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Abstract

When implementing Markov Chain Monte Carlo (MCMC) algorithms, perturbation
caused by numerical errors is sometimes inevitable. This paper studies how the pertur-
bation of MCMC affects the convergence speed and approximation accuracy. Our results
show that when the original Markov chain converges to stationarity fast enough and the
perturbed transition kernel is a good approximation to the original transition kernel, the
corresponding perturbed sampler has fast convergence speed and high approximation
accuracy as well. Our convergence analysis is conducted under either the Wasserstein
metric or the χ2 metric, both are widely used in the literature. The results can be
extended to obtain non-asymptotic error bounds for MCMC estimators. We demon-
strate how to apply our convergence and approximation results to the analysis of specific
sampling algorithms, including Random walk Metropolis, Metropolis adjusted Langevin
algorithm with perturbed target densities, and parallel tempering Monte Carlo with per-
turbed densities. Finally, we present some simple numerical examples to verify our
theoretical claims.
Keywords: Bayesian inverse problems; Markov Chain Monte Carlo; convergence speed;
perturbation analysis
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1. Introduction

Markov Chain Monte Carlo (MCMC) is one of the main sampling methods in Bayesian
statistics. Given a target density π with respect to Lebsegue measure on R

d, an MCMC algo-
rithm often simulates a Markov chain (Xn)n≥0, with transition kernel P, such that π is its
corresponding invariant measure. Under some generic conditions, the distribution of Xn con-
verges to π geometrically quickly. This indicates the existence of some mixing time n0, such
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that the distribution of Xn is close to π when n > n0. In other words, given a test function
f : Rd →R, we can use the following approximation:

Ef (Xn) ≈E
π f (X) :=

∫
f (x)π (x)dx. (1)

In practice, this allows us to approximate the average of a test function E
π f (X) using the

temporal average of the Markov chain:

Fn := 1

n

n∑
i=1

f (Xn0+i). (2)

The efficiency of the approximation scheme (2) is largely determined by the convergence speed
of the Markov Chain (Xn)n≥0 to π or the mixing time n0. In particular, it will take O(n0) iter-
ations to produce an approximately independent sample. In this context, convergence analysis
has been a key component in the MCMC literature (see, for example, Section 4.1 of [1, 27]).

When implementing MCMC on complicated target densities, it is often the case that we can
simulate only a perturbed Markov chain (X̂n)n≥0 with transition kernel P̂. This is mainly due
to two reasons:

(i) The transition kernel P cannot be simulated directly. For example, if (Xn)n≥0 is described
by a stochastic differential equation (SDE) evaluated at a countable set of time points,
using numerical schemes like the Euler–Maruyama method will induce discretization
errors.

(ii) We do not have direct access to π (x) or its derivatives. This is quite common in Bayesian
inverse problems [40], where the target density can be written as

π (x) ∝ p0(x) exp
(
− 1

2‖G(x) − y‖2
)

. (3)

In (3), p0 is the prior density of the unknown parameter x, G describes the data-
generating process, and y is the observed data. In many cases, G is formulated through
an involved partial differential equation, and we can compute only an approximation of
it, Ĝ [5, 7, 21]. The corresponding “numerical” density becomes

π̂(x) ∝ p0(x) exp
(
− 1

2‖Ĝ(x) − y‖2
)

. (4)

In other settings, we may have access to π (x), but accurate evaluation of its gradient
∇π (x) may not be accessible since it often involves highly dimensional adjoint models.
If we want to use gradient-based MCMC, e.g. Metropolis Adjusted Langevin Algorithm
(MALA), we can use only an approximately correct proposal. However, the Metropolis–
Hastings step can guarantee that the target density remains the same, i.e. π̂ = π .

In the above-mentioned scenarios, we run an MCMC (X̂n)n≥0 with transition kernel P̂ and
target density π̂ , which is the invariant measure of (X̂n)n≥0. In both scenarios (1) and (2) listed
above, we would like to approximate E

π f (X) using

Ef (X̂n0 ) or F̂n = 1

n

n∑
i=1

f (X̂n0+i). (5)
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MCMC under numerical perturbation 3

There are two key questions to address when using estimators of the form (5): The first
question concerens the convergence speed of (X̂n)n≥0 toward its invariant measure π̂ , which
determines the efficiency of the estimators in (5). In particular, if we use D to denote some
metric between two distributions and use ν to denote the distribution of X̂0, we are interested
in how quickly D(νP̂n, π̂ ) converges to zero. The second question concerns approximation
accuracy, which can be measured by either the distance between the two invariant measures,
D(π̂ , π ) or the distance between the distribution of X̂n and π , D(νP̂n, π ). For MCMC based
on (X̂n)n≥0 to achieve fast convergence and high approximation accuracy, we need to impose
the following two high-level conditions (these conditions will be made more precise in our
subsequent development) [1]:

(1) P̂ is a good approximation of P.

(2) (Xn)n≥0 converges to its invariant measure π quickly enough.

Condition 1 is necessary because if P̂ is not a good approximation of P, π̂ is unlikely to be close
to π , and the convergence property of (Xn)n≥0 will not be useful in inferring the convergence
property of (X̂n)n≥0. Condition 2 is also necessary. Otherwise, the approximation error may
increase with the number of iterations. For example, one can think of an unstable autoregressive
sequence in which numerical errors often increase exponentially with the number of iterations.
Since Condition 1 involves only the one-step transition kernels, it is easier to fulfill. Hence,
it is reasonable to study Condition 2 first and then formulate a version of Condition 1 that is
compatible with the corresponding Condition 2.

In the literature on Markov chains, convergence to stationarity is often studied using one
of two frameworks. The main differences between the two frameworks are the metrics and
the analytical tools involved. The first type of metric are the Wasserstein metrics [31]. The
associated convergence results are often termed “geometric ergodicity.” Establishing conver-
gence under the Wasserstein metrics often involves finding an appropriate Lyapunov function
V and constructing an appropriate coupling [28]. For simplicity, we will call this framework
Wasserstein convergence. The second framework uses the χ2 distance [3] (or KL-divergence
as in [45]). Establishing convergence under the χ2 distance often involves functional analysis
or other partial differential equation (PDE) tools such as Poincaré inequality and log Sobolev
inequality. For simplicity, we will refer to this framework as the “χ2 convergence”.

Establishing Wasserstein convergence is often viewed as being more intuitive, as it involves
a standard Lyapunov function and coupling construction. Establishing χ2 convergence can be
weaker, but it often provides tighter quantification, especially in high-dimensional settings.
For example, for the unadjusted Langevin algorithm, [9] uses Wasserstein convergence, and
the analysis works only for a fixed dimension; [11, 45] use χ2 convergence, and the analysis
works in high-dimensional settings. We also note that these two frameworks are related: In
particular, on one hand, under suitable regularity conditions, geometric ergodicity leads to the
existence of a spectral gap and, hence, χ2 convergence (see, for example, Proposition 2.8 in
[21]; see also [19] for a more complete discussion of the connection). On the other hand, under
proper regularity conditions, convergence under the χ2 distance leads to convergence under
the total variation distance.

We discuss both frameworks in this paper because for some Markov chains, we may
have knowledge of only one form of convergence. For example, to the best of our knowl-
edge, the parallel tempering methods are studied only under the χ2 distance [12, 46].
Preconditioned Crank–Nicolson algorithms are studied only under the Wasserstein distance
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[21]. The unadjusted Langevin algorithm was first studied under the Wasserstein distance [14,
16] and was later studied under the KL divergence [45]. While there might be theoretical value
to establishing convergence in both metrics, doing so is practically unnecessary. In this paper,
we assume the convergence of (Xn)n≥0 under either the Wasserstein distance or the χ2 distance,
and we then study the convergence of (X̂n)n≥0 under one of the two metrics accordingly. We
address the question not only qualitatively but also quantitatively in order to establish bounds
for the convergence speed and the approximation accuracy of (X̂n)n≥0.

1.1. Related literature

The approximation and convergence questions we study here are fundamental for MCMC
and have been studied in various settings before. Most existing works focus on specific approx-
imation schemes. For example, [6, 35] study ergodicity of P̂ if P̂(x, A) = P(x, h−1(A)) for some
round-off function h. [22] studies the ergodicity property of finite-rank, nonnegative, sub-
Markov kernels in relation to the ergodicity property of the original Markov kernel. [4] studies
the convergence and approximation problems of an adaptive subsampling approach under the
assumption of uniform ergodicity. [30] studies the approximation problem for Monte Carlo
within Metropolis algorithms. In general, there is a lack of a unified framework.

To provide a comprehensive overview of how perturbation of MCMC affects the approxi-
mation accuracy and convergence speed, we put together four sets of results. First, we study
the approximation problem under the Wasserstein distance, i.e. the ergodicity framework. The
corresponding result (Theorem 1) is taken directly from [38]. Approximation accuracy—i.e.
bounds for the difference between the nth step distributions of the perturbed chain and the orig-
inal chain, under the Wasserstein distance—has also been studied in [25, 34, 39] under similar
but arguably stronger assumptions. For example, [39] requires the perturbed chain to remain
close to the original Markov chain uniformly over a bounded number of iterations, while we
require controlling the errors of only one-step transition kernels. [34] focuses on MCMC algo-
rithms with the subsampling type of errors. It requires the existence of a subset Ĝ in which both
the unperturbed and the perturbed chains remain with a high probability and there is a uniform
bound on the errors of one-step transition kernels on Ĝ. [25] requires the Markov chains to be
uniformly ergodic, which limits the applicability of the results to non-compact-state spaces.
Second, we study the convergence problem under the Wasserstein distance. The corresponding
result (Theorem 2) is new but follows from similar lines of analysis as in [38]. The papers
[24, 34] also analyze the convergence of the perturbed chain, under only the total variation
distance, however (and thus requires uniform ergodicity rather than geometric ergodicity). The
convergence problem has also been studied in [18], but [18] does not quantify how the conver-
gence rate depends on the perturbation size. Third and fourth, we study the convergence and
the approximation problems under the χ2 distance. The recent work [32] studies the approxi-
mation accuracy and the convergence rate of P̂ under the χ2 distance. Compared to our work,
[32] requires stronger assumptions. For example, [32] requires P̂ to be L2(π ) → L2(π ), which
can be difficult to verify in practice.

As just reviewed, many existing works focus on studying the approximation problem. The
convergence problem is less studied. However, it is worth pointing out that most of these
approximation results show only

D(νP̂n, π ) = O(ρn + ε),

where ρ is the convergence rate of P and ε is the difference between P and P̂. Because ε is
nonzero, this does not directly imply the convergence of D(νP̂n, π̂ ) to zero. Moreover, if one
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MCMC under numerical perturbation 5

has a convergence result, e.g. D(νP̂n, π̂ ) = O(ρ̂n) for some ρ̂ ∈ (0, 1), and if π̂ has an explicit
smaller approximation error D(π, π̂ ) = o(ε), using triangular inequality, we can establish a
tighter upper bound for D(νP̂n, π ).

Lastly, while the connection between the Wasserstein convergence and the MCMC sampling
error is well known, most results are asymptotic, i.e. in the form of the central limit theorem
[26]. Non-asymptotic error bounds are more useful in practice [27]. Our work provides a com-
prehensive list of finite-sample performance quantifications for numerical MCMC samplers.
We demonstrate that our results can be easily applied to the analysis of various algorithms in
Sections 4 and 5.

1.2. Notations

For a probability measure μ on R
d, we define

μf =
∫
Rd

f (x)μ(dx), varμf =
∫
Rd

(f (x) − μf )2μ(dx).

We also use μ(dx) to denote the corresponding density function. For μ-squared integrable
functions f , g : � →R, we define the inner product with respect to μ as

〈f , g〉μ =
∫
Rd

f (x)g(x)μ(dx).

Then, ‖ f ‖2
μ = 〈f , f 〉μ = ∫

Rd f (x)2μ(dx). In what follows, we omit Rd from the integral notation
when it is clear from the context. For a transition kernel P, we define

μP(A) =
∫

P(x, A)μ(dx).

For a measurable function f , we define δxPf = Pf (x) = ∫
f (y)P(x, dy). We say that P is

symmetric with respect to π if for any measurable functions f , g,

〈Pf , g〉π = 〈f , Pg〉π .

Lastly, we denote C as a generic constant whose value can change from line to line.

1.3. Organization

We start by developing general results for the Wasserstein convergence in Section 2 and
the χ2 convergence in Section 3. We demonstrate how to apply these frameworks on two pop-
ular Metropolis–Hastings–MCMC algorithms in Section 4 and on the more involved parallel
tempering algorithm in Section 5. Finally, in Section 6, we verify our claims numerically on a
Bayesian inverse problem, which tries to infer the initial condition and the model parameters
in the predator–prey system.

2. Wasserstein Convergence

We start our discussion with the Wasserstein convergence. Following [38], we first introduce
the metric we use and the notion of ergodicity. For a lower semi-continuous function V : Rd →
[1, ∞], we define

dV (x, y) = (V(x) + V(y))1x =y. (6)
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For two probability measures μ and ν on R
d, we define

‖μ − ν‖V = sup
| f |≤V

∣∣∣∣∫ f (x)(μ(dx) − ν(dx))

∣∣∣∣ .

It can be shown that ‖μ − ν‖V = WdV (μ, ν) where W denotes the Wasserstein distance
(Lemma 3.1 in [38]). If we use the constant function V(x) = 1, this gives the well-known total
variation distance, i.e.

‖μ − ν‖TV = sup
| f |≤1

∣∣∣∣∫ f (x)(μ(dx) − ν(dx))

∣∣∣∣ .

Note that using V(x) = 1 neglects the location information of x. This location information can
be crucial for problems with unbounded domains.

In general, for problems with unbounded domains, one often chooses V to be a Lyapunov
function. Given a Markov chain Xn with transition kernel P, which we will write together as
(Xn, P) for short, we say V : Rd → [1, ∞) is a Lyapunov function if there exist λ ∈ (0, 1) and
L > 0 such that

PV(x) =
∫

P(x, dy)V(y) ≤ λV(x) + L, (7)

and the sublevel sets of V are compact. The choice of V depends on the Markov chain and the
target density. It can often be chosen as ‖x‖2 or − log π (x) or as functions of certain moments;
see, for example, [20, 21, 38].

If π is the invariant measure of Xn, we say Xn is geometrically ergodic under ‖ · ‖V (see
Theorem 16.1 in [31]) if there are constants ρ ∈ (0, 1) and C0 ∈ (0, ∞), such that for any
n ∈Z

+,
‖δxPn − π‖V ≤ C0ρ

nV(x). (8)

We refer to ρ as the ergodicity coefficient. Note that the smaller the value of ρ, the faster the
convergence to stationarity. From (8), using the triangle inequality, we obtain an equivalent
definition of geometric ergodicity, which requires that for any x and y,

‖δxPn − δyPn‖V ≤ C′
0ρ

ndV (x, y). (9)

The equivalence can be seen from

‖δxPn − π‖V ≤
∫

π (dy)‖δxPn − δyPn‖V ≤ C′
0ρ

n(V(x) + πV) ≤ C0ρ
nV(x). (10)

where C0 = C′
0(1 + πV).

The approximation problem under Wasserstein distance has been studied in [38]. We present
one of their main results here, which is related to our subsequent development. Interested
readers can find more general discussion in the original work.

Theorem 1. (Corollary 3.3 in [38]) Suppose (Xn, P) is geometrically ergodic, i.e., as in (9).
Suppose V̂ is a Lyapunov function for (X̂n, P̂) in the sense of (7) and that

‖δxP − δxP̂‖V ≤ εV̂(x). (11)

Then, for some constant C, we have

‖δxPn − δxP̂n‖V ≤ Cε
1 − ρn

1 − ρ

(
V̂(x) + L

1 − λ

)
. (12)
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The bound in (12) and the triangular inequality give us an approximation error bound

‖δxP̂n − π‖V ≤ ‖δxPn − δxP̂n‖V + ‖δxPn − π‖V ≤ C′(ε + ρn)(V̂(x) + V(x))

for some constant C′.

Remark 1. By restricting our attention to distance functions of the form (6), we focus on
a specific form of Wasserstein distance due to its connection to geometric ergodicity. The
work [38] also studies the approximation problem under a more general form of Wasserstein
ergodicity (see Theorem 3.1 in [38]).

Note that the right-hand side of (12) is not converging to zero as n → 0. Thus, it cannot help
us learn the ergodicity of X̂n or whether X̂n has a unique invariant measure. The next result
shows that ergodicity can be obtained with essentially the same conditions as Theorem 1 (note
that condition (8) leads to (13) through (10)).

Theorem 2. Suppose V is a Lyapunov function for P in the sense of (7). In addition, assume
there exist N ∈Z

+ and ρ ∈ (0, 1), such that for any n ≥ N,

‖δxPn − δyPn‖V ≤ ρndV (x, y). (13)

Lastly, there is an ε0 > 0, and the following holds for some ε ∈ (0, ε0],

‖δxP − δxP̂‖V ≤ εV(x). (14)

Then, V is a Lyapunov function for P̂ as well with

P̂V(x) ≤ (λ + ε)V(x) + L.

Moreover, X̂n has a unique invariant measure π̂ and there exist C1, D1 ∈ (0, ∞) independent
of ε, such that

‖δxP̂n − δyP̂n‖V ≤ C1(ρ + D1ε)ndV (x, y).

In Theorem 2, ε0 is chosen such that λ + ε0 < 1 and ρ + D1ε0 < 1. Theorem 2 indicates
that if P is geometrically ergodic with ergodicity coefficient ρ and if P̂ is ε-close to P as
characterized by (14), P̂ is also geometrically ergodic. Moreover, the ergodicity coefficient of
P̂ is bounded above by ρ + D1ε.

In statistical applications, we are more interested in turning convergence results into error
bounds for the Monte Carlo estimators. The central limit theorem of ergodic Markov chains
was studied in [26, 44], which provide asymptotic error quantifications. In practice, non-
asymptotic bounds for finite values of n may be more desirable. The following proposition
appeared in [27, 37]. We provide an explicit statement here to show the variance bound along
with a simple proof for self-completeness. For simplicity, we assume the Markov chain is
initialized with the invariant measure, i.e. X̂0 ∼ π̂ , so a burn-in period is not necessary.

Proposition 1. Suppose ‖δxP̂n − δyP̂n‖V ≤ ρ̂ndV (x, y) for some ρ̂ ∈ (0, 1). Then, for any f that
is 1-Lipschitz under ‖ · ‖V , ∣∣δxP̂nf − π̂ f

∣∣ ≤ ρ̂n(V(x) + π̂V).
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In addition, if we use f̂M = 1
M

∑M
k=1 f (X̂k) as an estimator of π̂ f starting from X̂0 ∼ π̂ ,

Eπ̂

[
(f̂M − π̂ f )2

]
≤ 2

(1 − ρ̂)M
Eπ̂

[
| f (X̂0)|(V(X̂0) + π̂V)

]
.

In many applications, we are interested in the properties of π̂ on compact regions. In these
scenarios, the associated test functions will be bounded, and 1-Lipschitz will be under ‖ · ‖V .
To learn tail properties of π̂ such as intermittency, the test functions often need to grow with
‖x‖. In order to apply Proposition 2, we would need the Lyapunov function V to grow at a
similar scale.

3. χ2 convergence

In this section, we discuss convergence under the χ2 divergence. We first introduce some
notations. For a transition kernel P and density μ, we define

‖P‖μ = max
f :0<‖ f ‖μ<∞

‖Pf ‖μ

‖ f ‖μ

,

where ‖ f ‖2
μ = 〈f , f 〉μ. For two probability measures μ and ν on R

d, where ν is absolutely
continuous with respect to μ, we define the χ2 divergence of ν from μ as:

Dχ2 (ν‖μ) =
∫ (

ν(x)

μ(x)
− 1

)2

μ(x)dx =
∫

ν(x)2

μ(x)
dx − 1.

For a transition kernel P that is reversible with respect to π , the spectral gap of P is defined
as [21]

κ(P) = 1 − sup

{‖Pf − π f ‖2
π

‖ f − π f ‖2
π

: f ∈ L2(π ), varπ f = 0

}
. (15)

Note that by repeatedly applying (15), we have for any f ∈ L2(π )

‖Pnf − π f ‖2
π ≤ (1 − κ(P))n‖ f − π f ‖2

π .

Thus, the larger the spectral gap, the more quickly Xn converges to its invariant measure.

Remark 2. An alternative definition of the spectral gap takes the form [2, 3]

κa(P) = inf

{ 〈f , (I − P)f 〉π
varπ f

: f ∈ L2(π ), varπ f = 0

}
.

Note that these two spectral gaps are related through 1 − κ(P) = (1 − κa(P))2.

3.1. General χ2 approximation and convergence

Theorem 3. Our first result assumes that (Xn, P) has a spectral gap and that P̂ is a close
approximation of P: Suppose P is a reversible transition kernel with invariant measure π and
a spectral gap κ(P) > 0 in the sense of (15). There is an ε0 > 0 such that for any transition
kernel P̂ satisfying ‖P − P̂‖π ≤ ε < ε0 and any a ∈ (0, 1), there exists a constant C that may

depend on κ(P) such that the following holds with κ̂ = (1 − a)κ(P) − Cε2

a ∈ (0, 1):
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(i) For any f ∈ L2(π ),

‖P̂nf − π P̂nf ‖2
π ≤ (1 − κ̂)nvarπ f

(ii) P̂ has an invariant measure π̂ , which satisfies

|(π̂ − π P̂n)f |2 ≤ Cε2(1 − κ̂)nvarπ f .

Moreover, Dχ2 (π̂‖π ) ≤ Cε2.

In Theorem 3, ε0 is chosen such that κ̂ ∈ (0, 1). Theorem 3 indicates that if P̂ and P are
ε-close to each other as quantified by ‖P̂ − P‖π ≤ ε, then P̂ has a stationary distribution π̂ .
Moreover, π̂ and π are ε-close to each other as quantified by Dχ2 (π̂‖π ) ≤ Cε2. We also note
that showing that ‖P̂nf − π P̂nf ‖2

π ≤ (1 − κ̂)nvarπ f is different than finding the spectral gap of
P̂, since the latter would need a similar inequality but with π replaced by π̂ . In other words,
Theorem 3 does not provide a spectral gap for P̂. On the other hand, we can obtain error bounds
for Monte Carlo estimators using the bounds established in Theorem 3:

Proposition 2. Under the same conditions as those in Theorem 3, for any f ∈ L2(π ) and any
initial distribution X̂0 ∼ ν � π , there exists a constant C such that∣∣νP̂nf − π̂ f

∣∣2 ≤ (1 − κ̂)nvarπ (f )
(√

Dχ2 (ν‖π ) + 1 + Cε
)2

.

In addition, if f is bounded, there exists a constant C such that

Eπ̂ [(f̂M − π̂ f )2] ≤ C

M(1 − (1 − κ̂)1/4)

√
varπ̂ (f )varπ (f ),

where f̂M = 1
M

∑M
k=1 f (X̂k).

Remark 3. [32] provides a result similar to the first claim in Theorem 3 (see Lemma A.6
in [32]). But it requires stronger assumptions on P̂, namely, it requires that P̂ is ergodic and
aperiodic and that it is a mapping from L2(π ) to L2(π ). Our result does not require these
assumptions.

3.2. Spectral gap with density ratio bounds

In this section, we show that stronger results can be established if we can bound the ratio
between the invariant densities π and π̂ . Such a bound is assessable if we have an explicit char-
acterization of π̂ . For example, in Bayesian inverse problems, π (x) ∝ p0(x) exp(− 1

2‖G(x) −
y‖2), while π̂ (x) ∝ p0(x) exp(− 1

2‖Ĝ(x) − y‖2). In this case, a density ratio bound can be
obtained if ‖G(x) − Ĝ(x)‖ is bounded. This is practically feasible by using an accurate numer-
ical approximation of G; and the approximation error can be estimated by the grid size or
Galerkin truncation used in the numerical scheme (see, for example, [23]). Similar assumptions
have also been imposed in existing Bayesian computation literature; see, for example, [5].

Theorem 4. Suppose P and P̂ are two reversible transition kernels with invariant densities
π and π̂ respectively. We further assume that π (x)/π̂ (x) ∈ [(1 + ε)−1, 1 + ε], and that ‖P −
P̂‖π ≤ ε. Then there exists a universal constant C such that

κ (̂P) ≥ κ(P) − Cε.
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Note that for ε small enough, κ(P) − Cε > 0. Based on the spectral gap, we have the
following non-asymptotic Monte Carlo error bound:

Proposition 3. Suppose (X̂n, P̂) has a spectral gap κ̂ . Suppose the initial distribution is ν, i.e.
X̂0 ∼ ν. Then ∣∣Ef (X̂n) − π̂ f

∣∣2 ≤ (1 − κ̂)nvarπ̂ f (Dχ2 (ν‖π̂ ) + 1).

In addition, if ν = π̂ , then for f̂M = 1
M

∑M
k=1, we have

Eπ̂ [(f̂M − π̂ f )2] ≤ 2

M(1 − (1 − κ̂)1/2)
varπ̂ [f ].

Note that Proposition 3 is not a new result. A more delicate central limit theorem version
of it can be found as Theorem 4.4 of [21]. We provide a short proof of the proposition in the
Appendix B for self-completeness.

Before we conclude our discussion of the χ2 convergence, we remark that even though the
condition ‖P − P̂‖π ≤ ε is reasonable for the spectral gap analysis, it can be hard to verify
directly in some applications. To remedy this issue, the next proposition shows that we can
bound ‖P − P̂‖π through a bound for ‖δxP − δxP̂‖TV , which can be easier to obtain using
coupling techniques.

Proposition 4. Suppose there exists a π -measurable function V : Rd → [1, ∞) such that
‖δxP − δxP̂‖TV ≤ εV(x). In addition, suppose 1

a ≤ π (x)/π̂ (x) ≤ a for some constant a > 0.
Then

‖P − P̂‖π ≤
√

2(1 + a2)
√

ε‖V‖1/2
π .

4. Application: Metropolis–Hastings MCMC on perturbed densities

Random walk Metropolis (RWM) and Metropolis adjusted Langevin algorithm (MALA)
are two popular MCMC samplers when it comes to sampling a generic density π . Many exist-
ing works have already studied their spectral gap under suitable conditions on π [15, 21, 36].
When implementing these samplers, it is often the case that we have access only to an approx-
imation of π , which we denote as π̂ . In this section, we will demonstrate how to apply our
analysis framework to establish proper bounds for the spectral gap of the “numerical” RWM
and MALA.

In fact, we can develop some general results for the Metropolis–Hastings (MH) type of
Monte Carlo algorithm. Assume the proposals are given by some smooth transition den-
sity R(x, x′). Due to the possibility of rejection, MH Monte Carlo transition densities w.r.t.
Lebesgue measure can be written as P(x, x′) = γ (x)δx(x′) + β(x, x′) with

β(x, x′) = min

{
π (x′)R(x′, x)

π (x)
, R(x, x′)

}
, γ (x) = 1 −

∫
β(x, x′)dx′. (16)

The perturbed transition density can be written as P̂(x, x′) = γ̂ (x)δx(x′) + β̂(x, x′). We provide
some sufficient conditions under which the difference between P and P̂ is of order ε.

Lemma 1. If the transition density is of the form P(x, x′) = γ (x)δx(x′) + β(x, x′) with
ν(x)P(x, x′) = ν(x′)P(x′, x), suppose that P̂(x, x′) = γ̂ (x)δx(x′) + β̂(x, x′) with

|γ̂ (x) − γ (x)| ≤ Cε and (1 − Cε)β(x, x′) ≤ β̂(x, x′) ≤ (1 + Cε)β(x, x′).
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for some constant C ∈ (0, ∞). Then there exists a constant C1 ∈ (0, ∞) such that ‖P − P̂‖ν ≤
C1ε.

4.1. Random walk Metropolis

RWM considers implementing the MH procedure on random walk proposals. That is, we
use

R(x, x′) = 1

(2πh)d/2
exp

(
− 1

4h
‖x′ − x‖2

)
in (16). It is worth noting that using a perturbed density π̂ does not affect this proposal.

Proposition 5. For RWM, there is an ε0 > 0 so that for any ε < ε0 and supx | log π (x) −
log π̂ (x)| ≤ Cε, there is a constant C1 so that

‖PRWM − P̂RWM‖π ≤ C1ε.

If the original RWM has a spectral gap and if supx | log π (x) − log π̂ (x)| ≤ Cε, then
Proposition 5, together with Theorem 4, implies that the perturbed RWM has a proper spectral
gap as well. In practice, an estimate of ε can be obtained by analyzing the numerical scheme
used; see Section 3.2 for more details.

4.2. Metropolis adjusted Langevin algorithm

MALA considers implementing the MH procedure on proposals following the Langevin
diffusion. That is, we use

R(x, x′) = 1

(4πh)d/2
exp

(
− 1

4h
‖x′ − x − h∇ log π (x)‖2

)
in (16). Using a perturbed density π̂ does change this proposal. We discuss the perturbation
in two separate cases. In particular, we shall verify that the condition ‖PMALA − P̂MALA‖π ≤ ε

holds under appropriate assumptions on π̂ in the two cases. Then, if PMALA has a spectral gap,
the numerical sampler P̂MALA has a proper spectral gap as well.

4.2.1. Bounded domain When the support of π and π̂ is bounded, the analysis is quite
straightforward with Lemma 1.

Proposition 6. For MALA, there is an ε0 > 0 so that for any ε < ε0, if supx | log π (x) −
log π̂ (x)| ≤ Cε, supx ‖∇ log π (x) − ∇ log π̂ (x)‖ ≤ Cε and if the support of π and π̂ is
bounded, then

‖PMALA − P̂MALA‖π = O(ε).

4.2.2. Unbounded support When the support of the density is unbounded, directly bound-
ing ‖PMALA − P̂MALA‖π becomes difficult. Instead, we consider establishing ‖δxP − δxP̂‖TV =
O(ε).

Proposition 7. For MALA, if log π is Lipschitz, supx | log π (x) − log π̂ (x)| ≤ Lπε and, more-
over, supx ‖∇ log π (x) − ∇ log π̂ (x)‖ ≤ Lπε, for any δ > 0, there exists Cδ ∈ (0, ∞) such that
for h < ( 5Lπ

δ
+ 20Lπ )−1,

‖δxP − δxP̂‖TV ≤ Cδε exp(δ‖x‖2).

When π (x) is sub-Gaussian, we can find a δ > 0 such that V(x) = exp(δ‖x‖2) is L2-integrable
under π . Then Proposition 4 indicates that ‖P − P̂‖π = O(

√
ε).

https://doi.org/10.1017/apr.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.28


12 T. CUI ET AL.

5. Application: Parallel Tempering with Perturbed Densities

In this section, we demonstrate how to apply our framework to parallel tempering (PT) algo-
rithms [17, 42, 43]. These algorithms are also referred to as the replica exchange methods [11,
13, 41]. Compared with regular MCMC samplers like RWM and MALA, PT tries to sample
a multiple-tempered version of the target density. Such a design can improve the convergence
rate on densities with multiple isolated modes.

To implement PT, a sequence of distributions π0, . . . , πK is considered, where the last
one is the target density πK = π . The first density, π0, is usually a distribution that is easy to
draw samples from. The intermediate distributions, πk’s 1 ≤ k ≤ K − 1, are set up so that the
two neighboring densities are similar to each other. A common choice for the intermediate
distributions is to consider interpolations between πK and π0:

πk(x) ∝ πβk (x)π1−βk
0 (x),

where 0 = β0 < β1 < . . . < βK = 1 is a sequence of parameters. PT intends to generate samples
from the product density

 = π0 × π1 × · · · × πK on R
d(K+1).

To do so, its iterations consist of K + 1 parts, i.e. Xn = (X0
n, . . . , XK

n ), and the updating rule
is given by the following two steps:

(i) Update each Xk
n to Xk

n+1 according to a transition kernel Mk, whose stationary distribu-
tion is πk. In practice, Mk is often taken as the transition kernel obtained by repeating
the RWM or MALA update for tk steps. That is, Mk = Ptk

RWM or Mk = Ptk
MALA.

(ii) Pick an index k ∈ {0, . . . , K − 1} uniformly at random, and swap the values of Xk
n+1 and

Xk+1
n+1 with probability αk(Xk

n+1, Xk+1
n+1), where

αk(x, x′) = min

{
1,

πk(x′)πk+1(x)

πk(x)πk+1(x′)

}
.

The pseudo-code of PT is given in Algorithm 1.
The exchange procedure can be described by the transition probability on R(K+1)d ×

R(K+1)d:

Qk(x, x) = 1 − αk(xk, xk+1), Qk(x, Sk(x)) = αk(xk, xk+1),

where Sk(x) = (x0, . . . , xk−1, xk+1, xk, xk+2, . . . , xK). With a little change of notation, we
write the transition kernel as Qk as well; i.e. Qkf (x) = Qk(x, x)f (x) + Qk(x, Sk(x))f (Sk(x)). The
transition kernel of PT can then be written as

P = (M0 ⊗ · · · ⊗ MK)

⎛⎝ 1

K

∑
k∈{0,...,K−1}

Qk

⎞⎠ , (17)

where the direct product of two transition kernels is given by

M0 ⊗ M1f (x0, x1) =
∫ ∫

M0(x0, y0)M1(x1, y1)f (y0, y1)dy0dy1.
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Algorithm 1 Parallel Tempering

Input: Replica counts K, target densities πk for k = 0, . . . , K, transition kernels Mk

targeting πk.
Output: (xk

t )t=0,...,Tk,k=0,...,K as samples from πk

Initialize xk
0 for all k

for t = 0 to T do
for k = 0 to K do %Run MCMC at each level.

Generate xk
t+1 ∼ Mk(xk

t , · ).
end for
%Consider swapping at a random level.

Let k be a random index in {0, . . . , K − 1}
Let U be a random sample from Unif[0, 1]
if U < ak(xk

t+1, xk+1
t+1 ) then

(xk
t+1, xk+1

t+1 ) = (xk+1
t+1 , xk

t+1)
end if

end for

The spectral gap of P in (17) has been studied in [46]. Assuming the state space can be
partitioned into R

d = ∪J
i=1Aj, it is shown that κ(P) can be seen as the product of three ele-

ments: (1) the maximal spectral gap when sampling πk, k ≥ 1, constrained on one piece, Aj;
(2) the spectral gap when sampling π0 using M0; and (3) the density ratio πk(Aj)/πk+1(Aj). In
particular, if π0 is easy to sample, πk is not very different from πk+1, and the sampling of πk

constrained on Aj is efficient, then PT can be highly efficient. When implementing PT numer-
ically, we may not have access to the exact values of πk but only an ε-approximation, which
we denote as π̂k. Then the corresponding PT uses a sampler M̂k, with invariant measure π̂k at
each replica, while the exchange probability is given by

α̂k(x, x′) = min

{
1,

π̂k(x′)π̂k+1(x)

π̂k(x)π̂k+1(x′)

}
.

The corresponding transition kernel can be written as

P̂ = (
M̂0 ⊗ · · · ⊗ M̂K

) ⎛⎝ 1

K

∑
k∈{0,...,K−1}

Q̂k

⎞⎠ .

It is natural to ask whether this numerical PT will inherit the spectral gap of P. The next result,
together with Theorem 4, indicate that under appropriate regularity conditions on π̂k’s, the
numerical PT also has a proper spectral gap.

Proposition 8. Suppose that for each replica, if the target distribution satisfies
supx | log π̂k(x) − log πk(x)| ≤ ε and the transition kernel satisfies ‖Pk − P̂k‖πk ≤ ε, then
the transition kernel of PT satisfies the following for some constant C:

‖P − P̂‖ ≤ Cε.
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Before we prove Proposition 8, we first prove two auxiliary lemmas. The first lemma
shows that different compositions of approximated transition kernels yield approximation ker-
nels of similar accuracy. In particular, it helps us establish the condition ‖Pk − P̂k‖πk ≤ ε in
Proposition 8 if we use Mk = Ptk

RWM or Mk = Ptk
MALA.

Lemma 2

(i) For two transition kernels R and S, both with invariant measure ν, if ‖R − R̂‖ν ≤ Cε

and if ‖S − Ŝ‖ν ≤ Cε, then there is a constant C′ so that

‖RS − R̂̂S‖ν ≤ C′ε.

(ii) For two transition kernels R1 and R2, with invariant measure ν1 and ν2 respectively, if
‖R1 − R̂1‖ν1 ≤ Cε and if ‖R2 − R̂2‖ν2 ≤ Cε, then there is a constant C′ so that

‖R1 ⊗ R2 − R̂1 ⊗ R̂2‖ν ≤ C′ε,

where ν = ν1 × ν2 is the joint invariance distribution.

(iii) For n transition kernels S1, S2, . . . , Sn, all with invariant measure ν, if ‖Si − Ŝi‖ν ≤ Cε

for i = 1, . . . , n, then for U = 1
n

∑n
i=1 Si and Û = 1

n

∑s
i=1 Ŝi, there is a constant C′ so

that

‖U − Û‖ν ≤ C′ε.

The second lemma establishes proper bounds for the swapping transition.

Lemma 3. Let Q be a transition probability of form

Q(x, S(x)) = a(x, S(x)), Q(x, x) = 1 − a(x, S(x)),

where S(x) is some given map. Suppose Q is reversible with a density ν, i.e.

ν(x)Q(x, S(x)) = ν(S(x))Q(S(x), x).

Similarly, let Q̂ denote the transition probability of the form

Q̂(x, S(x)) = â(x, S(x)), Q̂(x, x) = 1 − â(x, S(x)),

reversible with ν̂. If for some constant C, (1 − Cε)a(x, S(x)) ≤ â(x, S(x)) ≤ (1 + Cε)a(x, S(x)),
then

‖(Q − Q̂)f ‖ν ≤ 2Cε‖ f ‖ν .

6. Numerical examples

In this section, we present some numerical examples based on the predator–prey system to
illustrate the theoretical results developed in the preceding sections.

6.1. Predator–prey system

We consider inferring the parameters of a system of ordinary differential equations (ODEs)
that models the predator–prey system [29]. Denoting the populations of prey and predator by
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(γp, γq), the populations change over time according to the pair of coupled ODEs is

dγp

dt
= rγp

(
1 − γp

K

)
− s

(
γp γq

w + γp

)
,

dγq

dt
= u

(
γp γq

w + γp

)
− vγq, (18)

with initial conditions γp(0) and γq(0). r, K, a, s, u, and v are model parameters that control
the dynamics of the populations of prey and predator. In the absence of the predator, the pop-
ulation of prey evolves according to the logistic equation, which is characterized by r and K.
In the absence of the prey, the population of the predator has an exponential decay rate v. The
additional parameters s, w, and u characterize the interaction between the predator population
and the prey population.

In the inference problem, we want to estimate both the model parameters and the initial
conditions. In this case, we have d = 8 and denote

θ = (γp(0), γq(0), r, K, a, s, u, v).

A commonly used prior for this problem is a uniform distribution over a hypercube (a1, b1) ×
· · · × (ad, bd) (see e.g. [33]). Here we set ai = 10−3 and bi = 2 × 102 for all i. Noisy observa-
tions of both γp(t; θ ) and γq(t; θ ) at times regularly spaced at m = 20 time points in t ∈ [2, 40]
are used to infer θ . This defines a so-called forward model,

F(θ ) = [γp(t1; θ ), γq(t1; θ ), . . . , γp(tm; θ ), γq(tm; θ )],

that maps a given parameter θ to the observables. The observables are perturbed with
independent Gaussian observational errors with mean zero and variance 4. A “true” parameter

θtrue = [50, 5, 0.6, 100, 1.2, 25, 0.5, 0.3]�

is used to generate the synthetic observed data set, which is denoted by y. The trajectories of
γp(t; θtrue) and γq(t; θtrue) together with the synthetic data set are shown in Figure 1.

To prevent rejections caused by proposal samples that fall outside of the hypercube, we
further consider the prior distribution as the pushforward of the standard Gaussian measure,
with the probability density function

p0(x) = (2π )−d/2 exp

(
−1

2
‖x‖2

)
under a diffeomorphic transformation T : Rd →R

d that maps each coordinate

θi = Ti(xi) = ai + bi − ai√
2π

∫ xi

−∞
exp

(
−1

2
z2

)
dz.

In other words, p0(x) is the prior distribution for the transformed parameter x = T−1(θ ).
Writing G(x) = F(T(x)), our goal is to characterize the posterior distribution

π (x) ∝ p0(x) exp

(
−1

8
‖G(x) − y‖2

)
.
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FIGURE 1. Left and middle: the trajectories of γp(t; θtrue) and γq(t; θtrue) computed using the second-
order Runge–Kutta method, with different time step size η. Right: the L2 error of the model outputs with
different time step sizes η. Here G(θtrue) is computed using η = η0 × 2−6. The trajectories computed by
the time step size η = η0 × 2−6 are used to generate a synthetic data set. The observed data sets of the
prey and the predator are shown as circles and squares, respectively.

The system of ODEs in (18), and hence the function G(x), has to be numerically solved by some
ODE solvers. Here we use the second-order explicit Runge–Kutta method, with time step size
η, to solve (18). As shown in Figure 1, the trajectories of γp(t; θtrue) and γq(t; θtrue) converge as
η → 0 at a rate of O(η2) (see [8] for a detailed analysis). The numerical solver, which is char-
acterized by the step size η, defines the approximate model Ĝ(x) and the approximate posterior
density π̂(x). Figure 2 shows the estimated marginal distributions (using Algorithm 1) of per-
turbed posteriors defined by various time step sizes. Here we observe that as h decreases, the
estimated marginal distributions almost overlap each other, which suggests that the perturbed
distributions converge as the discretized model Ĝ converges.

6.2. MCMC results

To validate the theoretical results of Metropolis–Hasting MCMC on perturbed densities
in Section 4, we first simulate the RWM algorithm with invariant densities π̂ (x) defined by
various time step sizes, as shown in Figure 1. All the Markov chains in this set of simulation
experiments are generated using the same Gaussian random walk proposal distribution. The
box plots of the integrated autocorrelation times (IACTs) of the resulting Markov chains are
shown in Figure 3. Then we simulate MALA with invariant densities π̂ (x) defined by the same
set of time step sizes. The box plots of the resulting IACTs are shown in Figure 4. Again, all
the Markov chains are generated using the same proposal distribution. For both algorithms,
we simulate each Markov chain for 106 iterations after discarding burn-in samples and repeat
the simulation for 20 times with different initial states to produce the box plots. As established
in our theoretical analysis, for both algorithms the resulting Markov chains targeting various
approximate posterior densities produce similar IACTs.

To validate the theoretical results on the parallel tempering with perturbed densities in
Section 5, we simulate Algorithm 1 with the same Gaussian random walk as in RWM. For
each of the invariant densities π̂ (x) defined by various time step sizes, we set K = 4, and the
intermediate distributions take the form

π̂k(x) ∝ p0(x) exp

(
−βk

8
‖Ĝ(x) − y‖2

)
,
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FIGURE 2. Marginal distributions of perturbed posteriors defined by various time step sizes.

FIGURE 3. Box plots of integrated autocorrelation times (IACTs) of the first four parameter Markov
chains simulated by the RWM algorithm. Here, 20 realizations of Markov chains are used to estimate the
IACT.

where βk = 1 + α−K − α−k with α = 1.3 and k = {0, 1, 2, 3, 4}. Here βk is an increasing
sequence such that βK = 1. The same Gaussian random walk is used across all replicas to
simulate the Markov chain. The box plots of the IACTs of resulting Markov chains are shown
in Figure 5. Similar to the previous experiments, the resulting Markov chains targeting var-
ious approximate posterior densities produce similar IACTs. Furthermore, we noticed that
the IACTs of Algorithm 1 are smaller than those of the RMW and MALA algorithm, which
suggests that Algorithm 1 has a better mixing rate.
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FIGURE 4. Box plots of integrated autocorrelation times (IACTs) of the first four parameter Markov
chains simulated by the MALA algorithm. Here, 20 realizations of Markov chains are used to estimate
the IACT.

FIGURE 5. Box plots of integrated autocorrelation times (IACTs) of the first four parameters of Markov
chains simulated by Algorithm 1. Here, 20 realizations of Markov chains are used to estimate the IACT.

7. Conclusion

In this paper, we quantify the convergence speed and the approximation accuracy of numer-
ical MCMC samplers under two general frameworks: ergodicity and spectral gap. Our results
can be easily applied to study the efficiency and accuracy of various sampling algorithms. In
particular, we demonstrate how to apply our framework to study Metropolis–Hasting MCMC
algorithms and parallel tempering Monte Carlo algorithms. These results are validated by
numerical simulations on a Bayesian inverse problem based on the predator–prey model.

In the applications in Sections 4 and 5, we assume that we can approximate the target
transition kernels with some uniform accuracy guarantees. In some problems with unbounded
domains, this can be difficult to achieve. It would be interesting to relax such requirements to
the ones assumed in [10].
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Appendix A. Proof for the Wasserstein convergence

Proof of Theorem 2. Let Q be the optimal coupled measure between δxP and δxP̂ from the
Kantorovich–Rubinstein theorem. Then

|PV(x) − P̂V(x)| =
∣∣∣∣∫ Qx(dx′, dy′)(V(x′) − V(y′))

∣∣∣∣
≤

∣∣∣∣∫ Qx(dx′, dy′)(V(x′) + V(y′))1x′ =y′

∣∣∣∣ = ‖δxP − δxP̂‖V .

Next, as ‖δxP − δxP̂‖V ≤ εV(x), we have

|PV(x) − P̂V(x)| ≤ εV(x).

In addition, because V is a Lyapunov function under P,

P̂V(x) ≤ PV(x) + εV(x) ≤ (λ + ε)V(x) + L.

As (λ + ε) ∈ (0, 1) for ε small enough, V is a Lyapunov function under P̂ with parameters
λ + ε and L.

We next establish a bound for ‖δxP̂n − δyP̂n‖V , x = y using

‖δxP̂n − δyP̂n‖V ≤ ‖δxP̂n − δxPn‖V + ‖δxPn − δyPn‖V + ‖δyPn − δyP̂n‖V . (19)

For ‖δxP̂n − δxPn‖V , by Theorem 1, we have

‖δxP̂n − δxPn‖V ≤ Cε

1 − ρ

(
V(x) + L

1 − λ − ε

)
≤ CεV(x)

for some C because V(x) ≥ 1. A similar bound holds for ‖δyPn − δyP̂n‖V as well—i.e.

‖δyPn − δyP̂n‖V ≤ Cε

1 − ρ

(
V(y) + L

1 − λ − ε

)
≤ CεV(y).

For any l ≤ N, Let D1 = C
Nρ2N−1 . Then (19) leads to

‖δxP̂l+N − δyP̂l+N‖V ≤ ρl+NdV (x, y) + Cε(V(x) + V(y))

=
(
ρl+N + Cε

)
dV (x, y) ≤ (ρ + D1ε)l+NdV (x, y),

(20)

where the last inequality follows from (a + b)N > aN + NaN−1b for all a, b > 0, which comes
from Taylor expansion.

Next, let Q̂k
x,y be the optimal coupled measure between δxP̂kN and δyP̂kN . Then

‖δxP̂kN − δyP̂kN‖V ≤
∫

Q̂k−1
x,y (dx′, dy′)‖δx′ P̂N − δy′ P̂N‖V

≤
∫

Q̂k−1
x,y (dx′, dy′)(ρ + D1ε)NdV (x′, y′)

≤ (ρ + D1ε)kNdV (x, y).

(21)

https://doi.org/10.1017/apr.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.28


20 T. CUI ET AL.

For any n ≥ N, we can write n = kN + N + l, for k, l ∈Z
+
0 , and

‖δxP̂n − δyP̂n‖V ≤
∫

Q̂k
x,y(dx′, dy′)‖δx′ P̂N+l − δy′ P̂N+l‖V

≤ C1(ρ + D1ε)N+l
∫

Q̂k
x,y(dx′, dy′)dV (x′, y′) by (20)

≤ C1(ρ + D1ε)l+kN+NdV (x, y) by (21)

= C1(ρ + D1ε)ndV (x, y).

Lastly, we show that P̂ has a unique invariant measure π̂ . Fix a point x, considering a
sequence {δxP̂n, n = 1, 2, . . .}. Note that

‖δxP̂n − δxP̂n+1‖V ≤
∫

‖δxP̂n − δyP̂n‖VP̂(x, dy)

≤ C1(ρ + D1ε)n
E[dV (x, X̂1)]

≤ C1(ρ + D1ε)n[(λ + 1 + ε)V(x) + L].

This implies that δxP̂n is a Cauchy sequence in dV as well as the total variation distance.
Since the sublevel sets of V are compact and δxP̂nV remains bounded, it is a tight sequence.
Therefore, the sequence has a limit, which we denote by πx. Next, we show that πx = πy:

‖πx − πy‖V ≤ ‖πx − δxP̂n‖V + ‖δyP̂n − πy‖V + ‖δxP̂n − δyP̂n‖V → 0 as n → 0.

Proof of Proposition 1. For the first claim, let Qn
x,y be the the optimal coupled measure

between δxP̂n and δyP̂n for any x, y ∈R
d. Then

|δxP̂nf − π̂ f | = |δxP̂nf − π̂ P̂nf |
≤

∫
|δxP̂nf − δyP̂nf |π̂(dy)

≤
∫ ∫

Qn
x,y(dx′, dy′)| f (x′) − f (y′)|π̂(dy)

≤
∫

‖δxP̂n − δyP̂n‖V π̂ (dy)

≤ ρ̂n
∫

dV (x, y)π̂ (dy) ≤ ρ̂n(V(x) + π̂V).

(22)

For the second claim, note that for any f with π̂ f = 0, we have

Eπ̂ [(f̂M − π̂ f )2] = 1

M2
Eπ̂

⎡⎣ M∑
j,k=1

f (X̂j)f (X̂k)

⎤⎦
≤ 2

M2
Eπ̂

⎡⎣ M∑
j=1

| f (X̂j)|
∞∑

k=0

| f (X̂j+k)|
⎤⎦

= 2

M
Eπ̂

[
| f (X̂0)|E

[ ∞∑
k=0

| f (X̂k)|
∣∣∣X̂0

]]
since X̂j ∼ π̂
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≤ 2

M
Eπ̂

[
| f (X̂0)|

∞∑
k=0

ρ̂k(V(X̂0) + π̂V)

]
from (22)

≤ 2

(1 − ρ̂)M
Eπ̂

[
| f (X̂0)|(V(X̂0) + π̂V)

]
.

Appendix B. Proof for the χ2 convergence

Proof of Theorem 3. We will write κ = κ(P) for short.
For Claim 1, first note that

varπ (̂Pf ) = 1

2

∫ (̂
Pf (x) − P̂f (y)

)2
π (dx)π (dy)

= 1

2

∫ (
Pf (x) − Pf (y) + (P − P̂)f (y) − (P − P̂) f (x)

)2
π (dx)π (dy)

≤
(

1

2
+ aκ

2

) ∫
(Pf (x) − Pf (y))2 π (dx)π (dy)

+
(

1

2
+ 1

2aκ

) ∫ (
(P − P̂) f (x) − (P − P̂) f (y)

)2
π (dx)π (dy)

≤ (1 + aκ)varπ (Pf ) +
(

2 + 2

aκ

) ∫
((P − P̂)f (x))2π (dx).

(23)

Here we used AB ≤ aκ
2 A2 + 2

aκ
B2 to get the first inequality.

Next, note that

(1 + aκ)varπ (Pf (X)) ≤ (1 + aκ)(1 − κ)varπ f ≤ (1 − (1 − a)κ)varπ f . (24)

Let �f (x) = f (x) − π f . Then,

Eπ

[(
(P − P̂) f (X)

)2
]
=Eπ

[(
(P − P̂)�f (X)

)2
]
≤ ε2‖�f ‖2

π = ε2varπ f . (25)

Plugging the bounds (24) and (25) into (23), we have

varπ (̂Pf ) ≤
(

1 − (1 − a)κ + (2aκ + 2)ε2

aκ

)
varπ f .

Using induction with C = 2 + 2/κ , we find

varπ (̂Pnf ) ≤
(

1 − (1 − a)κ + Cε2

a

)n

varπ f .

For Claim 2, first note that∣∣∣∣∫ P̂f (x)π (dx) − π f

∣∣∣∣ =
∣∣∣∣∫ (̂P − P)f (x)π (dx)

∣∣∣∣
=

∣∣∣∣∫ (̂P − P)�f (x)π (dx)

∣∣∣∣ recall that �f (x) = f (x) − π f

≤
(∫ (

(̂P − P)�f (x)
)2

π (dx)

)1/2

= ‖(P − P̂)�f ‖π ≤ ε
√

varπ f .
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Then, because
∫

Pg(x)π (dx) = ∫
g(x)π (dx) for any function g,∣∣∣∣∫ (̂Pn+1 − P̂n)f (x)π (dx)

∣∣∣∣ =
∣∣∣∣∫ (̂P − P)(̂Pnf )(x)π (dx)

∣∣∣∣
≤ ε

√
varπ (̂Pnf ) ≤ ε(1 − κ̂)n/2

√
varπ f ,

from Claim 1. Let μn = π P̂n and f = sgn(μn+1 − μn). Because varπ f ≤Eπ | f |2 = 1,

‖μn+1 − μn‖TV =
∣∣∣∣∫ (̂Pn+1 − P̂n)f (x)π (dx)

∣∣∣∣ ≤ ε(1 − κ̂)n/2
√

varπ f ≤ ε(1 − κ̂)n/2.

Thus, μn is a Cauchy sequence under the total variation metric, which implies that the sequence
has a limit π̂ and that

|(π̂ − μn)f | ≤
∞∑

k=n

|(μk+1 − μk)f | ≤ ε(1 − κ̂)n/2

1 − (1 − κ̂)1/2

√
varπ f

When letting n = 0, we have

|π̂ f − π f | ≤ ε

1 − (1 − κ̂)1/2

√
varπ f (26)

Consider f = π̂/π . Dχ2 (π̂‖π ) = |π̂ f − π f | = varπ f . Combining this with (26), we have

Dχ2 (π̂‖π ) ≤ ε2

(1 − (1 − κ̂)1/2)2
.

Proof of Proposition 2. For the first claim, we note that

|νP̂nf − π P̂nf | ≤
∫

ν(x)

π (x)
π (dx)|̂Pnf (x) − π P̂nf |

≤
√∫ ( ν(x)

π (x)

)2
π (dx)

√∫
|̂Pnf (x) − π P̂nf |2π (dx)

≤
√

Dχ2 (ν‖π ) + 1 × (1 − κ̂)n/2
√

varπ f by Theorem 3.

Meanwhile,

|(π̂ − π P̂n)f | ≤ Cε(1 − κ̂)n/2
√

varπ f by Theorem 3.

By triangular inequality,

|νP̂nf − π̂ f | ≤ |νP̂nf − π P̂nf | + |π P̂nf − π̂ f |
≤ (1 − κ̂)n/2

√
varπ f

(√
Dχ2 (ν‖π ) + 1 + Cε

)
.
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For the second part, we first note that for any f with π̂ f = 0, we have

Eπ̂ [(f̂M − π̂ f )2] = 1

M2
Eπ̂

⎡⎣ M∑
j,k=1

f (X̂j)f (X̂k)

⎤⎦
≤ 2

M2
Eπ̂

⎡⎣ M∑
j=1

| f (X̂j)|
∞∑

k=0

| f (X̂j+k)|
⎤⎦

= 2

M

∞∑
k=0

Eπ̂

[| f (X̂0)|| f (X̂k)|]
≤ 2

M

√
Eπ̂ [f (X̂0)2]

∞∑
k=0

√
Eπ̂ [(̂Pkf (X̂0))2].

Next,

varπ̂ (̂Pkf ) = π̂ (̂Pkf )2

≤ π̂ (̂Pkf − π P̂kf )2

≤ π (̂Pkf − π P̂kf )2 + ε

1 − (1 − κ̂)1/2

√
varπ [(̂Pkf − π P̂kf )2] by (26)

≤ (1 − κ̂)kvarπ (f ) + ε

1 − (1 − κ̂)1/2

√
varπ [(̂Pkf − π P̂kf )2] by Theorem 3.

Because supx | f (x)| ≤ C for some C ∈ (0, ∞), supx |̂Pkf (x)| ≤ C and supx |(̂Pk − π P̂k)f (x)| ≤
2C. Then

π (̂Pkf − π P̂kf )4 ≤ 4C2π (̂Pkf − π P̂kf )2 ≤ 4C2(1 − κ̂)kvarπ f by Theorem 3.

Thus,

varπ̂ (̂Pkf ) ≤ (1 − κ̂)kvarπ (f ) + ε

1 − (1 − κ̂)1/2
2C(1 − κ̂)

k
2
√

varπ f

and we can further find a constant C′ such that

Eπ̂ [(f̂M − π̂ f )2] ≤ C′

M(1 − (1 − κ̂)1/4)

√
varπ̂ f varπ f .

Proof of Theorem 4. To simplify the notation, let κ denote the spectral gap of P and let κ̂

denote the spectral gap of P̂. By the definition of spectral gap, i.e. (15), we have

κ̂ = min
f

〈f , (I − P̂2)f 〉π̂
varπ̂ f

.

First, note that

varπ̂ f =Eπ̂ [(f − π̂ f )2]

≤Eπ̂ [(f − π f )2]

≤ (1 + ε)Eπ [(f − π f )2]

= (1 + ε)varπ f .

(27)
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We next establish two useful bounds:

|〈f , (I − P2)f 〉π̂ − 〈f , (I − P2)f 〉π | ≤
∫

| f (x)(I − P2)f (x)|επ (dx)

≤ ε‖ f ‖π‖(I − P2)f ‖π ≤ ε‖ f ‖2
π ,

(28)

and

|〈f , (̂P2 − P2)f 〉π̂ | ≤ ‖ f ‖π̂‖(̂P2 − P2)f ‖π̂

≤ (1 + ε)2‖ f ‖π‖(̂P2 − P2)f ‖π

≤ (1 + ε)2‖ f ‖π (2‖(̂P − P)Pf ‖π + ‖(̂P − P)2f ‖π )

≤ (1 + ε)2‖ f ‖π (2ε‖Pf ‖π + ε‖(̂P − P)f ‖π )

≤ (1 + ε)2‖ f ‖π (2ε‖ f ‖π + ε2‖ f ‖π )

≤ 3(1 + ε)2ε‖ f ‖2
π

≤ Cε‖ f ‖2
π .

(29)

Then

|〈f , (I − P̂2)f 〉π̂ | ≥ |〈f , (I − P2)f 〉π̂ | − |〈f , (̂P2 − P2)f 〉π̂ | by triangular inequality

≥ |〈f , (I − P2)f 〉π̂ | − Cε‖ f ‖2
π by the bound in (29)

≥ |〈f , (I − P2)f 〉π | − |〈f , (I − P2)f 〉π − 〈f , (I − P2)f 〉π̂ | − Cε‖ f ‖2
π

≥ |〈f , (I − P2)f 〉π | − Cε‖ f ‖2
π − Cε‖ f ‖2

π by the bound in (28)

≥ 〈f , (I − P2)f 〉π − Cεvarπ f .

(30)

Combining (27) and (30), we have κ̂ ≥ κ − Cε.

Proof of Proposition 3. For the first claim,

|νP̂nf − π̂ f | = |νP̂nf − π̂ P̂nf |
≤

∫
ν(x)

π̂ (x)
π̂ (x)|̂Pnf (x) − π̂ P̂nf |dx

≤
√∫ ( ν(x)

π̂ (x)

)2
π̂ (x)dx

√∫
|̂Pnf (x) − π̂ P̂nf |2π̂ (x)dx

≤
√

Dχ2 (ν‖π̂ ) + 1 × (1 − κ̂)n/2
√

varπ̂ f .

For the second part, we first note that if we replace f with f − π̂ f , with a little change in
notation, we have

Eπ̂ [(f̂M − π̂ f )2] = 1

M2
Eπ̂

⎡⎣ M∑
j,k=1

f (X̂j)f (X̂k)

⎤⎦
≤ 2

M2
Eπ̂

⎡⎣ M∑
j=1

| f (X̂j)|
∞∑

k=0

| f (X̂j+k)|
⎤⎦

= 2

M

∞∑
k=0

Eπ̂

[| f (X̂0)|| f (X̂k)|]
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≤ 2

M

√
Eπ̂ [f (X̂0)2]

∞∑
k=0

√
Eπ̂ [(̂Pkf (X̂0))2]

≤ 2

M

√
Eπ̂ [f (X̂0)2]

∞∑
k=0

(1 − κ̂)k/2
√

varπ̂ f

= 2

M(1 − (1 − κ̂)1/2)
varπ̂ f

Proof of Proposition 4. Let Qx be the optimal coupled measure between δxP and δxP̂. Then

|(δxP − δxP̂) f | ≤
∫

Qx(dx′, dy′)| f (x′) − f (y′)|

=
∫

Qx(dx′, dy′)(| f (x′) − f (y′)|)1x′ =y′ .

Next

‖(P − P̂)f ‖2
π =

∫
π (dx)|(δxP − δxP̂) f |2

≤
∫

π (dx)

(∫
Qx(dx′, dy′)(| f (x′) − f (y′)|)1x′ =y′

)2

≤
(∫

π (dx)Qx(dx′, dy′)
(

2f (x′)2 + 2f (y′)2
)) (∫

π (dx)Qx(dx′, dy′)1x′ =y′
)

≤ 2
(
〈πP, f 2〉 + 〈π P̂, f 2〉

) (
ε

∫
π (dx)V(x)

)
≤ 2ε

(
〈π, f 2〉 + a〈π̂ P̂, f 2〉

)
(πV)

≤ 2ε
(

1 + a2
)

‖ f ‖2
π‖V‖π .

Appendix C. Verification for Metropolis–Hastings MCMC

We first present an auxiliary lemma, which is well known:

Lemma 4. Suppose a transition kernel P is reversible with invariant measure π . Then
‖P‖π ≤ 1.

Proof We first note that∫
f (x)2π (dx) −

∫
π (dx)f (x)f (y)P2(x, dy)

= 1

2

∫
π (dx)f (x)2P2(x, dy) + 1

2

∫
π (dx)f (y)2P2(x, dy) −

∫
π (dx)f (x)f (y)P2(x, dy)

= 1

2

∫
π (dx)(f (x) − f (y))2P2(x, dy) ≥ 0.

Thus, ∫
f (x)2π (dx) ≥

∫
π (dx)f (x)f (y)P2(x, dy) = ‖Pf ‖2

π .
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Proof of Lemma 1. For any density of the form μ(x) = ν(x)s(x), we have

|μ(P − P̂) f | ≤
∫

μ(x)|α(x) − α̂(x)|| f (x)|dx +
∫

μ(x)|β(x, x′) − β̂(x, x′)|| f (x′)|dx′dx

≤ Cε

∫
μ(x)| f (x)|dx + Cε

∫
μ(x)β(x, x′)| f (x′)|dx′dx

≤ Cε

∫
μ(x)| f (x)|dx + Cε

∫
μ(x)P(x, x′)| f (x′)|dx′dx

= Cε

∫
ν(x)s(x)| f (x)|dx + Cε

∫
ν(x)s(x)P(x, x′)| f (x′)|dx′dx

≤ Cε‖s‖ν‖ f ‖ν + Cε‖s‖ν‖Pf ‖ν

≤ 2Cε‖s‖ν‖ f ‖ν by Lemma 4.

Next, taking μ ∝ |(P − P̂)f |ν, we have

‖(P − P̂)f ‖2
ν ≤ 2Cε‖(P − P̂)f ‖ν‖ f ‖ν,

which further implies that there is a C1 such that ‖P − P̂‖ν ≤ C1ε.

Proof of Proposition 5. We denote the acceptance probabilities for the original process and
the perturbed process as

b(x, x′) = π (x′)
π (x)

∧ 1 and b̂(x, x′) = π̂(x′)
π̂ (x)

∧ 1

respectively. Since for any positive numbers a, b, c, d,

min{a/b, c/d} ≤ a ∧ c

b ∧ d
≤ max{a/b, c/d},

and since exp(−Cε) ≤ π (x)/π̂ (x) ≤ exp(Cε), we have

exp(−2Cε)b(x, x′) < b̂(x, x′) < exp(2Cε)b(x, x′).

Using the fact that β(x, x′) = R(x, x′)b(x, x′) and β̂(x, x′) = R(x, x′)b̂(x, x′), we have

exp(−2Cε)β(x, x′) < β̂(x, x′) < exp(2Cε)β(x, x′).

In addition, for α(x) = ∫
R(x, x′)(1 − b(x, x′))dx′ and α̂(x) = ∫

R(x, x′)(1 − b̂(x, x′))dx′,

|α(x) − α̂(x)| ≤
∫

R(x, x′)|b(x, x′) − b̂(x, x′)|dx′ ≤ Cε.

By Lemma 1, we can find a C1 such that

‖PRWM − P̂RWM‖π ≤ C1ε.

Proof of Proposition 6. Note that

R(x, x′) = 1

(4πh)d/2
exp

(
− 1

4h
‖x′ − x − ∇ log π (x)h‖2

)
,
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and

R̂(x, x′) = 1

(4πh)d/2
exp

(
− 1

4h
‖x′ − x − ∇ log π̂ (x)h‖2

)
.

As |∇ log π̂ (x) − ∇ log π (x)| ≤ Cε and the support is bounded, we can enlarge the value of C
so that

(1 − Cε)R(x, x′) ≤ R̂(x, x′) ≤ (1 + Cε)R(x, x′),

Let the acceptance probability be

b(x, x′) =
π (x′) exp

(
− 1

4h‖x − x′ + ∇ log π (x′)h‖2
)

π (x) exp
(
− 1

4h‖x′ − x + ∇ log π (x)h‖2
) ∧ 1

=
{

exp

(
log π (x′) − log π (x) − 1

2
〈x − x′, ∇ log π (x′) − ∇ log π (x)〉

)
× exp

(
h

4

[
‖∇ log π (x′)‖2 − ‖∇ log π (x)‖2

])}
∧ 1

Similarly, we define

b̂(x, x′) =
π̂ (x′) exp

(
− 1

4h‖x − x′ + ∇ log π̂ (x′)h‖2
)

π̂ (x) exp
(
− 1

4h‖x′ − x + ∇ log π̂ (x)h‖2
) ∧ 1

=
{

exp

(
log π̂ (x′) − log π̂(x) − 1

2
〈x − x′, ∇ log π̂ (x′) − ∇ log π̂ (x)〉

)
× exp

(
h

4

[
‖∇ log π̂ (x′)‖2 − ‖∇ log π̂ (x)‖2

])}
∧ 1

Since | log π (x) − log π̂k(x)| ≤ Cε, ‖∇ log π (x) − ∇ log π̂k(x)‖ ≤ Cε, and the support is
bounded, we can further enlarge C such that

(1 − Cε)b(x, x′) ≤ b̂(x, x′) ≤ (1 + Cε)b(x, x′).

Lastly, for β(x, x′) = R(x, x′)b(x, x′) and β̂(x, x′) = R̂(x, x′)b̂(x, x′),

(1 − Cε)β(x, x′) ≤ β̂(x, x′) ≤ (1 + Cε)β(x, x′).

In addition, for α(x) = ∫
R(x, x′)(1 − b(x, x′))dx′ and α̂(x) = ∫

R̂(x, x′)(1 − b̂(x, x′))dx′,

|α(x) − α̂(x)| ≤
∫

|R(x, x′) − R̂(x, x′)|(1 − b(x, x′))dx′

+
∫

R̂(x, x′)|b(x, x′) − b̂(x, x′)|dx′

≤ Cε

∫
R(x, x′)dx′ + Cε

∫
R̂(x, x′)dx′ = 2Cε

By Lemma 1, we have a constant C1 such that

‖PMALA − P̂MALA‖π ≤ C1ε.
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Proof of Proposition 7. The transition kernel of MALA takes the form

P(x, y) = α(x)δx(y) + β(x, y)

where

β(x, y) = π (y)

π (x)
q(y, x) ∧ q(x, y) = a(x, y) ∧ q(x, y),

with

q(x, y) = 1

(2πh)d/2
exp

(
− 1

4h
‖y − x − ∇ log π (x)h‖2

)
, a(x, y) = π (y)

π (x)
q(y, x),

and α(x) = 1 − ∫
β(x, dy). Similarly, we can write P̂(x, y) = α̂(x)δx(y) + β̂(x, y) when using

the perturbed target density π̂ .
We prove the proposition by showing that∫

|q(x, y) − q̂(x, y)|dy ≤ Cε and
∫

|a(x, y) − â(x, y)|dy ≤ Cε exp(δx2). (31)

In particular, note that a ∧ q − â ∧ q̂ ∈ {a − â, q − q̂, a − q̂, â − q}, which further implies that

|a ∧ q − â ∧ q̂| ≤ |a − â| + |q − q̂|.
Thus, if the bounds in (31) hold, then

‖δxP − δxP̂‖TV =
∫

|β(x, y) − β̂(x, y)|dy + |α(x) − α̂(x)|

≤ 2
∫

|β(x, y) − β̂(x, y)|dy

≤ 2
∫

|a(x, y) − â(x, y)|dy + 2
∫

|q(x, y) − q̂(x, y)|dy

≤ 2Cε(1 + exp(δx2)).

In order to obtain the first part of (31), note that by the intermediate value theorem, | exp(a) −
exp(b)| ≤ | exp(a) + exp(b)||a − b| holds for any a, b, so we can bound

|q(x, y) − q̂(x, y)| ≤1

4
|q(x, y) + q̂(x, y)|‖∇ log π (x) − ∇ log π̂(x)‖

(‖y − x − h∇ log π (x)‖ + ‖y − x − h∇ log π̂ (x)‖)
≤Cε

4
|q(x, y) + q̂(x, y)| (‖y − x − h∇ log π (x)‖ + ‖y − x − h∇ log π̂ (x)‖) .

(32)

Note that q(x, y) is the proposal density of y. Thus,∫
q(x, y) (‖y − x − h∇ log π (x)‖ + ‖y − x − h∇ log π̂(x)‖) dy

≤
∫

q(x, y) (2‖y − x − h∇ log π (x)‖ + Chε) dy

≤ Chε + 2

√∫
q(x, y)‖y − x − h∇ log π (x)‖2dy = Chε + 2

√
2hd.
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Similarly,∫
q̂(x, y) (‖y − x − h∇ log π (x)‖ + ‖y − x − h∇ log π̂ (x)‖) dy ≤ Chε + 2

√
2hd.

Therefore, we use (32) and find a larger C such that∫
|q(x, y) − q̂(x, y)|dy ≤ Cε.

To handle the second part of (31), we use | exp(a) − exp(b)| ≤ | exp(a) + exp(b)||a − b| again
and find

|a(x, y) − â(x, y)|
=

∣∣∣∣π (y)

π (x)
q(y, x) − π̂ (y)

π̂ (x)
q̂(y, x)

∣∣∣∣
≤1

4

∣∣∣∣π (y)

π (x)
q(y, x) + π̂(y)

π̂ (x)
q̂(y, x)

∣∣∣∣ (| log π (x) − log π̂ (x)| + | log π (y) − log π̂ (y)|

+ ‖∇ log π (y) − ∇ log π̂ (y)‖ (‖y + h∇ log π (y) − x‖ + ‖y + h∇ log π̂(y) − x‖)
)

≤Cε

4

∣∣∣∣π (y)

π (x)
q(y, x) + π̂ (y)

π̂ (x)
q̂(y, x)

∣∣∣∣ (2 + (‖y + h∇ log π (y) − x‖ + ‖y + h∇ log π̂ (y) − x‖)) .

Note that the first part can be bounded by∫
π (y)

π (x)
q(y, x) (C + (‖y + h∇ log π (y) − x‖ + ‖y + h∇ log π̂ (y) − x‖) dx

≤
∫

π (y)

π (x)
q(y, x) (C + hε + 2‖y + h∇ log π (y) − x‖) dx

=
∫

π (y)

(2πh)d/4π (x)

√
q(y, x) · (2πh)d/4

√
q(y, x) (C + hε + 2‖y + h∇ log π (y) − x‖) dx

For π (y)
π (x) (2πh)−d/4√q(y, x), we can bound it by

1

(2πh)d/4

π (y)

π (x)

√
q(y, x)

= 1

(2πh)d/2
exp

(
log π (y) − log π (x) − 1

8h
‖y + h∇ log π (y) − x‖2

)
≤ 1

(2πh)d/2
exp

(
〈∇ log π (w), y − x〉 − 1

8h
‖y − x‖2 − 1

4
〈∇ log π (y), y − x〉

)
for some w

≤ 1

(2πh)d/2
exp

(
5Lπ

4
‖y − x‖(‖x‖ + ‖y − x‖ + C) − 1

8h
‖y − x‖2

)
by Lipschitzness of ∇ log π

≤ 1

(2πh)d/2
exp

((
5Lπ

16δ
+ 5Lπ

4
− 1

8h

)
‖y − x‖2 + δ‖x‖2 + 10L2

π C2
)

≤ 1

(2πh)d/2
exp

(
− 1

16h
‖y − x‖2 + δ‖x‖2 + 10L2

π C2
)

as h <
( 5Lπ

δ
+ 20Lπ

)−1.
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For (2πh)d/4√q(y, x) (C + hε + 2‖y + h∇ log π (y) − x‖), first note that we can find a larger
C such that

(2πh)d/4
√

q(y, x)‖y + h∇ log π (y) − x‖
= exp

(
− 1

8h
‖y + h∇ log π (y) − x‖2

)
‖y + h∇ log π (y) − x‖ ≤ C.

Combining these two upper bounds, we can find a C1 such that∫
π (y)

π (x)
q(y, x) (C + hε + 2‖y + h∇ log π (y) − x‖) dx ≤ C1 exp(δ‖x‖2).

Similarly, we can show that∫
π̂ (y)

π̂ (x)
q̂(y, dx) (C + (‖y + h∇ log π (y) − x‖ + ‖y + h∇ log π̂ (y) − x‖)

≤
∫

π̂ (y)

π̂ (x)
q̂(y, dx) (C + hε + 2‖y + h∇ log π̂(y) − x‖) ≤ C exp(δ‖x‖2).

Thus,
∫ |a(x, y) − â(x, y)|dy ≤ Cε exp(δx2) for some C. This concludes the proof of (35) and

our claim.

Appendix D. Verification for the parallel tempering algorithm

Proof of Lemma 2. For claim 1, note that for any ‖ f ‖ν ≤ 1,

‖RSf − R̂̂Sf ‖ν ≤ ‖R(S − Ŝ)f ‖ν + ‖(R − R̂)̂Sf ‖ν

≤ ‖(S − Ŝ)f ‖ν + Cε‖̂Sf ‖ν by Lemma 4

≤ Cε‖ f ‖ν + Cε‖(̂S − S)f ‖ν + Cε‖Sf ‖ν

≤ (2C + C2ε)ε‖ f ‖ν by Lemma 4.

For claim 2, we first note that

R1 ⊗ R2 = (R1 ⊗ I)(I ⊗ R2)

We will show that

‖(R1 ⊗ I) − (̂R1 ⊗ I)‖ν = ‖((R1 − R̂1) ⊗ I)‖ν ≤ Cε.

For any f (x, y), we define

g(x, y) := ((R1 − R̂1) ⊗ I)f (x, y)

Then for each fixed y, since ‖R1 − R̂1‖ν1 ≤ Cε,∫
g(x, y)2ν1(x)dx ≤ C2ε2

∫
f (x, y)2ν1(x)dx

Thus,

‖g‖2
ν =

∫
g(x, y)2ν1(x)ν2(y)dxdy ≤ C2ε2

∫ ∫
f (x, y)2ν1(x)ν2(y)dxdy = C2ε2‖ f ‖2

ν .
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Similarly, we can show that

‖(I ⊗ R2) − (I ⊗ R̂2)‖ν = ‖I ⊗ (R2 − R̂2)‖ν ≤ Cε.

From claim 1, we can find a C′ so that

‖R1 ⊗ R2‖ν = ‖(R1 ⊗ I)(I ⊗ R2)‖ν ≤ C′ε.

For claim 3, by triangular inequality, we have

‖U − Û‖ν ≤ 1

n

n∑
i=1

‖Si − Ŝi‖ν ≤ Cε.

Proof of Lemma 3. Denote x′ = S(x). For any density of form μ(x) = s(x)ν(x), we have

|μ(Q − Q̂)f | ≤
∫

μ(x)|a(x, x′) − â(x, x′)|| f (x)|dx +
∫

μ(x)|a(x, x′) − â(x, x′)|| f (x′)|dx

≤ Cε

∫
μ(x)| f (x)|dx + Cε

∫
μ(x)a(x, x′)| f (x′)|dx

≤ Cε

∫
s(x)ν(x)| f (x)|dx + Cε

∫
s(x)ν(x)(Q(x, x)| f (x)| + Q(x, x′)| f (x′)|)dx

≤ Cε‖s‖ν‖ f ‖ν + Cε‖s‖ν‖Q| f |‖ν

≤ 2Cε‖s‖ν‖ f ‖ν .

Taking μ(x) ∝ |(Q − Q̂)f (x)|ν(x), we have the result.

Proof of Proposition 8. Recall that

P = MQ, M = (M0 ⊗ · · · ⊗ MK) , Q =
⎛⎝ 1

K

∑
k∈{0,...,K−1}

Qk,k+1

⎞⎠ .

and

P̂ = M̂Q̂, M̂ = (
M̂0 ⊗ · · · ⊗ M̂K

)
, Q̂ =

⎛⎝ 1

K

∑
k∈{0,...,K−1}

Q̂k,k+1

⎞⎠ .

Since M is a product of Mk, Lemma 2 claim 2 indicates that ‖M − M̂‖ ≤ C1ε for some C1.
Then note that if a ≤ CA, b ≤ CB, then min{a, b} ≤ C min{A, B} so the acceptance probability
of Qk,k+1 and Q̂k,k+1 satisfies

αk(x, x′)
α̂k(x, x′)

≤ sup
x,x′

{
πk(x′)πk+1(x)π̂k(x)π̂k+1(x′)
π̂k(x′)π̂k+1(x)πk(x)πk+1(x′)

}
≤ (1 + C1ε)4 ≤ 1 + Dε

for some constant D. Then Lemma 3 indicates that ‖Qk,k+1 − Q̂k,k+1‖ ≤ C2ε for some C2
and Lemma 2 claim 3 indicates that for some C3,

‖Q − Q̂‖ ≤ C3ε.

Finally, we use claim 1 from Lemma 2 and find that ‖P − P̂‖ ≤ C′ε for some C′.
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