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Arithmetic properties of Apéry-like numbers

E. Delaygue

ABSTRACT

We provide lower bounds for p-adic valuations of multisums of factorial ratios which
satisfy an Apéry-like recurrence relation: these include Apéry, Domb and Franel
numbers, the numbers of abelian squares over a finite alphabet, and constant terms
of powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures
on the p-adic valuation of Apéry numbers. Furthermore, we give an effective criterion
for a sequence of factorial ratios to satisfy the p-Lucas property for almost all primes p.

1. Introduction

1.1 Classical results of Lucas and Kummer
It is a well-known result of Lucas [Luc78] that, for all nonnegative integers m,n and all primes

p, we have
k
m m;
(n) EH(n) mod p, (1.1)
i=0 N

where m = mg + mip + - - - + mip® and n = ng +nyp+ - - - + nyp® are the base-p expansions of
m and n.

In particular, a prime p divides the binomial (72) if and only if there is 0 < ¢ < k such that
m; < n;. Precisely, Kummer proved in [Kum52| that, for all nonnegative integers m > n, the
p-adic valuation® of the binomial (ZL) is the number of carries which occur when n is added to
m —n in base p. As a consequence, we have

<m> € p*Z, where a = # {O <i<k: <mz> = O} . (1.2)
n ng

In this article, we show that many sequences (A(n)),>o of Apéry-like numbers satisfy
congruences similar to (1.1), that is, for all nonnegative integers n and all primes p, we have

k
A(n) = HA(T%) mod p,
=0

where n = ng +nip + - - - + ngp® is the base-p expansion of n. Furthermore, we prove that an
analogue of (1.2) holds for those numbers, that is,

A(n) € p°Z, where o = #{0 < i < k: A(n;) = 0mod p},

which proves Beukers’ conjectures on the p-adic valuation of Apéry numbers.
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1.2 Beukers’ conjectures on Apéry numbers
For all nonnegative integers n, we set

n 2 2 n 2
Ay =Y <Z> <n -]: k) and  As(n) =Y (Z) <n Z k>
k=0 k=0

These sequences were used in 1979 by Apéry in his proofs of the irrationality of ((3) and ((2)
(see [ApéT9]). In the 1980s, several congruences satisfied by these sequences were proved (see,
for example, [Beu85, Beu87, CCC80, Ges82, Mim83]). In particular, Gessel proved in [Ges82]
that Ay satisfies the p-Lucas property for all prime numbers p, that is, for any prime p, all v in
{0,...,p— 1} and all nonnegative integers n, we have

Ai(v+np) = Ai1(v)A1(n) mod p.
Thereby, if n = ng+nip+ --- +nyp” is the base-p expansion of n, then we obtain
Ai(n) = Ai(ng) -+ A1(ny) mod p. (1.3)

In particular, p divides A;(n) if and only if there exists k in {0, ..., N} such that p divides A;(ng).
Beukers stated in [Beu86] two conjectures, when p = 5 or 11, which generalize this property.?
Before stating these conjectures, we observe that the set of all v in {0,...,4} (respectively v in
{0,...,10}) satisfying A;(v) = 0 mod 5 (respectively Aj(v) = 0 mod 11) is {1, 3} (respectively
[5}).

CONJECTURE A (Beukers [Beu86]). Let n be a nonnegative integer whose base-5 expansion is
n =ng+ni5+---+ny5Y. Let a be the number of k in {0,..., N} such that ny = 1 or 3. Then
5% divides Aq(n).

CONJECTURE B (Beukers [Beu86]). Let n be a nonnegative integer whose base-11 expansion is
n=mng+mn1ll +---+ny11"¥. Let a be the number of k in {0,..., N} such that n; = 5. Then
11% divides A;i(n).

Similarly, Sequence A, satisfies the p-Lucas property for all primes p. Furthermore, Beukers
and Stienstra proved in [BS85] that, if p = 3 mod 4, then Ay((p — 1)/2) = 0 mod p, and Beukers
stated in [Beu86] the following conjecture.

CONJECTURE C. Let p be a prime number satisfying p = 3 mod 4. Let n be a nonnegative integer
whose base-p expansion is n = ng +nip + - -- + nyp’¥. Let a be the number of k in {0,..., N}
such that ny = (p — 1)/2. Then p® divides Aa(n).

Conjectures A—C have been extended to generalized Apéry numbers and any prime p by
Deutsch and Sagan in [DS06, Conjecture 5.13] but this extension is false for at least one
generalization of Apéry numbers. Indeed, a counterexample is given by

n 2 3
n n+k
A =
w=3() ("c)
k=0
since A(1) =9 =0 mod 3 but A(4) = A(1 + 3) = 1152501 is not divisible by 3.
The main aim of this article is to prove Theorem 1, stated in §1.4, which confirms and

generalizes Conjectures A—C. First, we introduce some notations which we use throughout this
article.

2Ifpis 2, 3 or 7, then for all v in {0,...,p—1}, A1(v) is coprime to p, so that, according to (1.3), for all nonnegative
integers n, A1(n) is coprime to p.
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1.3 Notations
In order to study arithmetic properties of sums of products of binomial coefficients, such as
Apéry numbers, we first study families, indexed by N¢, of ratios of factorials of linear forms with
integer coefficients. For example, we will obtain congruences for A;(n) by studying the factorial
ratios (2 + )12
ny + ng)!

as we have the useful formula

n 2 2 2
n\“(n+k (2n1 + ng)!
Al(”):kzo <I<:> ( k ) - +Z Ctnp?
= ni+ns=n

Let d be a positive integer. Given tuples of vectors in N¢, e = (eq,...,e,) and f = (f1,...,f,),
we shall prove congruences for the factorial ratios

Qe f(n) := llj[’fll((?z : :11))!! (n € N%)

to deduce arithmetic properties of the numbers?

Gef(n)i= > Qesn) (neN). (1.4)

neNd |n|=n

Here - denotes the standard scalar product on R? and |n| =nj +---+ngif n = (nq,...,ng). For
example, we obtain that &, ¢(n) = Ai(n) with the tuples

e=1((2,1),(2,1)) and f=((1,0),(1,0),(1,0),(1,0),(0,1),(0,1)).

Because of the summation in (1.4), it is usually difficult to study arithmetic properties of
S, ¢(n); however, we will show that, in many interesting cases, we can transfer the p-Lucas
property from Q. r(n) to &, ¢(n). To that purpose, we define the p-Lucas property for families
of p-adic integers indexed by N¢. For all primes p, we write Zy, for the ring of p-adic integers.

If A= (A(n))yene is a Zy-valued family, then we say that A satisfies the p-Lucas property
if, for all vectors v in {0,...,p — 1} and n in N¢, we have

A(v+np) = A(v)A(n) mod pZy. (1.5)

If n is nonzero, then we say that n = ng +mnyp +---+nyp’ is the base-p expansion of n if, for
all 4 in {0,...,N}, we have n; € {0,...,p — 1} and ny # 0, where 0 := (0,...,0). Hence, if A
satisfies the p-Lucas property, then we have

A(n) = A(ng)--- A(ny) mod pZ,.

We write Z,(A) for the set of all vectors v in {0,...,p — 1}% such that A(v) belongs to pZ,.
Hence, A(n) is in pZ, if and only if at least one n;, 0 < i < N, belongs to Z,(A). To state our
generalization of Conjectures A—C, we define the following counting function. For every nonzero
vector n in N¢ whose base-p expansion is n = ng +nip + - - - + nyp”, we write ap(A, n) for the
number of ¢ in {0,..., N} such that n; € Z,(A), and we set a,(A,0) = 0. Thereby, to prove

3 We also provide a proof of Beukers’ conjectures which directly uses congruences for Apéry numbers due to their
representation as constant terms of powers of Laurent polynomials.
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Conjectures A—C, it is enough to show that A4;(n) € p»(Ain)7 with i =1,p=>5or 11 and i = 2,
p = 3 mod 4.

Our generalization of Beukers’ conjectures will apply to sequences &, ; restricted to the
following two conditions.

The first condition (the r-admissibility) ensures that we can transfer the p-Lucas property
from Q, r(n) to & ¢(n). If m = (m1,...,mq) and n = (n,...,nq) belong to R?, then we write
m > n if, for all i in {1,...,d}, we have m; > n;. Furthermore, we set 1 := (1,...,1) € N% and
we write 1j for the vector in N, all of whose coordinates equal zero except the kth, which is 1.
Let S:= {1 <i<u:e; >1}. For every positive integer r, we say that e is r-admissible if

i 1<i<u:t de; =>dlg} >
#S+1211€11<1d#{ i<u:i¢ S ande; k=T

We will use this definition with » = 1 or 2. In the case of the Apéry numbers A;(n), we study the
family Q. r with the tuple e = ((2,1),(2,1)), so that #S = 2 and e is 2-admissible. As another
example, we will also prove a result similar to Beukers’ conjectures for the sequence

wn=$ () ()

Agn)= > (n1 + n2)!(2n1)1(2n,)!

n1!3ny!3

We can write

)

ni+n2=n
so that Ag(n) = S r(n) with e = ((1,1),(2,0), (0,2)). In this case, we have d = 2, #S = 1 but
e is also 2-admissible because for k =1 or 2 we have #{2 <i<3:e; > 213} = 1.

The second condition is of differential type. To apply our main result, we need the generating
series of (S f(n))n>0 to be annihilated by a differential operator of a special form that we
describe below. We set 6 := z(d/dz) and we say that a differential operator £ in Zp[z, 6] is of
type I if there is a nonnegative integer ¢ such that:

— L=PFPy(0) + 2P (0) + - - -+ 29P,(8) with P(X) € Z,[X] for 0 < k < g;
- P(Z)) CZy;
— for all kin {2,...,q}, we have Py(X) € [[F 21X +14)%Z,[X].
We say that a differential operator £ in Zy[z, 6] is of type II if:
— L = Py(0) + 2Py (0) + 22 Py(0) with P.(X) € Z,[X] for 0 < k < 2;
- P(Z)) C ZLy;
— Py(X) € (X 4+ 1)Zy[X].
For example, the generating series of (A1(n))n>0 is annihilated by the differential operator
L1 =0%— 2(3460° + 510 + 270 + 5) + 2%(0 + 1)?,

which is of type I for every prime p. We will also prove a result similar to Beukers’ conjectures

for the numbers " A
n

k=0
The generating series of As is annihilated by the differential operator

L5=10%—22(20 +1)(36° + 30 + 1) — 2%4(0 + 1)(40 + 5)(46 + 3),
which is of type II for every prime p.
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Our main result confirms Conjectures A—C, and also provides surprising similar properties
for some deformations of Apéry-like numbers. For example, while proving that, for every prime
p and all nonnegative integers n, we have

" n 2 n—i—k 2 Oc(A n)
Al(n):Z k k epp b Z?

k=0

we will also show that, for every nonnegative integer a, we have
n 2 2
n n+k
s ap(Al,n)fIZ.
2r() (50 e

More generally, we will obtain congruences for deformations &Y 7 of the sequences &, y defined

as follows. For any prime p, we write Sg for the set of all functions g : N¢ — Zy, such that,
for all nonnegative integers K, there exists a sequence (Pg k)r>0 of polynomial functions with
coefficients in Z, which converges pointwise to g on {0, ..., K }4. For all tuples e and f of vectors
in N all g € Sg and all nonnegative integers m, we set

& (m):= Y Q(n)gn).

neNd |n|=m

1.4 Main results
In the rest of the article, if e = (eq, . . ., e,) is a tuple of vectors in N¢, then we set |e| := e;+ - -+e,,.
The main result of this article is the following.

THEOREM 1. Let e and f = (13,,...,1z,) be two disjoint tuples of vectors in N¢ such that
le|] = |fl|, for all i in {1,...,v}, k; isin {1,...,d}, and e is 2-admissible. Let p be a fixed prime.
Assume that the generating series of & ¢ is annihilated by a differential operator L € Zy[z, 0]
such that at least one of the following conditions holds:

— L is of type I;
— Lisoftypell andp —1 € Z,(S, ¢).

Then, for all nonnegative integers n and all functions g in gg, we have
e (n) € p©erVZ and & (n) € pr(Serm-lz,

In § 1.6, we show that Theorem 1 applies to many classical sequences. In particular, Theorem 1
implies Conjectures A-C. Indeed, we have Ay = &, , and Az = &, j, with d = 2,

€1 = ((271)7 (2’ 1)) and f1 = ((170)a (170)7 (1’0)7 (1a0>7 (07 1)’ (07 1))

and
€2 = ((2> 1)a (17 1)) and fo = ((170)7 (170)7 (170)7 (O? l)a (07 1))

Furthermore, it is well known that f4,, respectively fa,, is annihilated by the differential operator
L1, respectively Lo, defined by

L1 =0 — 2(3460° + 5167 + 270 4+ 5) + 2*(0 + 1)*
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and
Lo=0%—2(116% + 110 + 3) — 22(0 + 1)%.

Since £1 and Lo are of type I for all primes p, the conditions of Theorem 1 are satisfied by A;
and As, and Conjectures A—C hold. In addition, for all primes p and all nonnegative integers n
and a, we obtain that

Zk“() <"+k> prAm=1Z and Zka<> <”+k> € prriien=iz,

We provide a similar result which applies to the constant terms of powers of certain Laurent
polynomials. Consider a Laurent polynomial

k

a; + +

= E ax* € Lylxy, ... x5,
=1

where a; € Z¢ and a; # 0 for i in {1,...,k}. Recall that the Newton polyhedron of A is the
convex hull of {ay,...,a;} in R% Hence, we have the following result.

THEOREM 2. Let p be a fixed prime. Let A(x) € Z [ml . ,xf] be a Laurent polynomial and
consider the sequence of the constant terms of powers of A defined, for all nonnegative integers
n, by

A(n) := [Ax)"]o-

Assume that the Newton polyhedron of A contains the origin as its only interior integral point,
and that fa is annihilated by a differential operator L in Z,|z, 0] such that at least one of the
following conditions holds:

— L is of type I;
— Lisof type Il and p—1 € Z,(A).

Then, for all nonnegative integers n, we have
A(n) € pO‘P(A’”)Zp.

For example, Theorem 2 applies to Apéry numbers A; thanks to the following formula of
Lairez (personal communication, 2013):

Ay(n) = K(l—I—z)(yz+z+1)(1+:E)(xy—|—aj+y))n} -~

TYZ

By a result of Samol and van Straten [SvS15], if A(x) € Z,[zT,...,2F] contains the origin
as its only interior integral point, then ([A(x)"]o)n>0 satisfies the p-Lucas property, which is
essential for the proof of Theorem 2. Likewise, the proof of Theorem 1 rests on the fact that
S, s satisfies the p-Lucas property when |e| = |f|, e is 2-admissible and f = (1j,,...,1,). Since
those results deal with multisums of factorial ratios, it seems natural to study similar arithmetic
properties for simpler numbers such as families of factorial ratios. To that purpose, we prove
Theorem 3 below, which gives an effective criterion for Q. to satisfy the p-Lucas property
for almost all primes p.* Furthermore, Theorem 3 shows that if A := Q. s satisfies the p-Lucas

4 Throughout this article, we say that an assertion A, is true for almost all primes p if it holds for all but finitely
many primes p.
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property for almost all primes p, then, for all nonnegative integers n and all primes p, we have
A(n) € porAn)z,
To state this result, we introduce some additional notations. For all tuples e and f of vectors

in N, we write A s for Landau’s function defined, for all x in R?, by

u v

Ac(x) = lei-x| =Y |fi-x] €7,

i=1 i=1
where |-| denotes the floor function. Therefore, according to Landau’s criterion [Lan00] and a
result of the author [Dell3], we have the following dichotomy.

— If, for all x in [0, 1]¢, we have Ac 7(x) 2 0, then Q. f is a family of integers.
— If there exists x in [0, 1]¢ such that A¢ r(x) < —1, then there are only finitely many primes
p such that Q. ¢ is a family of p-adic integers.

In the rest of the article, we write D, ; for the semi-algebraic set of all x in [0, l)d such that
there exists a component d of e or f satisfying d - x > 1. Observe that A, ; vanishes on the

nonempty set [0, 1) \De.f.

THEOREM 3. Let e and f be disjoint tuples of vectors in N¢ such that Q. r is a family of integers.
Then we have the following dichotomy.

(i) If|e| = |f| and if, for all x in D, ¢, we have A, t(x) > 1, then, for all primes p, Q. y satisfies
the p-Lucas property.

(i) If |e| # |f| or if there exists x in D, s such that A, ¢(x) = 0, then there are only finitely
many primes p such that Q. r satisfies the p-Lucas property.

Furthermore, if Q. ; satisfies the p-Lucas property for all primes p, then, for all n in N¢ and
every prime p, we have
Q. s(n) € por(Cermz,

Remark. Theorem 3 implies that Q. r satisfies the p-Lucas property for all primes p if and only
if all Taylor coefficients at the origin of the associated mirror maps z. r, 1 < k < d, are integers
(see [Dell3, Theorems 1 and 3]). Indeed, if A, is nonnegative on [0,1]¢ and if |e| # |f|, then
there exists k in {1,...,d} such that the kth component of |e| is greater than the kth component

of | 1.

Coster proved in [Cos88| results similar to Theorems 1-3 for the coefficients of certain
algebraic power series. Namely, given a prime p > 3, integers a,...,ap,—1 and a sequence A
such that

fA(Z) = (1 + a1z + e+ apflzp_l)l/(l_p),
Coster proved that, for all nonnegative integers n, we have

up(A(n)) > {%(AQ”)HJ

1.5 Auxiliary results

The proof of Theorem 1 rests on three important results. The first one is stated rather formally
but we believe that it may be useful to study results similar to Beukers’ conjectures for other
sequences. Throughout this article, if (A(n))n>0 is a sequence taking its values in Z or Z,, then,
for all negative integers n, we set A(n) := 0.
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PROPOSITION 1. Let p be a fixed prime and A a 7Z,-valued sequence satisfying the p-Lucas
property with A(0) in Z, . Let 2 be the Zy-module spanned by A. Assume that:

(a) there exists a set B of Zy,-valued sequences with A C B such that, for all B in B, all v in
{0,...,p — 1} and all positive integers n, there exist A’ in 2 and a sequence (By)g>0, Bk
in *B, such that

B(v+np) = A'(n) + Zpk+lBk( —k);
k=0

(b) fa(z) is annihilated by a differential operator L in Zy|z,0] such that at least one of the
following conditions holds:

x L is of type I;
x L is of type Il and p — 1 € Z,(A).

Then, for all B in %6 and all nonnegative integers n, we have
A(n) € p*A™7, and B(n) € pr A1z,

We will apply Proposition 1 with A = &, for some tuples e and f satisfying the conditions
of Theorem 1 for a fixed prime p. Then we will choose the set 9B to be the set of the deformations
(S for g in 3‘1 Taking g to be a constant in Z, shows that the set B contains the Z,-module
A spanned by A The main difficulty in this artlcle is to show, by p-adic technlques that
Assertion (a) in Proposition 1 holds with these choices. In particular, we shall prove and use
several times the following result.

PROPOSITION 2. Let p be a fixed prime. We write I, for the p-adic Gamma function. Then there
exists a function ¢ in 3723 such that, for all nonnegative integers n and m, we have

Lp((m +n)p)

Ty (mp)Ty () F O

Our proof of Theorem 2 does not use Proposition 1 but rests on the beautiful result of Mellit
and Vlasenko [MV16, Lemma 1], which gives useful congruences modulo powers of p for some
constant terms of powers of Laurent polynomials. In this case, the p-adic difficulties are hidden
in the result of Mellit and Vlasenko.

Finally, we give a general result to prove the p-Lucas property for many sums of products of
binomial coefficients. We recall that a tuple e = (eq,...,e,) of vectors in N? is I-admissible if
either e; > 1 for some i or if, for every k in {1,...,d}, we have e; > d1; for some i.

PROPOSITION 3. Let e and f be disjoint tuples of vectors in N¢ such that |e| = |f| and, for all
X in De g, Ac,f(x) = 1. Assume that e is 1-admissible. Then S, y is integer-valued and satisfies
the p-Lucas property for all primes p.

1.6 Application of Theorem 1

By applying Theorem 1, we obtain results similar to Conjectures A—C for numbers satisfying
Apéry-like recurrence relations, which we list below. Characters in brackets in the last column
of the following table form the sequence number in the On-line Encyclopedia of Integer
Sequences [OEIS13].
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Sequence Qe f(n1,m2) L Reference
n 2 N 2 ( 2
n n+ 2n1 + no)! .
—_— AZ06, A b A005259
— (k) < k ) n1l4ny!2 [ (] péry numbers ( )
2 ? ! !
(Z) (n —]: k) (2 + n?g(né + n2)! [Zag09, D] Apéry numbers (A005258)
=0 ni1-°ng!
n 2
2n) n (n1 4+ n2)!? Tvoe I Central binomial
n) & \k n1 120212 ype coefficients (A000984)
=0
(Z) % [Zag09, A] Franel numbers (A000172)
=0 ni1.-°Nng:
= (n)' (m1 + o)t
n ni + ng)!
s Fra94, Fra95 A005260
=0 (k) TL1!47’L2!4 [ e ra } ( )
—~ (n\ 2k (2(n—k n1 + n2)!(2n1)!(2n2)! ,
B () e | s |
k=0 ’ ’
2 .
n 12 | Number of abelian squares
" 2k % [Zag09, C] of length 2n over an alphabet
k=0 K K e with three letters (A002893)
2
(n\ [(2k)([2(n—k)\ | (ni+4 n2)1?(2n1)!(2n2)!
AZ D s (A002
2 (/c) (k) ( "k I [AZ06, (a)] omb numbers (A002895)
(o) (200~ ) (2n0)"* (22)
2 2(n — 2n1)!1%(2n2)!
<k> < o ) ;1!4712!42 [AZ06, (B)] (A036917)
k=0

All differential operators listed in the above table are of type I for all primes p, except the
one associated with As(n) = ;4 (2)4, which reads

L5 =0%—22(20 +1)(30> + 30 + 1) — 224(0 + 1)(40 + 5)(46 + 3).

Hence, L5 is of type II for all primes p. By a result of Calkin [Cal98, Proposition 3|, for all primes
p, we have As(p — 1) =0 mod p, i.e. p—11isin Z,(As). Thus, we can apply Theorem 1 to As.

Observe that the generating function of the central binomial coefficients is annihilated by
the differential operator £ = 6§ — z(46 + 2), which is of type I for all primes p.

We set Ag(n) :==> 5o (}) (2kk) (le:kk)). In 1885, Catalan gave in [Cat85] a recurrence relation
for the Catalan-Larcombe-French sequence 2"Ag(n) from which we deduce a recurrence
relation for Ag(n) (see also Case (d) in [AZ06]). According to this relation, Ag(n) is also
Sequence E in Zagier’s list [Zag09], that is,

Ln/2]

Ag(n) = kZ:O g2k ( 2’2) (2:)2_
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Furthermore, according to [RS09], Domb numbers Ag(n) = > ;_, (2)2(2:) (2(7?__:)) are also
the numbers of abelian squares of length 2n over an alphabet with four letters.

Now we consider the numbers C;(n) of abelian squares of length 2n over an alphabet with 4
letters, which, for all positive integers i > 2, satisfy (see [RS09])

n! 2
o= % (aim)
k1+-+ki=n
K1,k €N
According to [BNSW11], C;(n) is also the (2n)th moment of the distance to the origin after ¢
steps travelled by a walk in the plane with unit steps in random directions.

To apply Theorem 1 to Cj, it suffices to show that its generating series fc, is annihilated
by a differential operator of type I for all primes p. Indeed, by [BNSW11, Proposition 1 and
Theorem 2], for all j > 2, Cj(n) satisfies the recurrence relation of order [j/2] with polynomial
coefficients of degree j — 1:

ni1C;(n +Z(nﬂ Y H —o) ]—l—l—ozk)( ki1>ak1>0j(n—i):0, (1.6)

1>1 at,...,04 k=1
where the sum is over all sequences of positive integers aq, ..., a; satisfying ap < j and agy1 <
a — 2. We consider ¢ > 2 and ¢ positive integers aq,...,q; < j satisfying ax11 < ap — 2. We
have
ap—1 nj*1 i—1
j—1 — L\ —Oky1 _oaoi—1
n H <n . 1> v <1}:[1(n k) >(n i)

with j — a1 > 0, ax — agy1 > 2 and a; — 1 > 0. Then f¢,(2) is annihilated by a differential
operator £ = Py(0) + 2Py (0) + - - + 29P,(0) with Py(0) = 67~ and, for all i > 2,

i—1 i—1
Pi(0) € [0 +i—k)>zio] c T (6 + k)*Z[],
k=1 k=1

so that L is of type I for all primes p, as expected.

1.7 Structure of the article

In §2, we use several results of [Dell3] to prove Theorem 3. Section 3 is devoted to the proofs of
Theorem 2 and Proposition 1. In particular, we prove Lemma 1, which points out the role played
by differential operators in our proofs. In §4, we prove Theorem 1 by applying Proposition 1 to
S, s. It is the most technical part of this article.

2. Proof of Theorem 3

First, we prove that if |e| = |f|, then, for all primes p, all a in {0,...,p — 1} and all n in N?,

we have
Q..s(a+np) enzdﬂ&”“< +(e;-m) /)
Qe.r(@)Qer(®) — TIL, TLEM (1 + (8- m) /)

(14 pZy). (2.1)

Indeed, we have
Qeslat+np)  Qeplatmnp) Qe y(np)

Q.s(@)Qcs(n)  Qcr(a)Qecr(mp) Qey(n)’
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Since |e| = |f], we can apply [Dell3, Lemma 7]° with ¢ = 0, m = n and s = 0, which yields

Qe,f(np)

€1+ pZ,.
Qe,f(n) b

Furthermore, we have

Qeatnp) 1 JLLILSG+ei-np)
Qe,f(a) Qe,f(np) Qe,f(a) Hz 1 H (] +f; - np)
[T TS5 (X + (e - mp) /j)

T T (1 + (f: - np)/])

T TP (1 + (e - m) /)
€ Lf;- a/p .

[1i- 1H (1 (fi‘n)/])

because, if p does not divide j, then 1+ (e; - np)/j belongs to 1 + pZ,. This finishes the proof of
(2.1).

Now we prove Assertion (i) in Theorem 3. Let p be a fixed prime number. It is well known
that, for all nonnegative integers n, we have

(1+pZy)

-205

We remind the reader that the Landau function A, s is defined by

u v
= lei-x] = > [fj-x] (xeRY).
i=1 j=1
Thus, for all vectors n in N¢, we have

Up(Qe,f(n ZAef( )

Fix n in N? and a in {0,...,p — 1}¢. Let {-} denote the fractional part function. For any vector
of real numbers x = (z1,...,24), we set {x} := ({z1},...,{zq}). Since |e| = |f|, we have
> a—+np a
st = 32 8es ({3577 }) > 20, ()
=1

because A,  is nonnegative on [0, 1]%. By assumption, if x belongs to D, s, then A, ;(x) > 1.
On the one hand, if a/p is in D, ¢, then both Q. f(a+np) and Q. r(a)Q. r(n) are congruent to
0 modulo p. On the other hand, if a/p is not in D, ¢, then, by definition, for all d in e or f, we
have |d -a/p| = 0, so that (2.1) yields

Qcf(a+mnp) = Q. r(a)Qcr(n) mod pZy,

as expected. This proves Assertion (i) in Theorem 3.

5 The proof of this lemma uses a lemma of Lang, which contains an error. Fortunately, Lemma 7 remains true.
Details of this correction are presented in [DRR17, §2.4].
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Now we prove Assertion (ii) in Theorem 3. If m = (myq,...,mq) is a vector in R? and
ke {1,...,d}, then we set m*) := my. If |e| # |f| then, since A, ; is nonnegative on [0, 1]¢,
there exists k in {1,...,d} such that |e|*) —| f|(®) = A_ £(1}) > 1. Thereby, for almost all primes
p, we have

= 1 + 1p 1

k k k

Up(Qe,f(]-k + ]-kp)) = ZAe,f <pe> P Ae,f< » + 1k> = 17
(=1

but v,(Qe, r(1x)) = 0, so that Q. ¢ does not satisfy the p-Lucas property.

Throughout the rest of this proof, we assume that |e| = |f|. According to [Dell3, §7.3.2],
there exist k in {1,...,d} and a rational fraction R(X) in Q(X), R(X) # 1, such that, for all
large enough prime numbers p, we can choose a, in {0,...,p— 1}¢ satisfying Qe f(ap) € Z; and
such that, for all nonnegative integers n, we have (see [Dell3, (7.10)])

Qe.f(ap + 1xnp) € R(n)Qe,f(ap) Qe,f(1xn) (1 + pLyp).

We fix a nonnegative integer n satisfying R(n) # 1. For almost all primes p, the numbers R(n),
Qc.f(1xn) and Q. ¢(a,) are invertible in Z,, and R(n) # 1 mod pZ,. Thus, we obtain

Qe f(ap +1xnp) # Qe r(ap) Qe r(1xgn) mod pZy,

which finishes the proof of Assertion (ii) in Theorem 3.
Now we assume that |e| = |f| and that, for all x in D, ¢, we have A, ¢(x) > 1. Hence, for
every prime p, we have

Zy)(Qes) ={ve{0,....p—1}:v/peD.s}.

Furthermore, if v/p belongs to D, f, then, for all positive integers N and all vectors ag, ...,ay—_1
in {0,...,p— 1}¢, we have

{a0+a1p+---+aN1pN—1 +VpN} _aotapt-tayapt vV v
pN+1 pN+HI 'k
so that
ag+aip+---+ay_1p”V L +vp" D
pNH1 € Pe,s-
Hence, for every n in N¢, n = Yoo n;p* with ng € {0,...,p — 1}¢, we have

p(Qe.f(n ZA <{k;nkp}> 2 ap(Qe,f,m)

and Theorem 3 is proved.

3. Proofs of Theorem 2 and Proposition 1

3.1 Induction via Apéry-like recurrence relations
In this section, we fix a prime p. We remind the reader that if A is a Z,-valued sequence, then
Z,(A) is the set of the digits v € {0,...,p — 1} such that A(v) € pZ,. If n is a nonnegative
integer whose base-p expansion is n = ng +ni1p + - - - + nyp’, then a,(A4,n) is the number of i
in {0,..., N} such that n; belongs to Z,(A).

If Ais a Zp-valued sequence, then, for all nonnegative integers r, we write Us(r) for the
assertion ‘For all n,i € N, i < r, if ap(A,n) > 4, then A(n) € p'Z,.". As a first step, we shall
prove the following result.
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LEMMA 1. Let A be a Zy-valued sequence satisfying the p-Lucas property with A(0) in Z) .
Assume that the generating series of A is annihilated by a differential operator L € Zy[z, 6] such
that at least one of the following conditions holds:

— L is of type I;
— Lisof typell andp —1 € Z,(A).

Let r be a nonnegative integer such that Ux(r) holds. Then, for all ny in Z,(A) and all
nonnegative integers m satisfying oy (A, m) > r, we have

A(ng +mp) € p" 17,

Proof. Since A satisfies the p-Lucas property, we can assume that r is nonzero. The generating
series of A is annihilated by a differential operator £ = Py()+ 2P (0) +- - - +29P,(0) with P(X)
in Zy[X] and Py(Z,) C Z,;. Thus, for every nonnegative integer n, we have

q

> Pi(n—k)A(n — k) =0. (3.1)

k=0

We fix a nonnegative integer m satisfying a, (A, m) > r. In particular, since 7 is nonzero and
A(0) is invertible in Z,, we have m > 1. Furthermore, for all v in {0,...,p — 1}, we also have
ap(A, v+ mp) > r. According to Ux(r), we obtain that, for all v in {0,...,p — 1}, A(v + mp)
belongs to p"Zy, so that A(v 4+ mp) =: f(v,m)p" with S(v,m) € Z,.

By (3.1), for all v in {¢,...,p — 1}, we have

q

q
0= Pu(v—k+mp)A(v—k+mp) =p" S Py(v — k +mp)B(v — k,m)
k=0 k=0

Pi(v —k)B(v — k,m) mod p"t'Z,

.
M=

i}
o

because, for all polynomials P in Z,[X| and all integers a and ¢, we have P(a + cp) =
P(a) mod pZ,. Thus, for all vin {q,...,p — 1}, we obtain

q
ZPk(v —k)B(v—Fk,m)=0 mod pZy. (3.2)
k=0
We claim that if v is in {1,...,¢q — 1}, then, for all £k in {v+1,...,¢q}, we have
Pi(v+mp—k)A(v +mp — k) € p"'7Z,. (3.3)

Indeed, on the one hand, if £ is of type II, then we have ¢ = 2 and P»(X) belongs to
(X + 1)Z,[X], which yields

Py(—1 4+ mp)A(=1+mp) € pA(p — 1+ (m — 1)p)Z,,.
Since 0 is not in Z,(A), we have a, (A, m —1) > r — 1, which, together with p —1 € Z,(A), leads
to
ap(A;p—1+(m—1)p) =r.
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According to Ua(r), we obtain that pA(p — 1+ (m—1)p) is in p"t1Z,, as expected. On the other
hand, if £ is of type I, then, for all v in {1,...,¢— 1} and all kin {v +1,...,q}, we have

k—1
Py(X) € [[(X +0)°z,[X],
i=1

so that
k—1

p(Peto = 1) oy (T mp 402,
i=1
Writing k — v = a + bp with a in {0,...,p — 1} and b in N, we obtain k — 1 > a + bp, so that

" b ifa=0
”p(H(mp“_“_bp)> 2 {b+1 fa> 1.
i=1 -7
which yields

% ifa=0,

vp(P(v +mp — k) = {2b+2 ifa>1.

Thus, to prove (3.3), it is enough to show that

(3.4)

r+1—2b ; —
P Zy ifa=0,
A — k)€
(v+mp ) {pr—l—QbZP ifa>1.

By definition of a and b, we have v + mp — k = —a + (m — b)p with a in {0,...,p — 1}. If
—a + (m — b)p is negative, then A(v + mp — k) = 0 and (3.4) holds. By assumption, we have
ap(A,m) > rand 0 ¢ Z,(A). Hence, if m — b is nonnegative, then we have a,(A4, m —b) > r —b.
Thus, we have either a =0 and a,(A,v+mp —k) >r —0b,or a,m —b>1 and

ap(A,v+mp—k)=ap(A,p—a+(m—-b—1)p)>r—b—1.
Hence, Assertion Ua(r) yields

p*Z, ifa=0,

A —k
(v+mp )€ {prlbzp ifa>1.

If a =0, then b > 1 and —b > 1 — 2b, so that (3.4) holds and (3.3) is proved.
By (3.3), for all nonnegative integers v satisfying 1 < v < min(¢ — 1,p — 1), we have

q
O:ZPk(v—k+mp)A(v—k+mp)

k=0
=" Plv—k+mp)A(v—k-+mp) mod 'z,
k=0
=p" Z Pi(v—k +mp)B(v — k,m) mod p""'7Z,
k=0

=p Z Pi(v—k)B(v — k,m) mod p"*'7Z,.
k=0
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Thus, for all nonnegative integers v satisfying 1 < v < min(q — 1,p — 1), we have
v
ZPk(v —k)B(v—Fk,m)=0 mod pZy. (3.5)
k=0

Both sequences (8(v,m))ocv<p—1 and (A(v))o<v<p—1 satisfy (3.2) and (3.5). Furthermore,
for all v in {1,...,p — 1}, Py(v) and A(0) are invertible in Z,. Hence, there exists vy(m) in
{0,...,p — 1} such that, for all v in {0,...,p — 1}, we have (v, m) = A(v)y(m) mod pZ,, so
that

A(v+mp) = A(v)y(m)p” mod p" 17,

Since ng is in Z,(A), we have A(ng) € pZ,, so that A(ng+mp) belongs to p"*'Z, and Lemma 1
is proved. O

3.2 Proof of Theorem 2

Let p be a fixed prime number. For every positive integer n, we set £(n) := [log,(n)| + 1, the
length of the expansion of n to the base p, and ¢(0) := 1. For all nonnegative integers ni,...,n,,
we set

Ny k- kM = ng - nzpé(ru) 4t nrpﬁ(n1)+---+€(nr71)7

so that the expansion of nq*- - -*n, to the base p is the concatenation of the respective expansions
of ny,...,n,. Then, by a result of Mellit and Vlasenko [MV16, Lemma 1], there exists a Z,-valued
sequence (¢, )n>0 such that, for all positive integers n, we have

A(n) = Z Cny e Cp. and ¢, =0 mod pf(”)*lZp. (3.6)
1<1:”l<.£;.(n);"z>0

For every nonnegative integer r, we write U(r) for the assertion: ‘For all n,i € N, i < r,
if a,(A,n) > i, then A(n),c, € p'Z,.". To prove Theorem 2, it suffices to show that, for all
nonnegative integers r, Assertion U(r) holds.

First, we prove U(1). By [MV16, Theorem 1], A satisfies the p-Lucas property. In addition, if
v is in Z,(A), then v is nonzero because A(0) =1 and, by (3.6), we have ¢, = A(v) € pZ,. Now,
if a nonnegative integer n satisfies £(n) = 2 and o, (A, n) > 1, then (3.6) yields A(n) = ¢, mod pZ,,
so that ¢, is in pZ,. Hence, by induction on ¢(n), we obtain that, for all nonnegative integers n
satisfying ay(A4,n) > 1, ¢, belongs to pZy, so that ¢(1) holds.

Let r be a positive integer such that ¢/(r) holds. We shall prove that ¢(r + 1) is true. For all
positive integers M, we write Ups(r + 1) for the assertion:

‘For all n,i e Nyn < M,i <r+1, if a(A,n) >4, then A(n),c, € p’Zp.’

Hence, Uy (r + 1) is true if (M) < r. Let M be a positive integer such that Uy (r + 1)
holds. We shall prove Ups+1(r + 1). By Assertions U(r) and Ups(r + 1), it suffices to prove that
if ap(A, M + 1) is greater than 7, then A(M + 1) and cpr41 belong to p"t1Z,. In the rest of the
proof, we assume that o, (A, M + 1) is greater than r.

If w and ny,...,n, are nonnegative integers satisfying 2 < u < (M + 1) and ny *---* n, =
M + 1 with n, > 0, then, for all 7 in {1,...,u}, we have n; < M and

ap(A,ny) + -+ op(A,ny) =ap(ALM+1) >r+1.
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Then there exist a positive integer k£ and integers 1 < a1 < --- < ar < w and 1 < 4q,...,
ix <7+ 1such that ay(A, ng;) > @5 and iy +- - -+ > r+ 1. Thereby, Assertion Uy (r+1) yields
Cny *** Cny € D' T2y, sO that

Z Cpy " Cn, € pT+IZp'

ny ke kn, =M1
2<u<b(M+1),nu >0

By (3.6), we obtain
AM +1) =cpyy1 mod erZp and cy41 =0 mod pé(MH)_lZp.

Hence, it suffices to consider the case /(M + 1) = r + 1. In particular, we have M + 1 = v + mp,
where v is in Z,(A) and m is a nonnegative integer satisfying a, (A, m) = r. Since U(r) holds,
Lemma 1 yields A(M+1) € p""1Z,,. Thus, we also have cyr41 € p"17Z,, and Assertion Ups11(r+1)
holds. This finishes the proof of U(r 4+ 1) and so that of Theorem 2. O

3.3 Proof of Proposition 1

Let p be a prime and A a Z,-valued sequence satisfying the hypotheses of Proposition 1. For every
nonnegative integer n, we write «(n), respectively Z, as a shorthand for o, (A, n), respectively
for Z,(A). For every nonnegative integer r, we define Assertions

U(r) : ‘For all n,i € N,i < r,if a(n) > 4,then A(n) € p'Z,.’

and
V(r) : For all n,i € N,i < r,and all B € B,if a(n) > 4,then B(n) € p"~'Z,.’

To prove Proposition 1, we have to show that, for all nonnegative integers r, Assertions U(r)
and V(r) are true. We shall prove those assertions by induction on r.

Observe that Assertions ¢(0), V(0) and V(1) are trivial. Furthermore, since A satisfies the
p-Lucas property, Assertion ¢(1) holds. Let ry be a fixed positive integer, ro > 2, such that
Assertions U(rp — 1) and V(rg — 1) are true. First, we prove Assertion V(rg).

Let B in 8B and m in N be such that a(m) > rg. We write m = v+np with v in {0,...,p—1}.
Since 79 > 2 and 0 does not belong to Z, we have n > 1 and, by Assertion (a) in Proposition 1,
there exist A’ in 2 and a sequence (By)g>0, with By in B, such that

B(v+np) = A'(n) + ZkarlBk(n — k). (3.7)
k=0

In addition, we have a(n) > r9 — 1 and, since 0 is not in Z, we have a(n — 1) > r9 — 2. By
induction, for all nonnegative integers k satisfying k < n, we have a(n — k) = ro — 1 — k. Thus,
by (3.7) in combination with U(rg — 1) and V(r¢g — 1), we obtain

A(n)ep®Z and p"HBy(n—k) € phtitro-2kg c pro-lz,

so that B(v + np) belongs to p™°~1Z, and V(rg) is true.
Now we prove Assertion U(rg). We write Un (1) for the assertion:

‘For all n,i € Nyn < N,i < ro, if a(n) >4, then A(n) € p’Zp.’

264

https://doi.org/10.1112/50010437X17007552 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007552

ARITHMETIC PROPERTIES OF APERY-LIKE NUMBERS

We shall prove Un (r¢) by induction on N. Assertion U (r¢) holds. Let N be a positive integer
such that Uy (7o) is true. Let n :=ng +mp < N + 1 with ng in {0,...,p — 1} and m in N. We
can assume that a(n) > ro.

If ng is in Z, then we have a(m) > ro — 1 and, by Lemma 1, we obtain that A(n) belongs to
p"°Zy,, as expected. If ng is not in Z, then we have a(m) > ro. By Assertion (a) in Proposition 1,
there exist A’ in 2 and a sequence (By)r>o with By in B such that

oo
A(n) = A'(m) + > pF By(m — k).
k=0
We have m < N, a(m) > 9 and a(m — k) > r¢ — k; hence, by Assertions Uy (ro) and V(rg), we
obtain that A(n) belongs to p"Z,. This finishes the induction on N and proves U(r¢). Therefore,
by induction on rg, Proposition 1 is proved. O

4. Proof of Theorem 1

To prove Theorem 1, we shall apply Proposition 1 to &, . As a first step, we prove that this
sequence satisfies the p-Lucas property.

Proof of Proposition 3. For all x in [0, 1]¢, we have A, ¢(x) = A, f({x}) > 0, so that, by Landau’s
criterion, Q. ¢ is integer-valued. Let p be a fixed prime, v in {0,...,p — 1} and n a nonnegative
integer. We have

GS,f(v—i—np) = Z Qe,f(kl,...,kd).

ki+-+kqg=v+np
k;eN

Write k; = a; + m;p with a; in {0,...,p — 1} and m; in N. If a; + - -+ + a4 # v, then we have
ai + -+ + aq > p and there exists 7 in {1,...,d} such that a; > p/d. Write a = (aq,...,aq),
so that 1-a/p > 1 and d1;-a/p > 1. Since e = (eq,...,e,) is l-admissible, there exists a j in
{1,...,u} such that either e; > 1 or e; > d1;. Hence, e; - a/p > 1 and a/p belongs to D, ¢, so
that A. r(a/p) > 1 and Qc ¢(k1,...,kq) is in pZy. In addition, by Theorem 3, Q. ¢ satisfies the
p-Lucas property for all primes p. Hence, we obtain

G f(v+np) = Z Z Qe.f(ar +map,...,aq +mgp) mod pZ,

ai+--taqg=v mi+--+mg=n
0<a;<p—1 m; EN

Z Z Qe,f(ala s 7ad)QE,f(ml7 L) md) mod pr

a1+-+aqg=v mi+---+mg=n
0<a;<p—1 m; EN

=G, (v)S f(n) mod pZy.
This finishes the proof of Proposition 3. O

If e is 2-admissible, then e is also 1-admissible. Furthermore, if f = (1,,..., 1,), then, for

all x in D, ¢, we have N

Acp(x) =) lei-x| >1.
i=1
Hence, if e and f satisfy the conditions of Theorem 1, then Proposition 3 implies that, for all
primes p, &, sy has the p-Lucas property and &, f(0) = 1 is invertible in Z,. Thereby, to prove
Theorem 1, it remains to prove that &, y satisfies Condition (a) in Proposition 1 with the set

B={6!,:9€Fp}

First, we prove that some special functions belong to 3117.
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4.1 Special functions in 3117
For all primes p, we write | - [, for the ultrametric norm on Q, (the field of p-adic numbers)
defined by |al, := p~*»(®). Note that (Z,,| - |,) is a compact space. Furthermore, if (¢;)ns0 is
a Zy-valued sequence, then ) > ¢, is convergent in (Zy, |- |,) if and only if |c,|, tends to 0
as n tends to infinity. In addition, if Y 2 ¢, converges, then (¢, )nen is a summable family in
(Zys |- 1,).

In the rest of the article, for all primes p and all positive integers k, we set W, 0(0) = 1,
U, 1.i(0) =0 for ¢ > 1 and, for all nonnegative integers i and m, m > 1, we set

4 1 1 1
U, ri(m) = (=1)'omil —, e ,
p,k,l( ) ( ) mﬂ(k, k?-f-p k—i—(m—l)p)
where oy, ; is the ith elementary symmetric polynomial of m variables. Let us remind the reader
that, for all nonnegative integers m and ¢ satisfying ¢ > m > 1, we have oy, ; = 0.
The aim of this section is to prove that, for all primes p, all k£ in {1,...,p — 1} and all
nonnegative integers 7, we have

iy ki € B (4.1)
that is, for every nonnegative integer M, there exists a sequence of polynomial functions with
coefficients in Z, which converges pointwise to i!W,  ; on {0,..., M}.

Proof of (4.1). Throughout this proof, we fix a prime number p and an integer & in {1,...,p—1}.
Furthermore, for all nonnegative integers 7, we use ¥; as a shorthand for ¥, ; and N>; as a
shorthand for the set of integers larger than or equal to i. We shall prove (4.1) by induction on i.
To that end, for all nonnegative integers i, we write A; for the following assertion:

‘There exists a sequence (Tj,),>0 of polynomial functions with coefficients in Z,
which converges uniformly to i!¥; on N.’

First, observe that, for all nonnegative integers m, we have Wo(m) = 1, so that Assertion Ay
is true. Let ¢ be a fixed positive integer such that Assertions Ay,...,A;_1 are true. According
to the Newton—Girard formulas, for all integers m > i, we have

i
i(_l)ia’m,i(Xla s 7Xm) - - Z(_l)iito'm,i—t(Xh s 7Xm)At(X17 s 7Xm)7
t=1

where Ay(X1,..., X)) = Xt + -+ X! . Thereby, for all integers m > i, we have

. ‘ 1 1
iWi(m) = —;\p”(mmt(k,...,lm_m) (4.2)

For all nonnegative integers j and ¢, we have

! _ 1 1 _1 — (1) (t—1+s Jj o
(k+jp)t_kt(1+(j/k)p)t_kt+zl m ( s )(k)p, (4.3)

where the right-hand side of (4.3) is a convergent series in (Z,, | - |,) because k is invertible in Z,,.
Therefore, we obtain that
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m—1 oo s

1 1 m t—1+s
ANl =,...., ——— — s
t<k’ E+ (m—1) > ot >4 R < s )(k)p

7=0 s=1
00 m—1
m (=) (t—1+5s)\ , s
G (U ) e
s=1 7=0

According to Faulhaber’s formula (see [CG96)), for all positive integers s, we have

m—1 s+1
) _ +1 Bsy1-
s s _ -1 s+l—c( S s Ps+l—c —1)¢
DRI (7 ) s

where By, is the kth first Bernoulli number. For all positive integers s and ¢, we set Ro(X) :=

X/k! and
1 (t—1+4s\ S92, . (s+1\ Bet1c
Rsy(X) := g —1 ¢ S X —1 c’
7t( ) kt+5< s )01( ) c p s+1 ( )
so that

At@M) :iRS,t(m).

In the rest of this article, for all polynomials P(X) =
[ P|[p := max{|an[p : 0 < n < N}
We claim that, for all nonnegative integers s and ¢, t > 1, we have
Rs1(X) € Zp[X], || Rstllp = 0 and R,+(0)=0. (4.5)
Indeed, on the one hand, if p = 2 and s = 1, then we have
Ry 4(X) = %(X — 14 (X —1)?) € XZy[X].

On the other hand, if p > 3 or s > 2, then we have p® > s + 1, so that v,(s +1) < s — 1.
Furthermore, accordmg to the von Staudt-Clausen theorem, we have v,(Bsi1-.) = —1. Thus,
the coefficients of R ;(X) belong to Z,. To be more precise, we have v,(s + 1) < log,(s + 1), so
that || Rs|lp = 0, as expected. In addition, we have

s+1
p° t—1+s s+1
s = T i N14ie § Bgi1-¢
R ’t(o) (8 + l)k‘t+s < s ) ( c > +1

c=1
p° t—148) = [(s+1 _
<s+1>kt+s( : )%( d )Bd‘o’

where we used the well-known relation satisfied by the Bernoulli numbers
- 1

Z(S; >Bd:0 (s >1).

d=0

According to Ag, ..., A;—1, for all j in {0,...,7 — 1}, there exists a sequence (7}, ),>0 of
polynomial functions with coefficients in Z, which converges uniformly to j!¥; on N. According
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0 (4.2) and (4.5), for all nonnegative integers N, there exists Sy in N such that, for all » > Sy
and all m > 4, we have

(i
iWi(m )_—Z<. 0l Ti—tr(m ZRSt ) mod p"Z,.

= -

Thus, the sequence (75, )r>0 of polynomial functions with coefficients in Z,, defined by

Tip(x) == (i, T i ZRst (z,7 € N) (4.6)

el Uy
converges uniformly to ¢!W; on N3;. To prove A;, it suffices to show that, for all m in {0, ...,i—1},
we have
T;r(m) — 0. (4.7)
r— 00

Observe that (4.6) and (4.5) lead to T; »(0) = 0. In particular, if ¢ = 1, then (4.7) holds. Now
we assume that ¢ > 2. For all m > 2, we have

i U;(m)X7 = ni_f <1 — 7 pr)

j=0 w=0

() e5)

= (1 — M)f_l)p> nAl_ (m—1)X7.

7=0
Thereby, for all j in {1,...,m — 1}, we obtain that
v _1(m 1)

v =V;(m—1 :

with
1 o (-1)°
S S(m — 1)°.
k+(m—1)p §k8+1p(m )

Thus, there exists a sequence (Uy)y>o of polynomials with coefficients in Z, such that, for all
positive integers IV, there exists a nonnegative integer Sy such that, for all r > Sy and all
m > i+ 1, we have

T;r(m) = Tip(m — 1) = Ti—1 o (m — DU, (m — 1) mod p"Z,,. (4.8)

But, if V;1(X) and V2(X) are polynomials with coefficients in Z, and if there exists a
nonnegative integer a such that, for all m > a, we have Vi(m) = Va(m) mod p"VZ,, then, for
all integers n, we have Vi(n) = Va(n) mod p"Z,. Indeed, let n be an integer; there exists a
nonnegative integer v such that n + vp” > a. Thus, we obtain that

Vi(n) = Vi(n +vp™) = Va(n +vp™) = Va(n) mod pVZ,.

In particular, (4.8) also holds for all positive integers m.
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Furthermore, according to A;_1, for all m in {0,...,i—2}, Tj_; ,(m) tends to zero as r tends
to infinity. Thus, for all positive integers N, there exists a nonnegative integer Sy such that, for

all 7 > Sy and all m in {1,...,7 — 1}, we have

T;r(m) = Tip(m — 1) mod pVZ,,.

Since T;,(0) = 0, we obtain that T} ,(m) = 0 mod p"Z, for all m in {0,...,i — 1} and r > Sy,

so that (4.7) holds. This finishes the induction on i and proves (4.1).

4.2 On the p-adic Gamma function

For every prime p, we write I', for the p-adic Gamma function, so that, for all nonnegative

integers n, we have

Iy(n) = (1" [ ™

The aim of this section is to prove Proposition 2.

Proof of Proposition 2. Let p be a fixed prime number. For all nonnegative integers n and m,

we have

PiA PA

(1w ) /(1D

Pt PfA

Let X,T1,...,T,, be m+ 1 variables. Then we have
m o0 ] )
[Tx =) =X+ (~Dion(Ty, ..., Tn) X"
j=1 i=1

Therefore, we obtain that

() - I+ 2%5)

A=1 k=1 w=0
A
Y- —np —np
= 1 —1Domil —, ...,
(0o (58 )
k=1 i=1
p—1 00
— (1 + Z(—l)zn’pl\llnk,l(m))
k=1 =1
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Let k in {1,...,p — 1} be fixed. By (4.1), for all positive integers ¢, there exists a sequence
(P ¢)e=0 of polynomial functions with coefficients in Z,, which converges pointwise to i!¥,, ; ;. We
fix a nonnegative integer K. For all positive integers IV, we set

K+1

fn(z,y) —1—1-2 N ().

If n and m belong to {0, ..., K}, then we have

L+ (1)"n'p' Wy pi(m) = fy(n,m) = > (=15 (@ e s(m) = Pin(m)) —— 0.
i=1 i=1 ’

Furthermore, we have fy(z,y) € 1 +pZ [z,y]. Indeed, if i = ig + i1p + -+ + iop® with ¢; in

{0,...,p — 1}, then we set s,(i) 1= ig + - - - + iq, s0 that, for all positive integers i, we have
e (o — ) 4 s (i
i) —i— =) _ =D rsd
p—1 p—1

Hence, by (4.10), we obtain that there exists a function g in 512, such that, for all nonnegative
integers n and m, we have

mp n
H (1 + f) =1+ g(n,m)p,
A=1
A
which, together with (4.9), finishes the proof of Proposition 2. O

4.3 Last step in the proof of Theorem 1

Let e and f = (14, - -, ]‘kv) be two disjoint tuples of vectors in N¢ such that |e| = | f], for all i in
{1,...,v}, kiisin {1,...,d}, and e is 2-admissible. Let p be a fixed prime and 2 the Z,-module
spanned by &, ;. We set B = {&Y Fi9c€ Sd} which is obviously constituted of Z -valued
sequences and contains 2. To finish the proof of Theorem 1, we shall prove that &,y and B
satisfy Condition (a) in Proposition 1. Hence, we have to show that, for all B in B, all v in

{0,...,p — 1} and all positive integers n, there exist A’ in 2 and a sequence (By)k>0, Bg in B,
such that
B(v +np) = A'(n) + ZpkHBk( — k). (4.11)
k=0

Let g be a fixed function in gg that is a function g : N¢ — Z,, such that, for all nonnegative
integers K, there exists a sequence of polynomial functions with coefficients in Z, which converges
pointwise to g on {0,..., K}¢. In the rest of the proof, we write L +p3§ for the set of functions
of the form o + ph, where « is a constant in Z, and h belongs to sg. Observe that Z, + p&’g is
a ring. We consider the sequence B := 6*‘;](. Let a be in {0,...,p — 1}¢ and m in N¢. First, we

shall prove that, for every a in {0,...,p — 1}d, there exists a function 7, in Z, + psg such that,
for all v in {0,...,p — 1} and n in N, we have

& ; (v +np) = 2: E: Qe,f(m)7a(m). (4.12)
0<a<l(p—1) m>0
|a+mp|=v+np
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To that end, we express Q. r(a + mp) as a product of Q. f(m) and elements of Z, + pSg. We

have "
[[;,(e; - mp)! T[]} (e - mp + k)

[1i= (fi - mp)! Hk:l(fi -mp + k) '

For every nonnegative integer n, we have

Q. f(a+mp) =

B g1y o),

n!

so that we have

ermp) o U (S1)emPT (e -
11__[[1{11((‘;2;)' . |f\)er,f(m>Hz_l( ) p(ei - mp)

Furthermore, we have

I, ;i'ﬂ;(ez mp+ k) LTRSS (e mp+ k) T TTE " (e - mi+ k)

2

1= k (£ - mp + k) Hi:l Hk:LMk(fi'mP‘f‘k) IT;- 1HLf a/pJ(fi'm—i—k) .
Since |e| = | f|, we obtain that

[Ls, (1) ™Ty(e; - mp)  [[i2; Tp(e; - mp)

[T (D)™l (f; - mp) — [T, Tp(fi - mp)
Let aq,...,aq be nonnegative integers with «;, > 1 for some ig in {1,...,d}. By Proposition 2,
there exists a function A in sg such that, for all nonnegative integers m1, ..., my, we have

Fp((a1m1 + -+ admd)p)
Lp((cama + -+ + (g — 1)miy + - - + agma)p)T'p (M p)

=1+ h(m,...,mg)p.

Hence, there exists a function A’ in &g such that, for all nonnegative integers my, ..., mg, we

have
Lp((aamy + -+ - + agmq)p)

Lp(map)er - Tp(mgp)

Since f is only constituted by vectors 1y, there exists ¢’ in &g such that, for all m in N¢, we have
[[i=1 T'p(ei - mp)

Hz 1 (f mp)

Furthermore, if k is an integer coprime to p and d a vector in N¢, then, for every m in N%, we

=1+h(m,...,mq)p.

=1+ g (m)p.

have
1 = (d - m)*
I 1y s
d-mp+k ;( e P

so that there is a function ¢” in Sg such that, for all m in N¢, we have

1 1 n ,,( )
_— == m)p.
d mp+k &k 9 p
Hence, for all a in {0,...,p — 1}¢, there exist a p-adic integer A\, and a function g, in Sg such

that, for all m in N%, we have
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Since f is only constituted by vectors 1y, for all 4 in {1,...,v}, we have |f;-a/p| = 0. Thereby,

for all a in {0,...,p — 1}¢, there exists a function h, in Zy, +p3g such that, for all m in N?, we
have
u I_el a/p
Qc.f(a+mp) = Q. f(m)hy Ae,s(a/p) H H (e -m+k).
=1 =

Furthermore, we have either |e; - a/p| = 0 for all i, or Lei -a/p| > 1 for some i and so
Ac r(a/p) > 1. In both cases, we obtain that

u_|ei-a/p]
m — p-es(@/p) H H -m+k) €z, —l—pgd
i=1 =

Let g be a function in sg. For all a in {0,...,p — 1}%, the function m — g(a 4+ mp) belongs to
Ly, +p3"g. For all m in N?, we set

u |e;-a/p)
Ta(m) := g(a + mp)hy(m)p?es (@/P) H H -m+ k),
=1 k=1
so that 7, € Z), —i—pSg. Therefore, for all v in {0,...,p — 1} and n in N, we have
Gg’f(v +np) = Z Z g(a+mp)Q, s(a+ mp)
0<a<1(p—1) m=0

|la-+mp|=v-+np

- > > Qe p(m)7a(m),

0<a<l(p—1)  m>0
|la-+mp|=v-+np

which proves (4.12).
Now, if |a + mp| = v 4 np, then we have |a| = v + jp with

0<j< min<n, {‘Z@_;)_”D — M.

Furthermore, we have ||a|/p| = j and there is k in {1,...,d} such that at*) > (v + jp)/d. Since
e is 2-admissible, there are 1 < i1 < i3 < u such that e;, -a/p > j and e;, - a/p > j. Hence, we

obtain that
. € -a .
Acsla/p) = | =%
=1

because [ is constituted by vectors 1. In particular, there is 7. in Sg such that 7, = p¥7.
Hence, we have

M
&l vtnp)= Y Y Qeplmra(m)+ ) p¥ Y Y Qe p(m)ry(m).
0<a<l1(p—1) |m|=n j=1 0<a<l1(p—1) |m|=n—j
jal=v jal=v-+p

For every a in {0,...,p — 1}9, we write 7a = aa + pfa, Where a4 is a constant in Z, and 8, is a
function in Sg. We set

o= Z 0 €Zp and f:= Z Ba € 3]‘3.
0<a<1(p—1) 0<a<1(p—1)
‘a|:v |a|=v

272

https://doi.org/10.1112/50010437X17007552 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007552

ARITHMETIC PROPERTIES OF APERY-LIKE NUMBERS

Finally, for every j in {1,..., M}, we set

— ! d
V= g Ta € Sp-
0<a<l(p—1)
lal=v-+jp

Hence, we obtain that

M
&Y (v+np) = G, p(n) +p&. (n) + Y pH &Y (n - j),
j=1

where oG, ; € 2, 6§f € B and szf € B. For every 7, 1 < j < M, we have 25 > j + 1, so that
there exist A’ in 2 and a sequence (Bj);>0, with B; in 9B, such that

ng(v +np) = A'(n) + pBo(n) + ijHBj(n — 7).
j=1

This shows that &, s and B satisfy Condition (a) in Proposition 1, so that Theorem 1 is proved.

O
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