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Lecture notes on variational models for
incompressible Euler equations

luigi ambrosio and alessio figalli

Abstract

These notes briefly summarise the lectures for the Summer School
“Optimal Transportation: Theory and Applications” held by the second
author in Grenoble during the week of 22–26 June 2009. Their goal
is to describe some recent results on Brenier’s variational models for
incompressible Euler equations [Ambrosio and Figalli, Arch. Ration.
Math. Anal., 194 (2009) 421–462; Ambrosio and Figalli, Calc. Var.
Partial Dif. Equations, 31 (2008) 497–509; Bernot et al., J. Math. Pures
Appl., 91 (2008) 137–155].

4.1 Euler incompressible equations and Arnold geodesics

Let D denote either a bounded domain of Rd or the d-dimensional torus
Td :D Rd/Zd . We consider an incompressible fluid moving inside D with
velocity u. The Euler equations for u describe the evolution in time of the
velocity field, and are given by{

∂t u C (u � r)u D �rp in [0, T ] � D,

div u D 0 in [0, T ] � D,

coupled with the boundary condition

u � ν D 0 on [0, T ] � ∂D

when D 6D Td . Here, p is the pressure field, and arises as a Lagrange multiplier
for the divergence-free constraint on the velocity u.

If u is smooth we can write the above equations in Lagrangian coordinates:
let g denote the flow map of u; that is,{

ġ(t, a) D u(t, g(t, a)),
g(0, a) D a.
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By the incompressibility condition, and the classical differential identity

d

dt
detrag(t, a) D div u(t, g(t, a)) detrag(t, a),

(here and in the following div denotes the spatial divergence of a possibly
time-dependent vector field) we get detrag(t, a) 	 1. This means that g(t, �) :
D ! D is a measure-preserving diffeomorphism of D:

g(t, �)#μD D μD

(
i.e. μD(g(t, �)�1(E)) D μD(E) 8E

)
.

Here and in the following f#μ is the push-forward of a Borel measure μ

through a map f : X ! Y (i.e.
∫
Y
φ df#μ D ∫

X
φ ı f dμ for all Borel bounded

functions φ : Y ! R), and μD is the volume measure of D, renormalised by a
constant so that μD(D) D 1.

Writing Euler’s equations in terms of g we obtain an ordinary differential
equation (ODE) for t 7! g(t) in the space SDiff(D) of measure-preserving
smooth diffeomorphisms of D:⎧⎨⎩

g̈(t, a) D �rp (t, g(t, a)) (t, a) 2 [0, T ] � D,
g(0, a) D a a 2 D,
g(t, �) 2 SDiff(D) t 2 [0, T ].

(4.1)

4.1.1 Weak solutions to Euler’s equations

In the case d D 2, existence of distributional solutions can be proved through the
vorticity formulation; setting ωt (�) D curl u(t, �), so that u(t, �) D r?��1ωt ,
the Euler equations can be read as follows:

d

dt
ωt (x) C div

(
ωt (x)u(t, x)

) D 0.

Formally, this equation preserves all Lp norms of solutions, and indeed exis-
tence is not hard to obtain if ω0 2 Lp for 1 < p � 1. Delort improved the
existence theory up to L1 or measure initial conditions ω0 whose positive (or
negative) part is absolutely continuous, and the problem of getting a solution for
all measure initial data is still open. As shown by Yudovitch [15,16], uniqueness
holds for p D 1, while it is still open in all the other cases.

In the case d > 2 much less is known: no general global existence results
of distributional solutions are presently available.

4.1.2 Arnold’s geodesic interpretation

At least formally, one can view the space SDiff(D) of measure-preserving
diffeomorphisms of D as an infinite-dimensional manifold with the metric
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inherited from the embedding in L2(D; Rd ), and with tangent space made
by the divergence-free vector fields. Using this viewpoint, Arnold interpreted
the ODE (4.1), and therefore Euler’s equations, as a geodesic equation on
SDiff(D) [3]. Therefore, one can look for solutions of Euler’s equations on
[0, 1] � D by minimizing the action functional

A (g) :D
∫ 1

0

∫
D

1

2
jġ(t, x)j2 dμD(x) dt

among all paths g(t, �) : [0, 1] ! SDiff(D) with g(0, �) D f and g(1, �) D h

prescribed (typically, by right invariance, f is taken as the identity map i).
Ebin and Marsden proved in [10] that this problem has indeed a unique solution
when h ı f �1 is sufficiently close, in a strong Sobolev norm, to i . We shall
denote by δ(f, h) the Arnold distance in SDiff(D) induced by this minimisation
problem.

Of course, this variational problem differs from Euler’s problem, because
the initial and final diffeomorphisms, and not the initial velocity, are prescribed.
Nevertheless, the investigation of this problem leads to difficult and still not
completely understood questions (typical of calculus of variations); namely:

(a) necessary and sufficient optimality conditions;
(b) regularity of the pressure field;
(c) regularity of (relaxed) curves with minimal length.

Before describing some of the main contributions in this field, let us recall
some ‘negative’ results that motivate somehow the necessity of relaxed formu-
lations of this minimisation problem.

4.1.3 Non-attainment and non-existence results

Shnirelman [12, 13] found the example of a map ḡ 2 SDiff([0, 1]2) which
cannot be connected to i by a path with finite action, i.e. δ(i, ḡ) D C1.
Furthermore, he proved that for h 2 SDiff([0, 1]3) of the form

h(x1, x2, x3) D (ḡ1(x1, x2), ḡ2(x1, x2), x3), with (ḡ1, ḡ2) D ḡ as above,

δ(i, h) is not attained, i.e. no minimizing path between i and h exists (although
there exist paths with a finite action). This fact can be easily explained as follows
(see also [8, Paragraph 1.3]): since there is no two-dimensional path with finite
action connecting i to ḡ while in three dimensions it is known that the minimal
action is finite [12], if a minimising path t 7! g(t) exists then it has a non-trivial
third component, i.e. g3(t, x) 6	 x3. Set η(x3) :D minf2x3, 2 � 2x3g, and let u
denote the velocity field associated with g, i.e. u D ġ ı g�1. Then it is easily
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seen that the velocity field

ũ(x1, x2, x3) :D
⎧⎨⎩

u1(x1, x2, η(x3))
u2(x1, x2, η(x3))
1
2 u3(x1, x2, η(x3))

induces a path g̃ which still joins i to h, but with strictly less action (since u3

is not identically zero). This contradicts the minimality of g, and proves that
there is no minimizing path between i and h. (See also [8, Paragraph 1.3].)

Let us point out that the above argument shows that minimising sequences
exhibit oscillations on small scales, and strongly suggest the analysis of weak
solutions.

4.1.4 Time discretisation, minimal projection and
optimal transport

Before describing the concept of relaxed solutions to the Euler equations intro-
duced by Brenier, let us first see what happens when one tries to attack the
above variational problem by time-discretisation: assume D � Rd , and fix
g0, g1 2 SDiff(D). We want to find the ‘midpoint’ g1/2 between g0 and g1; that
is, we consider

min
g2SDiff(D)

{
1

2
kg � g0k2

L2(D;Rd ) C 1

2
kg1 � gk2

L2(D;Rd )

}
.

Up to rearranging the terms and removing all the quantities independent on g,
the above problem is equivalent to minimising

min
g2SDiff(D)

∥∥∥g � g0 C g1

2

∥∥∥2

L2(D;Rd )
,

i.e. we have to find the L2-projection on SDiff(D) of the function g0Cg1

2 2
L2(D; Rd ). Since the set SDiff(D) is neither closed nor convex, no classical
theory is available to ensure the existence of such projection.

In order to make the problem more treatable, let us close SDiff(D): as shown
for instance in [9], if D D [0, 1]d or D D Td then the L2-closure of SDiff(D)
in L2(D; Rd ) coincides with the space S(D) of measure-preserving maps:

S(D) :D {
g : D ! D : μD(g�1(A)) D μD(A) 8A 2 B(D)

}
.

Then the general problem we want to study becomes the following: given
h 2 L2(D; Rd ), solve

min
s2S(D)

∫
D

jh � sj2 dμD. (4.2)
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As in the classical optimal transport problem, one can consider the following
Kantorovich relaxation: denoting by �(Rd ) the set of probability measures on
Rd � Rd with first marginal μD and second marginal ν :D h#μD , we minimise

min
γ2�(Rd )

∫
Rd�Rd

jx � yj2 dγ (x, y). (4.3)

Assume the non-degeneracy condition ν � dx. Then we can apply the classical
theory of optimal transport with quadratic cost for the problem of sending ν

onto μD [6]: there exists a unique optimal transport map rφ : Rd ! Rd such
that (rφ)#ν D μD . Moreover, the unique optimal measure γ̄ which solves (4.3)
is given by

γ̄ D (rφ � Id)#ν.

Then it is easily seen that the map

s̄ :D rφ ı h

belongs to S(D) and uniquely solves (4.2) (see [6] or [14, Chapter 3] for more
details).

4.2 Relaxed solutions

In Section 4.1 we have seen how the attempt of attacking Arnold’s geodesics
problem by time discretisation leads to study the existence of the L2-projection
onto SDiff(D), and that the projection of a function h onto its closure S(D)
exists and is unique whenever h satisfies a non-degeneracy condition. Instead of
going on with this strategy, we now want to change the point of view, attacking
the problem by a relaxation in ‘space’.

Two levels of relaxation can be imagined: the first one is to relax the smooth-
ness and injectivity constraints, and this leads to the definition of the space
S(D) of measure-preserving maps. However, we will see that a second level
is necessary, giving up the idea that g(t, �) is a map, but allowing it to be a
measure-preserving plan (roughly speaking, a multivalued map). This leads to
the space

�(D) :D fη 2 P(D � D) : η(A � D) D μD(A) D η(D � A) 8A 2 B(D)g.
The space S(D) ‘embeds’ into �(D) considering

S(D) 3 g 7! (i � g)#μD 2 �(D).
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Conversely, any η 2 �(D) concentrated on a graph is induced by a map g 2
S(D).

Even from the Lagrangian viewpoint, it is natural to follow the path of each
particle, and to relax the smoothness and injectivity constraints, allowing fluid
paths to split, forward or backward in time. These remarks led Brenier in 1989
to the following model [5]: let

�(D) :D C ([0, 1];D) , et (ω) :D ω(t), t 2 [0, 1].

Then, denoting by P(�(D)) the family of probability measures in �(D), we
minimise the action functional

A (η) :D
∫
�(D)

1

2

∫ 1

0
jω̇j2 dt dη(ω), η 2 P(�(D))

with the endpoint and incompressibility constraints

(e0, e1)#η D (i � h)#μD, (et )#η D μD 8t 2 [0, T ].

In Brenier’s model, a flow is modelled by a random path with some con-
straints on the expectations of this path. As we will see below, this problem
can be recast in the optimal transportation framework, dealing properly with
the incompressibility constraint.

Classical flows g(t, a) induce generalised ones, with the same kinetic action,
via the relation η D (�g)#μD , with

�g : D ! �(D), �g(a) :D g(�, a).

In this relaxed model, some obstructions of the original one disappear; for
instance, in the case D D [0, 1]d or D D Td it is always possible to connect any
couple of measure-preserving diffeomorphism by a path with action less thanp

d. Actually, this allows are to prove that finite-action paths exist in many
situation: as shown in [1, Theorem 3.3], given a domain D for which there
exists a bi-Lipschitz measure-preserving diffeomorphism � : D ! [0, 1]d , by
considering composition of generalised flows with � one can easily constructs
a generalised flow with finite action between any h0, h1 2 SDiff(D). Moreover,
standard compactness/lower semicontinuity arguments in the space P(�(D))
provide existence of generalised flows with minimal action.

4.2.1 Eulerian–Lagrangian model

Coming back to the relaxed model described above, we observe that the end-
point constraint (e0, e1)#η D (i � h)#μD cannot be modified to deal with the
more general problem of connecting f 2 S(D) to h 2 S(D); indeed, by right
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invariance, this is clear only if f is invertible (in this case, one looks for the
optimal connection between i and h ı f �1). These remarks led to a more gen-
eral model, which allows are to connect η D ηa ˝ μD to γ D γa ˝ μD [2].
(Here, we are disintegrating both the initial and final plans with respect to the
first variable.) The idea, which appears first in Brenier’s Eulerian–Lagrangian
model [8] is to ‘double’ the state space, adding to the Eulerian state space D a
Lagrangian state space A. Even though A could be thought of as an identical
copy of D, it is convenient to denote it by a different symbol.

Let

��(D) :D �(D) � A.

Then, consider probability measures η D ηa ˝ μD in ��(D); this means that
η has μD as second marginal, and that∫

φ(ω, a) dη(ω, a) D
∫
A

(∫
�(D)

φ(ω, a) dηa

)
dμD(a)

for all bounded Borel functions φ on ��(D).
Again, one minimises the action

A (η) :D
∫
��(D)

1

2

∫ 1

0
jω̇j2 dt dη(ω, a)

with the incompressibility constraint (et )#η D μD for all t (here, et (ω, a) D
ω(t)) and the family of endpoint constraints

(e0)#ηa D γa, (e1)#ηa D ηa for μD-a.e. a 2 D.

As in Section 4.2, we are using ηa ˝ μD and γa ˝ μD to denote the disinte-
grations of η and γ respectively.

Denoting by δ(η, γ )2 the minimal action, it turns out that one can define
natural operations of reparameterisation, restriction and concatenation in this
class of flows. These imply that (δ, �(D)) is a metric space.

Indeed, it is proved in [1] that it is complete and a length space, whose
convergence is stronger than weak convergence in P(D � D).

4.2.2 Motivation for the extension to �(D)

Even for deterministic initial and final data, there exist examples of minimising
geodesics η that are not deterministic in between; this means that (e0, et )#η 2
�(D) n S(D), t 2 (0, 1).

To show this phenomenon, consider the problem of connecting up to additive
constants in D D B1(0) � R2 the identity map i to �i . For convenience, up to
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a reparameterisation, we can choose the time interval as [0, π ]. Two classical
solutions are

[0, π ] 3 t 7! (x1 cos ˙t C x2 sin ˙t, x1 sin ˙t C x2 cos ˙t),

corresponding to a clockwise and an anti-clockwise rotation.
On the other hand, one can consider the family of maps ωx,θ connecting x

to �x:

ωx,θ (t) :D x cos t C
√

1 � jxj2(cos θ, sin θ ) sin t θ 2 (0, π ) (4.4)

and define η :D (ωx,θ )�( 1
2π2 L

2bD � L 1b(0, 2π )).
It turns out that η is optimal as well, and non-deterministic in between.

Moreover, as shown in [4], it is possible to construct infinitely many other
solutions to the above minimisation problem which are not induced by maps.
For instance, one can split the measure η above as 1

2

(
ηC C η�

)
, where ηC

consists of the curves such that (cos θ, sin θ ) � x? � 0, and η� consists of the
curves such that (cos θ, sin θ ) � x? � 0, where x? D (x2,�x1), and the two
flows ηC and η� can be shown to be still incompressible (see [4, Paragraph
4.1]). We will say more about these important examples later on, as more results
on the theory will be available.

4.3 The pressure field

Brenier proved in [7] a surprising result: even though geodesics are not unique in
general, given the initial and final conditions, there is a unique, up to an additive
time-dependent constant, pressure field. The pressure field arises if one relaxes
the incompressibility constraint, considering almost incompressible flows ν.
Denoting by ρν the density produced by the flow, defined by

(et )#ν D ρν(t, �)μD

(
i.e.

∫
φ(ω(t)) dη(ω) D

∫
D

φρν(t, �) dμD for all φ

)
,

we say that ν is almost incompressible if kρν � 1kC1 � 1/2.

Theorem 4.1 (Pressure as a Lagrange multiplier, [1, 7]). Let η be optimal
between η and γ . There exists a distribution p 2 (C1)� such that

A (ν) C hp, ρν � 1i � A (η) (4.5)

for all almost incompressible flows ν between η and γ with ρν(t, �) D 1 for t

sufficiently close to 0 and to 1.

Using this result one can make first variations as follows: given a smooth
field w(t, x), vanishing for t close to 0 and 1, one can consider the family (X t )
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of flow maps

d

dε
X t (ε, x) D w(t, X t (ε, x)), X t (0, x) D x

and perturb (smoothly) the paths ω by ω(t) 7! X t (ε, ω(t)) 
 ω(t) C
ε w(t, ω(t)). Denoting by

�ε : ��(D) ! ��(D), �ε(ω, a)(t) :D (
X t (ε, ω(t)), a

)
,

the induced perturbations in ��(D), these in turn induce perturbations ηε :D
(�ε)#η of η which are almost incompressible. Then, the first variation gives∫

��(D)

∫ 1

0
ω̇(t) � d

dt
w(t, ω(t)) dt dη(ω, a) C hp, div wi D 0.

This equation uniquely determines rp as a distribution, independently of
the chosen minimizer η; indeed, η enters in (4.5) only through A (η), which
obviously is independent of the chosen minimiser, and so the above equation
holds true for every minimiser η. Since w is arbitrary, the first variation also
leads to a weak formulation of Euler’s equations

∂tvt (x) C div
(
v ˝ vt (x)

)C rxp(t, x) D 0,

where vt and v ˝ vt are implicitly defined by

vtμD D (et )#(ω̇(t)η), v ˝ vtμD D (et )#(ω̇(t) ˝ ω̇(t)η).

Observe that in general v ˝ vt 6D vt ˝ vt . Indeed, since these models allow the
passage of many fluid paths at the same point at the same time (i.e. branching and
multiple velocities are possible), the product vt (x) ˝ vt (x) of the mean velocity
vt (x) with itself might be quite different from the mean value v ˝ vt (x) of the
product. This gap precisely marks the difference between genuine distributional
solutions to Euler’s equation and ‘generalised’ ones (see also [4, Section 2 and
Paragraph 4.4] for more comments on this fact).

4.4 Necessary and sufficient optimality conditions

In this section we study necessary and sufficient optimality conditions for
Brenier’s variational problem and its extensions.

The basic remark is that any Borel integrable function q : [0, 1] � D ! R

with
∫
D
q(t, �) dμD D 0 for every t 2 [0, 1] induces a null-Lagrangian for the
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minimisation problem, with the incompressibility constraint; indeed,∫
��(D)

∫ 1

0
q(t, ω(t)) dt dη(ω, a) D

∫ 1

0

∫
D

q(t, x) dμD(x) dt D 0

for any generalized incompressible flow η. If we denote by

c0,1
q (x, y) :D inf

{∫ 1

0

1

2
jω̇(t)j2 � q(t, ω(t)) dt : ω(0) D x, ω(1) D y

}
the value function for the Lagrangian Lq(ω) :D ∫

1
2 jω̇(t)j2 � q(t, ω(t)) dt , we

also have∫
��(D)

∫ 1

0

1

2
jω̇(t)j2 � q(t, ω(t)) dt dη(ω, a) �

∫
D

c0,1
q (a, h(a)) dμD(a)

for any incompressible flow η between i and h. Moreover, equality holds if and
only if η-almost every (ω, a) is a c0,1

q -minimising path.
The following result, proved in [8, Section 3.6], shows that this lower bound

is sharp with q D p, if p is sufficiently smooth.

Theorem 4.2. Let u be a C1 solution to the Euler equations in [0, T ] � D,
whose pressure field p satisfies

(�) T 2 sup
t2[0,T ]

sup
x2D, jξ j�1

hr2
xp(t, x)ξ, ξi � π2.

Then the measure η induced by u via the flow map is optimal on [0, T ].

This follows by the fact that the integral paths of u satisfy ω̈(t) D
�rp(t, ω(t)), and (�) implies that stationary paths for the action are also mini-
mal for Lp. (This is a consequence of the one-dimensional Poincaré inequality∫ T

0 ju̇(t)j2 dt � π2

T 2

∫ T

0 ju(t)j2dt for all u : [0, T ] ! R such that
∫ T

0 u dt D 0;
see [5, Section 5] or [8, Proposition 3.2] for more details.)

The question investigated in [1] is: How far are these conditions from being
necessary? C1 regularity or even one-sided bounds on r2p are not realistic, so
one has to look for necessary (and sufficient) conditions under much weaker
regularity assumptions on p.

From now on, we restrict for simplicity to the case D D Td . The following
regularity result for the pressure field has been obtained in [2], improving the
regularity rp 2 Mloc((0, 1) � Td ) obtained in [8].

Theorem 4.3. For any γ, η 2 �(Td ) the unique pressure field given by Theo-
rem 4.1 belongs to L2

loc((0, 1);BV (Td )).
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The above result says in particular that p is a function, and not just a
distribution. This allows one to define the value of p pointwise, which as we
will see below will play a key role.

In order to guess the right optimality conditions, we recall that the two main
degrees of freedom in optimal transport problems are:

� in moving mass from x to y, the path, or the family of paths, that should be
followed;

� the amount of mass that should be moved, on each such path, from x to y.

The second degree of freedom is even more important in situations when
more than one optimal path between x and y is available. As we will see, both
things will depend on Lp. But, since p is defined only up to negligible sets,
the value of the Lagrangian Lp on a path ω is not invariant in the Lebesgue
equivalence class; furthermore, no local pointwise bounds on p are available
(remember that p(t, �) is only a BV function, with BV norm in L2

loc(0, 1)).
Therefore, as done in [1], one has to:

� Define a precise representative p̄ in the Lebesgue equivalence class of p; it
turns out that the ‘correct’ definition is

p̄(t, x) :D lim inf
ε#0

p(t, �) � φε(x),

where p(t, �) � φε are suitable mollifications of p(t, �). Of course, this defi-
nition depends on the choice of the mollifiers, but we prove that a suitable
choice of them provides a well-behaved (in the sense stated in Theorem 4.4)
function p̄.

� Consider, in the minimisation problem, only paths ω satisfying

Mp(t, ω(t)) 2 L1
loc(0, 1),

where Mp(t, �) is a suitable maximal function of p(t, �) (see [1] for a more
precise definition of the maximal operator).

With these constraints one can talk of locally minimising path ω for the
Lagrangian Lp̄ and, correspondingly, define a family of value functions

cs,tp̄ : Td � Td ! [�1,C1], [s, t] � (0, 1),

https://doi.org/10.1017/CBO9781107297296.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107297296.005


Variational models for incompressible Euler equations 69

representing the cost of the minimal connection between x and y in the time
interval (s, t):

cs,tp̄ (x, y) :D inf

{∫ t

s

1

2
jω̇(τ )j2 � p̄(τ, ω) dτ : ω(s) D x,

ω(t) D y,Mp(τ, ω(τ )) 2 L1(s, t)

}
.

With this notation, the following result proved in [1] provides necessary and
sufficient optimality conditions.

Theorem 4.4. Let η D ηa ˝ μT be an optimal incompressible flow between
η D ηa ˝ μT and γ D γa ˝ μT. Then

(i) η is concentrated on locally minimising paths for Lp̄;
(ii) for all intervals [s, t] � (0, T ), for μT-a.e. a, the plan (es, et )#ηa is cs,tp̄ -

optimal, i.e.∫
Td�Td

cs,tp̄ (x, y) d(es, et )#ηa �
∫

Td�Td

cs,tp̄ (x, y) dλ

for any λ 2 P(Td � Td ) having the same marginals of (es, et )#ηa .

Conversely, if (i), (ii) hold with p̄ replaced by some function q satisfying
Mq 2 L1

loc

(
(0, 1);L1(Td )

)
, then η is optimal, and q is the pressure field.

Notice that an optimal transport problem is trivial if either the initial or
the final measure is a Dirac mass; therefore, the second condition becomes
meaningful when either (es)#ηa or (et )#ηa is not a Dirac mass. This corresponds
to the case when (es, πa)#η is not induced by a map, a phenomenon that cannot
be ruled out, as we discussed in Section 4.2.2. In the example presented in
Section 4.2.2 the pressure field p(x) D jxj2/2 is smooth and time independent,
but the initial and final conditions are chosen in such a way that a continuum
of action-minimising paths (4.4) between x and �x exists. As shown in [4],
there are infinitely many incompressible flows connecting the identity map i
to �i , which moreover induce infinitely many distributional solutions to the
Euler equations [4, Paragraph 4.4].

The results in [1] show a connection with the theory of action-minimising
measures, though in this case the Lagrangian

∫ 1
0

1
2 jω̇(t)j2 � p̄(t, ω(t)) dt is

possibly non-smooth and not given a priori, but generated by the variational
problem itself.

Here, we see a nice variation on a classical theme of calculus of variations:
a field of (smooth, non-intersecting) extremals gives rise both to minimisers
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and to an incompressible flow in phase space. Here, instead, we have a field
of (possibly non-smooth, or intersecting) minimisers which has to produce an
incompressible flow in the state space. This structure seems to be rigid, and it
might lead to new regularity results for the pressure field.

Let us also recall that, as recently shown in [11], under a W 1,p-regularity of
the pressure p one can show that η-a.e. ω solves the Euler–Lagrange equations
and belongs to W 2,p([0, 1]) � C1([0, 1]). This result is a first step towards the
BV case, where one can still expect that the minimality of η may allow one to
prove higher regularity on the minimising curves ω (like ω̇ 2 BV ).
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