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Abstract. By means of smoothing spline functions an attempt is made to approximate cepheid-type 
light curves. As an example the light curve of XZ! Cyg is used. 

Given the times of observations tte[a9 b\ i= 1 , n , and the corresponding magni­
tudes mi of a variable star, the analytic expression of the function m(t) (which re­
presents the light curve of the variable star) may be determined. Since the magnitudes 
mi are affected by the observational errors, a reasonable compromise between the 
approximation and the observational data is given by 

E(m)= t [m ( * , ) - « J 2 

i= 1 
and the smoothness of the solution by 

b 

L(m) = 

a 

where m" denotes the second derivative of the function m(t). 
The solution of the problem will be given by the function s(t) which minimizes the 

functional 
<P(m) = L(m) + QE(m) 

in the Hilbert space of the real function m(t), having an absolutely continuous first 
derivative and square integrable second derivative in the interval [a, 6 ] . The coeffi­
cient Q is a positive constant and denotes the degree of compromise between the ap­
proximation and the smoothness of the solution. 

In a more general case, Anselone and Laurent (1968) have demonstrated that the 
function s(t), called the smoothing spline-function, exists and is unique. In our case, 
if 7* > 2 , the function s(t) is composed of segments of polynomials of degree 3 which 
at t = th as well as their first derivatives, are equal. 

The smoothing spline-function s(t) is the solution of the differential equation 
n-2 

*"(')= I rlj<Pj(t) 
j = 1 

which satisfies the initial conditions 

1 n ~ 2 

Q 7 = 1 
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where q>j(t) is the nucleus of the divided differences built on the knots tj9 t J + l 9 tj+2l 
j = 1 2 and b} is the vector of the components, bi = (0 . . . . 0, bj9 b j + 1 , b j + 2 , 0 , . . . 0). 
The components bJ

j9 bj+1

9 bj*2

9 are the coefficients of the corresponding divided dif­
ference. fij(j= 1 , 2 ) are the solutions of the linear algebric system 

n-2 r j I 

7 = 1 L 2 J 7 = 1 
where 

b 

<<Pi, <Pj>H = j <Pi(t)<Pj(t) & 
a 

and 
n 

(bi9 bj}E = £ 
k = 1 

The actual numerical construction of the smoothing spline-function is very labo­
rious and it is advisable to use it only with the aid of a computer. For this purpose we 
developed a FORTRAN programme for the FELIX C-256 computer. 

For any set of photometric or spectrophotometric observations we can construct, 
according to the above described method (which will be called the method of the 
smoothing spline-functions) an analytic function which approximates the observations. 
This is very important for the determination and the study of the characteristics of the 
light and radial velocity curves. 

With the method of the smoothing spline-functions we can determine: 
(1) The analytic expression of the light and radial velocity curves. 
(2) The maxima and minima of the light or radial velocity curves from the first 

derivative equal to zero condition. 
(3) The amplitude of the light or radial velocity curve A = s(tmax)—s(tmin). 
(4) The asymmetries of the light curve and their variation during the Bla2ko effect. 
(5) The study of the humps on the rising branches of the light curves of some pul­

sating stars with BlaSko effect (SW Andromedae for instance), or the humps present 
in the light curve of some pulsating stars of RRc type. 

(6) The slope of the rising branch of the light curve and its variation during the 
Bla2ko effect. 

(7) The fundamental period and the beat period for the pulsating stars with Blaiko 
effect. 

(8) Other fine characteristics of the light or radial velocity curves. 
As an example, we have considered the photoelectric observations of XZ Cygni 

made on 13 September 1973 at the Cluj Astronomical Observatory. A sequence of 
these observations and the smoothing spline-curves for £ = 1 0 6 , 10 8 , 10 9 , are given 
in Figure 1. The mean observational error of quantities A v is 6 0 = 0.01 mag. The mean 
error of the smoothing spline-curve with respect to the observational data is 

£ c = [f ( * ( *« ) -m, ) J / (» -3) ] , 
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where n is the number of observations. The most favorable value of Q is determined 
by the condition ec = e0. For our example this amounts to g = 1 0 8 . The moment of 
the maximum of the light curve, obtained from the first derivative equal to zero 
condition, is Max. hel. = J . D . 2441939.4503. 

Fig. 1. Photoelectric observations of XZ Cyg made on 13 September 1973 and the smoothing 
spline-curves for Q = 10 6, 10 8 and 10 9. 
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