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Abstract. We generalize the greedy and lazy β-transformations for a real base β to the
setting of alternate bases β = (β0, . . . , βp−1), which were recently introduced by the
first and second authors as a particular case of Cantor bases. As in the real base case,
these new transformations, denoted Tβ and Lβ respectively, can be iterated in order to
generate the digits of the greedy and lazy β-expansions of real numbers. The aim of
this paper is to describe the measure-theoretical dynamical behaviors of Tβ and Lβ . We
first prove the existence of a unique absolutely continuous (with respect to an extended
Lebesgue measure, called the p-Lebesgue measure) Tβ -invariant measure. We then show
that this unique measure is in fact equivalent to the p-Lebesgue measure and that the
corresponding dynamical system is ergodic and has entropy (1/p) log(βp−1 · · · β0). We
give an explicit expression of the density function of this invariant measure and compute
the frequencies of letters in the greedy β-expansions. The dynamical properties of Lβ are
obtained by showing that the lazy dynamical system is isomorphic to the greedy one. We
also provide an isomorphism with a suitable extension of the β-shift. Finally, we show that
the β-expansions can be seen as (βp−1 · · · β0)-representations over general digit sets and
we compare both frameworks.
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1. Introduction
A representation of a non-negative real number x in a real base β > 1 is an infinite
sequence a0a1a2 · · · of non-negative integers such that x = ∑∞

i=0(ai/β
i+1). These

representations were first considered by Rényi [23] and Parry [21] for points x in the unit
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interval with digits an belonging to the set {0, 1, . . . , �β� − 1}. Typically each point in
[0, 1) has uncountably many representations [25]. The largest in the lexicographic order is
called the greedy expansion and the smallest is called the lazy expansion. An interesting
feature of these extreme cases is that they can be generated dynamically by iterating the
so-called greedy β-transformation Tβ and lazy β-transformationLβ , respectively (see §2.2
for definitions). The dynamical properties of Tβ and Lβ are now well understood since
the seminal works of Rényi and Parry; for example, see [11]. Pedicini [22] extended the
definition of real base representations by considering digits ai belonging to some fixed
finite set of reals �. In the last fifteen years, generalizations of classical results such as
characterizations of greedy and lazy expansions and the properties of their underlying
dynamical systems have been obtained; see, for example, [2, 7, 16]. To distinguish the
general digit set from the classical case, we refer to the resulting representations as
(β, �)-representations.

In a recent work, the first two authors introduced the notion of expansions of real
numbers in a real Cantor base [5]. One starts with an infinite sequence β = (βn)n≥0 of real
bases greater than 1 and satisfying

∏∞
n=0 βn = ∞, and representations of a non-negative

real number x are infinite sequences a0a1a2 · · · of non-negative integers such that
x = ∑+∞

n=0(an/βn · · · β0). In this initial work, generalizations of several combinatorial
results of real base representations were obtained, such as Parry’s criterion for greedy
β-expansions [5, Theorem 26] or the Bertrand–Mathis characterization of sofic β-shifts
[5, Theorem 48]. The latter result was obtained for periodic Cantor bases, which are called
alternate bases and are central in the present paper.

Representations involving more than one base have recently gained momentum, as
shown by the five simultaneous and independent works [4, 5, 18, 20, 27]. In particular,
these papers all present a generalization of Parry’s theorem to their respective frameworks.
But so far, all the research has been concentrated on the symbolic properties of these
representations.

The aim of this paper is to study the measure-theoretical dynamical behaviors of
the greedy and lazy expansions in a periodic Cantor base β = (β0, . . . , βp−1, β0, . . . ,
βp−1, . . .), which we refer to as an alternate base. This is done by introducing two new
transformations, the alternate greedy transformation Tβ and the alternate lazy transfor-
mation Lβ , iterations of which generate the greedy and lazy alternate base expansions,
respectively. We find for each transformation a natural invariant ergodic measure absolutely
continuous with respect to an appropriate generalization of the Lebesgue measure and
calculate its measure-theoretical entropy (Theorems 4.12 and 5.3). Using tools from
ergodic theory, we are able to exhibit some statistical properties of these expansions,
such as the frequency of digits in the greedy expansion of a typical point (Proposition
4.18). Furthermore, we show that the dynamical system underlying the greedy expansion is
measure-theoretically isomorphic to the dynamical system underlying the lazy expansion
(Proposition 5.1) as well as to the dynamical system underlying a natural generalization
of the so-called β-shift (Proposition 6.2); as a consequence, the three transformations
have the same dynamical behavior. Another interesting property of the alternate base
expansions is that when each p-term is written as one fraction, one is able to rewrite
the series involved in the form x = ∑+∞

n=0(dn/(βp−1 · · · β0)
n), with dn belonging to
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some fixed digit set �β of real numbers; see formula (13). This algebraic operation
transforms the alternate base expansion into a (βp−1 · · · β0, �β)-representation. We
give a sufficient condition for this transformed representation to be greedy or lazy
(Theorem 7.6).

The paper is organized as follows. In §2 we provide the necessary background on
measure theory and on expansions of real numbers in a real base. In §3 we introduce the
greedy and lazy alternate base expansions and define the associated transformations Tβ and
Lβ . Section 4 is concerned with the dynamical properties of the greedy transformation. We
first prove the existence of a unique absolutely continuous (with respect to a generalization
of the Lebesgue measure, which is defined in (8) and called the p-Lebesgue measure)
Tβ -invariant measure and then prove that this measure is equivalent to the p-Lebesgue
measure and that the corresponding dynamical system is ergodic. We then express the
density function of this measure and compute the frequencies of letters in the greedy
β-expansions. In §§5 and 6 we prove that the greedy dynamical system is isomorphic
to the lazy one, as well as to a suitable extension of the β-shift. In §7 we show that the
β-expansions can be seen as (βp−1 · · · β0)-representations over general digit sets and we
compare both frameworks.

2. Preliminaries
2.1. Measure-preserving dynamical systems. In this subsection we summarize the
ergodic properties that will be used throughout this paper; for more detail we refer the
reader to [3, 10, 13, 15, 26].

A probability space is a triplet (X, F, μ) where X is a set, F is a σ -algebra over X, and
μ is a measure on F such that μ(X) = 1. For a measurable transformation T : X → X

and a measure μ on F, the measure μ is T-invariant, or equivalently, the transformation
T : X → X is measure-preserving with respect to μ, if for all B ∈ F, μ(T −1(B)) =
μ(B). A (measure-preserving) dynamical system is a quadruple (X, F, μ, T ) where
(X, F, μ) is a probability space and T : X → X is a measure-preserving transformation
with respect to μ. A dynamical system (X, F, μ, T ) is ergodic if all B ∈ F such
that T −1(B) = B satisfy μ(B) ∈ {0, 1}, and it is exact if

⋂∞
n=0{T −n(B) : B ∈ F} only

contains sets of measure 0 or 1. Clearly, any exact dynamical system is ergodic. Two
dynamical systems (X, FX, μX, TX) and (Y , FY , μY , TY ) are (measure-preservingly)
isomorphic if there exist M ∈ FX and N ∈ FY with μX(M) = μY (N) = 0 and TX(X \
M) ⊂ X \M , TY (Y \N) ⊂ Y \N , and if there exists a bijective map ψ : X \M →
Y \N which is bimeasurable with respect to the σ -algebras FX ∩ (X \M) and FY ∩
(Y \N) and such that for all B ∈ FY ∩ (Y \N), μY (B) = μX(ψ

−1(B)), and finally,
such that for all x ∈ X \M , ψ(TX(x)) = TY (ψ(x)). Here and throughout the paper,
for a subset A of X, the notation F ∩ A designates the σ -algebra {B ∩ A : B ∈ F}
over A.

With any given dynamical system (X, F, μ, T ), one associates a non-negative real
number hμ(T ), called the measure-theoretical entropy of T, that measures the average
amount of information gained by each application of T. Moreover, the entropy is an
isomorphic invariant, in the sense that isomorphic systems have the same entropy.
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Formally, the measure-theoretical entropy is defined as

hμ(T ) = sup
α

lim
n→∞

1
n
Hμ

( n−1∨
i=0

T −i (α)
)

,

where α denotes a finite (measurable) partition of X,
∨n−1
i=0 T

−i (α) is the refined partition
consisting of all sets of the form Ai0 ∩ T −1(Ai1) ∩ · · · ∩ T −(n−1)(Ain−1) with Aij ∈ α,
and

Hμ

( n−1∨
i=0

T −iα
)

= −
∑

D∈∨n−1
i=0 T

−iα

μ(D) log(μ(D)).

Given a dynamical system (X, F, μ, T ) and A ∈ F with μ(A) > 0, one can restrict
the dynamics to the sub-probability space (A, F ∩ A, μA) where μA(C) = μ(C)/μ(A)

for C ∈ F ∩ A. This is done by defining, for x ∈ A, the first return time r(x) =
inf{n ≥ 1 : T n(x) ∈ A}. By the classical Poincaré recurrence theorem, r(x) is finite
for μA-almost all x ∈ A. We then define TA : A → A by setting TA(x) = T r(x)(x).
This function is defined almost everywhere, but by throwing away a set of measure
zero one can assume with no loss of generality that r(x) is finite on A. The induced
dynamical system (A, F ∩ A, μA, TA) inherits many nice properties of the original
system. For example, TA is measure-preserving with respect to μA. If the original
system is ergodic, then the induced system is also ergodic. The converse holds
true if μ(

⋃∞
n=0 T

−n(A)) = 1. A famous result of Abramov [1] relates the entropy
of the original system to the entropy of the induced system. To be more precise,
the theorem states that if (X, F, μ, T ) is measure-preserving and ergodic, then
hμ(T ) = μ(A)hμA(TA).

For two measures μ and ν on the same σ -algebra F, we say that μ is absolutely
continuous with respect to ν if for all B ∈ F, ν(B) = 0 implies μ(B) = 0, and we say
that μ and ν are equivalent if they are absolutely continuous with respect to each other.
In what follows, we will be concerned with the Borel σ -algebras B(A), where A ⊂ R.
In particular, a measure on B(A) is absolutely continuous if it is absolutely continuous
with respect to the Lebesgue measure λ restricted to B(A). The Radon–Nikodym theorem
states that μ and ν are two probability measures such that μ is absolutely continuous
with respect to ν, then there exists a ν-integrable map f : X 
→ [0, +∞) such that for all
B ∈ F, μ(B) = ∫

B
f dν. Moreover, the map f is ν-almost everywhere unique. Such a map

is called the density function of the measure μ with respect to the measure ν and is usually
denoted dμ/dν.

2.2. Real base expansions. Let β be a real number greater than 1. A β-representation
of a non-negative real number x is an infinite sequence a0a1a2 · · · over N such that
x = ∑∞

i=0(ai/β
i+1). For x ∈ [0, 1), a particular β-representation of x, called the greedy

β-expansion of x, is obtained by using the greedy algorithm. If the first N digits of the
β-expansion of x are given by a0, . . . , aN−1, then the next digit aN is the greatest integer
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0 1

1

1
ϕ2

2
ϕ2

FIGURE 1. The transformation Tϕ2 .

such that

N∑
n=0

an

βn+1 ≤ x.

Note that, by definition of the greedy algorithm, the β-expansion of a real number x ∈
[0, 1) is written over the restricted alphabet �0, �β� − 1�. Here and throughout the text,
for i, j ∈ Z, the notation �i, j� designates the interval of integers {i, . . . , j}. The greedy
β-expansion can also be obtained by iterating the greedy β-transformation

Tβ : [0, 1) → [0, 1), x 
→ βx − �βx
by setting an = �βT nβ (x) for all n ∈ N.

Example 2.1. In this example and throughout the paper, ϕ designates the golden ratio, that
is, ϕ = (1 + √

5)/2. The transformation Tϕ2 is depicted in Figure 1.

Real base expansions have been studied form various points of view. We refer the reader
to [19, Ch. 7] for a survey on their combinatorial properties and [10] for a survey on their
dynamical properties. The following fundamental dynamical result summarizes results
from [21, 23, 24].

THEOREM 2.2. There exists a unique Tβ -invariant absolutely continuous probability
measure μβ on B([0, 1)). Furthermore, the measure μβ is equivalent to the Lebesgue
measure on B([0, 1)) and the dynamical system ([0, 1), B([0, 1)), μβ , Tβ) is ergodic and
has entropy log(β).

Remark 2.3. It follows from Theorem 2.2 that Tβ is non-singular with respect to the
Lebesgue measure, that is, for all B ∈ B([0, 1)), λ(B) = 0 if and only if λ(T −1

β (B)) = 0.

In what follows, we let

xβ = �β� − 1
β − 1

.

This value corresponds to the greatest real number that has a β-representation over the
alphabet �0, �β� − 1�. Clearly, we have xβ ≥ 1. The extended greedy β-transformation,
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0 1

1

1
ϕ2

2
ϕ2

2
ϕ2−1

2
ϕ2−1

FIGURE 2. The extended transformation T ext
ϕ2 .

denoted T ext
β , is defined in [11] as

T ext
β : [0, xβ) → [0, xβ), x 
→

{
βx − �βx if x ∈ [0, 1),

βx − (�β� − 1) if x ∈ [1, xβ).

Note that for all x ∈ [(�β� − 1)/β, �β�/β), the two cases of the definition coincide since
�βx = �β� − 1. The extended β-transformation restricted to the interval [0, 1) yields the
classical greedy β-transformation defined above. Moreover, for all x ∈ [0, xβ), there exists
N ∈ N such that for all n ≥ N , (T ext

β )n(x) ∈ [0, 1).

Example 2.4. We continue Example 2.1. The extended greedy transformation T ext
ϕ2 is

depicted in Figure 2.

In the greedy algorithm, each digit is chosen as the largest possible among
0, 1, . . . , �β� − 1 in the position considered. At the other extreme, the lazy algorithm
picks the smallest possible digit at each step [12]: if the first N digits of the expansion of a
real number x ∈ (0, xβ ] are given by a0, . . . , aN−1, then the next digit aN is the smallest
element in �0, �β� − 1� such that

N∑
n=0

an

βn+1 +
∞∑

n=N+1

�β� − 1
βn+1 ≥ x,

or equivalently,

N∑
n=0

an

βn+1 + xβ

βN+1 ≥ x.

The β-representation thus obtained is called the lazy β-expansion of x. The lazy
β-transformation dynamically generating the lazy β-expansion is the transformation Lβ
defined as follows [10]:

Lβ : (0, xβ ] → (0, xβ ], x 
→
{
βx if x ∈ (0, xβ − 1],

βx − �βx − xβ� if x ∈ (xβ − 1, xβ ].
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2
ϕ2−1−1

2
ϕ2−1−10 2

ϕ2−1

2
ϕ2−1

2
ϕ2−1− 2

ϕ2
2

ϕ2−1− 1
ϕ2

FIGURE 3. The transformation Lϕ2 .

Observe that for all x ∈ (xβ − 1/β, xβ/β], the two cases of the definition coincide since
�βx − xβ� = 0. Moreover, since Lβ((xβ − 1, xβ ]) = (xβ − 1, xβ ], the lazy transforma-
tion Lβ can be restricted to the length-one interval (xβ − 1, xβ ]. Also note that for all x ∈
(0, xβ ], there exists N ∈ N such that for all n ≥ N , Lnβ(x) ∈ (xβ − 1, xβ ]. Furthermore,
for all x ∈ (xβ − 1, xβ ] and n ∈ N, we have an = �βLnβ(x)− xβ�.

Example 2.5. The lazy transformation Lϕ2 is depicted in Figure 3.

It is proven in [11] that there is an isomorphism between the greedy and the lazy
β-transformations. As a direct consequence of this property, an analogue of Theorem 2.2
is obtained for the lazy transformation restricted to the interval (xβ − 1, xβ ].

3. Alternate base expansions
Let p be a positive integer and β = (β0, . . . , βp−1) be a p-tuple of real numbers greater
than 1. Such a p-tuple β is called an alternate base and p is called its length. A
β-representation of a non-negative real number x is an infinite sequence a0a1a2 · · · over
N such that

x = a0

β0
+ a1

β1β0
+ · · · + ap−1

βp−1 · · · β0

+ ap

β0(βp−1 · · · β0)
+ ap+1

β1β0(βp−1 · · · β0)
+ · · · + a2p−1

(βp−1 · · · β0)2

+ · · · . (1)

We use the convention that for all n ∈ Z, βn = βn mod p and β(n) = (βn, . . . , βn+p−1).
Therefore, equality (1) can be rewritten as

x =
+∞∑
n=0

an∏n
k=0 βk

.

The alternate bases are particular cases of Cantor real bases, which were introduced and
studied in [5].

In this paper, our aim is to study the dynamics behind some distinguished represen-
tations in alternate bases, namely the greedy and lazy β-expansions. Firstly, we recall the
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0 1 21 0 10 0 1 21 0 10 0 1 22

FIGURE 4. The transformations T
(1+√

13)/2(blue) and T
(5+√

13)/6 (green).

0 1 21 0 10 0 1 21 0 10 0 1 22

FIGURE 5. The first five digits of the greedy β-expansion of (1 + √
5)/5 are 10102 for β =

((1 + √
13)/2, (5 + √

13)/6).

notion of greedy β-expansions defined in [5] and we introduce the greedy β-transformation
dynamically generating the digits of the greedy β-expansions. Secondly, we introduce the
notion of lazy β-expansions and the corresponding lazy β-transformation.

3.1. The greedy β-expansion. For x ∈ [0, 1), a distinguished β-representation, called
the greedy β-expansion of x, is obtained from the greedy algorithm. If the first N digits
of the greedy β-expansion of x are given by a0, . . . , aN−1, then the next digit aN is the
greatest integer such that

N∑
n=0

an∏n
k=0 βk

≤ x.

Note that, by the definition of the greedy algorithm, for every n ∈ N, the nth digit of the
β-expansion of a real number x ∈ [0, 1) belongs to the restricted alphabet �0, �βn� − 1�.
The greedy β-expansion can also be obtained by alternating the βi-transformations: for
all x ∈ [0, 1) and n ∈ N, an = �βn(Tβn−1 ◦ · · · ◦ Tβ0(x)). The greedy β-expansion of x is
denoted dβ(x). In particular, if p = 1 then it corresponds to the usual greedy β-expansion
as defined in §2.2.

Example 3.1. Consider the alternate base β = ((1 + √
13)/2, (5 + √

13)/6) already stud-
ied in [5]. The greedy β-expansions are obtained by alternating the transformations
T
(1+√

13)/2 and T
(5+√

13)/6, which are both depicted in Figure 4. Moreover, in Figure 5

we see the computation of the first five digits of the greedy β-expansion of (1 + √
5)/5.

We now define the greedy β-transformation by

Tβ : �0, p − 1� × [0, 1) → �0, p − 1� × [0, 1), (i, x) 
→ ((i + 1) mod p, Tβi (x)).
(2)
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The greedy β-transformation generates the digits of the greedy β-expansion as follows.
For all x ∈ [0, 1) and n ∈ N, the digit an of dβ(x) is equal to �βnπ2(T

n
β (0, x)) where

π2 : N × R → R, (n, x) 
→ x.

As in §2.2, the greedy β-transformation can be extended to an interval of real numbers
bigger than [0, 1). To do so, we define

xβ =
∞∑
n=0

�βn� − 1∏n
k=0 βk

. (3)

It can be easily seen that 1 ≤ xβ < ∞. This value corresponds to the greatest real
number that has a β-representation a0a1a2 · · · such that each digit an belongs to the
alphabet �0, �βn� − 1�, that is, xβ is the real number having (�β0� − 1)(�β1� − 1) · · · as a
β-representation. Similarly, for all n ∈ Z, the largest number that has a β(n)-representation
a0a1a2 · · · such that each digit am belongs to the alphabet �0, �βn+m� − 1� is given by

xβ(n) =
∞∑
m=0

�βn+m� − 1∏m
k=0 βn+k

.

Hence, for all n ∈ Z, we get

xβ(n) = xβ(n+1) + �βn� − 1

βn
. (4)

We define the extended greedy β-transformation, denoted T ext
β , by

T ext
β :

p−1⋃
i=0

({i} × [0, xβ(i) )) →
p−1⋃
i=0

({i} × [0, xβ(i) )),

(i, x) 
→
{
((i + 1) mod p, βix − �βix) if x ∈ [0, 1),

((i + 1) mod p, βix − (�βi� − 1)) if x ∈ [1, xβ(i) ).
(5)

The greedy β-expansion of x ∈ [0, xβ) is obtained by alternating the p maps

π2 ◦ T ext
β ◦ δi |[0,x

β(i)
)
: [0, xβ(i) ) → [0, xβ(i+1) )

for i ∈ �0, p − 1�, where

δi : R → {i} × R, x 
→ (i, x).

PROPOSITION 3.2. For all x ∈ [0, xβ) and n ∈ N, we have

π2 ◦ (T ext
β )n ◦ δ0(x) = βn−1 · · · β0x −

n−1∑
k=0

βn−1 · · · βk+1ck

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 �0, �βk� − 1� such

that
∑n−1
k=0 βn−1 · · · βk+1ck/βn−1 · · · β0 ≤ x.

Proof. We proceed by induction on n. The base case n = 0 is immediate: both members
of the equality are equal to x. Now suppose that the result is satisfied for some

https://doi.org/10.1017/etds.2021.161 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.161


836 É. Charlier et al

n ∈ N. Let x ∈ [0, xβ). Let (c0, . . . , cn−1) be the lexicographically greatest n-tuple in∏n−1
k=0 �0, �βk� − 1� such that

∑n−1
k=0 βn−1 · · · βk+1ck/βn−1 · · · β0 ≤ x. Then it is easily

seen that for all m < n, (c0, . . . , cm) is the lexicographically greatest (m+ 1)-tuple
in

∏m
k=0 �0, �βk� − 1� such that

∑m
k=0 βm · · · βk+1ck/βm · · · β0 ≤ x. Now, set y =

π2 ◦ (T ext
β )n ◦ δ0(x). Then y ∈ [0, xβ(n) ) and by the induction hypothesis, we obtain that

y = βn−1 · · · β0x − ∑n−1
k=0 βn−1 · · · βk+1ck . Then, by setting

cn =
{

�βny if y ∈ [0, 1),

�βn� − 1 if y ∈ [1, xβ(n) ),

we obtain that π2 ◦ (T ext
β )n+1 ◦ δ0(x) = βn · · · β0x − ∑n

k=0 βn · · · βk+1ck . In order to
conclude, we have to show that:
(a)

∑n
k=0 βn · · · βk+1ck/βn · · · β0 ≤ x;

(b) (c0, . . . , cn) is the lexicographically greatest (n+ 1)-tuple in
∏n
k=0 �0, �βk� − 1�

such that (a) holds.
By definition of cn, we have cn ≤ βny. Therefore,

n∑
k=0

βn · · · βk+1ck = βn

n−1∑
k=0

βn−1 · · · βk+1ck + cn

= βn(βn−1 · · · β0x − y)+ cn ≤ βn · · · β0x.

This shows that (a) holds.
Let us show (b) by contradiction. Suppose that there exists (c′0, . . . , c′n) ∈∏n
k=0 �0, �βk� − 1� such that (c′0, . . . , c′n) >lex (c0, . . . , cn) and

∑n
k=0 βn · · · βk+1c

′
k/

βn · · · β0 ≤ x. Then there exists m ≤ n such that c′0 = c0, . . . , c′m−1 = cm−1 and c′m ≥
cm + 1. We again consider two cases. First, suppose that m < n. Since (c′0, . . . , c′m) >lex

(c0, . . . , cm), we get
∑m
k=0 βm · · · βk+1c

′
k/βm · · · β0 > x. But then

n∑
k=0

βn · · · βk+1c
′
k ≥ βn · · · βm+1

m∑
k=0

βm · · · βk+1c
′
k > βn · · · β0x,

a contradiction. Second, suppose that m = n. Then

βn · · · β0x ≥
n∑
k=0

βn · · · βk+1c
′
k ≥

n−1∑
k=0

βn · · · βk+1ck + cn + 1,

hence βny ≥ cn + 1. If y ∈ [0, 1) then cn + 1 = �βny + 1 > βny, a contradiction. Oth-
erwise, y ∈ [1, xβ(n) ) and cn + 1 = �βn�. But then c′n ≥ �βn�, which is impossible since
c′n ∈ �0, �βn� − 1�. This shows (b) and ends the proof.

The restriction of the extended greedy β-transformation to the domain �0, p − 1� ×
[0, 1) yields the greedy β-transformation initially defined in (2). Moreover, the subspace
�0, p − 1� × [0, 1) is an attractor of T ext

β in the sense given by the following proposition.

PROPOSITION 3.3. For each (i, x) ∈ ⋃p−1
i=0 ({i} × [0, xβ(i) )), there existsN ∈ N such that

for all n ≥ N , (T ext
β )n(i, x) ∈ �0, p − 1� × [0, 1).
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0 1

1

xβ(1)

xβ(1)

xβ

xβ

1
β0

2
β0

1
β1

FIGURE 6. The maps π2 ◦ T ext
β ◦ δ0|[0,xβ )

(blue) and π2 ◦ T ext
β ◦ δ1|[0,x

β(1) )
(green) with β =

((1 + √
13)/2, (5 + √

13)/6).

Proof. Let (i, x) ∈ ⋃p−1
i=0 ({i} × [0, xβ(i) )). On the one hand, if (T ext

β )N(i, x) ∈ �0, p −
1� × [0, 1) for someN ∈ N, then clearly (T ext

β )n(i, x) ∈ �0, p − 1� × [0, 1) for all n ≥ N .
On the other hand, if (T ext

β )n(i, x) /∈ �0, p − 1� × [0, 1) for all n ∈ N, then we would get

that x = x
(i)
β , since at each step n the greedy algorithm would pick the maximal digit

�βi+n� − 1.

Example 3.4. Let β = ((1 + √
13)/2, (5 + √

13)/6) be the alternate base of Example 3.1.
The maps π2 ◦ T ext

β ◦ δ0|[0,xβ )
: [0, xβ) → [0, xβ(1) ) and π2 ◦ T ext

β ◦ δ1|[0,x
β(1) )

: [0, xβ(1) )→
[0, xβ) are depicted in Figure 6.

3.2. The lazy β-expansion. As in the real base case, in the greedy β-expansion, each
digit is chosen as the largest possible at the position considered. Here, we define and
study the other extreme β-representation, called the lazy β-expansion, taking the smallest
possible digit at each step. For x ∈ [0, xβ), if the first N digits of the lazy β-expansion of x
are given by a0, . . . , aN−1, then the next digit aN is the smallest element in �0, �βN� − 1�

such that
N∑
n=0

an∏n
k=0 βk

+
∞∑

n=N+1

�βn� − 1∏n
k=0 βk

≥ x,

or equivalently,

N∑
n=0

an∏n
k=0 βk

+ xβ(N)∏N
k=0 βk

≥ x.

This algorithm is called the lazy algorithm. For all N ∈ N, we have

N∑
n=0

an∏n
k=0 βk

≤ x,
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which implies that the lazy algorithm converges, that is,

x =
∞∑
n=0

an∏n
k=0 βk

.

We now define the lazy β-transformation by

Lβ :
p−1⋃
i=0

({i} × (0, xβ(i)]) →
p−1⋃
i=0

({i} × (0, xβ(i) ]),

(i, x) 
→
{
((i + 1) mod p, βix) if x ∈ (0, xβ(i) − 1],

((i + 1) mod p, βix − �βix − xβ(i+1)�) if x ∈ (xβ(i) − 1, xβ(i) ].

The lazy β-expansion of x ∈ (0, xβ ] is obtained by alternating the p maps

π2 ◦ Lβ ◦ δi |(0,x
β(i)

] : (0, xβ(i) ] → (0, xβ(i+1) ]

for i ∈ �0, p − 1�. The following proposition is the analogue of Proposition 3.2 for the
lazy β-transformation, and can be proved in a similar fashion.

PROPOSITION 3.5. For all x ∈ (0, xβ ] and n ∈ N, we have

π2 ◦ Lnβ ◦ δ0(x) = βn−1 · · · β0x −
n−1∑
i=0

βn−1 · · · βi+1ci

where (c0, . . . , cn−1) is the lexicographically smallest n-tuple in
∏n−1
k=0 �0, �βk� − 1� such

that (
∑n−1
i=0 βn−1 · · · βi+1ci/βn−1 · · · β0)+ ∑∞

m=n((�βm� − 1)/
∏m
k=0 βk) ≥ x.

Note that for each i ∈ �0, p − 1�,

Lβ({i} × (xβ(i) − 1, xβ(i) ]) ⊂ {(i + 1) mod p} × (xβ(i+1) − 1, xβ(i+1) ].

Therefore, the lazy β-transformation can be restricted to the domain
⋃p−1
i=0 ({i} ×

(xβ(i) − 1, xβ(i)]). The (restricted) lazy β-transformation generates the digits of the
lazy β-expansions of real numbers in the interval (xβ − 1, xβ ] as follows. For all
x ∈ (xβ − 1, xβ ] and n ∈ N, the digit an in the lazy β-expansion of x is equal to
�βnπ2(L

n
β(0, x))− xβ(n+1)�.

Similarly to the greedy case, we obtain that the subspace
⋃p−1
i=0 ({i} × (xβ(i) − 1, xβ(i)])

is an attractor of Lβ .

PROPOSITION 3.6. For each (i, x) ∈ ⋃p−1
i=0 ({i} × (0, xβ(i) ]), there existsN ∈ N such that

for all n ≥ N , Lnβ(i, x) ∈ ⋃p−1
i=0 ({i} × (xβ(i) − 1, xβ(i)]).

Proof. Let (i, x) ∈ ⋃p−1
i=0 ({i} × (0, xβ(i) ]). On the one hand, if LNβ (i, x) ∈ ⋃p−1

i=0 ({i} ×
(xβ(i) − 1, xβ(i)]) for some N ∈ N, then clearly Lnβ(i, x) ∈ ⋃p−1

i=0 ({i} × (xβ(i) − 1, xβ(i)])

for all n ≥ N . On the other hand, if Lnβ(i, x) /∈
⋃p−1
i=0 ({i} × (xβ(i) − 1, xβ(i) ]) for all n ∈

N, then we would get that x = 0, since at each step the lazy algorithm would pick the
minimal digit, which is always 0.
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0 xβ(1)xβ

xβ(1)− 1
β1

xβ− 2
β0

xβ− 1
β0

xβ(1)

xβ

xβ(1)−1

xβ−1

FIGURE 7. The maps π2 ◦ Lβ ◦ δ0|(0,xβ ] (blue) and π2 ◦ Lβ ◦ δ1|(0,x
β(1) ] (green) with β =

((1 + √
13)/2, (5 + √

13)/6).

0 1 2 0 1 0 1 2 0 1

0 1 2

FIGURE 8. The first five digits of the lazy β-expansion of (1 + √
5)/5 are 01112 for β =

((1 + √
13)/2, (5 + √

13)/6).

Example 3.7. Consider again the length-two alternate base β = ((1 + √
13)/2,

(5 + √
13)/6) from Examples 3.1 and 3.4. We have xβ = (5 + 7

√
13)/18 � 1.67 and

xβ(1) = (2 + √
13)/3 � 1.86. The maps π2 ◦ Lβ ◦ δ0|(0,xβ ] : (0, xβ ] → (0, xβ(1)] and

π2 ◦ Lβ ◦ δ1|(0,x
β(1) ]

: (0, xβ(1) ] → (0, xβ ] are depicted in Figure 7. In Figure 8 we see

the computation of the first five digits of the lazy β-expansion of (1 + √
5)/5.

3.3. A note on Cantor bases. The greedy algorithm described in §§3.1 and 3.2 is well
defined in the extended context of Cantor bases, that is, sequences of real numbers β =
(βn)n∈N greater than 1 such that the product

∏∞
n=0 βn is infinite [5]. In this case, the

greedy algorithm converges on [0, 1): for all x ∈ [0, 1), the computed digits an are such
that

∑∞
n=0(an/

∏n
k=0 βk) = x. Therefore, the value xβ defined as in (3) is greater than or

equal to 1. However, it might be that xβ = ∞. For example, this is the case for the Cantor
base given by βn = 1 + (1/(n+ 1)) for all n ∈ N.
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Note that the restriction of the transformation π2 ◦ (T ext
β )n ◦ δ0 to the unit interval

[0, 1) coincides with the composition Tβn−1 ◦ · · · ◦ Tβ0 . Thus, when restricted to [0, 1),
Proposition 3.2 can be reformulated as follows.

PROPOSITION 3.8. For all x ∈ [0, 1) and n ∈ N, we have

Tβn−1 ◦ · · · ◦ Tβ0(x) = βn−1 · · · β0x −
n−1∑
k=0

βn−1 · · · βk+1ck

where (c0, . . . , cn−1) is the lexicographically greatest n-tuple in
∏n−1
k=0 �0, �βk� − 1� such

that
∑n−1
k=0 βn−1 · · · βk+1ck/βn−1 · · · β0 ≤ x.

For all k ∈ �0, n− 1�, the transformationLβk is defined on (0, xβk ] and can be restricted
to (xβk − 1, xβk ]. So, the restricted transformations Lrestr

β0
, . . . , Lrestr

βn−1
cannot be composed

with one another in general. Therefore, even if the lazy algorithm can be defined for Cantor
bases, provided that xβ < ∞, we cannot state an analogue of Proposition 3.8 in terms of
the lazy transformations for Cantor bases.

Even though this paper is mostly concerned with alternate bases, let us emphasize
that some results are indeed valid for any sequence (βn)n∈N ∈ (R>1)

N, and hence for
any Cantor base. This is the case for Propositions 3.8 and 4.3, Corollary 4.4, and
Proposition 4.14.

4. Dynamical properties of Tβ

In this section we study the dynamics of the greedy β-transformation. First, we generalize
Theorem 2.2 to the transformation Tβ on �0, p − 1� × [0, 1). Second, we extend the result
obtained to the extended transformation Tβ . Third, we provide a formula for the density
functions of the measures found in the first two parts. Finally, we compute the frequencies
of the digits in the greedy β-expansions.

4.1. Unique absolutely continuous Tβ -invariant measure. In order to generalize
Theorem 2.2 to alternate bases, we start by recalling a result of Lasota and Yorke.

THEOREM 4.1. [17, Theorem 4] Let T : [0, 1) → [0, 1) be a transformation for which
there exists a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1) with a0 < · · · <
aK such that for each k ∈ �0, K − 1�, T|[ak ,ak+1) is convex, T (ak) = 0, T ′(ak) > 0 and
T ′(0) > 1. Then there exists a unique T-invariant absolutely continuous probability mea-
sure. Furthermore, its density function is bounded and decreasing, and the corresponding
dynamical system is exact.

We then prove a stability lemma.

LEMMA 4.2. Let I be the family of transformations T : [0, 1) → [0, 1) for which there
exist a partition [a0, a1), . . . , [aK−1, aK) of the interval [0, 1) with a0 < · · · < aK and a
slope s > 1 such that for all k ∈ �0, K − 1�, ak+1 − ak ≤ 1/s, and for all x ∈ [ak , ak+1),
T (x) = s(x − ak). Then I is closed under composition.

Proof. Let S, T ∈ I. Let [a0, a1), . . . , [aK−1, aK) and [b0, b1), . . . , [bL−1, bL) be par-
titions of the interval [0, 1) with a0 < · · · < aK , b0 < · · · < bL, and let s, t > 1 such
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that for all k ∈ �0, K − 1�, ak+1 − ak ≤ 1/s, for all � ∈ �0, L− 1�, b�+1 − b� ≤ 1/t ,
and for all x ∈ [0, 1), S(x) = s(x − ak) if x ∈ [ak , ak+1) and T (x) = t (x − b�) if x ∈
[b�, b�+1). For each k ∈ �0, K − 1�, define Lk to be the greatest � ∈ �0, L− 1� such that
ak + (b�/s) < ak+1. Consider the partition[
a0 + b0

s
, a0 + b1

s

)
, . . . ,

[
a0 + bL0−1

s
, a0 + bL0

s

)
,
[
a0 + bL0

s
, a1

)
...[
aK−1+b0

s
, aK−1+b1

s

)
, . . . ,

[
aK−1 + bLK−1−1

s
, aK−1 + bLK−1

s

)
,
[
aK−1 + bLK−1

s
, aK

)
of the interval [0, 1). For each k ∈ �0, K − 1� and � ∈ �0, Lk − 1�, ak + (b�+1/s)− ak −
(b�/s) ≤ 1/ts and ak+1 − ak − (bLk/s) = (ak+1 − ak − (bLk+1/s))+ (bLk+1 −bLk/s)≤
1/ts. Now, let x ∈ [0, 1) and k ∈ �0, K − 1� be such that x ∈ [ak , ak+1). Then S(x) =
s(x − ak) ∈ [0, 1). We distinguish two cases: either there exists � ∈ �0, Lk − 1� such
that x ∈ [ak + (b�/s), ak + (b�+1/s)), or x ∈ [ak + (bLk/s), ak+1). In the former case,
S(x) ∈ [b�, b�+1) and T ◦ S(x) = t (S(x)− b�) = ts(x − (ak + (b�/s))). In the latter
case, since ak+1 − ak ≤ bLk+1/s, we get that S(x) ∈ [bLk , bLk+1) and hence that T ◦
S(x) = t (S(x)− bLk ) = ts(x − (ak + (bLk/s))). This shows that the composition T ◦ S
belongs to I.

The following proposition provides us with the main tool for the construction of a
Tβ -invariant measure.

PROPOSITION 4.3. For all n ∈ N≥1 and all β0, . . . , βn−1 > 1, there exists a
unique (Tβn−1 ◦ · · · ◦ Tβ0)-invariant absolutely continuous probability measure μ on
B([0, 1)). Furthermore, the measure μ is equivalent to the Lebesgue measure on
B([0, 1)), its density function is bounded and decreasing, and the dynamical system
([0, 1), B([0, 1)), μ, Tβn−1 ◦ · · · ◦ Tβ0) is exact and has entropy log(βn−1 · · · β0).

Proof. The existence of a unique (Tβn−1 ◦ · · · ◦ Tβ0)-invariant absolutely continuous prob-
ability measure μ onB([0, 1)), the fact that its density function is bounded and decreasing,
and the exactness of the corresponding dynamical system follow from Theorem 4.1 and
Lemma 4.2. With a similar argument to [8, Lemma 2.6], we can conclude that dμ/dλ >
0 λ-almost everywhere on [0, 1). It follows that μ is equivalent to the Lebesgue measure
on B([0, 1)). Moreover, the entropy equals log(βn−1 · · · β0) since Tβn−1 ◦ · · · ◦ Tβ0 is a
piecewise linear transformation of constant slope βn−1 · · · β0 [9, 24].

The following consequence of Proposition 4.3 will be useful for proving our generaliza-
tion of Theorem 2.2.

COROLLARY 4.4. Let n ∈ N≥1 and β0, . . . , βn−1 > 1. Then for all B ∈ B([0, 1)) such
that (Tβn−1 ◦ · · · ◦ Tβ0)

−1(B) = B, we have λ(B) ∈ {0, 1}.
For each i ∈ �0, p − 1�, we let μβ,i denote the unique (Tβi−1 ◦ · · · ◦ Tβi−p )-invariant

absolutely continuous probability measure given by Proposition 4.3. We use the convention
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that for all n ∈ Z, μβ,n = μβ,n mod p. Let us define a probability measure μβ on the
σ -algebra

Tp =
{ p−1⋃
i=0

({i} × Bi) : for all i ∈ �0, p − 1�, Bi ∈ B([0, 1))
}

(6)

over �0, p − 1� × [0, 1) as follows. For all B0, . . . , Bp−1 ∈ B([0, 1)), we set

μβ

( p−1⋃
i=0

({i} × Bi)

)
= 1
p

p−1∑
i=0

μβ,i (Bi). (7)

We now study the properties of the probability measure μβ .

LEMMA 4.5. For i ∈ �0, p − 1�, we have μβ,i = μβ,i−1 ◦ T −1
βi−1

.

Proof. Let i ∈ �0, p − 1�. By the definition of μβ,i and by Proposition 4.3, it suffices to
show that μβ,i−1 ◦ T −1

βi−1
is a (Tβi−1 ◦ · · · ◦ Tβi−p )-invariant absolutely continuous prob-

ability measure on B([0, 1)). First, we have μβ,i−1(T
−1
βi−1

([0, 1))) = μβ,i−1([0, 1)) = 1.
Second, for all B ∈ B([0, 1)), we have

μβ,i−1 ◦ T −1
βi−1

((Tβi−1 ◦ · · · ◦ Tβi−p)−1(B)) = μβ,i−1((Tβi−1 ◦ · · · ◦ Tβi−p ◦Tβi−p−1)
−1(B))

= μβ,i−1((Tβi−2 ◦ · · · ◦ Tβi−p−1 )
−1(T −1

βi−1
(B)))

= μβ,i−1(T
−1
βi−1

(B)).

Third, for all B ∈ B([0, 1)) such that λ(B) = 0, we get that λ(T −1
βi−1

(B)) = 0 by Remark

2.3, and hence that μβ,i−1(T
−1
βi−1

(B)) = 0 since μβ,i−1 is absolutely continuous.

PROPOSITION 4.6. The measure μβ is Tβ -invariant.

Proof. For all B0, . . . , Bp−1 ∈ B([0, 1)),

μβ

(
T −1

β

( p−1⋃
i=0

({i} × Bi)

))
= μβ

( p−1⋃
i=0

T −1
β ({i} × Bi)

)

= μβ

( p−1⋃
i=0

({(i − 1) mod p} × T −1
βi−1

(Bi))

)

= 1
p

p−1∑
i=0

μβ,i−1(T
−1
βi−1

(Bi))

= 1
p

p−1∑
i=0

μβ,i (Bi)

= μβ

( p−1⋃
i=0

({i} × Bi)

)
where we applied Lemma 4.5 for the fourth equality.
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COROLLARY 4.7. The quadruple (�0, p − 1� × [0, 1), Tp, μβ , Tβ) is a dynamical
system.

Let us define a new measure λp over the σ -algebra Tp. For all B0, . . . , Bp−1 ∈
B([0, 1)), we set

λp

( p−1⋃
i=0

({i} × Bi)

)
= 1
p

p−1∑
i=0

λ(Bi). (8)

We call this measure the p-Lebesgue measure on Tp.

PROPOSITION 4.8. The measure μβ is equivalent to the p-Lebesgue measure on Tp.

Proof. This follows from the fact that the p measures μβ,0, . . . , μβ,p−1 are equivalent to
the Lebesgue measure λ on B([0, 1)).

Next, we compute the entropy of the dynamical system (�0, p−1�× [0, 1), Tp, μβ , Tβ).
To do so, we consider the p induced transformations

Tβ,i : {i} × [0, 1) → {i} × [0, 1), (i, x) 
→ T
p

β (i, x)

for i ∈ �0, p − 1�. Note that indeed, for all (i, x) ∈ �0, p − 1� × [0, 1), the first return of
(i, x) to {i} × [0, 1) is equal to p. Thus Tβ,i = T

p

β |{i}×[0,1)
. For each i ∈ �0, p − 1�, the

induced transformation Tβ,i is measure-preserving with respect to the measure νβ,i on the
σ -algebra {{i} × B : B ∈ B([0, 1))} defined as follows: for all B ∈ B([0, 1)),

νβ,i ({i} × B) = pμβ({i} × B).

LEMMA 4.9. For every i ∈ �0, p − 1�, the map δi |[0,1) : [0, 1) → {i} × [0, 1), x 
→ (i, x)
defines an isomorphism between the dynamical systems

([0, 1), B([0, 1)), μβ,i , Tβi−1 ◦ · · · ◦ Tβi−p )
and

({i} × [0, 1), {{i} × B : B ∈ B([0, 1))}, νβ,i , Tβ,i )

Proof. This is a straightforward verification.

PROPOSITION 4.10. The entropy of the dynamical system (�0, p−1�×[0, 1), Tp, μβ , Tβ)

is (1/p) log(βp−1 · · · β0).

Proof. Let i ∈ �0, p − 1�. By Abramov’s formula (see §2.1), we have

hμβ
(Tβ) = μβ({i} × [0, 1)) hνβ,i (Tβ,i ) = 1

p
hνβ,i (Tβ,i ).

Since the entropy is invariant under isomorphism, it follows from Proposition 4.3 and
Lemma 4.9 that hνβ,i (Tβ,i ) = log(βp−1 · · · β0). Hence the conclusion.

Finally, we prove that any Tβ -invariant set has p-Lebesgue measure 0 or 1.
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PROPOSITION 4.11. For all A ∈ Tp such that T −1
β (A) = A, we have λp(A) ∈ {0, 1}.

Proof. Let B0, . . . , Bp−1 be sets in B([0, 1)) such that

T −1
β

( p−1⋃
i=0

({i} × Bi)

)
=
p−1⋃
i=0

({i} × Bi).

This implies that

T −1
βi−1

(Bi) = B(i−1) mod p for all i ∈ �0, p − 1�. (9)

We use the convention that Bn = Bn mod p for all n ∈ Z. An easy induction yields that for
all i ∈ �0, p − 1� and n ∈ N, (Tβi−1 ◦ · · · ◦ Tβi−n)−1(Bi) = Bi−n. In particular, for n = p,
we get that for each i ∈ �0, p − 1�, (Tβi−1 ◦ · · · ◦ Tβi−p )−1(Bi) = Bi . By Corollary 4.4, for
each i ∈ �0, p − 1�, λ(Bi) ∈ {0, 1}. By definition of λp, in order to conclude, it suffices
to show that either λ(Bi) = 0 for all i ∈ �0, p − 1�, or λ(Bi) = 1 for all i ∈ �0, p − 1�.
From (9) and Remark 2.3, we get that for each i ∈ �0, p − 1�, λ(Bi) = 0 if and only if
λ(Bi+1) = 0. The conclusion follows.

We are now able to state our generalization of Theorem 2.2 to alternate bases.

THEOREM 4.12. The measure μβ is the unique Tβ -invariant probability measure on Tp
that is absolutely continuous with respect to λp. Furthermore, μβ is equivalent to λp on
Tp and the dynamical system (�0, p − 1� × [0, 1), Tp, μβ , Tβ) is ergodic and has entropy
(1/p) log(βp−1 · · · β0).

Proof. By Propositions 4.6 and 4.8, μβ is a Tβ -invariant probability measure that is
absolutely continuous with respect to λp on B([0, 1)). Then we get from Proposition
4.11 that for all A ∈ Tp such that T −1

β (A) = A, we have μβ(A) ∈ {0, 1}. Therefore, the
dynamical system (�0, p − 1� × [0, 1), Tp, μβ , Tβ) is ergodic. Now, we obtain that the
measure μβ is unique as a well-known consequence of the ergodic theorem; see [9,
Theorem 3.1.2]. The equivalence between μβ and λp and the entropy of the system were
already obtained in Propositions 4.8 and 4.10.

For p greater than 1, the dynamical system (�0, p − 1� × [0, 1), Tp, μβ , Tβ) is not
exact even though for all i ∈ �0, p − 1�, the dynamical systems ([0, 1), B([0, 1)), μβ,i ,
Tβi−1 ◦ · · · ◦ Tβi−p ) are exact. It suffices to note that the dynamical system (�0, p − 1� ×
[0, 1), Tp, μβ , T pβ ) is not ergodic for p > 1. Indeed, T −p

β ({0} × [0, 1)) = {0} × [0, 1)
whereas μβ({0} × [0, 1)) = 1/p.

4.2. Extended measure. In order to study the dynamics of the extended greedy
β-transformation defined in (5), we define extended measures μext

β and λext
β by extending

the domain of the measures μβ and λp defined in (7) and (8), respectively. First, we define
a new σ -algebra Text

β on
⋃p−1
i=0 ({i} × [0, xβ(i) )) as follows:

Text
β =

{ p−1⋃
i=0

({i} × Bi) : for all i ∈ �0, p − 1�, Bi ∈ B([0, xβ(i) ))

}
.
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Second, for A ∈ Text
β , we set μext

β (A) = μβ(A ∩ (�0, p − 1� × [0, 1))) and λext
β (A) =

λp(A ∩ (�0, p − 1� × [0, 1))).
Note that, in the previous section, we could have denoted the σ -algebra Tp by Tβ and

similarly, the measure λp by λβ . We chose to only emphasize the dependence on p since
the definitions of Tp and λp indeed only depend on the length p of the corresponding
alternate base β.

THEOREM 4.13. The measure μext
β is the unique T ext

β -invariant probability measure on
Text

β that is absolutely continuous with respect to λext
β . Furthermore, μext

β is equivalent to

λext
β on Text

β and the dynamical system (
⋃p−1
i=0 ({i} × [0, xβ(i) )), T

ext
β , μext

β , T ext
β ) is ergodic

and has entropy (1/p) log(βp−1 · · · β0).

Proof. Clearly, μext
β is a probability measure on Text

β . For all A ∈ Text
β , we have

μext
β ((T ext

β )−1(A)) = μβ((T
ext
β )−1(A) ∩ (�0, p − 1� × [0, 1)))

= μβ((T
ext
β )−1(A ∩ (�0, p − 1� × [0, 1))) ∩ (�0, p − 1� × [0, 1)))

= μβ(T
−1
β (A ∩ (�0, p − 1� × [0, 1))))

= μβ(A ∩ (�0, p − 1� × [0, 1)))

= μext
β (A)

where we used Proposition 4.6 for the fourth equality. This shows thatμext
β is T ext

β -invariant
on Text

β . The conclusion then follows from the fact that the identity map from �0, p − 1� ×
[0, 1) to

⋃p−1
i=0 ({i} × [0, xβ(i) )) defines an isomorphism between the dynamical systems

(�0, p − 1� × [0, 1), Tp, μβ , Tβ) and (
⋃p−1
i=0 ({i} × [0, xβ(i) )), T

ext
β , μext

β , T ext
β ).

4.3. Density functions. In the next proposition, we express the density function of the
unique measure given in Proposition 4.3.

PROPOSITION 4.14. Consider n ∈ N≥1 and β0, . . . , βn−1 > 1. Suppose that:
• K is the number of not onto branches of Tβn−1 ◦ · · · ◦ Tβ0;
• for j ∈ �1, K�, cj is the right-hand-side endpoint of the domain of the jth not onto

branch of Tβn−1 ◦ · · · ◦ Tβ0;
• T : [0, 1) → [0, 1) is the transformation defined by T (x) = Tβn−1 ◦ · · · ◦ Tβ0(x) for

x /∈ {c1, . . . , cK} and T (cj ) = limx→c−j
Tβn−1 ◦ · · · ◦ Tβ0(x) for j ∈ �1, K�;

• S is the matrix defined by S = (Si,j )1≤i,j ,≤K where

Si,j =
∞∑
m=1

δ(T m(ci) > cj )

(βn−1 · · · β0)m
,

where δ(P ) equals 1 when the property P is satisfied and 0 otherwise;
• 1 is not an eigenvalue of S;
• d0 = 1 and

(
d1 · · · dK

) = (
1 · · · 1

)
(−S + IdK)−1;

• C = ∫ 1
0 (d0 + ∑K

j=1 dj
∑∞
m=1(χ[0,T m(cj )]/(βn−1 · · · β0)

m)) dλ is the normalization
constant.
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FIGURE 9. The composition Tβ1 ◦ Tβ0 with β = ((1 + √
13)/2, (5 + √

13)/6).

Then the density function of the (Tβn−1 ◦ · · · ◦ Tβ0)-invariant measure given by
Proposition 4.3 with respect to the Lebesgue measure is

1
C

(
d0 +

K∑
j=1

dj

∞∑
m=1

χ[0,T m(cj )]

(βn−1 · · · β0)m

)
. (10)

Proof. This is an application of the formula given in [14, Theorem 2].

In [14] Gora conjectured that 1 is not an eigenvalue of the matrix S if and only if the
dynamical system is exact. Thus, if Gora’s conjecture were true, thanks to Proposition 4.3,
the hypothesis that 1 is not an eigenvalue of the matrix S could be removed from the
statement of Proposition 4.14. In particular, Proposition 4.14 would then provide the density
function of the (Tβn−1 ◦ · · · ◦ Tβ0)-invariant measure given by Proposition 4.3 without any
further conditions.

Example 4.15. Consider once again the alternate base β = ((1 + √
13)/2, (5 + √

13)/6).
The composition Tβ1 ◦ Tβ0 is depicted in Figure 9. Since 1/β0 = β1 − 1, keeping the
notation of Proposition 4.14, we have K = 3, c1 = 1/β0, c2 = 2/β0 and c3 = 1. We have
T (c1) = T (c2) = T (c3) = c1. Therefore, all elements in S equal 0, d0 = d1 = d2 = d3 =
1 and C = 1 + (3/β0(β1β0 − 1)) = 1 + (3/β2

0 ). The density of the unique absolutely
continuous (Tβ1 ◦ Tβ0)-invariant probability measure is

1
C

(
1 + 3

β0
χ[0,1/β0]

)
.

For example, μ([0, 1/β0)) = (13 + √
13)/26. Moreover, it can be checked that μ((Tβ1 ◦

Tβ0)
−1[0, 1/β0)) = μ([0, 1/β0)).

We obtain a formula for the density function dμβ/dλp by using the density functions
dμβ,i/dλ for i ∈ �0, p − 1�. We first need a lemma.

LEMMA 4.16. For all i ∈ �0, p − 1�, all sets B ∈ B([0, 1)) and all B([0, 1))-measurable
functions f : [0, 1) → [0, ∞), the map f ◦ π2 : �0, p − 1� × [0, 1) → [0, ∞) is
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Tp-measurable and ∫
{i}×B

f ◦ π2 dλp = 1
p

∫
B

f dλ.

Proof. This follows from standard arguments by using the definition of the Lebesgue
integral via simple functions.

PROPOSITION 4.17. The density function dμβ/dλp of μβ with respect to the p-Lebesgue
measure on Tp is

p−1∑
i=0

(
dμβ,i

dλ
◦ π2

)
· χ{i}×[0,1). (11)

Proof. Let A ∈ Tp and let B0, . . . , Bp−1 ∈ B([0, 1)) such that A = ⋃p−1
i=0 ({i} × Bi). It

follows from Lemma 4.16 that∫
A

p−1∑
i=0

(
dμβ,i

dλ
◦ π2

)
· χ{i}×[0,1) dλp =

p−1∑
i=0

∫
{i}×Bi

dμβ,i

dλ
◦ π2 dλp

= 1
p

p−1∑
i=0

∫
Bi

dμβ,i

dλ
dλ

= 1
p

p−1∑
i=0

μβ,i (Bi)

= μβ(A).

Note that formula (11) also holds for the extended measures μext
β and λext

β on Text
β .

4.4. Frequencies. We now turn to the frequencies of the digits in the greedy
β-expansions of real numbers in the interval [0, 1). Recall that the frequency of a digit d
occurring in the greedy β-expansion a0a1a2 · · · of a real number x in [0, 1) is equal to

lim
n→∞

1
n

#{0 ≤ k < n : ak = d},
provided that this limit exists.

PROPOSITION 4.18. For λ-almost all x ∈ [0, 1), the frequency of any digit d occurring in
the greedy β-expansion of x exists and is equal to

1
p

p−1∑
i=0

μβ,i

([
d

βi
,
d + 1
βi

)
∩ [0, 1)

)
.

Proof. Let x ∈ [0, 1) and let d be a digit occurring in dβ(x) = a0a1a2 · · · . Then for all
k ∈ N, ak = d if and only if π2(T

k
β (0, x)) ∈ [d/βk , (d + 1)/βk) ∩ [0, 1). Moreover, since
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for all k ∈ N, T kβ (0, x) ∈ {k mod p} × [0, 1), we have

χ[d/βk ,(d+1)/βk)∩[0,1)(π2(T
k
β (0, x))) = χ{k mod p}×([d/βk ,(d+1)/βk)∩[0,1))(T

k
β (0, x))

=
p−1∑
i=0

χ{i}×([d/βi ,(d+1)/βi )∩[0,1))(T
k
β (0, x)).

Therefore, if it exists, the frequency of d in dβ(x) is equal to

lim
n→∞

1
n

n−1∑
k=0

p−1∑
i=0

χ{i}×([d/βi ,(d+1)/βi )∩[0,1))(T
k
β (0, x)).

Yet, for each i ∈ �0, p − 1� and for μβ -almost all y ∈ �0, p − 1� × [0, 1), we have

lim
n→∞

1
n

n−1∑
k=0

χ{i}×([d/βi ,(d+1)/βi )∩[0,1))(T
k
β (y))

=
∫
�0,p−1�×[0,1)

χ{i}×([d/βi ,(d+1)/βi )∩[0,1)) dμβ

= μβ

(
{i} ×

([
d

βi
,
d + 1
βi

)
∩ [0, 1)

))
= 1
p
μβ,i

([
d

βi
,
d + 1
βi

)
∩ [0, 1)

)
where we used Theorem 4.12 and the ergodic theorem for the first equality. The conclusion
now follows from Proposition 4.8.

Note that, when p = 1, Proposition 4.18 yields the classical formula μβ([d/β,
(d + 1)/β) ∩ [0, 1)) for the frequency of the digit d, where μβ is the measure given
in Theorem 2.2.

5. Isomorphism between greedy and lazy β-transformations
In this section we show that

φβ :
p−1⋃
i=0

({i} × [0, xβ(i) )) →
p−1⋃
i=0

({i} × (0, xβ(i) ]), (i, x) 
→ (i, xβ(i) − x) (12)

defines an isomorphism between the greedy β-transformation and the lazy β-
transformation.

We consider the σ -algebra

Lβ =
{ p−1⋃
i=0

({i} × Bi) : for all i ∈ �0, p − 1�, Bi ∈ B((0, xβ(i)])
}

on
⋃p−1
i=0 ({i} × (0, xβ(i) ]).

PROPOSITION 5.1. The map φβ is an isomorphism between the dynamical sys-
tems (

⋃p−1
i=0 ({i} × [0, xβ(i) )), T

ext
β , μext

β , T ext
β ) and (

⋃p−1
i=0 ({i} × (0, xβ(i)]), Lβ , μext

β ◦
φ−1

β , Lβ).
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Proof. Clearly, φβ is a bimeasurable bijective map. Hence, we only have to show that
φβ ◦ T ext

β = Lβ ◦ φβ . Let (i, x) ∈ ⋃p−1
i=0 ({i} × [0, xβ(i) )). First, suppose that x ∈ [0, 1).

Then

φβ ◦ T ext
β (i, x) = ((i + 1) mod p, xβ(i+1) − βix + �βix)

and

Lβ ◦ φβ(i, x) = ((i + 1) mod p, βi(xβ(i) − x)− �βi(xβ(i) − x)− xβ(i+1)�).
Second, suppose that x ∈ [1, xβ(i) ). Then

φβ ◦ T ext
β (i, x) = ((i + 1) mod p, xβ(i+1) − βix + �βi − 1)

and

Lβ ◦ φβ(i, x) = ((i + 1) mod p, βi(xβ(i) − x)).

In both cases, we easily get that φβ ◦ T ext
β (i, x) = Lβ ◦ φβ(i, x) by using (4).

Thanks to Proposition 5.1, we obtain an analogue of Theorem 4.13 for the lazy
β-transformation.

THEOREM 5.2. The measure μext
β ◦ φ−1

β is the unique Lβ -invariant probability mea-

sure on Lβ that is absolutely continuous with respect to λext
β ◦ φ−1

β . Furthermore,

μext
β ◦ φ−1

β is equivalent to λext
β ◦ φ−1

β on Lβ and the dynamical system (
⋃p−1
i=0 ({i} ×

(0, xβ(i)]), Lβ , μext
β ◦ φ−1

β , Lβ) is ergodic and has entropy (1/p) log(βp−1 · · · β0).

Similarly, we have an analogue of Theorem 4.12 for the lazy β-transformation, by
considering the σ -algebra

Lrestr
β =

{ p−1⋃
i=0

({i} × Bi) : for all i ∈ �0, p − 1�, Bi ∈ B((xβ(i) − 1, xβ(i) ])
}

.

Remark that in the lazy case, we denote the restricted σ -algebra by Lrestr
β since there is a

dependence on the alternate base β and not only on its length p as in the greedy case. We
also set

φrestr
β : �0, p − 1� × [0, 1) →

p−1⋃
i=0

({i} × (xβ(i) − 1, xβ(i) ]), (i, x) 
→ (i, xβ(i) − x)

and

Lrestr
β :

p−1⋃
i=0

({i} × (xβ(i) − 1, xβ(i)]) →
p−1⋃
i=0

({i} × (xβ(i) − 1, xβ(i)]),

(i, x) 
→ ((i + 1) mod p, βix − �βix − xβ(i+1)�).

THEOREM 5.3. The measure μβ ◦ (φrestr
β )−1 is the unique Lrestr

β -invariant probability

measure on Lrestr
β that is absolutely continuous with respect to λp ◦ φ−1

β . Furthermore,
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μβ ◦ (φrestr
β )−1 is equivalent to λp ◦ (φrestr

β )−1 on Lrestr
β and the dynamical system

(
⋃p−1
i=0 ({i} × (xβ(i) − 1, xβ(i)]), L

restr
β , μβ ◦ (φrestr

β )−1, Lrestr
β ) is ergodic and has entropy

(1/p) log(βp−1 · · · β0).

Remark 5.4. We deduce from Proposition 5.1 that if the greedy β-expansion of a real
number x ∈ [0, xβ) is a0a1a2 · · · , then the lazy β-expansion of xβ − x is (�β0� − 1 −
a0)(�β1� − 1 − a1)(�β2� − 1 − a2) · · · .

6. Isomorphism with the β-shift
The aim of this section is to generalize the isomorphism between the greedy
β-transformation and the β-shift to the framework of alternate bases. We start by providing
some background on the real base case.

Let Dβ denote the set of all greedy β-expansions of real numbers in the interval [0, 1).
The β-shift is the set Sβ defined as the topological closure ofDβ with respect to the prefix
distance of infinite words. For an alphabet A, we let CA denote the σ -algebra generated by
the cylinders

CA(a0, . . . , a�−1) = {w ∈ AN : w[0] = a0, . . . , w[�− 1] = a�−1}

for all � ∈ N and a0, . . . , a�−1 ∈ A, where the notation w[k] designates the letter at
position k in the infinite word w, and we call

σA : AN → AN, a0a1a2 · · · 
→ a1a2a3 · · ·

the shift operator over A. If no confusion is possible, we simply write σ instead of σA.
Then it is a folklore fact (similar to [10, Example 1.2.19]) that the map ψβ : [0, 1) → Sβ ,
x 
→ dβ(x) defines an isomorphism between the dynamical systems ([0, 1), B([0, 1)),
μβ , Tβ) and (Sβ , CAβ ∩ Sβ , μβ ◦ ψ−1

β , σ|Sβ ) where Aβ denotes the alphabet of digits
�0, �β� − 1�.

Let us now extend the previous notation to the framework of alternate bases. Let Aβ

denote the alphabet �0, maxi∈�0,p−1� �βi� − 1�, let Dβ denote the subset of AN

β made up
of all greedy β-expansions of real numbers in [0, 1), and let Sβ denote the topological
closure of Dβ with respect to the prefix distance of infinite words:

Dβ = {dβ(x) : x ∈ [0, 1)} and Sβ = Dβ .

The following lemma was proved in [5, Proposition 32].

LEMMA 6.1. For all n ∈ N, if w ∈ Sβ(n) then σ(w) ∈ Sβ(n+1) .

Consider the σ -algebra

Gβ =
{ p−1⋃
i=0

({i} × Ci) : for all i ∈ �0, p − 1�, Ci ∈ CAβ
∩ Sβ(i)

}
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on
⋃p−1
i=0 ({i} × Sβ(i) ). We define

σp :
p−1⋃
i=0

({i} × Sβ(i) ) →
p−1⋃
i=0

({i} × Sβ(i) ), (i, w) 
→ ((i + 1) mod p, σ(w))

ψβ : �0, p − 1� × [0, 1) →
p−1⋃
i=0

({i} × Sβ(i) ), (i, x) 
→ (i, dβ(i) (x)).

Note that the transformation σp is well defined by Lemma 6.1.

PROPOSITION 6.2. The map ψβ defines an isomorphism between the dynamical systems

(�0, p − 1� × [0, 1), Tp, μβ , Tβ) and
( p−1⋃
i=0

({i} × Sβ(i) ), Gβ , μβ ◦ ψ−1
β , σp

)
.

Proof. It is easily seen that ψβ ◦ Tβ = σp ◦ ψβ and that ψβ is injective. Moreover, ψβ(�0,
p − 1� × [0, 1)) = ⋃p−1

i=0 ({i} ×Dβ(i) ) and μβ(ψ
−1
β (

⋃p−1
i=0 ({i} ×Dβ(i) )) = 1.

However, although ψβ is continuous, it does not define a topological isomorphism since
it is not surjective.

Remark 6.3. In view of Proposition 6.2, the set
⋃p−1
i=0 ({i} × Sβ(i) ) can be seen as the

β-shift, that is, the generalization of the β-shift to alternate bases. However, in the previous
work [5], what we called the β-shift is the union

⋃p−1
i=0 Sβ(i) . This definition was motivated

by the following combinatorial result [5, Theorem 48]: the set
⋃p−1
i=0 Sβ(i) is sofic if and

only if for every i ∈ �0, p − 1�, the quasi-greedy β(i)-representation of 1 is ultimately
periodic. In summary, we can say that there are two ways to extend the notion of β-shift to
alternate bases β, depending on the way we look at it: either as a dynamical object or as a
combinatorial object.

Thanks to Proposition 6.2, we obtain an analogue of Theorem 4.12 for the transforma-
tion σp.

THEOREM 6.4. The measure μβ ◦ ψ−1
β is the unique σp-invariant probability measure

on Gβ that is absolutely continuous with respect to λp ◦ ψ−1
β . Furthermore, μβ ◦ ψ−1

β

is equivalent to λp ◦ ψ−1
β on Gβ and the dynamical system (

⋃p−1
i=0 ({i} × Sβ(i) ), Gβ , μβ ◦

ψ−1
β , σp) is ergodic and has entropy (1/p) log(βp−1 · · · β0).

Remark 6.5. Let D′
β denote the subset of AN

β made up of all lazy β-expansions of real
numbers in (xβ − 1, xβ ] and let S′

β denote the topological closure of D′
β with respect to

the prefix distance of infinite words. From Remark 5.4, it is easily seen that

θβ :
p−1⋃
i=0

({i} × Sβ(i) ) →
p−1⋃
i=0

({i} × S′
β(i)
),

(i, a0a1 · · · ) 
→ (i, (�βi� − 1 − a0)(�βi+1� − 1 − a2) · · · )
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defines an isomorphism from (
⋃p−1
i=0 ({i} × Sβ(i) ), Gβ , μβ ◦ ψ−1

β , σp) to (
⋃p−1
i=0 ({i} ×

S′
β(i)
), G′

β , μβ ◦ ψ−1
β ◦ θ−1

β , σ ′
p) where

G′
β =

{ p−1⋃
i=0

({i} × (Ci ∩ S′
β(i)
)) : Ci ∈ CAβ

}
,

σ ′
p :

p−1⋃
i=0

({i} × S′
β(i)
) →

p−1⋃
i=0

({i} × S′
β(i)
), (i, w) 
→ ((i + 1) mod p, σ(w)).

We then deduce from Propositions 5.1 and 6.2 that θβ ◦ ψβ ◦ (φrestr
β )−1 is an isomorphism

from (
⋃p−1
i=0 ({i} × (xβ(i) − 1, xβ(i)]), L

restr
β , μβ ◦ (φrestr

β )−1, Lrestr
β ) to (

⋃p−1
i=0 ({i} ×

S′
β(i)
), G′

β , μβ ◦ ψ−1
β ◦ θ−1

β , σ ′
p). It is easy to check that, as expected, for all (i, x) ∈⋃p−1

i=0 ({i} × (xβ(i) − 1, xβ(i) ], we have θβ ◦ ψβ ◦ (φrestr
β )−1(i, x) = (i, �β(i) (x)) where

�β(x) denotes the lazy β-expansion of x.

7. β-expansions and (βp−1 · · · β0, �β)-expansions
By rewriting equality (1) from §3 as

x = βp−1 · · · β1a0 + βp−1 · · · β2a1 + · · · + ap−1

βp−1 · · · β0

+ βp−1 · · · β1ap + βp−1 · · · β1ap+1 + · · · + a2p−1

(βp−1 · · · β0)2

+ · · · (13)

we can see the greedy and lazy β-expansions of real numbers as (βp−1 · · · β0)- represen-
tations over the digit set

�β =
{ p−1∑
i=0

βp−1 · · · βi+1ci : for all i ∈ �0, p − 1�, ci ∈ �0, �βi� − 1�

}
.

In this section, we examine some cases where by considering the greedy (respec-
tively, lazy) β-expansion and rewriting it as (13), the representation obtained is the
greedy (respectively, lazy) (βp−1 · · · β0, �β)-expansion. We first recall the formalism of
β-expansions of real numbers over a general digit set [22].

7.1. Real base expansions over general digit sets. Consider an arbitrary finite set � =
{d0, d1, . . . , dm} ⊂ R where 0 = d0 < d1 < · · · < dm. Then a (β, �)-representation of a
real number x in the interval [0, dm/(β − 1)) is an infinite sequence a0a1a2 · · · over �
such that x = ∑∞

n=0 an/β
n+1. Such a set � is called an allowable digit set for β if

max
k∈�0,m−1�

(dk+1 − dk) ≤ dm

β − 1
. (14)

In this case, the greedy (β, �)-expansion of a real number x ∈ [0, dm/(β − 1)) is defined
recursively as follows: if the first N digits of the greedy (β, �)-expansion of x are given by

https://doi.org/10.1017/etds.2021.161 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.161


Dynamical behavior of alternate base expansions 853

FIGURE 10. The transformation Tϕ,� for � = {0, 1, (ϕ + 1)/ϕ, ϕ2}.

a0, . . . , aN−1, then the next digit aN is the greatest element in � such that

N∑
n=0

an

βn+1 ≤ x.

The greedy (β, �)-expansion can also be obtained by iterating the greedy (β, �)-
transformation

Tβ,� :
[
0,

dm

β − 1

)
→

[
0,

dm

β − 1

)
, x 
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βx − dk if x∈

[
dk

β
,
dk+1

β

)
, k∈�0, m− 1�,

βx − dm if x ∈
[
dm

β
,
dm

β − 1

)
as follows: for all n ∈ N, an is the greatest digit d in � such that d/β ≤ T nβ,�(x) [7].

Example 7.1. Consider the digit set � = {0, 1, ϕ + (1/ϕ), ϕ2}. It is easily checked that �
is an allowable digit set for ϕ. The greedy (ϕ, �)-transformation

Tϕ,� :
[

0,
ϕ2

ϕ − 1

)
→

[
0,

ϕ2

ϕ − 1

)
, x 
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕx if x ∈
[

0,
1
ϕ

)
,

ϕx − 1 if x ∈
[

1
ϕ

, 1 + 1
ϕ2

)
,

ϕx − (ϕ + 1
ϕ
) if x ∈

[
1 + 1

ϕ2 , ϕ
)

,

ϕx − ϕ2 if x ∈
[
ϕ,

ϕ2

ϕ − 1

)
is depicted in Figure 10.

Similarly, if � is an allowable digit set for β, then the lazy (β, �)-expansion of a
real number x ∈ (0, dm/(β − 1)] is defined recursively as follows: if the first N digits of
the lazy (β, �)-expansion of x are given by a0, . . . , aN−1, then the next digit aN is the
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smallest element in � such that
N∑
n=0

an

βn+1 +
∞∑

n=N+1

dm

βn+1 ≥ x.

The lazy (β, �)-transformation

Lβ,� :
(

0,
dm

β − 1

]
→

(
0,

dm

β − 1

]
,

x 
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βx if x ∈

(
0,

dm

β − 1
−dm
β

]
.

βx − dk if x ∈
(
dm

β − 1
−dm − dk−1

β
,
dm

β − 1
−dm − dk

β

]
, k ∈ �1, m�,

can be used to obtain the digits of the lazy (β, �)-expansions: for all n ∈ N, an is the
smallest digit d in � such that (d/β)+ ∑∞

k=1(dm/β
k+1) ≥ Lnβ,�(x) [7].

In [7, Proposition 2.2], it is shown that if � is an allowable digit set for β then so is the
set �̃ := {0, dm−dm−1, . . . , dm−d1, dm} and

φβ,� :
[

0,
dm

β − 1

)
→

(
0,

dm

β − 1

]
, x 
→ dm

β − 1
− x

is a bicontinuous bijection satisfying Lβ,�̃ ◦ φβ,� = φβ,� ◦ Tβ,�.

Example 7.2. Consider the digit set �̃ where � is the digit set from Example 7.1. We get
�̃ = {0, 1 − (1/ϕ), ϕ, ϕ2}. The lazy (ϕ, �̃)-transformation

Lϕ,�̃ :
(

0,
ϕ2

ϕ − 1

]
→

(
0,

ϕ2

ϕ − 1

]
, x 
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕx if x ∈
(

0,
ϕ

ϕ − 1

]
,

ϕx −
(

1 − 1
ϕ

)
if x ∈

(
ϕ

ϕ − 1
,
ϕ + 3
ϕ

]
,

ϕx − ϕ if x ∈
(
ϕ + 3
ϕ

,
2ϕ − 1
ϕ − 1

]
,

ϕx − ϕ2 if x ∈
(

2ϕ − 1
ϕ − 1

,
ϕ2

ϕ − 1

]
is depicted in Figure 11. It is conjugate to the greedy (ϕ, �)-transformation Tϕ,� by
φϕ,� : [0, ϕ2/(ϕ − 1)) → (0, ϕ2/(ϕ − 1)], x 
→ ϕ2/(ϕ − 1)− x.

7.2. Comparison between β-expansions and (βp−1 · · · β0, �β)-expansions. The digit
set �β has cardinality at most

∏p−1
i=0 �βi� and can be rewritten as �β = im(fβ) where

fβ :
p−1∏
i=0

�0, �βi� − 1� → R, (c0, . . . , cp−1) 
→
p−1∑
i=0

βp−1 · · · βi+1ci .

Note that fβ is not injective in general. Let us write �β = {d0, d1, . . . , dm} with d0 <

d1 < · · · < dm. We have d0 = fβ(0, . . . , 0) = 0, d1 = fβ(0, . . . , 0, 1) = 1, and dm =
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0 ϕ
ϕ−1

ϕ+3
ϕ

2ϕ−1
ϕ−1

ϕ2

ϕ−1

3ϕ − 1

33

2
ϕ−1

ϕ2

ϕ−1

FIGURE 11. The transformation Lϕ,�̃ for � = {0, 1, ϕ + (1/ϕ), ϕ2}.

fβ(�β0� − 1, . . . , �βp−1� − 1). In what follows, we suppose that
∏p−1
i=0 �0, �βi� − 1� is

equipped with the lexicographic order (c0, . . . , cp−1) <lex (c
′
0, . . . , c′p−1) if there exists

i ∈ �0, p − 1� such that c0 = c′0, . . . , ci−1 = c′i−1 and ci < c′i .

LEMMA 7.3. The set �β is an allowable digit set for βp−1 · · · β0.

Proof. We need to check condition (14). We have d0 = 0 and

dm = fβ(�β0� − 1, . . . , �βp−1� − 1) ≥
p−1∑
i=0

βp−1 · · · βi+1(βi − 1) = βp−1 · · · β0 − 1.

Therefore, it suffices to show that for all k ∈ �0, m− 1�, dk+1 − dk ≤ 1. Thus, we only
have to show that f (c′0, . . . , c′p−1)− f (c0, . . . , cp−1) ≤ 1 where (c0, . . . , cp−1) and

(c′0, . . . , c′p−1) are lexicographically consecutive elements of
∏p−1
i=0 �0, �βi� − 1�. For

such p-tuples, there exists j ∈ �0, p − 1� such that c0 = c′0, . . . , cj−1 = c′j−1, cj = c′j −
1, cj+1 = �βj+1� − 1, . . . , cp−1 = �β4p − 1� − 1, and c′j+1 = · · · = c′p−1 = 0. Then

f (c′0, . . . , c′p−1)− f (c0, . . . , cp−1) = βp−1 · · · βj+1 −
p−1∑
i=j+1

βp−1 · · · βi+1(�βi� − 1)

≤ βp−1 · · · βj+2 −
p−1∑
i=j+2

βp−1 · · · βi+1(�βi� − 1)

...

≤ βp−1 − (�βp−1� − 1)

≤ 1.

Since xβ = dm/βp−1 · · · β0 − 1, it follows from Lemma 7.3 that every point in [0, xβ)

admits a greedy (βp−1 · · · β0, �β)-expansion.
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PROPOSITION 7.4. For all x ∈ [0, xβ), we have Tβp−1···β0,�β
(x) ≤ π2 ◦ (T ext

β )p ◦ δ0(x)

and Lβp−1···β0,�β
(x) ≥ π2 ◦ Lpβ ◦ δ0(x).

Proof. Let x ∈ [0, xβ). On the one hand, Tβp−1···β0,�β
(x) = βp−1 · · · β0x − d where

d is the greatest digit in �β such that d/βp−1 · · · β0 ≤ x. On the other hand, by
rephrasing Proposition 3.2 in terms of the map fβ when n equals p, we get π2 ◦
(T ext

β )p ◦ δ0(x) = βp−1 · · · β0x − fβ(c) where c is the lexicographically greatest p-tuple

in
∏p−1
i=0 �0, �βi� − 1� such that fβ(c)/βp−1 · · · β0 ≤ x. By definition of d, we get d ≥

fβ(c). Therefore, we obtain that Tβp−1···β0,�β
(x) ≤ π2 ◦ (T ext

β )p ◦ δ0(x). The inequality
Lβp−1···β0,�β

(x) ≥ π2 ◦ Lpβ ◦ δ0(x) then follows from Proposition 5.1.

In what follows, we provide some conditions under which the inequalities of
Proposition 7.4 happen to be equalities.

PROPOSITION 7.5. The transformations Tβp−1···β0,�β
and π2 ◦ (T ext

β )p ◦ δ0|[0,xβ )
coincide

if and only if the transformations Lβp−1···β0,�β
and π2 ◦ Lpβ ◦ δ0|(0,xβ ]

do.

Proof. We only show the forward direction, the backward direction being similar.
Suppose that Tβp−1···β0,�β

= π2 ◦ (T ext
β )p ◦ δ0|[0,xβ )

and let x ∈ (0, xβ ]. Since xβ =
dm/βp−1 · · · β0 − 1 and �β = �̃β , we successively obtain that

Lβp−1···β0,�β
(x) = Lβp−1···β0,�β

◦ φβp−1···β0,�β
(xβ − x)

= φβp−1···β0,�β
◦ Tβp−1···β0,�β

(xβ − x)

= φβp−1···β0,�β
◦ π2 ◦ (T ext

β )p ◦ δ0(xβ − x)

= π2 ◦ φβ ◦ (T ext
β )p ◦ δ0(xβ − x)

= π2 ◦ Lpβ ◦ φβ ◦ δ0(xβ − x)

= π2 ◦ Lpβ ◦ δ0(x).

The next result provides us with a sufficient condition under which the transformations
Tβp−1···β0,�β

and π2 ◦ (T ext
β )p ◦ δ0|[0,xβ )

coincide. Here, the non-decreasingness of the map

fβ refers to the lexicographic order: for all c, c′ ∈ ∏p−1
i=0 �0, �βi� − 1�, c <lex c

′ �⇒
fβ(c) ≤ fβ(c

′).

THEOREM 7.6. If the map fβ is non-decreasing then Tβp−1···β0,�β
= π2 ◦(T ext

β )p ◦ δ0|[0,xβ )
.

Proof. We keep the same notation as in the proof of Proposition 7.4. Let c′ ∈∏p−1
i=0 �0, �βi� − 1� such that d = fβ(c

′). By definition of c, we get c ≥lex c
′. Now, if

fβ is non-decreasing then fβ(c) ≥ fβ(c
′) = d . Hence the conclusion.

The following example shows that considering the length-p alternate base β =
(β, . . . , β) with p ∈ N≥3, it may happen that Tβp ,�β

differs from π2 ◦ (T ext
β )p ◦ δ0|[0,xβ )

.

This result has already been proved in [6].
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0 xβ

xβ

1

1

0 xβ

xβ

1

1

FIGURE 12. The transformations T√
5ϕ2,�β

(left) and π2 ◦ (T ext
β )3 ◦ δ0|[0,xβ )

(right) with β = (ϕ, ϕ,
√

5).

Example 7.7. Consider the alternate base β = (ϕ2, ϕ2, ϕ2). Then �β = {ϕ4c0 + ϕ2c1 +
c2 : c0, c1, c2 ∈ {0, 1, 2}}. In [6, Proposition 2.1], it is proved that Tβn,�β

= T nβ for all n ∈
N if and only if fβ is non-decreasing. Since fβ(0, 2, 2) = 2ϕ2 + 2 > ϕ4 = fβ(1, 0, 0),
the transformations Tϕ6,�β

and π2 ◦ (T ext
β )3 ◦ δ0|[0,xβ )

differ by [6, Proposition 2.1].

Whenever fβ is not non-decreasing, the transformations Tβp−1···β0,�β
and

π2 ◦ (T ext
β )p ◦ δ0|[0,xβ )

can either coincide or not. The following two examples illustrate

both cases. In particular, Example 7.9 shows that the sufficient condition given in Theorem
7.6 is not necessary.

Example 7.8. Consider the alternate base β = (ϕ, ϕ,
√

5). Then �β = {√5ϕc0 +√
5c1 + c2 : c0, c1 ∈ {0, 1}, c2 ∈ {0, 1, 2}}. However, fβ(0, 1, 2) = √

5 + 2 � 4.23 and
fβ(1, 0, 0) = √

5ϕ � 3.61. It can be easily checked that there exists x ∈ [0, xβ) such that
T√

5ϕ2,�β
(x) �= π2 ◦ (T ext

β )3 ◦ δ0(x). For example, we can compute T√
5ϕ2,�β

(0.75) � 0.15

and π2◦(T ext
β )3◦δ0(0.75) � 0.77. The transformations T√

5ϕ2,�β
and π2◦(T ext

β )3◦ δ0|[0,xβ )
are depicted in Figure 12, where the red lines show the images of the interval
[(

√
5 + 2)/

√
5ϕ2, (

√
5ϕ + 1)/

√
5ϕ2) � [0.72, 0.78), that is, where the two transforma-

tions differ. Similarly, the transformations L√
5ϕ2,�β

and π2 ◦ L3
β ◦ δ0|(0,xβ ]

are depicted

in Figure 13. As illustrated in red, the two transformations differ on the interval
φ√

5ϕ2,�β
([(

√
5 + 2)/

√
5ϕ2, (

√
5ϕ + 1)/

√
5ϕ2)) � (0.82, 0.89].

Example 7.9. Consider the alternate base β = ( 3
2 , 3

2 , 4). We have �β = �0, 13�. The map
fβ is not non-decreasing since we have fβ(0, 1, 3) = 7 and fβ(1, 0, 0) = 6. However,
T9,�β

= π2 ◦ (T ext
β )3 ◦ δ0|[0,xβ )

and L9,�β
= π2 ◦ L3

β ◦ δ0|[0,xβ )
. The transformation T9,�β

is depicted in Figure 14.

The next example illustrates that it may happen that the transformations Tβp−1···β0,�β

and π2 ◦ (T ext
β )p ◦ δ0|[0,xβ )

indeed coincide on [0, 1) but not on [0, xβ).

Example 7.10. Consider the alternate base β = (
√

5/2,
√

6/2,
√

7/2). Then fβ(0, 1, 1) >
fβ(1, 0, 0) and it can be checked that the maps T√

210/8,�β
and π2 ◦ (T ext

β )3 ◦ δ0|[0,xβ )
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0 xβ

xβ

xβ − 1

xβ − 1

0 xβ

xβ

xβ − 1

xβ − 1

FIGURE 13. The transformations L√
5ϕ2,�β

(left) and π2 ◦ L3
β ◦ δ0|[0,xβ )

(right) with β = (ϕ, ϕ,
√

5).

0 xβ

xβ

1

1

FIGURE 14. The transformation T9,�β
where β = ( 3

2 , 3
2 , 4).

differ on the interval [fβ(0, 1, 1)/β2β1β0, fβ(1, 0, 1)/β2β1β0) � [1.28, 1.44). However,
the two maps coincide on [0, 1).

Finally, we provide a necessary and sufficient condition for the map fβ to be
non-decreasing.

PROPOSITION 7.11. The map fβ is non-decreasing if and only if for all j ∈ �1, p − 2�,

p−1∑
i=j

βp−1 · · · βi+1(�βi� − 1) ≤ βp−1 · · · βj . (15)

Proof. If the map fβ is non-decreasing then for all j ∈ �1, p − 2�,

p−1∑
i=j

βp−1 · · · βi+1(�βi� − 1) = fβ(0, . . . , 0, 0, �βj� − 1, . . . , �βp−1� − 1)

≤ fβ(0, . . . , 0, 1, 0, . . . , 0)

= βp−1 · · · βj .
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0 1

1

xβ

xβ

0 xβ − 1

xβ − 1

xβ

xβ

FIGURE 15. The transformations π2 ◦ (T ext
β )2 ◦ δ0|[0,xβ )

(left) and π2 ◦ L2
β ◦ δ0|(0,xβ ]

(right) for β =
((1 + √

13)/2, (5 + √
13)/6).

Conversely, suppose that (15) holds for all j ∈ �1, p − 2� and that (c0, . . . , cp−1)

and (c′0, . . . , c′p−1) are p-tuples in
∏p−1
i=0 �0, �βi� − 1� such that (c0, . . . , cp−1) <lex

(c′0, . . . , c′p−1). Then there exists j ∈ �0, p − 1� such that c0 = c′0, . . . , cj−1 = c′j−1 and
cj ≤ c′j − 1. We get

fβ(c0, . . . , cp−1) ≤
j∑
i=0

βp−1 · · · βi+1c
′
i−βp−1 · · · βj+1 +

p−1∑
i=j+1

βp−1 · · · βi+1(�βi�−1)

≤
j∑
i=0

βp−1 · · · βi+1c
′
i

≤ fβ(c
′
0, . . . , c′p−1).

COROLLARY 7.12. If p = 2 then Tβ1β0,�β
= π2 ◦ (T ext

β )2 ◦ δ0|[0,xβ )
. In particular,

Tβ1β0,�β |[0,1) = Tβ1 ◦ Tβ0 .

Proof. This follows from Theorem 7.6 and Proposition 7.11.

Example 7.13. Consider once more the alternate base β = ((1 + √
13)/2, (5 + √

13)/6)
from Example 3.1. Then �β = {0, 1, β1, β1 + 1, 2β1, 2β1 + 1} and xβ = (2β1 + 1)/
β1β0 − 1 = (5 + 7

√
13)/18. The transformations π2 ◦ (T ext

β )2 ◦ δ0|[0,xβ )
and π2 ◦ L2

β ◦
δ0|(0,xβ ] are depicted in Figure 15. By Corollary 7.12, they coincide with Tβ1β0,�β

and
Lβ1β0,�β

, respectively.

8. Further work
In this work, we concentrated on measure-theoretical aspects of alternate base expansions.
A natural question would be to consider the topological point of view. For exam-
ple, it would be of interest to prove that the topological entropies of the topological
dynamical systems under consideration coincide with the measure-theoretical entropy
(1/p) log(βp−1 · · · β0) found in this paper. In particular, this would prove that the
measure-theoretical dynamical systems studied in this paper are all of maximal entropy.
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