuming the display follows the rules of
significant figures, this optimistically implies that the device is “good” to
±0.1◦C. Since the highest observed melting temperature is therefore 45.2 +
0.1 = 45.3◦C, we might conclude that the compound is not pure, since the
observed melting point is less than the lowest literature value obtained for the
pure compound, 46.2 − 0.1 = 46.1◦C.

Unfortunately, this would not be a justified conclusion. As we discuss
in Chapter 4, the most accurate thermocouples have a calibration error that
reduces their reliability to no better than ±1.1◦C. The manufacturers of
thermocouple-based temperature indicators provide extra digits on the display
to allow users to avoid round-off error in follow-on calculations; it is the
responsibility of the user to assign the appropriate uncertainty to a reading,
taking the device’s calibration into account.

In the current example and using calibration error limits of ±1.1◦C (see
also Example 4.6), the highest possible observed melting temperature is
45.2 + 1.1 = 46.3◦C, which is within the expected range from the literature. It
does not mean that the substance is pure, however; rather, we can say that our
observations are consistent with the compound being pure or that we cannot
rule out that the compound is pure. To actually test for purity with melting
point, we would need to use a temperature-measuring device known to be
accurate to within the accuracy of the literature value, ±0.1◦C.

1.3 Error Limits

This book explains accepted techniques for performing rigorous error analysis.
We use error limits to report the results of our error analyses. Error limits are
a specified range within which we expect to find the true value of a quantity.
For example, if we measure the length of 100 sticks and find an average stick
length of 55 cm, and if we further find that most of the time (with a 95% level
of confidence) the stick lengths are in the range 45–65 cm, then we might
report our estimate of the length of a stick as 55 ± 10 cm. The number 55 cm
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6 1 Introduction and Definitions

Figure 1.1 When errors are distributed according to the normal distribution (see
Chapter 2 and Appendix E), then at a 95% level of confidence the true value will
be within a range of about plus or minus two standard errors, es ; thus, the span
from the smallest probable value to the highest probable value is four standard
errors. If we determine a highest and lowest reasonable values for a quantity, we
can estimate a plausible standard error as one-fourth of that range.

is our best estimate of the length of a stick, but the uncertainty in the length is
such that the length of any chosen stick might be as low as 45 cm and as high
as 65 cm.

For the error limits in this example, we explained that the stated range
represented the values observed with a 95% level of confidence. This type of
error range is a form of 95% confidence interval (discussed in depth in Section
2.3.2), which is associated with an error range of plus or minus two standard
errors. The standard error es is a statistic that we discuss more in Chapter 2.
For now we can think of it as a kind of regularized error associated with a
quantity. We need to regularize or standardize because uncertainty comes from
many sources, and to combine errors from different sources the errors must
be expressed in the same way. We discuss the accepted way to standardize
errors in Chapter 2. Note that if with 95% confidence the true value is within
plus or minus two standard errors of the best estimate of the number, then the
total range between the lowest and highest probable values of a number (at a
95% level of confidence) is four standard errors (Figure 1.1). If we estimate
a worst-case high value of a quantity and a worst-case low value, subtract the
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1.4 Types of Uncertainty or Error 7

two and divide by four, we obtain a rough estimate of the standard error es .
We use this rule of thumb in situations where we are obliged to estimate error
amounts from little information (see the example that follows and Chapter 4).

Example 1.2: Reader’s weight, with uncertainty limits. What do you weigh?
Please give your answer with appropriate uncertainty limits. What is the
standard error of your estimate?

Solution: For a quantity, we are often able to estimate an optimistic (high)
number and a pessimistic (low) number. As we have seen, it is conventional to
use a 95% level of confidence on stochastic quantities, which corresponds to
error limits that are about ±2es . For such a range, there is a span of 4es between
the high value and the low value. This provides a method for estimating es .

Short-hand estimate
for standard error

es ≈ high value − low value

4
(1.1)

A person might answer the question about weight by saying he weighs at
most 185 lbf and at least 180 lbf. Then we would write his weight as

es = 185 − 180

4
= 1.25 lbf

average weight = 185 + 180

2
lbf

weight = average weight ± 2es

= 182.5 ± 2.5 lbf

The standard error for this estimate is es = 1.25 lbf.

Some scientists and engineers report error ranges using other than a 95%
level of confidence: 68% or ± one standard error and 99% or ± three standard
errors are sometimes encountered (These percentages assume that the errors
are distributed via the normal distribution; see Appendix E). It is essential to
make clear in your communications which type of error limit you are using.
The 95% level of confidence is the most common convention; in this text we
use exclusively a 95% level of confidence (≈ ± two standard errors).

1.4 Types of Uncertainty or Error

Measurement uncertainty has many sources. We find it convenient to divide
measurement uncertainty into three categories – random error, reading error,
and calibration error – and each of these errors has its own chapter in this book.
We briefly introduce these categories here.
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8 1 Introduction and Definitions

Figure 1.2 An electronic display (left) gives the reading from the scale underneath
the water tank on the right. Displays from which we read data limit the precision
of the measurement. This limitation contributes to reading error.

Random or stochastic errors are generated by (usually) unidentified sources
that randomly affect a measurement. In measuring an outside air temperature,
for example, a small breeze or variations in sunlight intensity could cause
random fluctuations in temperature. By definition, random error is equally
likely to increase or decrease an observed value. The mathematical definition
of a random process allows us to develop techniques to quantify random effects
(Chapter 2).

A second type of error we commonly encounter is reading error. Reading
error is a type of uncertainty that is related to the precision of a device’s display
(Figure 1.2). A weighing scale that reads only to the nearest gram, for example,
systematically misrepresents the true mass of an object by ignoring small mass
differences of less than 0.5 g and by over-reporting by a small amount when it
rounds up a signal. Another component of reading error is needle or display-
digit fluctuation: we can estimate a reading from a fluctuating signal, but there
is a loss of precision in the process. In Chapter 3 we discuss the statistics of
reading error and explain how to estimate this effect.

The third category of error we consider is calibration error. While reading
error addresses issues of precision, issues of accuracy are addressed through
calibration. Instruments are calibrated by testing them against a known,
accurate standard. For example, a particular torque transducer may be certified
by its manufacturer to operate over the range from 0.01 to 200 mN·m. The
manufacturer would typically certify the level of accuracy of the instrument by,
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1.5 Summary 9

for example, specifying that over a chosen performance range the instrument
is calibrated to be accurate to within ±2% of the value indicated by the device.
In Chapter 4 we outline the issues to consider when assessing uncertainty due
to calibration limitations.

As discussed further in Chapter 2, all three error types – random, reading,
and calibration – may be present simultaneously, which leads to a complicated
situation. If one of the three error sources dominates, then only that error
matters, and the error limits on the measurement (at a 95% level of confidence)
are plus or minus twice the dominant error in standard form. The task in that
case is to determine the dominant error in standard form. If more than one
error source matters, we must combine all effects when reporting the overall
uncertainty. To combine independent errors we put them in their standard form
and combine them according to the statistics of independent stochastic events
(Chapter 2). It turns out that standard errors combine in quadrature [52].

Independent errors
combine in quadrature

e2
s,cmbd = e2

s,random + e2
s,reading + e2

s,cal (1.2)

where es,cmbd is the combined standard error, and es,random, es,reading , and
es,cal are standard random, reading, and calibration error of a measurement,
respectively.

Summarizing, uncertainty in individual measurements comes from three
types of error:

1. Random errors due to a variety of influences (these are equally likely to
increase or decrease the observed value)

2. Reading errors due to limitations of precision in measuring devices
(systematic)

3. Calibration errors due to limitations in the accuracy of the calibration of
measuring devices (systematic)

For a given measurement, each of these independent error sources should
be evaluated (Chapters 2, 3, and 4) and the results combined in quadrature
(Equation 1.2).

1.5 Summary

1.5.1 Organization of the Text

The focus of this chapter has been to establish the footings on which to
build our error-analysis system. The project is organized into six chapters as
outlined here.
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10 1 Introduction and Definitions

• In this first chapter, we have defined terms and categorized the uncertainties
inherent in measured quantities. We identify three sources of measurement
uncertainty: random error, reading error, and calibration error. These three
sources combine to yield a combined error associated with a measured
quantity.

Independent errors
combine in quadrature

e2
s,cmbd = e2

s,random + e2
s,reading + e2

s,cal

• In Chapter 2 we discuss random errors, which may be analyzed through
random statistics. From the statistics of stochastic processes we learn a
method to standardize different types of errors: measurement error is
standardized by making an analogy between making a measurement and
taking a statistical sample. We also present a technique widely used for
expressing uncertainty, the 95% confidence interval.

• In Chapter 3 we discuss reading error, which is a systematic error produced
by the finite precision of the reading display of a measuring device or
method. Sources of reading error include the limited number of digits in an
electronic display, display fluctuations, and the limit to the fineness of
subdivisions on a knob or analog display.

• In Chapter 4 we discuss calibration error, a systematic error attributable to
the finite accuracy of a measuring device or method, as determined by its
calibration. The accuracy of the calibration of a device is known by the
investigator who performed the calibration, and thus the instrument
manufacturer is the go-to source for calibration accuracy. If the
manufacturer’s calibration numbers are not known or are difficult to find,
we suggest how to estimate the calibration error using rules of thumb or
other short-cut techniques (at our own risk). Also in Chapter 4 we begin
two sets of linked examples that follow a calibration process and the use of
a calibration curve. These examples are discussed and advanced in Chapters
4–6, as mapped out in Section 1.5.2.

• In Chapter 5 we discuss how error propagates through calculations; this
discussion is inspired by how stochastic variables combine.

• The final chapter of the book is dedicated to one family of
error-propagation calculations, those associated with ordinary least squares
curve fitting. In Chapter 6 we discuss the process of fitting models to
experimental data and of determining uncertainty in quantities derived from
model parameters. These are computer calculations – we use Microsoft
Excel’s LINEST and MATLAB in our discussion.
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1.5 Summary 11

Five appendices are included:

• Appendix A contains worksheets that guide the determination of random,
reading, and calibration errors in standard form. There is also an
error-propagation worksheet, which structures error-propagation
calculations in a form that is compatible with spreadsheet software.

• Appendix B presents the rules and techniques of the significant-figures
convention.

• Appendix C has a summary of Microsoft Excel functions that are helpful
when performing measurement-error calculations.

• Appendix D lists the contents of the MATLAB functions that are referenced
in the text. Also included is a table that shows equivalent Excel and
MATLAB commands.

• Appendix E elaborates on some statistical concepts, including both the
normal probability distribution and the Student’s t distribution, which is the
sampling distribution of the normal distribution (Section 2.2.3). Sampling
distributions are used to standardize errors, as discussed in Chapter 2.

• Appendix F describes empirical models that are often used to represent and
interpret data.

1.5.2 Linked Examples Roadmap

Throughout the later chapters of this text, we consider two sets of examples
associated with interpreting raw data signals from a differential-pressure (DP)
meter. This set of ten interrelated problems (summarized and organized in
Figure 1.3) illustrates several aspects of error analysis, among them the
use of calibration, error propagation, and model fitting. Here, as a roadmap
through those linked examples, we take the opportunity to catalog the issues
that are addressed; as a whole, the linked examples show the power and
practical application of the error-analysis techniques discussed in the text.
We recommend that readers refer to this section and Figure 1.3 as they work
through Chapters 4, 5, and 6.

The topics of the linked example sets are measurements from a DP meter,
a device used to determine the relative pressure between two locations in a
flow loop. In Example 4.2 we begin the discussion by introducing the task of
interpreting raw DP-meter readings associated with the flow of water through
a flow network. The DP meter is capable of sensing a pressure difference and
creating a signal of electric current (4–20 mA) that is proportional to pressure
difference between two points. The data presented in Example 4.2 represent

https://doi.org/10.1017/9781108777513.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.002


12 1 Introduction and Definitions

 vs. Ex 4.8

Ex 5.6
& 5.7 vs. p

Ex 6.2,

Ex 6.6,

Ex 6.7LOD

 vs.  Ex 4.2

Ex 5.9A�empt
2 ,

Ex 6.8

DONEDONE

Calibrate a Differen�al
Pressure (DP) meter

Use a DP meter for flow
data; include error limits

2 ,

1 Ex 6.1

Chapter 4:
Calibra�on Error
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Figure 1.3 Ten linked examples show how the techniques of error analysis of this
text are applied to a practical example, the calibration and use of a differential-
pressure (DP) meter. Also addressed is the lowest value that can be accurately
measured by a device, the limit of determination (LOD).

fluid pressure drops �p along a 6-ft-long tube section, recorded as a function
of water volumetric flow rate Q.

When the DP-meter calibration curve is known, as it is in Example 4.2,
it is straightforward to transform the raw data signals to true values of �p.
When the �p results are used or reported, we need to indicate the uncertainty
associated with the final values, and this information is not obtainable from the
calibration curve alone. The task of determining error limits on data obtained
with a calibration curve is left unfinished in Example 4.2, to be addressed in
subsequent chapters, using the tools of the text (Examples 5.9 and 6.8; see
Figure 1.3).

The error limits ±2es,cal associated with measurement values determined
from a calibration curve depend on the details of the calibration process itself.
The calibration of the DP meter is taken up in a separate set of examples
that begins with Example 4.8. The operation of the DP meter is described
in that example, and we introduce the differential-pressure calibration stan-
dards, which in this case are obtained with a manometer. In Example 4.8
we are provided with raw calibration data of DP-meter signal (I,mA)cal

versus manometer fluid-height-differences �h, but we need error-propagation
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1.5 Summary 13

techniques to advance the calculation of calibration error es,cal ; thus, further
progress on DP-meter calibration is delayed until after the Chapter 5 discussion
of error propagation.

In Chapter 5 we discuss how error propagates through mathematical
operations. An early example in Chapter 5 is taking manometer fluid-height
data (we use the calibration data introduced in Example 4.8) and assessing
the uncertainty for the final calculated values of differential pressure; this is
performed in Examples 5.6 and 5.7. We also create a plot of DP-meter signal
y = (I,mA)cal versus pressure differences from the calibration standards,
x = (�p,psi)std , and a best-fit model is determined with Excel or MATLAB
(Figure 5.10). The best-fit model can be inverted to form a calibration curve
(�p,psi)meter versus (I,mA)raw, first introduced in Equation 5.39.

Having established the error-propagation process, we return to the Example
4.2 data to attempt to determine error limits through error propagation (Exam-
ple 5.9). We make progress, but we lack error measures for the coefficients
of the calibration curve, and we need these errors for the error propagation.
We determine the coefficients and their associated errors from a least-squares
regression calculation that is explained in Chapter 6. Thus, although the
Example 4.2 project has been advanced by the Example 5.6, 5.7, and 5.9
discussions, we cannot finish the flow-data problem until the topic of fitting
models to data is addressed in Chapter 6 (the Example 4.2 problem continues
and concludes in Example 6.8).

Chapter 6 addresses how to use the ordinary least-squares method to
determine best-fit model parameters for a dataset. In Example 6.1 we apply
the ordinary least-squares technique to the DP-meter calibration dataset first
introduced in Example 4.8, which consists of raw calibration data of DP-
meter signal versus manometer fluid-height differences. The least-squares
technique allows us to find a slope and an intercept that represent the data
well (Equation 6.16). We follow up the curve fit by calculating the calibration
curve for the DP meter (Equation 6.23), which we obtain by inverting the
best-fit curve to allow differential-pressure values to be obtained from DP-
meter readings. The calibration equation thus determined is that used in
Example 4.2.

In Figure 6.5 we use the error-propagation worksheet to guide an error
propagation that leads to good estimates of uncertainty for the slope (and
later, intercept) obtained with the DP-meter calibration data. To carry out the
error propagation we need the quantity sy,x , the standard deviation of y-values
within an ordinary least-squares fit (Example 6.2). Once sy,x is known, we
are able to determine s2

m and s2
b , the variances of the slope and intercept,

respectively (Equations 6.32 and 6.33).
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14 1 Introduction and Definitions

The value of sy,x for the DP-meter calibration dataset is needed in Example
6.6 when we calculate the calibration error for the DP meter. We obtain
the calibration error by assessing the error in predicted values of �p for
all possible values registered by the DP meter. In Example 6.6, in addition
to addressing the uncertainty in the calibration curve of the DP meter, we
present the derivation of the general case of uncertainty in values obtained from
calibration. In Example 6.7 we show how to calculate the limit of determination
(LOD) for the DP meter. The LOD is defined as the lowest value that can
accurately be measured by a device. Our recommendation is to disregard
any data that have more than 25% error; this rule of thumb sets the limit of
determination (see Section 4.3).

The limit of determination (LOD) is defined as the lowest value
that can accurately be measured by a device.

The standard calibration error for the DP meter es,cal , determined in
Example 6.6, is the last piece of information we need to complete the series
of examples that began with Example 4.2. The final resolution of the issue of
error limits for the pressure-drop/flow-rate data of Example 4.2 is presented in
Example 6.8. The outcome of the calculations is a plot of �p versus flow-rate
with appropriate error limits on measured values of �p (Figure 6.17).

The two sets of linked examples outlined here and organized in Figure 1.3
give a flavor of how the methods of this book may be used to structure error
calculations to accompany data measurements. The chapters of this text present
the methods, and the justification of the methods, helping a reader learn how
to apply and benefit from the techniques. We recommend that the reader return
to this section and to Figure 1.3 while working through the linked examples of
Chapters 4–6.

1.5.3 Introductory Examples

We finish this chapter with a few examples that draw on the concepts
introduced here. Performing error analysis requires that we learn how to pose
appropriate questions about our measurements and calculations. We cannot
simply memorize procedures and answers; instead, we must train our minds to
identify sources of uncertainty and learn to think about numbers as less-than-
perfect representations of quantities. The dilemmas posed in the examples here
illustrate the first steps along a path of developing this important thinking skill.

https://doi.org/10.1017/9781108777513.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.002


1.5 Summary 15

Plausible answers are provided at the end of the chapter. Your own reasoning
may be as valid as the answers provided.

Example 1.3: Precision versus accuracy For each situation described here,
is the issue presented one of precision or accuracy or both? Justify your
answer.

1. A racer in a downhill ski race beats the current world record by 0.9 s; the
officials refuse to certify the record. What could justify this action?

2. Alpine skier Olu clocks a time of 1:34.3 (m:s) on a downhill course while a
second skier Hannu also clocks 1:34.3. The course officials are blamed for
the tie. What could justify this claim?

3. On her driving vacation Jean Louise uses cruise control to limit her
driving speed to the speed limit; nevertheless, she is pulled over by the
State Police and given a ticket. The citation indicates she was traveling
10 mph (miles per hour) over the speed limit. Jean Louise contests the
ticket. On what scientific basis could this case be decided?

4. Feng has a global positioning system (GPS) navigation device. When he
compares the car’s speed indicated by the GPS to that indicated on the
car’s dashboard, they are often different by a few kph (kilometer per
hour). Which should he trust?

5. First responders use the 911 emergency system to dispatch help to those in
need. Emma called 911 from the seventh floor of a building and heard the
emergency vehicles arrive but was confused when they took a long time to
locate her, even though she knows they can locate her phone by tracking
its GPS signal. What do you think could have caused the delay?

Solution: We provide these situations to allow you to reflect on the role of
precision or accuracy in each circumstance; plausible interpretations appear at
the end of the chapter.

Example 1.4: Significant figures practice For the following numbers, carry
out the arithmetic and assign the correct number of significant figures. The
significant figures rules are given in Appendix B.

1. 132 + 43.2 =
2. (67)(143.6) =
3. 1.000 − (0.53 ∗ 4.0) =
4. ln

(
3.45 × 10−3

) =
5. 453

21 =
6. 10−3.9 =
7. The area of a circle of radius 0.25 m =
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Solution: The answers are at the end of the chapter.
Although a calculator returns a large number of digits, the finite precision

of the numbers that enter into a calculation limits the significance of the digits
in the answer. The rules of significant figures are a best-case scenario of the
number of digits that should be reported in the final answer. In Chapter 5 we
show how to determine and display a number’s uncertainty with more precision
than is possible with significant figures.

1.6 Problems

1. Which of these two numbers is more precise: 1.3 ± 0.2 m;
23.01 ± 0.02 m? Which is more accurate? Explain your answers.

2. Density ρ of a liquid was determined by weighing a fixed volume. The
mass of 1.3 liters of the fluid was found to be 2.3260 kg. What is the
density? Give your answer with the correct number of significant figures.

3. A recycling center is set up to weigh vehicles and their contents. A truck
loaded with metal for recycling weighs 15,321 lbf. The truck is then
emptied and re-weighed and found to weigh 15,299 lbf. How much metal
was unloaded? Give the weight to the correct number of significant
figures.

4. An airline only permits a checked bag to weigh up to 50 lbf. Before
leaving home, Helen weighs herself holding the bag (174.1 lbf) and not
holding the bag (124.0 lbf). What is the weight of the suitcase? Give the
weight to the correct number of significant figures.

5. In Chapters 2 and 5 we discuss viscosity data obtained with
Cannon–Fenske viscometers (see Example 2.19). The equation for
viscosity μ̃ is

μ̃ = ρα̃�teff

where ρ is fluid density, α̃ is a calibration constant, and �teff is efflux
time in the viscometer. For ρ = 1.124 g/cm3, α̃ = 0.01481 mm2/s2, and
�teff = 158.4 s, what is the viscosity? Report the correct number of
significant figures based on the data provided.

6. A bag of eleven apples weighs 1.6 kg. What is the mass of an apple?
Report the correct number of significant figures in your answer.

7. Bricks weigh 2.9 kg each, on average. How much would nine bricks
weigh? Report the correct number of significant figures.
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8. The specific gravity of mercury is 13.6 (dimensionless). How much
would 2 ml of mercury weigh? Report the correct number of significant
figures.

9. A reservoir initially holds 500.0 ml of solvent. A technician decants
492.3 ml of solvent from the reservoir. What is the remaining volume in
the reservoir? Report the correct number of significant figures.

10. What is the logarithm (base 10) of 520? Report the correct number of
significant figures.

11. What is 103.2? Report the correct number of significant figures.
12. Vance uses a bathroom scale to measure the weight of some luggage for

his trip abroad. He uses two different methods. In the first method, he
places the suitcase on the bathroom scale and measures the weight. In the
second method he steps onto the scale and gets one reading and then
steps onto the scale without the suitcase for a second reading; he then
subtracts the two readings. Which method is more preferable? Discuss
your answer.

13. For fourteen days in a row Milton fills a 500.0 ml volumetric flask with
water, weighs it, and then empties the flask and stores it. The mass of the
full flask is always a little different each day. What could be contributing
to this variation?

14. Over the years, travelers made many repeated trips from Hancock,
Michigan, to Minneapolis, Minnesota. The longest it took was eight and
a half hours. The shortest time for the 365-mile trip was five and three
quarters hours. What is a good best estimate for the time the trip will take
and what are the error limits on this estimate? Justify your answers.

15. The scale at the gym is used to settle a dispute about who weighs more.
Chris weighs 172 lbf and Lee weighs 170 lbf. The dispute then turns to
the issue of whether the scale is accurate enough to settle the dispute.
What is your take on the dispute?

16. In the United States, recipes for cooking baked goods specify the
quantity of each ingredient by volume (teaspoon, cup, half cup, etc.). In
Europe, recipes are specified by mass (grams, kilograms, etc.). Which
way is more accurate? Explain your choice.

17. Using the methods described in this book, we determine that the random
error, reading error, and calibration error on a temperature indicator are:

es,random = s√
n

= 0.23◦C

es,reading = (negligible)

es,cal = 0.55◦C
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Does any one type of error dominate for this device? If yes, which one?
What is the combined error?

18. We measure room temperature to be 20.5◦C using a digital temperature
indicator using thermocouples to sense temperature. The standard
calibration error for the thermocouple is determined to be
es,cal = 0.55◦C. The readings of room temperature are unvarying, and
thus the replicate error is zero. How big would the reading error have to
be to influence the combined error for this indicator?

19. In Section 1.5.2, we introduce a set of linked examples that thread their
way through the text. Find these examples and add their page numbers to
Figure 1.3 (also given on the inside cover of the book). These notations
will assist you as you use this book. What are the two overall tasks
discussed in the linked examples, as organized by the major threads in
Figure 1.3? Which is typically performed by the manufacturer, and which
by the instrument user?

20. What is the limit of determination (LOD) of a device? When does the
LOD have an effect on the reported accuracy of results from the device?
Explain your answer.

Answers to Example 1.3

1. Perhaps the official thinks that such a large difference cannot be correct
and that the timing apparatus is insufficiently accurate to register a record.

2. The two numbers are identical; a timing method with more precision
would have solved the problem.

3. The officer says one number and Jean Louise asserts that her car is more
accurate than the officer’s equipment. She is unlikely to win unless she can
test the officer’s apparatus for its accuracy. For a driver, having faulty
equipment (inaccurate) is not an acceptable excuse for breaking the law.

4. The two devices were calibrated independently, and it is not clear which
would be more accurate. Perhaps if we knew the error limits on both
measurements, we would find that they agree within the expected
uncertainty of the devices.

5. The vertical resolution may be the problem here, as early GPS systems did
not have enough vertical precision to determine the correct floor of an
emergency when the call came from a multistory building.
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Answers to Example 1.4

(1) 175.2
(2) 9.6 × 103

(3) −1.1
(4) 5.669
(5) 22
(6) 1.3 × 10−4

(7) 0.20 m2

https://doi.org/10.1017/9781108777513.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108777513.002

