
Ergod. Th. & Dynam. Sys., (2023), 43, 1189–1221 © The Author(s), 2022. Published by Cambridge
University Press.
doi:10.1017/etds.2022.9

1189

Continuity of critical exponent of
quasiconvex-cocompact groups under

Gromov–Hausdorff convergence
NICOLA CAVALLUCCI

Mathematisches Institut, Universitat Köln, Weyertal 86–90, 50931 Köln, Germany
(e-mail: n.cavallucci23@gmail.com)

(Received 6 April 2021 and accepted in revised form 13 January 2022)

Abstract. We show continuity under equivariant Gromov–Hausdorff convergence of the
critical exponent of discrete, non-elementary, torsion-free, quasiconvex-cocompact groups
with uniformly bounded codiameter acting on uniformly Gromov-hyperbolic metric
spaces.

Key words: Gromov hyperbolicity, Gromov–Hausdorff convergence, entropy, continuity,
convex-cocompact
2020 Mathematics Subject Classification: 53C23 (Primary); 20F67 (Secondary)

Contents
1 Introduction 1190
2 Preliminaries on metric spaces 1191
3 Convergence of group actions 1192

3.1 Equivariant pointed Gromov–Hausdorff convergence 1192
3.2 Ultralimit of groups 1194
3.3 Comparison between the two convergences 1196

4 Gromov hyperbolic metric spaces 1199
4.1 Visual metrics 1203
4.2 Groups of isometries, limit set and critical exponent 1204

5 M(δ, D) is closed under equivariant Gromov–Hausdorff limits 1206
5.1 Entropy and systolic estimates onM(δ, D) 1206
5.2 Covering entropy 1206
5.3 Convergence of spaces inM(δ, D) 1208

6 Continuity of the critical exponent 1213
7 Algebraic and equivariant Gromov–Hausdorff convergence 1217

https://doi.org/10.1017/etds.2022.9 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2022.9
https://orcid.org/0000-0002-2785-1951
mailto:n.cavallucci23@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2022.9&domain=pdf
https://doi.org/10.1017/etds.2022.9


1190 N. Cavallucci

8 Examples 1220
References 1221

1. Introduction
The critical exponent of a discrete group of isometries � of a proper metric space X is
defined as

h� := lim sup
T→+∞

1
T

log �x ∩ B(x, T ),

where x is any point of X. In [Cav21b] the author proved that if X is a Gromov-hyperbolic
space then the limit superior above is a true limit (see also Lemma 4.12).

A discrete group � of isometries of a proper, δ-hyperbolic metric space is said to be
quasiconvex-cocompact if it acts cocompactly on the quasiconvex hull of its limit set�(�),
namely QC-Hull(�(�)). In this case the codiameter is by definition the diameter of the
quotient metric space �\QC-Hull(�(�)).

In the sequel we denote by M(δ, D) the class of triples (X, x, �) where X is
a proper, δ-hyperbolic metric space, � is a discrete, torsion-free, non-elementary,
quasiconvex-cocompact group of isometries of X with codiameter less than or equal to D
and x is a point of QC-Hull(�(�)). We refer to §4 for the details of all these definitions.

We are interested in convergence of sequences of triples inM(δ, D) in the equivariant
pointed Gromov–Hausdorff sense, as defined by Fukaya in [Fuk86]. This is a version of
the classical pointed Gromov–Hausdorff convergence that considers also the groups acting
on the spaces. Its precise definition is recalled in §3. Our main result is the following
theorem.

THEOREM A. Let δ, D ≥ 0 and let (Xn, xn, �n)n∈N ⊆M(δ, D). If the sequence
(Xn, xn, �n) converges in the equivariant pointed Gromov–Hausdorff sense to
(X∞, x∞, �∞) then:
(i) (X∞, x∞, �∞) ∈M(δ, D); and

(ii) h�∞ = limn→+∞ h�n .

The first difficulty in the proof of (i) is to show that the limit group �∞ is discrete. The
proof is based on a result of [BCGS21]: if (X, x, �) ∈M(δ, D) satisfies h� ≤ H < +∞,
then the global systole of � is bigger than some positive constant depending only on δ, D
and H (cf. Proposition 5.3). This is a powerful tool when used together with Corollary
5.9: under the assumptions of Theorem A the critical exponents of the groups �n are
uniformly bounded above by some H < +∞. All the assumptions on the classM(δ, D)
are necessary in order to get the discreteness of the limit group; see §8. The second
difficulty is to show that �∞ is quasiconvex-cocompact. In order to do so we will show
that the limit of the Gromov boundaries ∂Xn can be seen as a canonical subset of ∂X∞;
see Proposition 5.11. Under this identification the limit of the sets �(�n) coincides with
�(�∞).

The proof of the continuity statement, Theorem A(ii), is based on the following uniform
equidistribution of the orbits. It is a quantified version of a result of Coornaert [Coo93].
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THEOREM B. Under the assumptions of Theorem A there existsK > 0 such that, for every
n and for every T ≥ 0,

1
K

· eT ·h�n ≤ �nxn ∩ B(xn, T ) ≤ K · eT ·h�n .

In the literature the behaviour of the critical exponent under another kind of
convergence, algebraic convergence, was previously studied by Bishop and Jones in the
case of hyperbolic manifolds [BJ97] and in a more general setting by Paulin in [Pau97].
The definition of algebraic convergence, as well as the notation below, are recalled in §7.
They proved the following result, which we refer to as the BJP theorem.

THEOREM. [BJ97, Pau97] Let X be a geodesic, δ-hyperbolic metric space such that for
each x, y ∈ X there is a geodesic ray issuing from x passing at distance no more than δ
from y and let G be a finitely generated group. Let ϕn, ϕ∞ : G → Isom(X) be homomor-
phisms. If ϕn(G) converges algebraically to ϕ∞(G), if ϕn(G), ϕ∞(G) are discrete and if
ϕ∞(G) has no global fixed point at infinity, then hϕ∞(G) ≤ lim infn→+∞ hϕn(G).

We point out here the main differences and analogies between this statement and
Theorem A(ii).
• In the BJP theorem the isomorphism type of the group G is fixed. A posteriori this

is not restrictive: under the assumptions of Theorem A the isomorphism type of the
groups �n is eventually constant (Corollary 7.7). The proof of Theorem A(i) does not
use this property.

• The algebraic limit is a priori different from the equivariant pointed Gromov–
Hausdorff limit (see Example 7.3). However, if the spaces Xn are all isometric and
satisfy the assumptions of Theorem A then the two limits coincide (Theorem 7.4).

• In Theorem A the spaces Xn can be pairwise non-isometric. In that case the
notion of algebraic convergence cannot be defined. This is a posteriori the main
difference between algebraic convergence and equivariant pointed Gromov–Hausdorff
convergence on the classM(δ, D).

2. Preliminaries on metric spaces
Throughout this paper X will denote a metric space and d will denote the metric on X. The
open (respectively, closed) ball of radius r and centre x is denoted by B(x, r) (respectively,
B(x, r)). A geodesic segment is an isometry γ : I → X where I = [a, b] is a bounded
interval of R. The points γ (a), γ (b) are called the endpoints of γ . A metric space X is
said to be geodesic if for all couple of points x, y ∈ X there exists a geodesic segment
whose endpoints are x and y. We will denote any geodesic segment between two points x
and y, in an abuse of notation, by [x, y]. A geodesic ray is an isometry γ : [0, +∞) → X,
while a geodesic line is an isometry γ : R → X.

The group of isometries of a proper metric space X (that is, closed balls are compact)
is denoted by Isom(X) and it is endowed with the topology of uniform convergence on
compact subsets of X.

If � is a subgroup of Isom(X) we define �R(�, x) := {g ∈ � s.t. d(x, gx) ≤ R} and
�R(x) := 〈�R(�, x)〉, for every x ∈ X and R ≥ 0. When the context is clear we simply
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write �R(x). A subgroup � is said to be discrete if equivalently:
(i) it is a discrete subspace of Isom(X);

(ii) #�R(x) < +∞ for all x ∈ X and all R ≥ 0.
The systole of � at x ∈ X is the quantity

sys(�, x) := inf{d(x, gx) s.t. g ∈ � \ {id}},
while the global systole of � is sys(�, X) := infx∈X sys(�, x). If any non-trivial isometry
of � has no fixed points then the systole at a point is always strictly positive by discreteness.

3. Convergence of group actions
First, we recall the definition and the properties of the equivariant pointed Gromov–
Hausdorff convergence. Then we compare this notion with ultralimit convergence.

3.1. Equivariant pointed Gromov–Hausdorff convergence. We consider triples (X, x, �)
where (X, x) is a pointed, proper metric space and � < Isom(X). The following
definitions are due to Fukaya [Fuk86].

Definition 3.1. Let (X, x, �), (Y , y, �) be two triples as above and ε > 0. An equivariant
ε-approximation between them is a triple (f , ϕ, ψ) where:
• f : B(x, 1/ε) → B(y, 1/ε) is a map such that

– f (x) = y,
– |d(f (x1), f (x2))− d(x1, x2)| < ε for every x1, x2 ∈ B(x, 1/ε),
– for every y1 ∈ B(y, 1/ε) there exists x1 ∈ B(x, 1/ε) such that d(f (x1), y1) < ε;

• ϕ : �1/ε(�, x) → �1/ε(�, y) is a map satisfying d(f (gx1), ϕ(g)f (x1)) < ε for every
g ∈ �1/ε(�, x) and every x1 ∈ B(x, 1/ε) such that also gx1 ∈ B(x, 1/ε);

• ψ : �1/ε(�, y) → �1/ε(�, x) is a map satisfying d(f (ψ(g)x1), gf (x1)) < ε for
every g ∈ �1/ε(�, y) and every x1 ∈ B(x, 1/ε) such that ψ(g)x1 ∈ B(x, 1/ε).

Definition 3.2. A sequence of triples (Xn, xn, �n) is said to converge in the equivariant
pointed Gromov–Hausdorff sense to a triple (X, x, �) if for every ε > 0 there exists nε ≥ 0
such that if n ≥ nε then there exists an equivariant ε-approximation between (Xn, xn, �n)
and (X, x, �). One of these equivariant ε-approximations will be denoted by (fn, ϕn, ψn).

In this case we will write (Xn, xn, �n) −→
eq-pGH

(X, x, �).

Remark 3.3. A few observations are in order.
• If (Xn, xn, �n) −→

eq-pGH
(X, x, �) then (Xn, xn) converges in the classical pointed

Gromov–Hausdorff sense to (X, x). We denote this convergence by (Xn, xn) −→
pGH

(X, x).
• In the definition the limit space X is assumed to be proper. This is not restrictive,

as we will see in a moment. If (Xn, xn, �n) −→
eq-pGH

(X, x, �) we denote by X̂ the

completion of X. Any isometry of X defines uniquely an isometry of X̂, so there is a
well-defined group of isometries �̂ of X̂ associated to �. It follows from the definition
that (Xn, xn, �n) −→

eq-pGH
(X̂, x̂, �̂) too. Moreover, if a sequence of proper metric spaces
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converges in the pointed Gromov–Hausdorff sense to a complete metric space then the
limit is proper by [Her16, Corollary 3.10].

We recall that Isom(X) is endowed with the topology of uniform convergence on
compact subsets of X, when X is a proper space. It is classically known (see also the remark
above) that the pointed Gromov–Hausdorff limit of a sequence of metric spaces is unique
up to pointed isometry when we restrict to the class of complete (and therefore proper)
spaces. In order to obtain uniqueness of the equivariant pointed Gromov–Hausdorff limit
we need to restrict to groups that are closed in the isometry group of the limit space.

PROPOSITION 3.4. [Fuk86, Proposition 1.5] Suppose (Xn, xn, �n) −→
eq-pGH

(X, x, �) and

(Xn, xn, �n) −→
eq-pGH

(Y , y, �), where X, Y are proper and �, � are closed subgroups of

Isom(X), Isom(Y ), respectively. Then there exists an isometry F : X → Y such that:
• F(x) = y;
• F∗ : Isom(X) → Isom(Y ) defined by F∗(g) = F ◦ g ◦ F−1 is an isomorphism

between � and �.

Definition 3.5. Two triples (X, x, �) and (Y , y, �) are said equivariantly isometric if there
exists an isometry F : X → Y satisfying the thesis of the previous proposition. In this case
F is called an equivariant isometry and we write (X, x, �) ∼= (Y , y, �).

From now on we will consider the equivariant pointed Gromov–Hausdorff convergence
only restricted to triples (X, x, �) where (X, x) is a pointed proper metric space and � is
a closed subgroup of Isom(X). This condition is not restrictive.

LEMMA 3.6. If (Xn, xn, �n) −→
eq-pGH

(X, x, �) then (Xn, xn, �n) −→
eq-pGH

(X, x, �̄), where

�̄ is the closure of � in Isom(X).

Proof. By definition for every ε > 0 there is nε ≥ 0 such that for every n ≥ nε there is
an equivariant ε/2-approximation (fn, ϕn, ψn) between (Xn, xn, �n) and (X, x, �). We
want to define an equivariant 2ε-approximation (fn, ϕn, ψ̄n) between (Xn, xn, �n) and
(X, x, �̄).

For every g ∈ �1/ε(�̄, x) there is a sequence of isometries gk ∈ � such that gk → g

uniformly on compact subsets of X. In particular, for every δ > 0 there exists kδ ≥ 0 such
that if k ≥ kδ then d(gk(y), g(y)) ≤ δ for every y ∈ B(x, 2/ε). Choosing δ small enough,
we have gk ∈ �2/ε(�, x) for k ≥ kδ . We define ψ̄n(g) := ψn(gkδ ). Observe that for every
yn ∈ B(xn, 1/ε) we have

d(fn(ψ̄(g)yn), gfn(yn)) = d(fn(ψn(gkδ )), gfn(yn))

≤ d(fn(ψn(gkδ )), gkδfn(yn))+ d(gkδfn(yn), gfn(yn))

≤ ε + δ,

where the last inequality follows since fn(yn) ∈ B(x, 2/ε). Taking δ ≤ ε, we conclude
that (fn, ϕn, ψ̄n) is the desired equivariant 2ε-approximation and it is defined for all
n ≥ nε.
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3.2. Ultralimit of groups. For more detailed notions on ultralimits we refer to [CS21,
DK18]. A non-principal ultrafilter ω is a finitely additive measure on N such that
ω(A) ∈ {0, 1} for every A ⊆ N and ω(A) = 0 for every finite subset of N. Accordingly
we write ω-a.s. and for ω-a.e. (n) in the usual measure-theoretic sense.

Given a bounded sequence (an) of real numbers and a non-principal ultrafilter ω,
there exists a unique a ∈ R such that for every ε > 0 the set {n ∈ N s.t. |an − a| < ε}
has ω-measure 1; see, for instance, [DK18, Lemma 10.25]. The real number a is called the
ultralimit of the sequence an and it is denoted by ω-lim an.

Given a sequence of pointed metric spaces (Xn, xn), we denote by (Xω, xω) the
ultralimit pointed metric space. It is the set of sequences (yn), where yn ∈ Xn for every n,
for which there exists M ∈ R such that d(xn, yn) ≤ M for ω-a.e. (n), modulo the relation
(yn) ∼ (y′

n) if and only if ω-lim d(yn, y′
n) = 0. The point of Xω defined by the class of

the sequence (yn) is denoted by yω = ω-lim yn. The formula d(ω-lim yn, ω-lim y′
n) =

ω-lim d(yn, y′
n) defines a metric on Xω which is called the ultralimit distance on Xω.

A sequence of isometries gn ∈ Isom(Xn) is admissible if there exists M ≥ 0 such that
d(gnxn, xn) ≤ Mω-a.s. Any such sequence defines an isometry gω = ω-lim gn of Xω by
the formula gωyω = ω-lim gnyn [DK18, Lemma 10.48]. Given a sequence of groups of
isometries �n of Xn, we set

�ω = {ω-lim gn s.t. gn ∈ �n for ω-a.e.(n)}.
In particular, the elements of �ω are ultralimits of admissible sequences.

LEMMA 3.7. The composition of admissible sequences of isometries is an admissible
sequence of isometries and the limit of the composition is the composition of the limits.

(Indeed, if gω = ω-lim gn, hω = ω-lim hn belong to �ω then their composition belongs
to �ω, as ω-lim d(gnhn · xn, xn) ≤ ω-lim d(gnhn · xn, gn · xn)+ ω-lim d(gn · xn, xn) <
+∞.)

Analogously one proves that (idn) belongs to �ω and defines the identity map of Xω,
and that if gω = ω-lim gn belongs to �ω then also the sequence (g−1

n ) defines an element
of �ω, which is the inverse of gω.

So we have a well-defined composition law on �ω, that is, for gω = ω-lim gn and
hω = ω-lim hn we set gω ◦ hω = ω-lim(gn ◦ hn). With this operation �ω is a group of
isometries of Xω and we call it the ultralimit group of the sequence of groups �n.

The ultralimit space Xω may be not proper in general, even if Xn is proper for every n.
When Xω is proper, �ω is closed with respect to the uniform convergence on compact
subsets.

PROPOSITION 3.8. Let (Xn, xn, �n) be a sequence of proper metric spaces and ω be a
non-principal ultrafilter. If Xω is proper then �ω is a closed subgroup of Isom(Xω).

We remark that the proof is analogous to [DK18, Corollary 10.64].

Proof. Let (gkω)
k∈N be a sequence of isometries of �ω converging to an isometry g∞ of

Xω with respect to the uniform convergence on compact subsets. We want to show that g∞
coincides with the ultralimit of some sequence of admissible isometries g∞

n of Xn.
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First of all, we can extract a subsequence, denoted again by (gkω), satisfying
d(gkωyω, gk+1

ω yω) ≤ 1/2k for all yω ∈ B(xω, k), for all k ∈ N. Now, for every fixed k ∈ N,
let Sk = {y1

ω, . . . , yNkω } be a 1/2k+2-dense subset of B(xω, k). It is finite since Xω is
proper. If yiω = ω-lim yin for i = 1, . . . , Nk , it is clear that the set Skn = {y1

n , . . . , yNkn } is
a 1/2k+1-dense subset of B(xn, k) for ω-a.e. (n). For every k ∈ N we define the set

Ak =
{
n ∈ N s.t. d(gjnyin, gj+1

n yin) ≤ 1
2j

for all 1 ≤ j ≤ k, i = 1, . . . , Nj

}
.

By definition ω(Ak) = 1 and Ak+1 ⊆ Ak for every k ∈ N. We set B = ⋂
k∈N Ak . There

are two cases.
Case 1: ω(B) = 1. In this case d(gkny

i
n, gk+1

n yin) ≤ 1/2k for all i = 1, . . . , Nk and
all k ∈ N, ω-a.s. Then ω-a.s. we have d(gknyn, gk+1

n yn) ≤ 1/2k−1 for every k ∈ N and
every yn ∈ B(xn, k). We set g∞

n := gnn ∈ �n. This sequence of isometries is admissible
and we denote its ultralimit by g∞

ω ∈ �ω. Now we fix yω = ω-lim yn ∈ Xω. By definition
d(xn, yn) ≤ M for ω-a.e. (n). We have

d(g∞yω, g∞
ω yω) ≤ d(gkωyω, g∞

ω yω)+ 1
2k

= ω-lim d(gknyn, gnnyn)+ 1
2k

≤
n−k−1∑
j=0

d(g
k+j
n yn, gk+j+1

n yn)+ 1
2k

≤
∞∑

j=k−1

1
2j

+ 1
2k

≤ 1
2k−2 + 1

2k
≤ 1

2k−3

for all fixed k ≥ M . We conclude that g∞yω = g∞
ω yω. By the arbitrariness of yω we get

g∞ = g∞
ω that belongs to �ω.

Case 2: ω(B) = 0. Since A1 = ⊔∞
j=1(Aj \ Aj+1) � B and since ω(A1) = 1, we have

that ω(
⊔∞
j=1(Aj \ Aj+1)) = 1. We set C = ⊔∞

j=1(Aj \ Aj+1). For all n ∈ C we set

g∞
n := g

j(n)
n , where j (n) is the unique j ≥ 1 such that n ∈ Aj \ Aj+1. We claim that the

corresponding ultralimit isometry g∞
ω ∈ �ω equals g∞. Indeed, let yω = ω-lim yn ∈ Xω.

For every fixed k ∈ N, consider the set Ck = ⊔∞
j=k(Aj \ Aj+1). Each of the sets Aj \

Aj+1 has ω-measure 0, so ω(Ck) = 1 for every fixed k. Let n ∈ Ck ⊂ C. By definition
j (n) ≥ k since n ∈ Ck . Since Aj(n) ⊆ Aj(n)−1 ⊆ · · · ⊆ Ak we have

d(g
j (n)
n yn, gknyn) ≤ 2 · 1

2k+2 +
j (n)∑
m=k

1
2m

≤ 1
2k+1 · 1

2k−1 ≤ 1
2k−2

as soon as k > d(yω, xω) and n ∈ Ck . The set Ck has ω-measure 1, so we con-
clude that d(g∞

ω yω, g∞yω) ≤ 1/2k−2. By the arbitrariness of k and yω we finally get
g∞ = g∞

ω ∈ �ω.

LEMMA 3.9. Let (X, x) be a proper metric space and � ⊆ Isom(X) be a closed subgroup.
Then the ultralimit of the constant sequence (X, x, �) is naturally equivariantly isometric
to (X, x, �) for every non-principal ultrafilter.
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Proof. Let (Xn, xn, �n) = (X, x, �) for every n and let ω be a non-principal ultrafilter.
By [CS21, Proposition A.3] the map ι : (X, x) → (Xω, xω) that sends each point y
to the ultralimit point corresponding to the constant sequence yn = y is an isometry
sending x to xω. This means that each point yω of Xω can be written as yω = ω-lim y

for some y ∈ X. We need to show that ι∗� = �ω. We have ι∗g(ω-lim y) = ω-lim gy

for every g ∈ � and yω = ω-lim y ∈ Xω, that is, ι∗g coincides with the ultralimit of the
constant sequence gn = g. In particular, ι∗� ⊆ �ω. Now we take gω = ω-lim gn ∈ �ω,
where gn ∈ � is an admissible sequence, that is, d(x, gnx) ≤ M for some M. The set
�M(�, x) is compact by the Arzelà–Ascoli theorem [Kel17, Ch. 7 and Theorem 17] since
� is closed, so by [DK18, Lemma 10.25] there exists g ∈ �M(�, x) such that for every
ε > 0 and R ≥ 0 the set

{n ∈ N s.t. d(gny, gy) < ε for all y ∈ B(x, R)}
belongs to ω. It is clear that the constant sequence g defines the ultralimit isometry gω, that
is, ι∗(g) = gω. Since g ∈ � we conclude that ι∗� = �ω.

3.3. Comparison between the two convergences. We now compare the ultralimit conver-
gence to the equivariant pointed Gromov–Hausdorff convergence. Analogues of the next
results for the classical pointed Gromov–Hausdorff convergence can be found, for instance,
in [Jan17].

PROPOSITION 3.10. Suppose (Xn, xn, �n) −→
eq-pGH

(X, x, �) and denote by (fn, ϕn, ψn)

some corresponding equivariant approximations. Let ω be a non-principal ultrafilter and
let (Xω, xω, �ω) be the ultralimit triple. Then the map

F : (Xω, xω, �ω) → (X, x, �)

defined by sending yω = ω-lim yn ∈ Xω to ι−1(ω-lim fn(yn)) is a well-defined equivariant
isometry. Here ι is the natural equivariant isometry of Lemma 3.9 between (X, x, �) and
the ultralimit of its constant sequence.

Proof. We divide the proof into steps.
Good definition. Given a point yω = ω-lim yn ∈ Xω, by definition there exists M ≥ 0

such that d(xn, yn) ≤ Mω-a.s. For sufficiently large n the map fn is defined on yn and it
satisfies d(fn(yn), fn(xn)) ≤ M + 1 and fn(xn) = x. Then the sequence (fn(yn)) isω-a.s.
bounded and ι−1(ω-lim fn(yn)) is a well-defined point of X.

Now suppose (y′
n) is another sequence such that ω-lim d(yn, y′

n) = 0. For every
ε > 0 we have d(yn, y′

n) < εω-a.s. Moreover, arguing as before, d(fn(yn), fn(y′
n)) ≤

d(yn, y′
n)+ ε ≤ 2εω-a.s. By the arbitrariness of ε > 0 we get d(ω-lim fn(yn), ω-lim

fn(y
′
n)) = 0. In particular, F is well defined.

Isometric embedding. We fix yω = ω-lim yn, zω = ω-lim zn ∈ Xω and ε > 0. As usual,
all the conditions

d(ι−1(ω-lim fn(yn)), fn(yn)) < ε, d(ι−1(ω-lim fn(zn)), fn(zn)) < ε,

|d(yω, zω)− d(yn, zn)| < ε, |d(fn(yn), fn(zn))− d(yn, zn)| < ε
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hold ω-a.s. Therefore

|d(F (yω), F(zω))− d(yω, zω)| < 4ε.

By the arbitrariness of ε we conclude that F is an isometric embedding.
Surjectivity. We fix y ∈ X, ε > 0 and we set L := d(x, y). By definition there exists

yn ∈ Xn such that d(fn(yn), y) < εω-a.s. The sequence yn is clearly admissible and
defines a point yω = ω-lim yn ofXω. Since d(fn(yn), y) < εω-a.s., we have that F(yω) =
ω-lim fn(yn) satisfies d(F (yω), y) < 2ε. This shows that y belongs to the closure of
F(Xω). Every ultralimit space is a complete metric space [DK18, Corollary 10.64], so
F is a closed map. Indeed, if F(ykω) is a convergent sequence, then it is Cauchy. Since
F is an isometric embedding, the sequence (ykω) is Cauchy and therefore converges. By
continuity of F we conclude that the limit point of the sequence F(ykω) belongs to the
image of F. Hence F(Xω) is closed and y ∈ F(Xω), showing that F is surjective.

F is equivariant. It is clear that F(xω) = ι−1(ω-lim fn(xn)) = x. It remains to show
that F∗(�ω) = �. We take gω = ω-lim gn ∈ �ω. Then F∗(gω) acts on the point y of X
as F∗gω(y) = F ◦ gω ◦ F−1(y). Clearly F−1(y) = ω-lim yn, where yn is any sequence
such that ω-lim fn(yn) = y. So gω ◦ F−1y = ω-lim gnyn by definition of gω. Finally,
F ◦ gω ◦ F−1 = ι−1(ω-lim fn(gnyn)). Now we consider the isometries ϕn(gn) ∈ �: they
are defined for sufficiently large n since gω displaces xω of some finite quantity. We define
the isometry ι−1∗ (ω-lim ϕn(gn)): it is an isometry of X, which is proper, and it belongs to
� by Lemma 3.9. We have

d(ι−1∗ ω-lim ϕn(gn)(y), F ◦ gω ◦ F−1(y)) = ω-lim d(ϕngn(y), fn(gnyn))

for every y ∈ X. Moreover,

d(ϕngn(y), fn(gnyn)) ≤ d(ϕngn(y), ϕngn(fn(yn)))+ d(ϕngn(fn(yn)), fn(gnyn))

≤ 2ε

if n is sufficiently large. This means that F∗gω = ι−1(ω-lim ϕngn) ∈ �, so F∗�ω ⊆ �.
Now we take g ∈ � and we consider the isometries ψng ∈ �n that are defined for
sufficiently large n. The sequence (ψng) is admissible and therefore it defines a limit isom-
etry gω. For all y ∈ X we have F∗(gω)(y) = Fgω(yω), where yω = ω-lim yn and yn is a
sequence such that ι−1(ω-lim fn(yn)) = y. Then F∗(gω)(y) = ι−1(ω-lim fn(ψn(g)yn)).
Once again ω-a.s. we have

d(F∗(gω)(y), gy) ≤ d(ι−1(ω-lim fn(ψn(g)yn)), gfn(yn))+ ε

≤ d(fn(ψn(g)yn), gfn(yn))+ 2ε.

We conclude that F∗gω = g, so F∗�ω = �.

PROPOSITION 3.11. Let (Xn, xn, �n) be a sequence of triples, ω be a non-principal
ultrafilter and (Xω, xω, �ω) be the ultralimit triple. If Xω is proper then there exists a
subsequence {nk} ⊆ N such that (Xnk , xnk , �nk ) −→

eq-pGH
(Xω, xω, �ω).

Remark 3.12. Notice that the subsequence {nk} may not belong to ω.
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Proof. We fix ε > 0. Since Xω is proper we can select an ε/7-net Sε = {xω =
y1
ω, . . . , yNεω } of B(xω, 1/ε), where yiω = ω-lim yin for i = 1, . . . , Nε. Moreover, �ω

is closed by Proposition 3.8, so �ω,1/ε(xω) is relatively compact by the Arzelà–Ascoli
theorem [Kel17, Ch. 7 and Theorem 17]. Therefore we can find a finite subset
g1
ω, . . . , gKεω ∈ �ω,1/ε(xω), giω = ω-lim gin, with the property that for every gω ∈
�ω,1/ε(xω) there exists 1 ≤ i ≤ Kε such that d(gωyω, giωyω) ≤ ε/7 for all yω ∈
B(xω, 1/ε).

Now ω-a.s. the following finite set of conditions hold:
• |d(yiω, yjω)− d(yin, yjn)| ≤ ε/7 for all i, j ∈ {1, . . . , Nε};
• the set Sεn = {y1

n , . . . , yNεn } is a 2
7ε-net of B(xn, 1/ε);

• gin ∈ �n,1/ε(xn) for every i = 1, . . . , Kε;
• |d(giωyjω, ylω)− d(gny

j
n , yln)| ≤ ε/7 for all 1 ≤ i ≤ Kε and all 1 ≤ j , l ≤ Nε.

• the set {g1
n, . . . , gKεn } is a 2

7ε-dense subset of �n,1/ε(xn) with respect to the uniform
distance.

For the natural numbers n where these conditions hold we define

fn : B
(
xn,

1
ε

)
→ B

(
xω,

1
ε

)

by sending the point yn to a point yiω where i is such that d(yn, yin) ≤ 2
7ε. For yn, zn ∈

B(xn, 1/ε) we have

|d(fn(yn), fn(zn))− d(yn, zn)| = |d(yi1ω , yi2ω )− d(yn, zn)|
for some i1, i2. But for these indices n we have |d(yi1ω , yi2ω )− d(y

i1
n , yi2n )| ≤ 2

7ε, so we get

|d(fn(yn), fn(zn))− d(yn, zn)| ≤ 6
7ε.

Moreover, we define

ψn : �ω,1/ε(xω) → �n,1/ε(xn)

by sending gω to gin, where i ∈ {1, . . . , Kε} is such that d∞
B(xω ,1/ε)(gω, giω) ≤ ε/7.

Let gω ∈ �ω,1/ε(xω), so 
n(gω) = gin as before. Let yn ∈ B(xn, 1/ε) such that also
ginyn ∈ B(xn, 1/ε). Let j , l ∈ {1, . . . , Nε} be such that d(yn, yjn) ≤ 2

7ε and d(ginyn, yln) ≤
2
7ε. By definition fn(yn) = yiω, while fn(ψn(gω)yn) = ylω. We have

d(fn(ψn(gω)yn), gωfn(yn)) = d(ylω, gωyjω)

≤ d(ylω, giωy
j
ω)+ 2

7ε

≤ d(yln, giny
j
n)+ 3

7ε ≤ ε.

Finally, we define

ϕn : �n,1/ε(xn) → �ω,1/ε(xω)

as ϕn(gn) = giω, where d∞
B(xn,1/ε)(gn, gin) ≤ 2

7ε.
Let gn ∈ �n,1/ε(xn) and let ϕn(gn) = giω. Now let yn ∈ B(xn, 1/ε) such that also

gnyn ∈ B(xn, 1/ε). Let j , l ∈ {1, . . . , Nε} such that d(yn, yjn) ≤ 2
7ε and d(gnyn, yln) ≤
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2
7ε, so that fn(yn) = y

j
ω and fn(gnyn) = ylω. Therefore

d(fn(gnyn), ϕn(gn)fn(yn)) = d(ylω, giωy
j
ω)

≤ d(yln, gny
j
n)+ 3

7ε

≤ d(yln, gnyn)+ 5
7ε ≤ ε.

This shows that ω-a.s. we can find an equivariant ε-approximation between (Xn, xn, �n)
and (Xω, xω, �ω). For all integers k we set ε = 1/k and we choose nk ∈ N in the set of
indices for which there exists an equivariant 1/k-approximation as before. The sequence
(Xnk , xnk , �nk ) satisfies the thesis.

We summarize these properties in the following proposition.

PROPOSITION 3.13. Let (Xn, xn, �n) be a sequence of triples and let ω be a non-principal
ultrafilter.
(i) If (Xn, xn, �n) −→

eq-pGH
(X, x, �) then (Xω, xω, �ω) ∼= (X, x, �).

(ii) IfXω is proper then (Xnk , xnk , �nk ) −→
eq-pGH

(Xω, xω, �ω) for some subsequence {nk}.

COROLLARY 3.14. Let (Xn, xn, �n) be a sequence of triples and suppose that there is
a triple (X, x, �), X proper, such that (X, x, �) ∼= (Xω, xω, �ω) for every non-principal
ultrafilter ω. Then (Xn, xn, �n) −→

eq-pGH
(X, x, �).

Proof. The equivariant pointed Gromov–Hausdorff convergence is metrizable (cf.
[Fuk86]), so it is enough to show that every subsequence has a subsequence that
converges to (X, x, �). Fix a subsequence {nk}. The set {nk} is infinite; then there exists a
non-principal ultrafilter ω containing it for which ω({nk}) = 1 (cf. [Jan17, Lemma 3.2]).
The ultralimit with respect to ω of the sequence (Xnk , xnk , �nk ) is the same as that of the
sequence (Xn, xn, �n) since ω({nk}) = 1. By Proposition 3.13 we can extract a further
subsequence {nkj } that converges in the equivariant pointed Gromov–Hausdorff sense to
(X, x, �).

4. Gromov hyperbolic metric spaces
We recall briefly the definition and some properties of Gromov-hyperbolic metric spaces.
Good references are, for instance, [BH13, CDP90].

Let X be a geodesic metric space. Given three points x, y, z ∈ X, the Gromov product
of y and z with respect to x is defined as

(y, z)x = 1
2 (d(x, y)+ d(x, z)− d(y, z)).

The space X is said to be δ-hyperbolic, δ ≥ 0, if for every four points x, y, z, w ∈ X the
following four-points condition holds:

(x, z)w ≥ min{(x, y)w, (y, z)w} − δ (4.1)
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or, equivalently,

d(x, y)+ d(z, w) ≤ max{d(x, z)+ d(y, w), d(x, w)+ d(y, z)} + 2δ. (4.2)

The space X is Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
This formulation of δ-hyperbolicity is convenient when one is interested in taking

limits. We will also make use of another classical characterization of δ-hyperbolicity.
A geodesic triangle in X is the union of three geodesic segments [x, y], [y, z], [z, x]
and is denoted by �(x, y, z). For every geodesic triangle there exists a unique tripod
� with vertices x̄, ȳ, z̄ such that the lengths of [x̄, ȳ], [ȳ, z̄], [z̄, x̄] equal the lengths
of [x, y], [y, z], [z, x], respectively. There exists a unique map f� from �(x, y, z) to
the tripod � that isometrically identifies the corresponding edges, and there are exactly
three points cx ∈ [y, z], cy ∈ [x, z], cz ∈ [x, y] such that f�(cx) = f�(cy) = f�(cz) = c,
where c is the centre of the tripod �. By definition of f�, we have

d(x, cz) = d(x, cy), d(y, cx) = d(y, cz), d(z, cx) = d(z, cy).

The triangle �(x, y, z) is called δ-thin if for every u, v ∈ �(x, y, z) such that f�(u) =
f�(v) the inequality d(u, v) ≤ δ holds; in particular, the mutual distances between cx , cy
and cz are at most δ. It is well known that every geodesic triangle in a geodesic δ-hyperbolic
metric space (as defined above) is 4δ-thin.

Moreover, the last condition is equivalent to the above definition of hyperbolicity, up to
slightly increasing the hyperbolicity constant δ in (4.1).

The following is a basic property of Gromov-hyperbolic metric spaces.

LEMMA 4.1. (Projection lemma, cf. [CDP90, Lemma 3.2.7]) Let X be a δ-hyperbolic
metric space and let x, y, z ∈ X. For every geodesic segment [y, z] we have (y, z)x ≥
d(x, [y, z])− 4δ.

Let X be a proper, δ-hyperbolic metric space and x be a point of X. The Gromov
boundary of X is defined as the quotient

∂X = {(zn)n∈N ⊆ X | lim
n,m→+∞(zn, zm)x = +∞}/≈,

where (zn)n∈N is a sequence of points in X and ≈ is the equivalence relation defined by
(zn)n∈N ≈ (z′n)n∈N if and only if limn,m→+∞(zn, z′m)x = +∞. We will write z = [(zn)] ∈
∂X for short, and we say that (zn) converges to z. This definition does not depend on the
basepoint x.

There is a natural topology on X ∪ ∂X that extends the metric topology of X. The
Gromov product can be extended to points z, z′ ∈ ∂X by

(z, z′)x = sup
(zn),(z′n)

lim inf
n,m→+∞(zn, z′m)x

where the supremum is taken among all sequences such that (zn) ∈ z and (z′n) ∈ z′. For
every z, z′, z′′ ∈ ∂X the inequality

(z, z′)x ≥ min{(z, z′′)x , (z′, z′′)x} − δ. (4.3)

https://doi.org/10.1017/etds.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.9


Continuity of critical exponent 1201

continues to hold. Moreover, for all sequences (zn), (z′n) converging to z, z′ respectively,
we have

(z, z′)x − δ ≤ lim inf
n,m→+∞(zn, z′m)x ≤ (z, z′)x . (4.4)

The Gromov product between a point y ∈ X and a point z ∈ ∂X is defined in a similar way
and satisfies a condition analogous to (4.4).

Every geodesic ray ξ defines a point ξ+ = [(ξ(n))n∈N] of the Gromov boundary ∂X:
we say that ξ joins ξ(0) = y to ξ+ = z, and we denote this by [y, z]. Moreover, for
every z ∈ ∂X and every x ∈ X it is possible to find a geodesic ray ξ such that ξ(0) = x

and ξ+ = z. Any such geodesic ray is denoted by ξx,z = [x, z] even if it is possibly not
unique. Analogously, given different points z = [(zn)], z′ = [(z′n)] ∈ ∂X, there always
exists a geodesic line γ joining z′ to z, that is, such that γ |[0,+∞) and γ |(−∞,0] join γ (0)
to z, z′, respectively ( just consider the limit γ of the segments [zn, z′n]; notice that all
these segments intersect a ball of fixed radius centred at x0, since (zn, z′m)x0 is uniformly
bounded above). We call z and z′ respectively the positive and negative endpoints of γ ,
denoted by γ±. The relation between Gromov product and geodesic ray is highlighted in
the following well-known lemma.

LEMMA 4.2. Let X be a proper, δ-hyperbolic metric space, z, z′ ∈ ∂X and x ∈ X.
(i) If (z, z′)x ≥ T then d(ξx,z(T − δ), ξx,z′(T − δ)) ≤ 4δ.

(ii) If d(ξx,z(T ), ξx,z′(T )) < 2b then (z, z′)x > T − b, for all b > 0.

Proof. Assume (z, z′)x ≥ T and suppose d(ξx,z(T − δ), ξx,z′(T − δ)) > 4δ. Fix S ≥
T − δ and consider the triangle �(x, ξx,z(S), ξx,z′(S)). There exist a ∈ [x, ξx,z(S)], b ∈
[x, ξx,z′(S)], c ∈ [ξx,z(S), ξx,z′(S)] such that d(a, b) < δ, d(b, c) < δ, d(a, c) < δ and
Tδ := d(x, a) = d(x, b), d(ξx,z(S), a) = d(ξx,z(S), c), d(ξx,z′(S), b) = d(ξx,z′(S), c).
Since this triangle is 4δ-thin we conclude that T − δ > Tδ . Moreover, d(ξx,z(S), ξx,z′(S)) =
d(ξx,z(S), c)+ d(c, ξx,z′(S)) = 2(S − Tδ). Hence

(z, z′)x ≤ lim inf
S→+∞

1
2 (2S − d(ξx,z(S), ξx,z′(S)))+ δ = Tδ + δ < T ,

where we have used (4.4). This contradiction concludes (i).
Now we assume d(ξx,z(T ), ξx,z′(T )) < 2b. Applying (4.4) again and using d(ξx,z(S),

ξx,z′(S)) < 2(S − T )+ 2b for all S ≥ T , we obtain

(z, z′)x ≥ lim inf
S→+∞

1
2 (2S − d(ξx,z(S), ξx,z′(S))) > T + b.

Remark 4.3. We remark that the computation above shows also that if z ∈ ∂X, y ∈ X and
(y, z)x ≥ T then d(x, y) > T − δ and d(γ (T − δ), ξx,z(T − δ)) ≤ 4δ for every geodesic
segment γ = [x, y].

The following is a standard computation; see, for instance, [BCGS17].

LEMMA 4.4. Let X be a proper, δ-hyperbolic metric space. Then every pair of geodesic
rays ξ , ξ ′ with same endpoints at infinity are at distance at most 8δ, that is, there
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exist t1, t2 ≥ 0 such that t1 + t2 = d(ξ(0), ξ ′(0)) and d(ξ(t + t1), ξ ′(t + t2)) ≤ 8δ for all
t ∈ R.

A curve α : [a, b] → X is a (1, ν)-quasigeodesic, ν ≥ 0, if

|s − t | − ν ≤ d(α(s), α(t)) ≤ |s − t | + ν

for all s, t ∈ [a, b]. A subset Y of X is said to be λ-quasiconvex if every point of every
geodesic segment joining every pair of points y, y′ of Y is at distance at most λ from Y.
The quasiconvex hull of a subset C of ∂X is the union of all the geodesic lines joining two
points of C and is denoted by QC-Hull(C). The following lemma justifies this name.

LEMMA 4.5. Let X be a proper, δ-hyperbolic metric space and let C be a subset of ∂X.
Then QC-Hull(C) is 36δ-quasiconvex. Moreover, if C is closed then QC-Hull(C) is closed.

Proof. Let x, y ∈ QC-Hull(C). By definition they belong to geodesics γx , γy with both
endpoints in C. We parametrize γx and γy in such a way that d(γx(0), γy(0)) =
d(γx , γy) and x = γx(tx), y = γy(ty)with tx , ty ≥ 0. We take a geodesic γ = [γ+

x , γ+
y ] ⊆

QC-Hull(C). By Lemma 4.4 there are points x′, y′ ∈ γ at distance at most 8δ from x and y,
respectively. Therefore the path α = [x, x′] ∪ [x′, y′] ∪ [y′, y] is a (1, 16δ)-quasigeodesic.
By a standard computation in hyperbolic geometry (see, for instance, [CS20, Proposition
3.5(a)]) we conclude that any point of [x, y] is at distance at most 28δ from a point of α
and so at distance at most 36δ from a point of γ . This concludes the proof of the first part
since the points of γ are in the quasiconvex hull of C.

Suppose now that there are points xn ∈ QC-Hull(C) converging to x∞ ∈ X. By
definition xn ∈ γn, where γn is a geodesic line with endpoints γ±

n ∈ C. The geodesics γn
converge uniformly on compact subsets to a geodesic γ∞ containing x∞, since X is proper.
The sequences γ±

n converge to the endpoints of γ∞ (cf. [BL12, Lemma 1.6]). Using the
fact that C is closed, we conclude that γ±∞ ∈ C, that is, x∞ ∈ QC-Hull(C).

We need the following approximation result.

LEMMA 4.6. Let X be a proper, δ-hyperbolic metric space. Let C ⊆ ∂X be a subset with
at least two points and x ∈ QC-Hull(C). Then for every z ∈ C there exists a geodesic
line γ with endpoints in C such that d(ξx,z(t), γ (t)) ≤ 14δ for every t ≥ 0. In particular,
d(ξx,z(t), QC-Hull(C)) ≤ 14δ.

Proof. Since x ∈ QC-Hull(C)), there exists a geodesic line η joining two points η± of C
such that x ∈ η. Of course we have (η+, η−)x ≤ δ, so by (4.3) we get

δ ≥ (η+, η−)x ≥ min{(η+, z)x , (η−, z)x} − δ.

Therefore one of the two values (η+, z)x , (η−, z)x is less than or equal to 2δ. Let us
suppose it is the former. We consider a geodesic line γ joining η+ and z. By Lemma 4.1
we get

d(x, γ ([−S, S])) ≤ (γ (−S), γ (S))x + 4δ
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for every S ≥ 0. Taking S → +∞, the points γ (−S) and γ (S) converge respectively to η+
and z. Therefore by (4.4) we get d(x, γ ) ≤ 6δ. If we parametrize γ so that d(x, γ (0)) ≤ 6δ
then d(ξx,z(t), γ (t)) ≤ 14δ for every t ≥ 0, by Lemma 4.4.

The Busemann function associated to z ∈ ∂X with basepoint x is

Bz(x, ·) : X → R, y �→ lim
T→+∞(d(ξx,z(T ), y)− T ).

It depends on the choice of the geodesic ray ξx,z = [x, z], but two maps obtained by taking
two different geodesic rays are at bounded distance and the bound depends only on δ.
Every Busemann function is 1-Lipschitz.

4.1. Visual metrics. When X is a proper, δ-hyperbolic metric space it is known that the
boundary ∂X is metrizable. A metric Dx,a on ∂X is called a visual metric of centre x ∈ X
and parameter a ∈ (0, 1/(2δ · log2 e)) if there exists V > 0 such that for all z, z′ ∈ ∂X the
inequality

1
V
e−a(z,z′)x ≤ Dx,a(z, z′) ≤ V e−a(z,z′)x . (4.5)

holds. A visual metric is said to be standard if for all z, z′ ∈ ∂X, we have

(3 − 2eaδ)e−a(z,z′)x ≤ Dx,a(z, z′) ≤ e−a(z,z′)x .

For all a as before and x ∈ X there exists always a standard visual metric of centre x and
parameter a; see [Pau96]. The generalized visual ball of centre z ∈ ∂X and radius ρ ≥ 0 is

B(z, ρ) =
{
z′ ∈ ∂X s.t. (z, z′)x > log

1
ρ

}
.

It is comparable to the metric balls of the visual metrics on ∂X.

LEMMA 4.7. Let Dx,a be a visual metric of centre x and parameter a on ∂X. Then for all
z ∈ ∂X and for all ρ > 0 we have

BDx,a

(
z,

1
V
ρa

)
⊆ B(z, ρ) ⊆ BDx,a (z, Vρ

a).

Proof. If z′ ∈ B(z, ρ) then (z, z′)x > log(1/ρ), so Dx,a(z, z′) ≤ V e−a(z,z′)x < Vρa .
If z′ ∈ BDx,a (z, (1/V )ρ

a) then (1/V )e−a(z,z′)x ≤ Dx0,a(z, z′) < (1/V )ρa , that is, z′ ∈
B(z, ρ).

It is classical that generalized visual balls are related to shadows, whose definition is as
follows. The shadow of radius r > 0 cast by a point y ∈ X with centre x ∈ X is the set

Shadx(y, r) = {z ∈ ∂X s.t. [x, z] ∩ B(y, r) �= ∅ for all rays [x, z]}.
LEMMA 4.8. Let X be a proper, δ-hyperbolic metric space. Let z ∈ ∂X, x ∈ X and T ≥ 0.
Then:
(i) B(z, e−T ) ⊆ Shadx(ξx,z(T ), 7δ);

(ii) Shadx(ξx,z(T ), r) ⊆ B(z, e−T+r ) for all r > 0.

https://doi.org/10.1017/etds.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.9


1204 N. Cavallucci

Proof. Let z′ ∈ B(z, e−T ), that is, (z, z′)x > T . By Lemma 4.2 we know that
d(ξx,z(T − δ), ξx,z′(T − δ)) ≤ 4δ. So d(ξx,z′(T ), ξx,z(T )) ≤ 6δ < 7δ. This implies
z′ ∈ Shadx(ξx,z(T ), 7δ), showing (i).

Now we fix z′ ∈ Shadx(ξx,z(T ), r), which means that every geodesic ray ξx,z′
passes through B(ξx,z(T ), r), so d(ξx,z′(T ), ξx,z(T )) < 2r . By Lemma 4.2 we conclude
(z, z′)x > T − r , implying (ii).

A compact metric space Z is (A, s)-Ahlfors regular if there exists a probability measure
μ on Z such that

1
A
ρs ≤ μ(B(z, ρ)) ≤ Aρs

for all z ∈ Z and all 0 ≤ ρ ≤ Diam(Z), where Diam(Z) is the diameter of Z. If Z = ∂X

we say that Z is visually (A, s)-Ahlfors regular if there exists a probability measure μ on
∂X such that

1
A
ρs ≤ μ(B(z, ρ)) ≤ Aρs

for all z ∈ Z and all 0 ≤ ρ ≤ 1, where B(z, ρ) is the generalized visual ball of centre z and
radius ρ. The following result is an immediate consequence of Lemma 4.7.

LEMMA 4.9. If ∂X is (A, s)-Ahlfors regular with respect to a visual metric of centre x and
parameter a, then it is visually (AV s , as)-Ahlfors regular, where V is the constant of (4.5).

The packing∗ number at scale ρ of a subset C of the boundary of a proper
Gromov-hyperbolic space ∂X is the maximal number of disjoint generalized visual balls
of radius ρ with centre in C. We denote it by Pack∗(C, ρ). We write Cov(C, ρ) to denote
the minimal number of generalized visual balls of radius ρ needed to cover C.

LEMMA 4.10. For all T ≥ 0 we have the inequalities Pack∗(C, e−T+δ) ≤ Cov(C, e−T )
and Cov(C, e−T+δ) ≤ Pack∗(C, e−T ).

Proof. Let z1, . . . , zN be points of C realizing Cov(C, e−T ). Suppose there exist
points w1, . . . , wM of C such that B(wi , e−T+δ) are disjoint, in particular (wi , wj)x ≤
T − δ for every i �= j . If M > N then two different points wi , wj belong to the same
ball B(zk , e−T ), that is, (zk , wi)x > T and (zk , wj)x > T . By (4.3) we have (wi , wj)x >
T − δ, which is a contradiction. This shows the first inequality.

Now let z1, . . . , zN be a maximal collection of points of C such that the B(zi , e−T )
are disjoint. Then for every z ∈ C there exists i such that B(z, e−T ) ∩ B(zi , e−T ) �= ∅.
Therefore there exists w ∈ ∂X such that (zi , w)x > T and (z, w)x > T . As before, we get
(zi , z)x > T − δ, proving the second inequality.

4.2. Groups of isometries, limit set and critical exponent. Let X be a proper,
δ-hyperbolic metric space. Every isometry of X acts naturally on ∂X and the resulting
map onX ∪ ∂X is a homeomorphism. The limit set �(�) of a discrete group of isometries
� is the set of accumulation points of the orbit �x on ∂X, where x is any point of X. It is
the smallest �-invariant closed set of the Gromov boundary, indeed we have the following
proposition.
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PROPOSITION 4.11. [Coo93, Theorem 5.1] Let � be a discrete group of isometries of a
proper, Gromov-hyperbolic metric space. Then �(�) is the smallest closed �-invariant
subset of ∂X, that is, every �-invariant, closed subset C of ∂X contains �(�).

The group � is called elementary if #�(�) ≤ 2. The limit superior in the definition of
the critical exponent of � is a true limit.

LEMMA 4.12. [Cav21b, Theorem B] Let X be a proper, δ-hyperbolic metric space and let
� be a discrete group of isometries of X. Then

h� = lim
T→+∞

1
T

log #�x ∩ B(x, T ).

The critical exponent of � can be seen also as

h� = inf
{
s ≥ 0 s.t.

∑
g∈�

e−sd(x,gx) < +∞
}

.

We remark that for every s ≥ 0 the series
∑
g∈� e−sd(x,gx), which is called the Poincaré

series of �, is �-invariant. In other words,
∑
g∈� e−sd(x,gx) = ∑

g∈� e−sd(x
′,gx′) for all

x′ ∈ �x. There is a canonical way to construct a measure on ∂X starting from the Poincaré
series. For every s > h� the measure

μs = 1∑
g∈� e−sd(x,gx) ·

∑
g∈�

e−sd(x,gx)�gx ,

where �gx is the Dirac measure at gx, is a probability measure on the compact space
X ∪ ∂X. Then there exists a sequence si converging to h� such thatμsi converges ∗-weakly
to a probability measure on X ∪ ∂X. Any of these limits is called a Patterson–Sullivan
measure and is denoted by μPS.

PROPOSITION 4.13. [Coo93, Theorem 5.4] Let X be a proper, δ-hyperbolic metric
space and let � be a discrete group of isometries of X with h� < +∞. Then every
Patterson–Sullivan measure is supported on �(�). Moreover, it is a �-quasiconformal
density of dimension h� , that is, it satisfies

1
Q

· eh�(Bz(x,x)−Bz(x,gx)) ≤ d(g∗μPS)

dμPS
(z) ≤ Q · eh�(Bz(x,x)−Bz(x,gx))

for every g ∈ � and every z ∈ �(�), where Q is a constant depending only on δ and an
upper bound on h� .

The quantification of Q is not explicated in the original paper, but it follows from the
proof therein.

The set �(�) is �-invariant so it is its quasiconvex hull. We recall that a discrete group
of isometries � is quasiconvex-cocompact if and only if its action on QC-Hull(�(�))
is cocompact, that is, if there exists D ≥ 0 such that for all x, y ∈ QC-Hull(�(�)) the
inequality d(gx, y) ≤ D holds for some g ∈ �. The smallest D satisfying this property is
called the codiameter of �.
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Given two real numbers δ ≥ 0 and D > 0, we recall that M(δ, D) is the class of
triples (X, x, �), where X is a proper, geodesic, δ-hyperbolic metric space, � is a discrete,
non-elementary, torsion-free, quasiconvex-cocompact group of isometries with codiameter
≤ D and x ∈ QC-Hull(�(�)). For an element (X, x, �) of M(δ, D) we will use Y to
denote QC-Hull(�(�)).

5. M(δ, D) is closed under equivariant Gromov–Hausdorff limits
The purpose of this section is to prove statement (i) of Theorem A. We need to understand
better the properties of the spaces belonging toM(δ, D).

5.1. Entropy and systolic estimates on M(δ, D). The following are straightforward
adaptations of results of [BCGS17, BCGS21].

LEMMA 5.1. If (X, x, �) ∈M(δ, D) then �2D+72δ(x) generates �.

Proof. The proof is classical for geodesic metric spaces. In this setting we need to use
the fact that QC-Hull(�(�)) is 36δ-quasiconvex. By discreteness we can fix a small
ε > 0 such that d(x, gx) < 2D + 72δ + ε implies d(x, gx) ≤ 2D + 72δ for all g ∈ �.
We take any g ∈ � and we take consecutive points xi , i = 0, . . . , N , on a geodesic
segment [x, gx] such that x0 = x, xN = gx and d(xi , xi+1) < ε. By Lemma 4.5 each
xi is at distance at most 36δ from a point yi ∈ QC-Hull(�(�)), hence there exists some
hi ∈ � such that d(hix, xi) ≤ 36δ +D. We can choose hN = g and h0 = id. We define
the elements gi = h−1

i−1hi for i = 1, . . . , N . Clearly g1 · · · gN−1gN = g. Moreover,
d(gix, x) < 72δ + 2D + ε for every i, so gi ∈ �2D+72δ(x).

PROPOSITION 5.2. [BCGS17, Proposition 5.10] If (X, x, �) ∈M(δ, D) then h� ≥
log 2/(99δ + 10D).

Proof. Using the same proof as for [BCGS17, Lemma 5.14], we conclude that there
exists a hyperbolic isometry a ∈ � such that �(a) ≤ 8D + 10δ. The remaining part of
the proof can be done exactly in the same way as in [BCGS17], choosing y ∈ Min(a) ⊆
QC-Hull(�(�)) and using Lemma 5.1.

PROPOSITION 5.3. [BCGS21, Theorem 3.4] For every H ≥ 0 there exists s =
s(δ, D, H) > 0 such that if (X, x, �) ∈M(δ, D) and if h� ≤ H then sys(�, X) ≥ s.

Proof. The proof is the same as for [BCGS21, Theorem 3.4]. The only non-trivial part is
the Bishop–Gromov estimate stated in [BCGS21, Theorem 3.1] and proved in [BCGS17,
Theorem 5.1]. It is made in the cocompact case but it extends word for word to the
quasiconvex-cocompact setting.

5.2. Covering entropy. Let Y be any subset of a metric space X.
• A subset S of Y is called r-dense if for all y ∈ Y there exists z ∈ S such that

d(y, z) ≤ r .
• A subset S of Y is called r-separated if d(y, z) > r for all y, z ∈ S.
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The packing number of Y at scale r is the maximal cardinality of a 2r-separated subset of
Y and is denoted by Pack(Y , r). The covering number of Y is the minimal cardinality of
an r-dense subset of Y and is denoted by Cov(Y , r). These two quantities are classically
related by

Pack(Y , 2r) ≤ Cov(Y , 2r) ≤ Pack(Y , r). (5.1)

Y is said to be uniformly packed at scales 0 < r ≤ R if

PackY (R, r) := sup
x∈Y

Pack(B(x, R) ∩ Y , r) < +∞

and uniformly covered at scales 0 < r ≤ R if

CovY (R, r) := sup
x∈Y

Cov(B(x, R) ∩ Y , r) < +∞.

LEMMA 5.4. Let (X, x, �) ∈M(δ, D). Then Y = QC-Hull(�(�)) is uniformly packed
and uniformly covered at any scales.

Proof. We prove only that Y is uniformly covered since the other case is similar. We fix
0 < r ≤ R. The map y �→ Cov(B(y, R) ∩ Y , r) defined on Y is clearly �-invariant. If
the thesis is false we could find a sequence of points xn ∈ Y such that Cov(B(xn, R) ∩
Y , r) ≥ n. By �-invariance and the compactness of the quotient we can suppose that
xn converges to some point x∞ that belongs to Y by Lemma 4.5. Clearly we would
have Cov(B(x∞, R + 1) ∩ Y , r) = ∞, which is impossible since B(x∞ ∩ Y , R + 1) is
compact.

We recall the notion of covering entropy. This was studied by the author in a less general
context in [Cav21a].

Definition 5.5. Let X be a proper metric space and x ∈ X. The upper covering entropy of
X at scale r > 0 is the quantity

hCov(X, r) = lim sup
T→+∞

log Cov(B(x, T ), r)
T

,

while the lower covering entropy of X at scale r is

hCov(X, r) = lim inf
T→+∞

log Cov(B(x, T ), r)
T

.

They do not depend on the point x ∈ X by a standard argument.

LEMMA 5.6. Let (X, x, �) ∈M(δ, D). If there exist r , P > 0 such that Pack Y (72δ +
3r , r) ≤ P then Pack Y (T , r) ≤ P · (1 + P)(T /r)−1 for every T ≥ 0. In particular,
hCov(Y , 2r) ≤ (log(1 + P))/r .

Proof. The proof is the same as for [CS21, Lemma 4.7], except for the fact that Y
is not geodesic but only 36δ-quasigeodesic by Lemma 4.5. We proceed by induction
on k, where k is the smallest integer such that T ≤ 72δ + 3r + kr . For k = 0 the
result is obvious by our assumption. The inductive step goes as follows: by induction
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we can find a maximal 2r-separated subset {y1, . . . , yN } of B(x, T − r) ∩ Y with
N ≤ P(1 + P)((T−r)/r)−1. The key step is to show that

⋃N
i=1 B(yi , 72δ + 3r) ⊇

A(x, T − r , T ) ∩ Y , where A(x, T − r , T ) is the closed annulus centred at x of radii
T − r and T. Indeed, for every point y ∈ A(x, T − r , T ) we consider the point y ′ along
a geodesic segment [x, y] at distance T − r − 36δ from x. By quasiconvexity there is a
point z ∈ Y at distance no greater than 36δ from y′. In particular, z ∈ B(x, T − r), so
d(z, yi) ≤ 2r for some i = 1, . . . , N . We conclude that d(y, yi) ≤ 72δ + 3r . The rest of
the proof can be done exactly as for [CS21, Lemma 4.7], while the estimate on the upper
covering entropy follows trivially using (5.1).

PROPOSITION 5.7. Let (X, x, �) ∈M(δ, D). Then hCov(Y , r) and hCov(Y , r) do not
depend on r and the same quantities can be defined by replacing the covering function
with the packing function. Moreover, they coincide and

hCov(Y ) := lim
T→+∞

log Cov(B(x, T ) ∩ Y , r)
T

= h� < +∞.

Proof. Let us fix 0 < r ≤ r ′. We have

Cov(B(x, T ) ∩ Y , r ′) ≤ Cov(B(x, T ) ∩ Y , r)

and

Cov(B(x, T ) ∩ Y , r) ≤ Cov(B(x, T ) ∩ Y , r ′) · CovY (r ′, r).

The quantity CovY (r ′, r) is finite by Lemma 5.4. These inequalities easily imply that
hCov(Y , r) = hCov(Y , r ′) and hCov(Y , r) = hCov(Y , r ′). Moreover, by (5.1) these quan-
tities can be defined by replacing the covering function with the packing function.
Furthermore, an application of Lemmas 5.4 and 5.6 shows that the upper covering entropy
of Y is finite.

Let 2s = sys(�, X) > 0. We have

Cov(B(x, T ) ∩ Y , D) ≤ #�x ∩ B(x, T +D)

and

Pack(B(x, T ) ∩ Y , s) ≥ #�x ∩ B(x, T ).

Observe that the sequence #�x ∩ B(x, T ) converges to h� when T goes to +∞ by
Lemma 4.12. Therefore hCov(Y , D) ≤ h� and hCov(Y , s) ≥ h� , implying the last part of
the thesis.

5.3. Convergence of spaces in M(δ, D). The following situation will be called the
standard setting of convergence: we have a sequence (Xn, xn, �n) ∈M(δ, D) such
that (Xn, xn, �n) −→

eq-pGH
(X∞, x∞, �∞). Observe that X∞ is a proper metric space by

definition.

LEMMA 5.8. In the standard setting of convergence supn∈N PackYn(R, r) < +∞ for every
0 < r ≤ R.

https://doi.org/10.1017/etds.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.9


Continuity of critical exponent 1209

Proof. By the Gromov precompactness theorem [Gro81] we know that

sup
n∈N

Pack(B(xn, R +D) ∩ Yn, r) =: P < +∞.

For every n ∈ N and every point yn ∈ Yn there is some g ∈ �n such that d(yn, gnxn) ≤ D.
Therefore

Pack(B(yn, R) ∩ Yn, r) ≤ Pack(B(gxn, R +D) ∩ Yn, r)

= Pack(B(xn, R +D) ∩ Yn, r) ≤ P

by the �n-invariance of Yn.

COROLLARY 5.9. In the standard setting of convergence supn∈N h�n < +∞.

Proof. By Lemma 5.8 we have supn∈N PackYn(72δ + 3, 1) =: P < +∞. Therefore by
Proposition 5.7 and Lemma 5.6 we have

h�n = hCov(Yn) ≤ log(1 + P).

COROLLARY 5.10. In the standard setting of convergence �∞ is discrete and torsion-free.

Proof. By Corollary 5.9 and Proposition 5.3 there is some s > 0 such that
sys(�n, Xn) ≥ s for every n ∈ N. Let ω be a non-principal ultrafilter. By Proposition 3.13
it is enough to show that �ω is discrete and torsion-free. Let gω = ω-lim gn be a non-trivial
element of �ω and yω = ω-lim yn be a point of Xω. We know that d(yn, gnyn) ≥ s for
ω-a.e. (n). This implies d(yω, gωyω) ≥ s. Since this is true for every gω ∈ �ω and every
yω ∈ Xω we conclude that sys(�ω, Xω) ≥ s. Since Xω is proper we conclude that �ω is
discrete. Now take an elliptic element gω = ω-lim gn. It is classical that gω must have
finite order since �ω is discrete (see, for instance, [BCGS17, Remark 8.16]), that is,
gkω = id for some k ∈ Z \ {0}. This means that ω-lim d(gknxn, xn) = 0, so gkn = id for
ω-a.e. (n). This implies gn = id for ω-a.e. (n) and therefore gω = id. In other words, �ω
is torsion-free.

The next step is to show the stability of the boundary under convergence.

PROPOSITION 5.11. Let (Xn, xn) be a sequence of proper, δ-hyperbolic metric spaces and
let Dxn,a be a standard visual metric of centre xn and parameter a on ∂Xn. Let ω be a
non-principal ultrafilter and let (Xω, xω) be the ultralimit of the sequence (Xn, xn). Then
there exists a natural map
 : ω-lim(∂Xn, Dxn,a) → ∂Xω which is a homeomorphism onto
the image.

Remark 5.12. The following observations are in order.
(1) When the spaces ∂Xn are compact with diameter at most 1, the ultralimit ω-lim ∂Xn

does not depend on the basepoints.
(2) In general the map 
 is not surjective. Let Xn be the closed ball B(o, n) inside

the hyperbolic plane H
2, where o is a fixed basepoint. Each Xn is proper and

δ-hyperbolic for the same δ, but ∂Xn = ∅. Therefore ω-lim ∂Xn = ∅. On the other
hand, Xω = H

2 and ∂Xω �= ∅.
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(3) It is possible to prove (but we will not do so because it is not necessary for our
purposes) that if for each point yn of Xn there is a geodesic ray [xn, zn] passing at
distance no greater than δ from yn then the map 
 is surjective. Moreover, when 

is surjective, the metric induced on ∂Xω by 
 is a visual metric of centre xω and
parameter a.

Proof. A point of ω-lim ∂Xn is a class of a sequence of points (zn) ∈ ∂Xn and for
each point zn there exists a geodesic ray ξxn,zn . The sequence of geodesic rays (ξxn,zn)

defines an ultralimit geodesic ray ξ of Xω with ξ(0) = xω (cf. [CS21, Lemma A.7]) which
provides a point of ∂Xω. We denote this point by zω and ξ by ξxω ,zω . We define the map

 : ω-lim ∂Xn → ∂Xω as 
((zn)) = ξ+

xω ,zω = zω.
Good definition. We need to show that 
 is well defined, that is, it does not

depend on the choice of the geodesic ray ξxn,zn or on the choice of the sequence (zn).
Let (z′n) be a sequence of points equivalent to (zn), that is, ω-lim Dxn,a(zn, z′n) = 0.
Choose geodesic rays ξxn,zn , ξxn,z′n . For every n the metric Dxn,a is a standard
visual metric. Then for every fixed ε > 0 we have (zn, z′n)xn > log(1/ε) =: Tε for
ω-a.e.(n). Thus d(ξxn,zn(Tε − δ), ξxn,z′n(Tε − δ)) ≤ 4δ by Lemma 4.2, ω-a.s. We conclude
that d(ξxω ,zω (Tε − δ), ξxω ,z′ω(Tε − δ)) < 6δω-a.s. Therefore, again by Lemma 4.2,
(zω, z′ω)xω > Tε − 4δ. Thus (zω, z′ω)xω = +∞ by the arbitrariness of ε, that is, zω = z′ω.

Injectivity. The next step is to show that 
 is injective. If two sequences of
points (zn), (z′n) have the same image under 
 then (ξ+

xω ,zω , ξ+
xω ,z′ω

)xω = +∞. So

(ξ+
xω ,zω , ξ+

xω ,z′ω
)xω ≥ T for every fixed T ≥ 0. Hence d(ξxω ,zω (T − δ), ξxω ,z′ω(T − δ)) ≤ 4δ,

by Lemma 4.2. Then d(ξxn,zn(T − δ), ξxn,z′n(T − δ)) < 6δω-a.s., that is, (zn, z′n)xn >
T − 4δω-a.s., again by Lemma 4.2. Therefore Dxn,a(zn, z′n) ≤ e−a(T−4δ). Since this is
true ω-a.s. we get ω-lim Dxn,a(zn, z′n) ≤ e−a(T−4δ) for ω-a.e. (n). By the arbitrariness of
T we deduce that ω-lim Dxn,a(zn, z′n) = 0, that is, (zn) = (z′n) as elements of ω-lim ∂Xn.

Homeomorphism. Let us show 
 is continuous. As both ω-lim ∂Xn and ∂Xω are
metrizable, it is enough to check the continuity on sequences of points. We take a
sequence (zkn)k∈N converging to (z∞n ) in ω-lim ∂Xn. By definition for every ε > 0 there
exists kε ≥ 0 such that if k ≥ kε then ω-lim Dxn,a(z

k
n, z∞n ) < ε. Therefore for every fixed

k ≥ kε we have (zkn, z∞n )xn ≥ log(1/ε) =: Tε for ω-a.e. (n). As usual, we conclude that
d(ξxnzkn

(Tε − δ), ξxnz∞n (Tε − δ)) ≤ 4δω-a.s. Thus d(ξxωzkω (Tε − δ), ξxω ,z∞ω (Tε − δ)) < 6δ
for every fixed k ≥ kε. Again this implies (zkω, z∞ω )xω > Tε − 4δ for all k ≥ kε. By the
arbitrariness of ε we get that zkω converges to z∞ω when k goes to +∞.

The continuity of the inverse map defined on the image of 
 can be proved in a similar
way.

Proof of Theorem A(i). In order to simplify the notation we fix a non-principal ultrafilterω.
We know that (Xω, xω, �ω) is equivariantly isometric to (X∞, x∞, �∞) by Proposition
3.13 and that Xω is a proper metric space, so we can prove all the properties for this
triple. It is classical that the ultralimit of geodesic, δ-hyperbolic metric spaces is a geodesic
and δ-hyperbolic metric space; see, for instance, [DK18]. Moreover, by Corollary 5.10 the
group �ω is discrete and torsion-free.
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Let 
 be the homeomorphism onto the image given by Proposition 5.11. We claim
that �(�ω) = 
(ω-lim �(�n)). We fix a sequence zn ∈ �(�n) and we observe that by
Lemma 4.6 and the cocompactness of the action of �n on QC-Hull(�(�n)) we can find a
sequence (gkn)k∈N ⊆ �n such that, denoting one geodesic ray [xn, zn] by ξxn,zn , we have:
(a) gknxn converges to zn when k tends to +∞;
(b) g0

n = id;
(c) d(gknxn, gk+1

n xn) ≤ 28δ + 2D;
(d) d(gknxn, ξxn,zn(k)) ≤ 14δ +D.
For every k ∈ N the sequence gkn is admissible by (b) and (c), so it defines a limit
isometry gkω ∈ �ω. Moreover, if ξxω ,zω is the ultralimit of the sequence of geodesic
rays ξxn,zn , we have d(gkωxω, ξxω ,zω (k)) ≤ 14δ +D for every k ∈ N. Observe that
ξ+
xω ,zω = 
((zn)) by definition of 
. As a consequence the sequence gkωxω converges

to 
((zn)), that is, 
(zn) ∈ �(�ω). This shows that 
(ω-lim �(�n)) ⊆ �(�ω). Clearly
�ω acts on ω-lim �(�n) by (gn)(zn) = (gnzn) and this action commutes with 
. The
set ω-lim �(�n) is �ω-invariant and closed. The �ω-invariance is trivial, so let us
check the closure. If (zkn)k∈N ∈ ω-lim �(�n) is a sequence converging to (z∞n ) and
z∞n /∈ ω-lim �(�n) then there exists ε > 0 such that Dxn,a(z

∞
n , �(�n)) ≥ εω-a.s. This

is a contradiction. Therefore the set 
(ω-lim �(�n)) is also closed and �ω-invariant.
By Proposition 4.11 we conclude that �(�ω) = 
(ω-lim �(�n)). This also implies
that ω-lim QC-Hull(�(�n)) = QC-Hull(�(�ω)) and so xω ∈ QC-Hull(�(�ω)). For
every pair of points yω, y′

ω ∈ QC-Hull(�(�ω)) there exist sequences of points yn, y′
n ∈

QC-Hull(�(�n)) such that yω = ω-lim yn and y′
ω = ω-lim y′

n. So there exists gn ∈ �n
such that d(gnyn, y′

n) ≤ D. The sequence gn is clearly admissible so it defines an
element gω = ω-lim gn of �ω and d(gωyω, y′

ω) ≤ D, implying that the action of �ω
on QC-Hull(�(�ω)) is cocompact with codiameter less than or equal to D. It remains only
to show that �ω is non-elementary. If �ω is elementary then QC-Hull(�(�ω)) = R and
�ω acts on R as Zτ , the group generated by the translation of length τ , for some τ > 0.
Denote by gω = ω-lim gn the element corresponding to this translation. For every k ∈ N

we notice that

Aω(k) = {hω ∈ �ω s.t. d(xω, hωxω) < (k + 1) · τ } = {g±m
ω } : m = 0, . . . , k.

In particular, Aω(k) has cardinality 2k + 1. We define also the sets

An(k) = {
hn ∈ �n s.t. d(xn, hnxn) ≤ (

k + 1
2

) · τ}.

Since we have a uniform bound on the systole and the action is torsion-free, we
have that #An(k) ≤ #Aω(k)ω-a.s., for every fixed k ∈ N. We apply this property to
k0 = (72δ + 2D)/τ . Clearly g±m

n ∈ An(k0) for every m = 0, . . . , k0, ω-a.s. Therefore
An(k0) = {g±m

n }m=0,...,k0ω-a.s. By Lemma 5.1 we conclude that

�n = 〈An(k0)〉 = 〈gn〉,
that is, �n is elementary ω-a.s., which is a contradiction.

It is interesting to compare our convergence with the Gromov–Hausdorff convergence
of the quotient spaces.
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THEOREM 5.13. Let (Xn, xn, �n), (X∞, x∞, �∞) ∈M(δ, D).
(i) If (Xn, xn, �n) −→

eq-pGH
(X∞, x∞, �∞) then (�n\Xn, x̄n) −→

pGH
(�∞\X∞, x̄∞) and

supn∈N h�n < +∞.
(ii) If (�n\Xn, x̄n) −→

pGH
(Y , y) and supn∈N h�n < +∞ then there exists a subsequence

{nk} such that (Xnk , xnk , �nk ) −→
eq-pGH

(X∞, x∞, �∞) and (Y , y) is isometric to

(�∞\X∞, x̄∞).

Proof. If (Xn, xn, �n) −→
eq-pGH

(X∞, x∞, �∞) then supn∈N h�n < +∞ by Corollary 5.9.

The second part of the first statement is true once we show that the ultralimit (X̄ω, x̄ω)
of the sequence (�n\Xn =: X̄n, x̄n) is isometric to (�∞\X∞, x̄∞) for every non-principal
ultrafilter, by Corollary 3.14. We fix a non-principal ultrafilter ω. By Proposition 3.13 the
triple (Xω, xω, �ω) is equivariantly isometric to (X∞, x∞, �∞).

The projections pn : Xn → X̄n form an admissible sequence of 1-Lipschitz maps and
then, by [CS21, Proposition A.5], they yield a limit map pω : Xω → X̄ω defined as
pω(yω) = ω-lim pn(yn), for ω-lim yn = yω. The map pω is clearly surjective. It is also
�ω-equivariant: indeed,

pω(γωyω) = ω-lim pn(γnyn) = ω-lim pn(yn) = pω(yω)

for every gω = ω-lim gn ∈ �ω and yω = ω-lim yn ∈ Xω. Therefore we have a
well-defined, surjective quotient map p̄ω : �ω\Xω → X̄ω. The next step is to show it
is a local isometry. We fix an arbitrary point yω = ω-lim yn ∈ Xω and we consider its
class [yω] ∈ �ω\Xω. By Proposition 5.3 there exists s > 0 such that sys(�n, Xn) ≥ s for
every n. So, as in the proof of Corollary 5.10, the systole of �ω is at least s. Therefore
the quotient map Xω → �ω\Xω is an isometry between B(yω, s/2) and B([yω], s/2).
Moreover, B(pn(yn), s/2) is isometric to B(yn, s/2) for every n. By [CS21, Lemma A.8]
we know that ω-lim B(pn(yn), s/2) is isometric to B(pω(yω), s/2) = B(p̄ω([yω]), s/2)
and that ω-lim B(yn, s/2) is isometric to B(yω, s/2). Therefore B(p̄ω([yω]), s/2) is
isometric to B([yω], s/2), that is, p̄ω is a local isometry.

Now we prove that p̄ω is injective. Let [zω], [yω] ∈ �ω\Xω. Clearly p̄ω([zω]) =
p̄ω([yω]) if and only if pω(zω) = pω(yω). This means ω-lim d(pn(zn), pn(yn)) = 0 and,
as the systole of �n is greater than or equal to s > 0, we have ω-lim d(zn, gnyn) = 0
for some gn ∈ �n, ω-a.s. The sequence (gn) is admissible, hence it defines an element
gω = ω-lim gn ∈ �ω satisfying d(zω, gωyω) = 0. This implies [zω] = [yω].

The map p̄ω : �ω\Xω → X̄ω is a bijective local isometry between two length spaces.
If its inverse is continuous then it is an isometry. We take points ȳkω = ω-lim ȳkn ∈
X̄ω converging to ȳ∞

ω = ω-lim ȳ∞
n ∈ X̄ω as k → +∞. We have ȳkn = pn(y

k
n), ȳ

∞
n =

pn(y
∞
n ) for some ykn , y∞

n ∈ Xn. We can suppose that ykn , y∞
n belong to a fixed ball

around xn. We consider the points ykω = ω-lim ykn and y∞
ω = ω-lim y∞

n of Xω and
their images [ykω], [y∞

ω ] ∈ �ω\Xω. It is straightforward to show that p̄ω([ykω]) = ȳkω and
p̄ω([y∞

ω ]) = ȳ∞
ω . Now it is not difficult to check that the sequence [ykω] converges to [y∞

ω ]
when k → +∞, proving that the inverse of p̄ω is continuous.
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Therefore (X̄ω, x̄ω) is isometric to (�ω\Xω, pωxω) which is clearly isometric to
(�∞\X∞, x̄∞). The proof of (i) is then finished since this is true for every non-principal
ultrafilter ω.

Suppose now that (�n\Xn, x̄n) −→
pGH

(Y , y) and supn∈N h�n < +∞. Again by

Proposition 5.3 there exists s > 0 such that sys(�n, Xn) ≥ s for every n. We fix a
non-principal ultrafilter ω and we consider the ultralimit triple (Xω, xω, �ω). As usual,
we get sys(�ω, Xω) ≥ s. We can apply the same argument above to show that �ω\Xω
is isometric to Y. Moreover, by the condition on the systole of �ω we know that Xω
is locally isometric to �ω\Xω. Since Y is compact we conclude that Xω is a geodesic,
complete, locally compact metric space. Therefore it is proper by the Hopf–Rinow
theorem; see [BH13, Corollary I.3.8]. Then there exists a subsequence {nk} such that
(Xnk , xnk , �nk ) −→

eq-pGH
(Xω, xω, �ω) by Proposition 3.13.

6. Continuity of the critical exponent
Let � be a discrete, quasiconvex-cocompact group of isometries of a proper, δ-hyperbolic
metric space X. Then it is proved in [Coo93] that the Patterson–Sullivan measure on�(�)
is (A, h�)-Ahlfors regular for some A > 0. Our goal is to quantify the constant A.

THEOREM 6.1. Let δ, D, H ≥ 0. There exists A = A(δ, D, H) ≥ 1 such that for all
(X, x, �) ∈M(δ, D) with h� ≤ H the subset �(�) is visually (A, h�)-Ahlfors regular
with respect to every Patterson–Sullivan measure.

Proof. We divide the proof into steps.
Step 1: for all z ∈ ∂X and for all ρ > 0 we have μPS(B(z, ρ)) ≤ eh�(55δ+3D)ρh� .
We suppose first z ∈ �(�) and we take the set

B̃(z, ρ) =
{
y ∈ X ∪ ∂X s.t. (y, z)x > log

1
ρ

}
.

It is open (cf. [DSU17, Observation 4.5.2]) and B̃(z, ρ) ∩ ∂X = B(z, ρ), so
μPS(B̃(z, ρ)) = μPS(B(z, ρ)) since μPS is supported on �(�) ⊆ ∂X. Let T = log(1/ρ)
and ξx,z be a geodesic ray [x, z]. For every y ∈ �x ∩ B̃(z, ρ) we have

d(x, y) ≥ T − δ and d(x, y) ≥ d(x, ξx,z(T ))+ d(ξx,z(T ), y)− 12δ. (6.1)

The first inequality is given by Remark 4.3. Let γ be any geodesic segment [x, y]. Again
by Remark 4.3 we have d(ξx,z(T ), γ (T )) ≤ 6δ, therefore

d(x, y) = d(x, γ (T ))+ d(γ (T ), y) ≥ d(x, ξx,z(T ))+ d(ξx,z(T ), y)− 12δ.

Moreover, we have d(ξx,z(T ), QC-Hull(�(�))) ≤ 14δ by Lemma 4.6, since x ∈
QC-Hull(�(�)). By the cocompactness of the action on QC-Hull(�(�)) we can find
a point x1 ∈ �x such that d(ξx,z(T ), x1) ≤ 14δ +D. This implies

d(x, y) ≥ d(x, x1)+ d(x1, y)− 40δ − 2D
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for every y ∈ �x ∩ B̃(z, ρ). Therefore∑
y∈�x∩B̃(z,ρ)

e−sd(x,y) ≤
∑

y∈�x∩B̃(z,ρ)
e−s(d(x,x1)+d(x1,y)−40δ−2D)

= es(40δ+2D)e−sd(x,x1) ·
∑

y∈�x∩B̃(z,ρ)
e−sd(x1,y)

≤ es(54δ+3D)e−sd(x,ξxz(T )) ·
∑
g∈�

e−sd(x1,gx1)

= es(54δ+3D) · ρs ·
∑
g∈�

e−sd(x,gx).

In other words, we have μs(B̃(z, ρ)) ≤ es(54δ+3D)ρs , and by ∗-weak convergence we
conclude that

μPS(B(z, ρ)) = μPS(B̃(z, ρ)) ≤ lim inf
i→+∞ μsi (B̃(z, ρ)) ≤ eh�(54δ+3D)ρh� .

If z ∈ ∂X we observe that if B(z, ρ) ∩�(�) = ∅ then the thesis is obviously true since
μPS is supported on�(�). Otherwise there existsw ∈ �(�) such that (z, w)x > log(1/ρ).
It is straightforward to check that B(w, ρ) ⊆ B(z, ρeδ) by (4.3). Then μPS(B(z, ρ)) ≤
eh�(55δ+3D)ρh� .

Step 2: for every R ≥ R0 := (log 2/h�)+ 55δ + 3D + 5δ and for every g ∈ � we have
μPS(Shadx(gx, R)) ≥ (1/2Q)e−h�d(x,gx), where Q is the constant of Proposition 4.13 that
depends only on δ and H.

From the first step we know that for every ρ ≤ ρ0 := 2−(1/h�)e−(55δ+3D) and for
every z ∈ ∂X the inequality μPS(B(z, ρ)) ≤ 1

2 holds. A direct computation shows that
R0 = log(1/ρ0)+ 5δ. We claim that for every R ≥ R0 and every g ∈ � the set ∂X \
g(Shadx(g−1x, R)) is contained in a generalized visual ball of radius at most ρ0. Indeed,
if z, w ∈ ∂X \ g(Shadx(g−1x, R)) then there are geodesic rays ξ = [gx, z], ξ ′ = [gx, w]
that do not intersect the ball B(x, R). Therefore we get (ξ(T ), gx)x ≥ d(x, [gx, ξ(T )])−
4δ ≥ R − 4δ by Lemma 4.1, so (z, gx)x ≥ lim infT→+∞(ξ(T ), gx)x ≥ R − 4δ. The
same holds for w. Thus by (4.3) we get (z, w)x ≥ R − 5δ, proving the claim. By
Proposition 4.13 we get

μPS(Shadx(gx, R))
μPS(g−1(Shadx(gx, R)))

≥ 1
Q
e−h�(Bz(x,x)−Bz(x,g−1x)).

Since R ≥ R0 the measure of g−1(Shadx(gx, R)) is at least 1
2 . Moreover, the Busemann

function is 1-Lipschitz, so

μPS(Shadx(gx, R)) ≥ 1
2Q

e−h�d(x,g−1x) = 1
2Q

e−h�d(x,gx).

Step 3. μPS(B(z, ρ)) ≥ (1/2Q)e−h�(R0+28δ+2D)ρh� for every z ∈ �(�) and every ρ > 0.
For every ρ > 0 we set T = log(1/ρ). If z ∈ ∂X and R ≥ 0 then by Lemma 4.8

we get Shadx(ξx,z(T + R), R) ⊆ B(z, e−T ). We take R = R0 + 14δ +D, where R0

is the constant of the second step, and we conclude that Shadx(ξx,z(T + R), R) is
contained in B(z, ρ). Again applying Lemma 4.6 and the cocompactness of the action,
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we can find g ∈ � such that d(gx, ξx,z(T + R)) ≤ 14δ +D, implying Shadx(gx, R0) ⊆
Shadx(ξx,z(T + R), R) ⊆ B(z, ρ). From the second step we obtain μPS(B(z, ρ)) ≥
(1/2Q)e−h�d(x,gx). Furthermore, d(x, gx) ≤ T + R0 + 28δ + 2D, so finally

μPS(B(z, ρ)) ≥ 1
2Q

e−h�(R0+28δ+2D)ρh� .

The explicit description of the constants shows that they depend only on δ, H , D and on a
lower bound on h� , which is given in terms of δ and D by Proposition 5.2.

As a consequence, applying Corollary 5.9, we have the following result.

COROLLARY 6.2. In the standard setting of convergence there exists some A > 0 such
that every visual boundary ∂Xn is visually (A, h�n)-Ahlfors-regular with respect to any
Patterson–Sullivan measure.

With this result it is possible to show the continuity of the critical exponent under
the standard setting of convergence. However, we prefer to use the equidistribution of the
orbits, following again the ideas of [Coo93].

Proof of Theorem B. By Corollary 5.9 we have supn∈N h�n =: H < +∞. By
Proposition 5.3 there exists s > 0 such that sys(�n, Xn) ≥ s for every n. Let R0 =
R0(δ, D, H) be the number from Step 2 of Theorem 6.1 and Q be the constant from
Proposition 4.13. By Lemma 5.8 we have

sup
n∈N

PackYn

(
4R0 + 1,

s

2

)
=: N < +∞.

We fix n ∈ N. It is easy to check that if [xn, zn] ∩ B(yn, R0) �= ∅ and [xn, zn] ∩
B(y′

n, R0) �= ∅, where zn ∈ ∂X and yn, y′
n are points of Xn with |d(xn, yn)−

d(xn, y′
n)| ≤ 1, then d(yn, y′

n) ≤ 4R0 + 1. Thus for every j ∈ N we have #{yn ∈
�nxn s.t. yn ∈ A(xn, j , j + 1) and zn ∈ Shadxn(yn, R0)} ≤ N .

Step 1. For all k ∈ N we have #�nxn ∩ B(xn, k) ≤ 4QNeh�nk . Let An,j = �nxn ∩
A(xn, j , j + 1). By the observation made before, we conclude that among the set of
shadows {Shadxn(yn, R0)}yn∈Aj there are at least #Aj/N disjoint sets. Thus

1 ≥ μPS

( ⋃
yn∈An,j

Shadxn(yn, R0)

)
≥ #An,j

N
· 1

2Q
e−h�n (j+1),

where we used Step 2 of Theorem 6.1. This implies #An,j ≤ 2QNeh�n (j+1) for every
j ∈ N. Finally, we have

#�nxn ∩ B(xn, k) ≤
k−1∑
j=0

#An,j ≤ 4QNeh�nk .

Step 2. For all T ≥ 0 we have #�nxn ∩ B(xn, T ) ≥ e−h�n (84δ+5D+1)eh�nT . We
fix zn1, . . . , znKn ∈ �(�n), realizing Pack∗(�(�n), e−T+28δ+2D+1): in particular,
(zni , znj )xn ≤ T − 28δ − 2D − 1 for all 1 ≤ i �= j ≤ Kn. By Lemma 4.2 we deduce that
d(ξxn,zni (T − 14δ −D), ξxn,znj (T − 14δ −D)) ≥ 28δ + 2D + 1 > 28δ + 2D. Moreover,
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for every 1 ≤ i ≤ Kn we can find a point yni ∈ �x such that d(ξxn,zni (T − 14δ −D), yni ) ≤
14δ +D by Lemma 4.6. Therefore we have d(xn, yni ) ≤ T and d(yni , ynj ) > 0 for every
1 ≤ i �= j ≤ Kn. So

#�nxn ∩ B(xn, T ) ≥ Pack∗(�(�n), e−T+28δ+2D+1)

≥ Cov(�(�n), e−T+29δ+2D+1)

≥ e−h�n (84δ+5D+1)eh�nT .

The first inequality follows from the discussion above, while the second is Lemma 4.10.
The last inequality follows by Step 1 of Theorem 6.1. Indeed, we get

Cov(�(�n), e−T+29δ+2D+1) ≥ e−h�n (55δ+3D)e−h�n (−T+29δ+2D+1)

= e−h�n (84δ+5D+1)eh�nT .

The thesis follows by the bounded quantification of all the constants involved in terms of
δ, D, H , N and the lower bound on the critical exponent given in terms of δ and D by
Proposition 5.2.

We can conclude now the proof of Theorem A.

Proof of Theorem A(ii). Let ω be a non-principal ultrafilter. By Proposition 3.13 the triple
(Xω, xω, �ω) is equivariantly isometric to (X∞, x∞, �∞). By Theorem A(i) the triple
(Xω, xω, �ω) belongs toM(δ, D). By Proposition 5.7 the critical exponent of �ω is finite,
so for every ε > 0 there exists Tε ≥ 0 such that if T ≥ Tε then

eT (h�ω−ε) ≤ #�ωxω ∩ B(xω, T ) ≤ eT (h�ω+ε), (6.2)

by Lemma 4.12. We fix K as in Theorem B and we set T := max{Tε, log K · e/ε}. It is not
difficult to show that

#�nxn ∩ B(xn, T − 1) ≤ #�ωxω ∩ B(xω, T ) ≤ #�nxn ∩ B(xn, T + 1)

ω-a.s., so

1
K

· e−1 · eT ·h�n ≤ #�ωxω ∩ B(xω, T ) ≤ K · e · eT ·h�n (6.3)

ω-a.s. Putting together (6.2) and (6.3) and using the definition of T, we get

h�n − 2ε ≤ h�ω ≤ h�n + 2ε,

ω-a.s. This means ω-lim h�n = h�ω , by definition. This is true for every non-principal
ultrafilter, hence the continuity under equivariant pointed Gromov–Hausdorff convergence
follows by the next result.

LEMMA 6.3. Let an be a bounded sequence of real numbers.
(i) If anj is a subsequence converging to ã then there exists a non-principal ultrafilter

ω such that ω-lim an = ã.
(ii) If there exists a ∈ R such that ω-lim an = a for every non-principal ultrafilter ω,

then there exists limn→+∞ an = a.
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Proof. Let us start with (i). The set {nj }j is infinite, so there exists a non-principal
ultrafilter ω containing {nj }j (cf. [Jan17, Lemma 3.2]). Moreover, for every ε > 0 there
exists jε such that for all j ≥ jε the inequality |anj − ã| < ε holds. The set of indices
where the inequality is true belongs to ω since the complementary is finite. This implies
exactly that ã = ω-lim an.

The proof of (ii) is now a direct consequence. We take subsequences {nj }j∈J , {nk}k∈K
converging respectively to the limit inferior and limit superior of the sequence. By (i)
there are two non-principal ultrafilters ωJ , ωK such that ωJ -lim anj = lim infn→+∞ an

and ωK -lim ank = lim supn→+∞ an. By assumption these two ultralimits coincide, so
lim infn→+∞ an = lim supn→+∞ an.

7. Algebraic and equivariant Gromov–Hausdorff convergence
Let X be a proper metric space and G be a topological group. We denote by Act (G, X) the
set of homomorphisms ϕ : G → Isom(X).

Definition 7.1. Let ϕn, ϕ∞ ∈ Act(G, X). We say ϕn converges in the algebraic sense to ϕ∞
if ϕn converges to ϕ∞ in the compact-open topology. In this case we write ϕn −→

alg
ϕ∞. The

compact-open topology is Hausdorff since Isom(X) is, so the algebraic limit is unique, if
it exists.

If G has the discrete topology then the algebraic convergence is equivalent to the
isometries ϕn(g) converging to ϕ∞(g) uniformly on compact subsets of X for every g ∈ G.

If G has the discrete topology and is finitely generated by {g1, . . . , g�} then the
algebraic convergence is equivalent to the isometries ϕn(gi) converging to ϕ∞(gi)
uniformly on compact subsets of X for every i = 1, . . . , �.

The algebraic limit is always contained in the ultralimit group in the following sense.

PROPOSITION 7.2. Let ϕn, ϕ∞ ∈ Act(G, X) and suppose ϕn −→
alg

ϕ∞. Let ω be a

non-principal ultrafilter. Then ϕ∞(G) ⊆ (ϕn(G))ω, where we use Lemma 3.9 to identify
the ultralimit group of the sequence ϕn(G) with a group of isometries of X.

Proof. For every g ∈ G the sequence ϕn(g) converges uniformly on compact subsets of X
to ϕ∞(g) by assumption. It is easy to see that the ultralimit element ω-lim ϕn(g) coincides
with ϕ∞(g), so ϕ∞(G) ⊆ (ϕn(G))ω.

In general the inclusion is strict.

Example 7.3. Let X = R, G = Z and ϕn : Z → Isom(R) defined by sending 1 to the
translation of length 1/n. Clearly the sequence ϕn converges algebraically to the trivial
homomorphism. On the other hand, (ϕn(Z))ω is the group � of all translations of R for
every non-principal ultrafilter ω.

However, the two limits coincide when restricted to the classM(δ, D).
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THEOREM 7.4. Let (X, x, �n) ∈M(δ, D).
(i) If (X, x, �n) −→

eq-pGH
(X, x, �∞) then there exists a group G such that, for every

sufficiently large n, we have �n = ϕn(G), �∞ = ϕ∞(G) with ϕn, ϕ∞ isomorphisms
and ϕn −→

alg
ϕ∞.

(ii) Conversely, if there exist a group G and isomorphisms ϕn : G → �n and if ϕn −→
alg

ϕ∞ then (X, x, �n) −→
eq-pGH

(X, x, ϕ∞(G)).

Before the proof we need two results. Given a group � and a finite set of generators �
of �, the word-metric d� is classically defined on � as

d�(g, h) := inf{� ∈ N s.t. g = h · σ1 · · · σ�, where σi ∈ �}.
By definition d� takes values in the set of natural numbers and d�(g, h) = d�(h

−1g, id).
The couple (�, �) is called a marked group.

LEMMA 7.5. [BCGS21, Lemma 4.6] Let (X, x, �) ∈M(δ, D) and let R > 2D + 72δ.
Set � := �R(�, x) and denote by d� the associated word-metric on � (observe that � is
a generating set of � by Lemma 5.1). Then

(R − 2D − 72δ) · d�(g, h) ≤ d(gx, hx) ≤ R · d�(g, h)

for all g, h ∈ �.

Proof. It is enough to check the inequalities for g ∈ � and h = id. We write g =
σ1 · · · σ�, with σi ∈ �, � = d�(g, id). The right inequality follows by the triangle
inequality on X, indeed d(gx, x) ≤ � · R.

We now take consecutive points xi , i = 0, . . . , �, along a geodesic segment
[x, gx] with x0 = x, x� = gx, d(xi−1, xi) = R − 2D − 72δ for i = 1, . . . , �− 1
and d(x�−1, gx) ≤ R − 2D − 72δ. This implies � ≤ d(x, gx)/(R − 2D − 72δ). By
Lemma 4.5 and by cocompactness we can find an element gi ∈ � such that
d(xi , gix) ≤ 36δ +D for every i = 0, . . . , �. We choose g0 = id and g� = g. Clearly
d(gix, gi−1x) ≤ R for every i = 1, . . . , �. This shows that σi = g−1

i−1gi ∈ �. Moreover,
g = σ1 · · · σ�, that is, d�(g, id) ≤ � ≤ d(x, gx)/(R − 2D − 72δ).

In the following proposition we make the metric in the pointed Gromov–Hausdorff
convergence explicit for the sake of clarity.

PROPOSITION 7.6. In the standard setting of convergence let R be a real number
satisfying:
(i) 2D + 72δ < R ≤ 2D + 72δ + 1;

(ii) for every g ∈ �∞ such that d(x∞, gx∞) ≤ R, we have d(x∞, gx∞) < R.
Let �n := �R(�n, xn) and �∞ = �R(�∞, x∞) be generating sets of �n and �∞, respec-
tively (by Lemma 5.1). Equip �n and �∞ with the word-metrics d�n , d�∞ , respectively.
Then (�n, d�n , id) −→

pGH
(�∞, d�∞ , id).
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Proof. We fix a non-principal ultrafilter ω, we take the ultralimit triple (Xω, xω, �ω)
and we set �ω := �R(�ω, xω). We have that (Xω, xω, �ω) is equivariantly isometric to
(X∞, x∞, �∞) by Proposition 3.13, so (�ω, d�ω , id) is isometric to (�∞, d�∞ , id), and
they are proper. If we show that the ultralimit of the sequence of spaces (�n, d�n , id)
is isometric to (�ω, d�ω , id) we conclude by Corollary 3.14 that (�n, d�n , id) −→

pGH
(�∞, d�∞ , id).

We denote by ω-lim(�n, d�n , id) the ultralimit space of this sequence. Observe that
each element is represented by a sequence (gn) with gn ∈ �n and d�n(id, gn) ≤ Mω-a.s.,
for some M. We define � : ω-lim(�n, d�n , id) → (�ω, d�ω , id) by sending a point (gn)
to the isometry of �ω defined by ω-lim gn. We have to show that � is well defined. First
of all the condition d�n(id, gn) ≤ M implies d(xn, gnxn) ≤ R ·Mω-a.s. by Lemma 7.5,
so the sequence (gn) is admissible and defines a limit isometry belonging to �ω. Suppose
that (hn) is another sequence of isometries of �n such that ω-lim d�n(gn, hn) = 0. Then
d�n(gn, hn) < 1ω-a.s, thus d�n(gn, hn) = 0ω-a.s., that is, gn = hnω-a.s. This shows that
the map � is well defined.

It remains to show that it is an isometry. Let (gn), (hn) ∈ ω-lim(�n, d�n , id) and set � =
ω-lim d�n(gn, hn). Since any word-metric takes values in N we get d�n(gn, hn) = �ω-a.s.
For these indices we can write gn = hn · a1

n · · · a�n with a1
n, . . . , a�n ∈ �n. The sequence

of isometries (ain) are admissible by definition, so they define elements aiω ∈ �ω. We have
gω = hω · a1

ω · · · a�ω, showing that d�ω(gω, hω) ≤ � = ω-lim d�n(gn, hn).
We now take isometries gω = ω-lim gn, hω = ω-lim hn of �ω. By definition

d(xn, gnxn) ≤ M and d(xn, hnxn) ≤ M ω-a.s., for some M. By Lemma 7.5 we get
d�n(gn, id) ≤ M ′ and d�n(hn, id) ≤ M ′ ω-a.s., for M ′ = M/(R − 2D − 72δ). Therefore
the sequences (gn), (hn) defines point of ω-lim(�n, d�n , id). Observe that this shows also
that � is surjective. We set d�ω(gω, hω) = �. Then we can write gω = hω · a1

ω · · · a�ω,
for some aiω = ω-lim ain ∈ �ω. This means that d(xω, aiωxω) ≤ R, so d(xω, aiωxω) < R

by our assumptions on R. Therefore the following finite set of conditions holds ω-a.s.:
d(xn, ainxn) ≤ R for every i = 1, . . . , �, that is, ain ∈ �nω-a.s. Now observe that if
gn �= hn · a1

n · · · a�n =: bnω-a.s. then d(gnxn, bnxn) ≥ s > 0 ω-a.s. Indeed, by Corollary
5.9 and Proposition 5.3 it is enough to take s smaller than a uniform lower bound of the
systole of all the groups �n. Hence we get d(gωxω, bωxω) > 0, which is clearly false. This
shows that ω-lim d�n(gn, hn) ≤ �, that is, d�ω(gω, hω) ≥ ω-lim d�n(gn, hn). Therefore
� is an isometry.

Proof of Theorem 7.4. We first prove (i). We can always find R as in the assumptions
of Proposition 7.6 since �∞ is discrete by Corollary 5.10. So, with the same notation as
in Proposition 7.6, (�n, d�n , id) −→

pGH
(�∞, d�∞ , id). Applying word for word the proof

of Theorem 4.4 of [BCGS21], using Lemma 7.5 instead of Lemma 4.6 therein, we get
only a finite number of isomorphic types of the marked groups (�n, �n). This implies
that for sufficiently large n all the marked groups (�n, �n) are pairwise isomorphic, and
in particular isomorphic to (�∞, �∞). We set G = �∞, ϕ∞ = id and ϕ′

n a fixed marked
isomorphism between (�∞, �∞) and (�n, �n). By Corollary 5.9 and Proposition 5.3 we
can find s > 0 such that sys(�n, X) ≥ 2s for every n. By definition of equivariant pointed
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Gromov–Hausdorff convergence for each element g ∈ �∞ there exists gn ∈ �n such that
d(gnx, gx) < s, if n is sufficiently large. By the condition on the systole we deduce that gn
is unique. Finally, by the definition of R, if n is taken possibly larger, every such gn belongs
to �n. Clearly this correspondence g �→ gn is one-to-one. This means that there exists a
permutation Pn of the set �n such that ϕn = Pn ◦ ϕ′

n is again a marked isomorphism
between (�∞, �∞) and (�n, �n) such that ϕn(g) = gn. It is now trivial to show that
ϕn(g) converges uniformly on compact subsets of X to g for every g ∈ �∞, and so that
ϕn converges algebraically to ϕ∞.

We now show (ii). By Corollary 3.14 it is enough to show that �ω = ϕ∞(G) for every
non-principal ultrafilter ω, where �ω is the ultralimit group of the sequence �n. Here we
are using Lemma 3.9 to identify the ultralimit group of the sequence (X, x, �n) with a
group of isometries of X. By Proposition 3.13 we know that there is a subsequence {nk}
such that (X, x, �nk ) −→

eq-pGH
(X, x, �ω) because X is proper. Therefore by the first part

of the theorem there exists a homomorphism ψ : G → Isom(X) with ψ(G) = �ω and
ϕnk −→

alg
ψ . So ψ = ϕ∞ by the uniqueness of the algebraic limit. This shows that �ω =

ϕ∞(G) and concludes the proof.

We observe that the first part of the argument above shows the following corollary.

COROLLARY 7.7. In the standard setting of convergence the groups �n are eventually
isomorphic to �∞.

8. Examples
We show that each assumption on the class M(δ, D) is necessary in order to have the
discreteness of the limit group.

Example 8.1. (Non-elementarity of the group) We take Xn = R, xn = 0 and �n = Z1/n,
the group generated by the translation of length 1/n. It is easy to show that (Xω, xω) =
(R, 0) and �ω is the group of all translations of R, for every non-principal ultrafilter ω.
Clearly �ω, and therefore any possible limit under equivariant pointed Gromov–Hausdorff
convergence, is not discrete. Observe that each Xn is a proper, geodesic, 0-hyperbolic
metric space and each �n is discrete, torsion-free and cocompact with codiameter ≤ 1/n.

Example 8.2. (Non-uniform bound on the diameter) For every n we take a hyperbolic
surface of genus 2 with systole equal to 1/n. Its fundamental group acts cocompactly on
Xn = H

2 as a subgroup �n of isometries. We take a basepoint xn ∈ H
2 which belongs

to the axis of an isometry of �n with translation length 1/n. As in the example above
�ω contains all the possible translations along an axis of Xω = H

2 and so it is not
discrete, for every non-principal ultrafilter ω. Observe that each Xn is a proper, geodesic,
log 3-hyperbolic metric space and each �n is discrete, non-elementary, torsion-free and
cocompact. However, the codiameter of �n is not uniformly bounded above.

Example 8.3. (Groups with torsion) Let Y be the wedge of a hyperbolic surface S of
genus 2 and a sphere S

2 and let X be its universal cover, which is Gromov-hyperbolic.
Denote by Gn the group of isometries of Y generated by the isometry that fixes S and acts
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as a rotation of angle 2π/n on S
2 fixing the wedging point. Let �n be the covering group

of Gn acting on Xn := X by isometries. The action of �n is clearly discrete with bounded
codiameter. However, �ω is not discrete.

Example 8.4. (Gromov-hyperbolicity) Let X = R
2, x = (0, 0) and �n be the cocompact,

discrete, torsion-free group generated by the translations of vectors (1/n, 0) and (0, 1). It
is clear that �ω is not discrete for every non-principal ultrafilter ω.
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