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In the coastal ocean, interactions of waves and currents with large roughness elements,
similar in size to wave orbital excursions, generate drag and dissipate energy. These
boundary layer dynamics differ significantly from well-studied small-scale roughness.
To address this problem, we derived spatially and phase-averaged momentum equations
for combined wave–current flows over rough bottoms, including the canopy layer
containing obstacles. These equations were decomposed into steady and oscillatory parts
to investigate the effects of waves on currents, and currents on waves. We applied this
framework to analyse large-eddy simulations of combined oscillatory and steady flows
over hemisphere arrays (diameter D), in which current (Uc), wave velocity (Uw) and
period (T) were varied. In the steady momentum budget, waves increase drag on the
current, and this is balanced by the total stress at the canopy top. Dispersive stresses
from oscillatory flow around obstacles are increasingly important as Uw/Uc increases.
In the oscillatory momentum budget, acceleration in the canopy is balanced by pressure
gradient, added-mass and form drag forces; stress gradients are small compared to other
terms. Form drag is increasingly important as the Keulegan–Carpenter number KC =
UwT/D and Uc/Uw increase. Decomposing the drag term illustrates that a quadratic
relationship predicts the observed dependences of steady and oscillatory drag on Uc/Uw
and KC. For large roughness elements, bottom friction is well represented by a friction
factor(fw) defined using combined wave and current velocities in the canopy layer, which
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is proportional to drag coefficient and frontal area per unit plan area, and increases with
KC and Uc/Uw.

Key words: shallow water flows

1. Introduction

Many coastal systems have topography composed of large roughness elements that is
markedly different from well-studied sand grain roughness. On coral reefs and rocky
coasts, for example, dominant length scales in the bottom topography can be centimetres
to metres in size. Interactions of surface waves and currents with these topographies cause
spatial patterns in pressure, currents, wave orbital velocities and turbulence that result in
drag forces on moving water, dissipation of wave energy and mixing. In these systems,
bottom friction is leading order in dynamical balances (Hench, Leichter & Monismith
2008; Lowe et al. 2009) and wave energy dissipation also affects radiation stress gradients
(Monismith et al. 2013; Buckley et al. 2016). Understanding combined wave and current
interactions with topography composed of large roughness elements is therefore critical
for predicting waves and circulation in these systems.

In systems with large roughness elements and steady flow, spatially averaged momentum
and energy budgets have become a valuable tool for understanding flow over urban
geometries, terrestrial forests and aquatic vegetation (as reviewed by Belcher, Harman
& Finnigan (2012) and Nepf (2012)). In this approach, the Navier–Stokes equations
are first time averaged, then averaged over fluid volumes thin in the vertical to resolve
gradients but large in the horizontal to average over spatial variability. Spatial integration
of pressure gradient and viscous terms around obstacle surfaces results in form drag and
viscous drag terms in the spatially averaged momentum budget (Wilson & Shaw 1977).
Spatial averaging of the advective acceleration term introduces a dispersive stress, which
represents momentum transport due to correlations between spatial variations in velocities
within the averaging volume (Raupach & Shaw 1982). The momentum balance for steady
flow through obstacle arrays where obstacle layer height is substantially smaller than water
depth is generally a balance between a shear stress gradient that drives the flow and form
drag that opposes the flow (Nepf & Vivoni 2000). The shear stress at the top of the canopy
that drives flow through the obstacle array is the same as the bottom shear stress exerted
on the overlying boundary layer flow. The relative importance of turbulent (Reynolds)
and dispersive stresses varies depending on array geometry; turbulent stress dominates for
dense canopies in which horizontal roughness-element dimensions are small compared
with canopy height (Poggi, Katul & Albertson 2004), but dispersive stress is significant in
sparse canopies and when horizontal roughness-element dimensions are similar to canopy
height (Castro 2017).

Less work has been done on flow over large roughness elements in coastal ocean
settings, where surface waves dramatically alter boundary layer dynamics. The surface
wave problem differs fundamentally from currents because boundary layer and obstacle
wake development are limited by the wave period. Similar to the approach for steady
flows through obstacle arrays, the Navier–Stokes equations are first phase averaged and
then spatially averaged. This again results in a term that represents the force on the
fluid volume due to pressure around obstacle surfaces (Lowe, Koseff & Monismith 2005;
Rodriguez-Abudo & Foster 2014; Yu, Rosman & Hench 2018); however, in oscillatory
flows, this force has a component that is in phase with the fluid acceleration, added mass,
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Combined wave–current flows over large roughness elements

and a component that is in phase with the velocity, form drag (Morison, Johnson & Schaaf
1950). Spatial averaging of the advective acceleration term leads to a wave dispersive stress
term that is analogous to that for steady flows but varies with wave phase. In oscillatory
flows over obstacle arrays, the wave dispersive stress can be as large as the oscillatory
Reynolds stress (Yu et al. 2018).

The dynamics of oscillatory flow over an obstacle array depends on both array geometry
and flow conditions. A key parameter is the Keulegan–Carpenter number (Lowe et al.
2005; Yu et al. 2018), KC = UwT/D, the ratio of wave orbital excursion to obstacle size
multiplied by 2π (Keulegan & Carpenter 1958). Here Uw is the wave orbital velocity
amplitude, T is the wave period and D is the obstacle diameter. An extensive body of work
on sandy beds addresses the high KC range, where orbital excursions are much larger
than the obstacles and a turbulent wave boundary layer forms above the obstacle layer
(e.g. Jonsson 1966; Trowbridge & Madsen 1984). In this regime, the obstacles are often
thought of as surface roughness and the Reynolds stress immediately above the bed is
assumed to be the same as the total force per unit area on the bottom. These models have
been extended and applied in situations where KC is small; however, there are fundamental
differences in the dynamics at low KC that these models do not capture.

A few field, laboratory and modelling studies specifically address the dynamics of
wave-driven flow over obstacle arrays at lower KC (Barr et al. 2004; Lowe et al. 2005,
2007; Nichols & Foster 2007; Yu et al. 2018). When KC < 100, stresses above the obstacle
layer are generally small compared with the total force on the bed (e.g. Sleath 1987; Yu
et al. 2018). When 10 < KC < 100, form drag is the dominant force exerted by the bottom
on the oscillatory flow, and energy is removed from waves primarily in obstacle wakes
(Lowe et al. 2005, 2007; Yu et al. 2018). Form drag due to obstacles in this parameter
range can be substantially larger than the bed stress associated with the surface roughness
due to sand grains (Rodriguez-Abudo & Foster 2014). When KC < 10, the effect of the
canopy on oscillatory flow is primarily via the added-mass force, which reduces oscillatory
flow in the obstacle layer. The added-mass force is in phase with the acceleration and in
quadrature with the velocity; therefore, it does no work on the flow and does not result
in dissipation of wave energy (Lowe et al. 2005, 2007). The added-mass force increases
as KC decreases, resulting in an apparent increase in friction factor with decreasing KC
when it is computed from the total force on the bed (Dixen et al. 2008; Yu et al. 2018).
However, friction factors computed from only the drag force decrease as KC decreases, as
flow separation becomes weaker and obstacle drag coefficients decrease (Yu et al. 2018).

In the coastal ocean, waves and current coexist and interactions between waves and
current impact dynamics and transport processes. Important parameters are the ratio of
wave orbital velocity amplitude to current Uw/Uc, the angle between waves and current
and KC. Previous work on combined wave and current boundary layers has focused
mainly on small-scale roughness, where KC > O(10) (e.g. Soulsby et al. 1993; Yuan
& Madsen 2015). In this parameter range, waves increase the time-averaged Reynolds
stress near the rough bed and corresponding bottom drag on the steady flow (Umeyama
2005). Waves also enhance turbulence generation at the bed, which increases the effective
bottom roughness felt by the current and correspondingly the steady boundary layer
thickness (Olabarrieta, Medina & Castanedo 2010). Theoretical models based on simple
eddy viscosity closures for turbulent stresses in the oscillatory (wave) and steady (current)
boundary layers (Bakker & Van Doorn 1978; Grant & Madsen 1979) have shown good
agreement with laboratory experiments in this parameter range (Kemp & Simons 1982,
1983; Yuan & Madsen 2015). However, these models do not represent the dynamics at
lower KC, where the phase-averaged force per unit area acting on the flow can be different
from the phase-averaged stress above the obstacle layer. Previous work on wave and
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current boundary layers at lower KC has also observed apparent bed roughness describing
the shape of the current boundary layer to be much larger than the physical roughness
(Fredsøe, Andersen & Sumer 1999; Nayak et al. 2015). In this parameter range, turbulence
properties vary substantially during the wave cycle as vortices are shed and interact with
roughness elements (Fredsøe et al. 1999). The impact of these processes on the dynamics
of the wave boundary layer and the energy removed from waves and current has not been
fully investigated.

Interactions of flow with roughness elements are not resolved in most ocean circulation
models and these subgrid-scale processes must be parametrized. Bottom friction is
typically represented by a quadratic drag law with a wave friction factor for waves and
a bulk drag coefficient for current. Wave friction factors, fw, are typically represented
via a roughness length (ks), which is specified (e.g. Warner et al. 2008). Friction factors
are typically assumed to follow a single-valued function of the ratio of orbital excursion
to roughness length (ζ/ks), where the function is based on empirical relationships or
theoretical curves developed for small roughness elements (e.g. Jonsson 1966; Grant &
Madsen 1979). Although applied across a broad parameter range (e.g. Lentz et al. 2016;
Rogers et al. 2016; Rodriguez-Abudo & Foster 2017), these curves typically assume the
near-bed Reynolds stress balances the bottom drag per unit area, which is only true if
roughness elements are small compared with orbital excursions (Yu et al. 2018). For the
current, the near-bottom velocity profile is assumed to be logarithmic and bottom friction
is represented via a roughness height z0, which is proportional to ks (e.g. Warner et al.
2008). The impact of waves on the friction felt by the current is also typically parametrized
using boundary layer theory developed for small KC (e.g. Grant & Madsen 1979). Recent
observations on a coral reef suggest that bottom friction can be approximated using a
quadratic drag law with combined wave and current near-bed velocities (Lentz, Churchill
& Davis 2018). However, the linkage between boundary layer dynamics for large roughness
elements and appropriate bottom friction parametrizations is not well understood, and
wave–current interactions remain among the least well-described mechanisms in most
ocean wave and circulation models (Uchiyama, McWilliams & Shchepetkin 2010; Mellor
2015).

In this paper, we investigate the dynamics of combined wave–current flows over
large roughness elements and implications for parametrizing bottom friction. We focus
on roughness elements similar in size to wave orbital excursions, KC = O(1–10), an
important parameter range in coastal systems like coral reefs and rocky coasts that
has not been fully explored. We present a theoretical framework based on spatially
and phase-averaged Navier–Stokes equations for analysing the dynamics of the steady
boundary layer and the dynamics of the oscillatory flow in a combined flow. The
framework is applied to results from a series of computational fluid dynamic (CFD)
simulations with large-eddy simulation (LES) turbulence closure, in which important
parameters were systematically varied, providing new insights into the physics of steady
and oscillatory boundary layers over large roughness in combined wave–current flows.
The spatial and phase averaging framework is then used to address implications for
parametrization of drag on currents and dissipation of wave energy in combined flows
over large roughness.

2. Background – spatial averaging framework

To investigate the dynamics of combined wave–current flow over topography, we employ
a spatial and Reynolds averaging approach. The frameworks from steady (Wilson & Shaw
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1977) and oscillatory (Yu et al. 2018) flows are extended here to flows with combined
currents and waves. The three velocity components and pressure are first decomposed into
an ensemble average (e.g. ū) and a turbulent fluctuation (e.g. u′). Here the phase average
is used as the ensemble average. The phase-averaged streamwise velocity, for example, is
defined as

ū(x, t) =

N−1∑
n=0

u(x, t + nT)

N
, (2.1)

where T is the wave period, t is time in the range [0, T], x is position within the averaging
volume and N is the number of waves. The phase average is then decomposed into the
spatial average, 〈ū〉, and the deviation from the spatial average, ū′′. Spatial averaging
is applied over volumes with horizontal length scales large compared with individual
roughness elements but thin enough in the vertical direction to resolve the vertical structure
of the flow. The intrinsic spatial average (Raupach & Shaw 1982) is used, where the
average is taken over the volume occupied by fluid between the bottom (z1) and top (z2) of
the averaging volume:

〈ū(z, t)〉 = 1
Vf

∫ z2

z1

∫ Ly

0

∫ Lx

0
ū(x, t) dV. (2.2)

Here Lx and Ly are the dimensions of the averaging volume in the horizontal directions;
the spatial average is indicated by angle brackets; and Vf is the volume of fluid within the
averaging volume. The streamwise velocity is therefore decomposed as

u = 〈ū〉 + ū′′ + u′. (2.3)

The same decomposition is used for the other velocity components.
The spatially averaged governing equations are derived by substituting expressions for

the decomposed velocity into the Navier–Stokes equations, Reynolds (phase) averaging
and then averaging each term over the fluid volume Vf (e.g. Wilson & Shaw 1977; Raupach
& Shaw 1982; Nikora et al. 2007). When waves are present, it is useful to split the
pressure gradient term into two parts: the oscillatory pressure gradient that drives the
flow (subscript f ) and the dynamic pressure response resulting from flow past obstacles
(subscript d):

∂ p̄
∂xi

= ∂ p̄f

∂xi
+ ∂ p̄d

∂xi
. (2.4)

The spatial averaging operator is then applied. It can be shown (see Nikora et al. 2007)
that 〈

∂ p̄d

∂xi

〉
= 1

1 − φ

∂(1 − φ)〈p̄d〉
∂xi

− 1
Vf

∫
S

p̄dni dS. (2.5)

The spatially averaged momentum equations can then be written as

∂〈ūi〉
∂t

+ 〈ūj〉∂〈ūi〉
∂xj

= gi − 1
ρ

〈
∂ p̄f

∂xi

〉
− 1

ρ(1 − φ)

∂(1 − φ)〈p̄d〉
∂xi

+ 1
ρ(1 − φ)

∂(1 − φ)τij

∂xj
− fPi − fVi, (2.6)
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where

τij = −ρ
〈
u′

iu
′
j

〉
− ρ

〈
ū′′

i ū′′
j

〉
+ μ

∂〈ūi〉
∂xj

, (2.7)

fPi = − 1
ρVf

∫
S

p̄dni dS, (2.8)

fVi = ν

Vf

∫
S

∂ ūi

∂xj
nj dS. (2.9)

Here, φ is the solid volume fraction, S is the solid surface, ni is the component in direction
xi of the unit surface normal vector, and τij is the sum of Reynolds stress, dispersive stress
and viscous stress. The dispersive stress is the spatial analogue of the Reynolds stress
and represents momentum transport due to the spatial heterogeneity of the phase-averaged
flow. The pressure force term (fPi) arises from expressing the spatially averaged dynamic
pressure gradient in terms of the gradient of the spatially averaged dynamic pressure (2.5).
The dynamic pressure field around the solid boundary exerts a force on the solid surface.
There is an equal and opposite reaction force on the fluid and this is represented by fPi .
Likewise, the viscous drag term (fVi) represents the force on the fluid due to the integrated
viscous stress over the solid boundary. The pressure force term is typically significantly
larger than the viscous drag term; therefore, viscous drag can be neglected.

In steady flow, the pressure force fPi is equal to the form drag per unit fluid mass
(e.g. Finnigan 2000). In oscillatory flow, fPi has an additional component due to the
fluid accelerating as it moves over the solid surface (Lowe et al. 2005). Following the
Morison equation (Morison et al. 1950), the total in-line force exerted on a solid body in
an accelerating flow (U) can be expressed as

Fx =
∫

S
p̄nx dS = ρCMV

dU
dt

+ 1
2
ρCDAU|U|. (2.10)

The first term on the right-hand side is the inertial force (FI) and the second term is the
drag force (FD). The inertial force is in phase with the local flow acceleration and the drag
force is in phase with the flow velocity. In the above, V is the volume of the solid body, A
is the frontal area perpendicular to the flow direction, CM is the inertia coefficient and CD
is the drag coefficient. The inertial force (FI) can be split into two terms: the added-mass
force (Fα) and the Froude–Krylov or virtual buoyancy force (FFK). The Froude–Krylov
force is the direct result of the unsteady pressure field that generates the oscillatory motion
and is given by

FFK =
∫

S
p̄f nx dS = ρV

dU
dt

. (2.11)

Subtracting (2.11) from (2.10) yields∫
S

p̄dnx dS = ρCαV
dU
dt

+ 1
2
ρCDAU|U|. (2.12)

The right-hand side is the sum of the added-mass force and the drag force. The added-mass
coefficient is Cα = CM − 1.

The force applied on the fluid by the solid surface is equal and opposite to the force
applied on the solid surface by the fluid. Dividing (2.12) by the fluid mass in the averaging
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volume, ρVf , yields a parametrization for fPx,

fPx = Cαφ

1 − φ

d〈ū〉
dt

+ CDA
2Vf

〈ū〉|〈ū〉|, (2.13)

where the spatially and phase-averaged velocity has been used for U. The added-mass force
is in phase with the local flow acceleration and in quadrature with the velocity; therefore,
it does no work and does not remove energy from waves. Only the drag force, which is in
phase with the flow velocity, removes energy from waves.

Although the accelerating flow also exerts a Froude–Krylov force on solid obstacles and
there is a reaction force exerted on the flow, this force results from the integral around the
solid surface of the pressure field that is driving the flow. The Froude–Krylov force does
not appear in fPx because the spatial average of the forcing pressure gradient is not split
into the gradient of spatially averaged pressure and the surface integral in (2.6).

Phase-averaged quantities in the spatially averaged momentum budget are further
decomposed into current and wave components. The current component, e.g. 〈ūc〉,
is defined as the time average and the wave component is 〈ūw〉 = 〈ū〉 − 〈ūc〉. The
phase-averaged streamwise velocity is therefore decomposed as

〈ū〉 = 〈ūc〉 + 〈ūw〉, (2.14)

ū′′ = ū′′
c + ū′′

w. (2.15)

Spanwise and vertical velocity components are decomposed in the same way. Pressure,
stresses and the drag and added-mass forces are also decomposed into current and wave
components in an analogous way. The governing equation for the current is then obtained
by time averaging (2.6). The governing equation for the oscillatory motion is obtained by
subtracting the time average from (2.6).

3. Methods

3.1. Model set-up
Numerical modelling experiments were carried out to study combined wave–current flow
over a rough bottom at KC = 2–12, corresponding to wave orbital excursions ranging
from 1/3 to 2 times the obstacle diameter. The bottom was an infinite two-dimensional
array of regularly spaced hemispheres on a flat horizontal surface (figure 1). Hemisphere
dimensions and spacing were based on field measurements on a reef flat in Moorea, French
Polynesia, reported by Hench & Rosman (2013) and Duvall et al. (2020). For the main
set of simulations, the hemisphere diameter D was 0.5 m, the centre-to-centre spacing
S was 1 m and the height H of the domain (i.e. water depth) was 2 m. The horizontal
dimensions of the simulation domain were equal to the distance between the centres of
adjacent hemispheres (S). Periodic boundary conditions were applied in both horizontal
directions, a free-slip boundary condition was applied at the top, and a smooth-wall
boundary condition was applied at the bottom, including the surface of the hemisphere.

To assess potential effects of domain size, we carried out one simulation with a larger
domain (2S in the flow direction and two hemispheres in the domain). While there were
some differences in the steady boundary layer in the upper half of the domain, the
drag force and phase-averaged velocities agreed well with the baseline simulation, with
differences less than 3 %. Phase-averaged turbulent and dispersive stresses above the top
of the canopy differed by about 10 % of the peak stresses, most likely because these
higher-order statistics were more fully converged when the averaging volume was larger.

931 A11-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.941


X. Yu, J.H. Rosman and J.L. Hench

x

y
z

Current plus 

oscillatory flow

D
S

H

Free slip

Smooth wall

Periodic Periodic

Figure 1. Schematic diagram showing the hemisphere array, simulation domain and boundary conditions.

Turbulence decorrelation length scales at z/D = 1 were about 20 % of the domain size.
These analyses indicate that turbulence length scales larger than the domain do not have
a major role in the physics in the roughness sublayer and the domain size is not expected
to affect our conclusions. To assess the importance of flow sheltering between adjacent
hemispheres, two additional simulations with S = 0.75 m were conducted. While the drag
was slightly decreased due to flow sheltering for the more closely spaced hemispheres, the
effect was minor and did not affect our conclusions, so these simulations are not discussed
further.

The computational grid was generated using utilities in the OpenFOAM package (Weller
et al. 1998). A block structured grid with finer cells near the hemisphere surface was
used. The blockMesh utility was used to generate the grid and the mesh was fitted to the
hemisphere surface using the blockMeshBodyFit tool. The smallest grid cells were 2.6 mm
and the total number of grid cells was 5.68 × 106. A fixed time step was chosen for each
case such that a Courant number less than unity was maintained.

To obtain initial conditions for the combined wave and current simulations, we first
ran a simulation with current only. Steady-state velocity and turbulence fields from
those simulations were used to initialize simulations with combined waves and current.
Simulations with combined waves and current reached a fully developed state, in which
flow properties were stationary, in 50 wave cycles. Therefore, the first 50 wave cycles of
each simulation were deemed ‘spin-up’ and not used in the analysis. After spin-up, the
number of wave cycles used to compute flow and turbulence statistics was systematically
increased to determine the number of wave cycles needed for the phase-averaged flow and
turbulence statistics to converge. Although it was not feasible to continue simulations long
enough that time-averaged stress profiles were perfectly smooth, there were no meaningful
changes in quantities of interest after 40–50 wave cycles. Therefore, N = 50 wave cycles
was used to calculate all phase averages. Simulations were run on high-performance
computer clusters at the University of North Carolina at Chapel Hill and the University
of Florida. Each simulation with current alone required about 25 000 CPU hours and each
simulation with waves required an additional 40 000 CPU hours.

3.2. Large-eddy simulation model
Simulations were conducted using OpenFOAM (version 3.0; Weller et al. 1998). The
current was driven by a constant pressure gradient term fc. Oscillatory motion was driven
by an oscillating (sinusoidal) horizontal pressure gradient, representing near-bottom flow
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under small-amplitude waves in shallow or intermediate water depths. Sufficiently high
above the hemispheres, the momentum equation describing the oscillating part of the flow
reduces to

∂uw,∞
∂t

= − 1
ρ

∂pw

∂x
. (3.1)

A sinusoidal free-stream velocity was used with uw,∞ = Uw sin(ωt), where Uw is the
amplitude of the oscillating free-stream velocity. The pressure gradient driving the
combined flow was therefore −dp∞/dx = ρUwω cos(ωt) + ρfc. Hence, the governing
equations can be written as

∂ui

∂xi
= 0, (3.2)

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂pd

∂xi
+ 1

ρ

∂τij

∂xj
+ Uwδi1ω cos(ωt) + fcδi1, (3.3)

where ui is the resolved fluid velocity, pd is the dynamic pressure, ρ is the density of
the fluid, τij is the stress term, including both the turbulent stress and viscous stress
components, and δ is the Kronecker delta. The total pressure is p = pd + (x − x0) dp∞/dx,
where x0 is a reference position at which pressure is defined to be zero.

LES turbulence closure was used to calculate the turbulent stresses. In LES, large-scale
turbulent motions are resolved and the turbulent stress term represents only momentum
fluxes by small-scale processes not adequately resolved on the computational grid. LES
has been successfully applied to study flow over complex topography in many engineering
applications (Barr et al. 2004; Xie & Castro 2009; Anderson et al. 2012; Chakrabarti
et al. 2016). Unlike other turbulence models, LES captures interactions between turbulent
wakes and roughness elements, which is important for mass and momentum transfer in the
canopy and roughness sublayers of rough boundary layers.

The wall-adapting local eddy viscosity (WALE) model (Ducros, Nicoud & Poinsot
1998) was used as the subgrid closure. In the WALE model, the stress term is

τij = 2(νt + ν)Sij, (3.4)

where Sij is the strain-rate tensor of the resolved scale, ν is the kinematic viscosity of the
fluid and the eddy viscosity νt is given by

νt = Δ2
s

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
, (3.5)

with

Δs = CwV1/3
c , (3.6)

Sd
ij = 1

2 (g2
ij + g2

ji) − 1
3δijg2

kk, (3.7)

gij = ∂ui

∂xj
. (3.8)

The constant Cw = 0.325 and Vc is the volume of the grid cell. While the WALE model
can be overdissipative in strong vortical flows (Bricteux, Duponcheel & Winckelmans
2009), it has been found to perform better than the dynamic Smagorinsky model for
simulating flow separation (Arya & De 2019) and flow over rough beds (Lian et al. 2019).
For this study, the main turbulent generation mechanism is eddies shed from the roughness
elements and no strong shear layers formed; therefore, the WALE model is appropriate.
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Case no. 1 2 3 4 5 6 7 8 9 10

Uc,H (m s−1) 0.18 0.17 0.16 0.14 0.17 0.31 0.30 0.28 0.26 0.28
Uc (m s−1) 0.087 0.075 0.052 0.036 0.072 0.16 0.14 0.12 0.094 0.12
Uw (m s−1) 0.05 0.1 0.2 0.3 0.2 0.05 0.1 0.2 0.3 0.2
T (s) 20 20 20 20 10 20 20 20 20 10
Uw/Uc 0.58 1.33 3.84 8.36 2.77 0.31 0.70 1.65 3.19 1.59
KC = UwT/D 2 4 8 12 4 2 4 8 12 4

Table 1. Summary of simulation parameters.

3.3. Simulations conducted
A series of 10 simulations with different parameter combinations were carried out
(table 1). We used two current forcings, fc, which are referred to as weak current (cases
1 to 5) and strong current (cases 6 to 10). For a given fc, the resulting current varied
somewhat depending on wave properties. Both the depth-averaged current through the
entire water column (Uc,H) and the depth-averaged current within the canopy layer
(Uc) are reported in table 1. The dynamics is dominated by the interaction of the flow
with the hemispheres; therefore, the spatially averaged velocity in the canopy layer,
the layer containing solid obstacles, is used as the characteristic current velocity Uc.
The two key dimensionless parameters, i.e. the ratio of wave orbital velocity to current
(Uw/Uc) and the Keulegan–Carpenter number (KC = UwT/D), were varied by changing
the free-stream wave velocity amplitude (Uw) and wave period (T) for each current forcing.
The Stokes number (β = D2/νT) is the squared ratio of the characteristic length scale of
bottom topography to the laminar wave boundary layer thickness and was O(104) for all
simulations. The dependence of flow characteristics on β was therefore weak and is not a
focus of the analyses.

4. Results

4.1. Flow kinematics
Depending on the relative strengths of the current and wave velocities, the mean flow may
or may not change directions in the canopy layer during a wave cycle, resulting in different
flow behaviour. Two contrasting cases are used to illustrate flow features for cases with
different Uw/Uc: a representative wave-dominated case with weak current forcing and
Uw = 0.3 m s−1 (Uw/Uc = 8.6, KC = 12; case 4); and a representative current-dominated
case with strong current forcing and Uw = 0.1 m s−1 (Uw/Uc = 0.7, KC = 4; case 7). For
the wave-dominated case, there is weak flow separation, and the pressure fields under the
wave peak (figure 2b,f ) and wave trough (figure 2d,h) have similar small-scale fluctuations
in the wake zones. However, due to the current, turbulence is slightly stronger at ωt = π
(decelerating) than at ωt = 0 (accelerating). For the current-dominated case, Uw/Uc is
smaller than unity and the flow does not change direction even under the wave trough
(figure 2i–p). During the part of the wave cycle when the velocity increases (ωt from 0
to π/2), the wake zone grows, flow separation is strong and more small-scale pressure
fluctuations form (figure 2j). Because the flow does not reverse, the wake behind the
hemisphere continues to grow, and eddies generated in the wake of adjacent hemispheres
interact with the local hemisphere (figure 2k,o). At ωt = 3π/2 (figure 2l,p), small-scale
fluctuations can be seen all across the plane.
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Figure 2. Example pressure and velocity fields from the LES at four different wave phases for: (a–h) a case
with weak current and strong waves (case 4: Uc,H = 0.14 m s−1, Uw = 0.3 m s−1, T = 20 s); and (i–p) a case
with strong current and weak waves (case 7: Uc,H = 0.30 m s−1, Uw = 0.1 m/, T = 20 s). Colours are dynamic
pressure pd/ρ normalized by mean-squared velocity and vectors are velocity fields. The x–z plane is located in
the centre of the domain and the x–y plane is located at z/D = 0.2.

Spatially averaged velocity profiles generally have two distinct parts (figure 3). Above
z/D = 0.5 the velocity profile has the shape of a characteristic steady boundary layer with
a vertically uniform oscillatory velocity superposed. Inside the canopy layer, the velocity
profile is affected by the flow structure around the hemispheres. Dissipation rates are
generally small in the boundary layer above the hemispheres and much larger in the canopy
layer, due to turbulence generated in hemisphere wakes. Dissipation rates are higher for
cases with larger waves and highest when flow is decelerating, between the peak and trough
when the flow excursion is greatest and the wake is longest. In the decelerating part of the
wave cycle, some dissipation occurs above the hemispheres up to z/D = 1 for cases with
large waves, indicating that some turbulence is transported upwards into the water column
above the canopy layer as the flow reverses (figure 3g,o). However, in all cases, most of
the dissipation occurs in obstacle wakes within the canopy layer.

Waves have a more dramatic effect on velocity profile shapes and dissipation rates
for cases with weak current than for cases with strong current. For weak current cases,
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Figure 3. Phase- and spatially averaged (a–d) velocity and (e–h) dissipation rate profiles at four different wave
phases for simulations with weak current and different wave velocity amplitudes and wave periods (cases 2–5).
(i–p) Equivalent velocity and dissipation rate profiles for the strong current simulations (cases 7–10).

dissipation rates are much higher in the canopy layer for cases with larger waves. At
ωt = 0 and ωt = π (figure 3a,c), velocity profiles from cases with small KC = 4 (case
2: Uw = 0.1 m s−1, T = 20 s; and case 5: Uw = 0.2 m s−1, T = 10 s) are similar to the
steady current profile. However, velocity profiles from cases with larger KC deviate from
the steady current case because of the stronger turbulent mixing and dissipation. For cases
with strong current, the normalized velocity profile shape only differs significantly from
other profiles for the case with strongest waves (case 9: Uw = 0.3 m s−1, T = 20 s) and
the impact of waves on dissipation rates is less strong (figure 3i,p).
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Combined wave–current flows over large roughness elements

4.2. Drag and inertial forces
The primary influence of the hemispheres on the spatially averaged momentum balance
is from forces exerted on water in the canopy layer due to the pressure field around the
hemispheres. This force is equal and opposite to the force exerted by the fluid on the
hemispheres. The total in-line force acting on the hemisphere in the streamwise direction
was computed from the simulated pressure field as

Fx =
∫

S
pnx dS =

∫
S

pdnx dS + ρVhem
duw,∞

dt
+ ρVhemfc, (4.1)

where nx is the streamwise component of the unit normal vector and Vhem = 1
12πD3 is

the volume of the hemisphere. The second term on the right-hand side of (4.1) is the
Froude–Krylov force caused by the unsteady pressure gradient that drives the flow. The
last term represents the force due to the pressure gradient that drives the current.

The in-line force Fx was parametrized using Morison’s equation (2.10). The
instantaneous phase-averaged velocity was approximated as 〈ū(t)〉 = Uc + Uw sin(ωt),
where Uc is the depth-averaged current in the canopy layer and Uw is the amplitude of
the wave component of velocity. Morison’s equation can then be written as

Fx = 1
2
ραCDAhem(Uc + Uw sin ωt)|Uc + Uw sin ωt| + ρCMVhem

d〈ū〉
dt

. (4.2)

The coefficient α arises because of the way CD is defined. We define CD using the
root-mean-square (r.m.s.) drag force and the r.m.s. spatially averaged velocity in the
canopy layer:

CD = FD,rms
1
2ρAhem(urms)2

. (4.3)

The r.m.s. of the velocity squared, which appears in the quadratic drag parametrization,
is (u2)rms = (U4

c + 3U2
c U2

w + 3
8 U4

w)1/2, while the square of the r.m.s. velocity in the CD

definition is (urms)
2 = U2

c + 1
2 U2

w. The coefficient α is the ratio of these quantities, which
can be written in terms of Uw/Uc as

α = (urms)
2

(u2)rms
=

1 + 1
2

(
Uw

Uc

)2

√
1 + 3

(
Uw

Uc

)2

+ 3
8

(
Uw

Uc

)4
. (4.4)

The drag and inertial forces and the force coefficients in (4.2) were obtained using a
least-squares method, given Fx, Uc, Uw and d〈ū〉/dt from the simulations.

The quantity CDα varies by approximately a factor of 2 among all simulations with
combined waves and current and has clear patterns with Uw/Uc and KC (figure 4).
Generally, when Uw/Uc is small (current-dominated cases), CDα is high and there is
little dependence on KC but a strong dependence on Uw/Uc. When Uw/Uc is large
(wave-dominated cases), CDα varies less with Uw/Uc but increases strongly with KC, as
orbital excursion increases and flow separation is more developed. At large Uw/Uc, CDα

converges to values for oscillatory flow simulations with no current from Yu et al. (2018).
The CDα value decreases as wave velocity increases relative to current (increasing Uw/Uc)
because flow separation is less developed and wakes are weaker in oscillating flows than
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Figure 4. Drag parameter CDα versus ratio of wave orbital velocity to current in the canopy layer (Uw/Uc)
and Keulegan–Carpenter number (KC). In (a,b), red diamonds are simulations with strong current (cases 6–10),
blue circles are simulations with weak current (cases 1–5), and black triangles are simulations with no current
from Yu et al. (2018). In (c), diamonds are strong current cases, circles are weak current cases, and lines are
contours of CDα; points and contours are coloured according to CDα.

in steady flows with similar r.m.s. velocities. For the same value of Uw/Uc, CDα increases
with KC, due to stronger flow separation and the KC dependence becomes stronger as
Uw/Uc increases.

To examine the variation of the drag force over a wave cycle, and compare it with
quadratic drag law predictions, normalized drag force is plotted as a function of wave
phase in figure 5. For simulations with small Uw/Uc, flow direction does not strongly
reverse during the wave cycle and in most cases the drag force shows a sharply peaked
crest and a flat trough that are captured by the quadratic drag relationship. However,
the drag force at the wave trough is underpredicted by the quadratic drag law for these
cases. For cases with large Uw/Uc, the drag force is more symmetric between the positive
and negative half-cycles of the wave, and this is also captured by the quadratic drag
relationship. Generally, the variation in drag force over the wave cycle is captured well
by the quadratic drag parametrization for simulations with high KC. Agreement with the
quadratic drag relation is poorer for low KC cases, probably because the wave period (T) is
short compared with the time scale for development of flow separation, which scales with
D/Uw, so the wake and the pressure field around the hemisphere do not develop fully and
adjust to the incident velocity throughout the wave cycle.

4.3. Effects of waves on current
To investigate how waves affect the current, we consider the spatially averaged and
phase-averaged momentum equations from (2.6). The spatial averaging volume is taken
as a thin slab with horizontal dimensions equal to the centre-to-centre spacing between
hemispheres. Because the domain is periodic in the horizontal (x and y) directions,
horizontal gradients of the spatially averaged velocity components and stresses are zero.
The spatially averaged vertical and lateral velocity components, 〈w̄〉 and 〈v̄〉, are zero
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Figure 5. Drag force on a hemisphere as a function of wave phase for (a,c) weak current cases 2–5 and
(b,d) strong current cases 7–10. (a,b) Drag force calculated from phase average of simulated pressure field,
normalized using the mean-square spatially averaged velocity in the canopy layer. (c,d) Drag force predicted
by a quadratic drag law and sinusoidal velocity in the canopy layer: U = Uc + Uw sin ωt, where Uc, Uw and
CDα were set to values from each simulation.

following the continuity equation and boundary conditions. The pressure gradient driving
the current is fc and the pressure gradient driving the oscillatory flow is Uwω cos(ωt). The
double-averaged momentum equation in the flow (x) direction can therefore be simplified
as

∂〈ū〉
∂t

= fc + Uwω cos ωt − fP + 1
ρ

∂τxz

∂z
, (4.5)

where fP represents the sum of drag and added-mass forces, and τxz is the sum of the
spatially averaged Reynolds stress, dispersive stress and viscous stress terms. The viscous
stress is negligible; therefore, τxz = τ turb

xz + τ
disp
xz = −ρ〈u′w′〉 − ρ〈ū′′w̄′′〉. To investigate

wave effects on currents, (4.5) is time-averaged over the wave cycle, which gives

fc − fD,c + 1
ρ

∂τxz,c

∂z
= 0. (4.6)

The subscript c represents the current component.
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Figure 6. Time-averaged stress profiles. Three cases with different wave orbital amplitudes (Uw = 0.1 m s−1,
0.2 m s−1, 0.3 m s−1) and the same wave period (T = 20 s) are shown for (a) weak current (cases 2–4) and
(b) strong current (cases 7–9). Solid lines indicate turbulent stresses 〈u′w′〉c and dashed lines indicate dispersive
stresses 〈ū′′w̄′′〉c. Stresses are normalized by τc, the force per unit horizontal area that must be exerted by the
bottom on the fluid to balance the pressure gradient imposed to drive the current. The grey shaded region
indicates the canopy layer.

While Reynolds stress is the dominant stress component in the steady boundary layer
above the hemispheres, dispersive stress is significant for vertical momentum transfer
within the canopy (figure 6). For both weak and strong current cases, the dispersive stress
peaks within the canopy layer and drops to zero quickly above the canopy. The non-zero
dispersive stress much further away from the canopy layer in some cases is probably due
to insufficient data to obtain good statistics. The dispersive stress increases with wave
velocity and is more important for the weak current cases, for which waves dominate. For
the weak current case with KC = 12 (case 4), the peak dispersive stress is almost 60 %
of the peak Reynolds stress (figure 6a). Other than case 7 (KC = 4 with strong current),
the time-averaged dispersive stress has the same sign as the Reynolds stress, indicating
downward transport of faster-moving fluid (figure 6b). Above the top of the canopy layer,
Reynolds stresses are consistent with the theoretical linear profile obtained when the drag
force (fD,c) in (4.6) is zero. The enhanced peak in Reynolds stress near the top of the canopy
layer (z/D = 0.5) for more current-dominated cases is probably the result of stronger shear
at the top of the canopy in those cases.

The shear stress drives the current in the canopy layer and opposes the current in
the water column above the hemispheres, although the relative importance of Reynolds
stress and dispersive stress varies with wave conditions (figure 7). Above the canopy, the
pressure gradient driving the flow is balanced by the shear stress gradient, which acts to
decelerate the flow. In the canopy layer, the shear stress gradient, which acts to accelerate
the flow, is balanced mostly by the drag force, and the pressure gradient imposed to
drive the current (fc) is small by comparison. As Uw/Uc increases, the dispersive stress
gradient becomes progressively more important relative to the Reynolds stress gradient
for driving the current in the canopy layer. For case 4 with strong waves and weak current
(KC = 12, Uw/Uc = 8.4), the dispersive stress gradient is similar in size to the Reynolds
stress gradient (figure 7a). For case 7 with weak waves and strong current (KC = 4,
Uw/Uc = 0.7), the dispersive stress is less important (figure 7b). However, near the top
of the canopy layer, where the drag force is small, the dispersive stress gradient balances
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Figure 7. Profiles of terms in the time- and spatially averaged momentum budget for (a) weak current and
strong waves (case 4: Uw/Uc = 8.36, KC = 12), and (b) strong current and weak waves (case 7: Uw/Uc = 0.70,
KC = 4). Momentum budget terms are normalized by fc, the pressure gradient force imposed to drive the
current. The grey shaded region indicates the canopy layer.

the Reynolds stress gradient. This suggests that, even when waves are weak relative to the
current, the dispersive stress is important in the vertical momentum transfer at the top of
the canopy layer.

We now examine how the net frictional force per unit bottom area (ρu2∗) varies among
cases with different wave and current conditions. In the depth-integrated time-averaged
momentum balance for the entire water column, the pressure gradient that drives the flow
is balanced by the total bottom friction that opposes the flow. The friction velocity can
therefore be calculated from u∗ = √

fcHeff , where Heff is the effective water depth, equal
to the total volume of water in the domain divided by the plan area. While u∗ is the same
for all simulations with the same fc, the currents that develop in response to the imposed
fc differ. The normalized friction velocity u∗/Uc increases with the ratio of wave velocity
to current in the canopy layer (figure 8b). The effect of waves on u∗/Uc can be predicted
using a quadratic drag parametrization together with a sinusoidal velocity Uc + Uw sin(ωt)
in the canopy layer. This yields

u2
∗ = FD,c

ρS2 = 1
π

CDαλFU2
c

⎛
⎝[

1 + 1
2

(
Uw

Uc

)2
]

arcsin
Uc

Uw
+ 3

2

√(
Uw

Uc

)2

− 1

⎞
⎠ . (4.7)

Here FD,c is the time-averaged drag force on the hemisphere, S is hemisphere spacing
and λF = πD2/8S2 is frontal area per unit plan bottom area in the array. Generally,
friction velocities calculated from the simulations agree well with quadratic drag law
predictions, although the quadratic model slightly underpredicts u∗ for wave-dominated
cases (figure 8b).

Waves are also expected to enhance vertical mixing and momentum exchange between
the canopy layer and the overlying water column. One indicator of vertical momentum
transfer is the mean height of momentum absorption in the canopy layer. This represents
the average position of the momentum sink (drag) in the canopy, or equivalently the
depth to which the shear stress gradient driving flow through the canopy penetrates into
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Figure 8. Normalized friction velocity, u∗/Uc, and zero-plane displacement, d/D, versus (a,c) KC and
(b,d) Uw/Uc. Red diamonds indicate simulations with weak current (cases 1–5) and blue circles indicate
simulations with strong current (cases 6–10). Dotted lines in (b) are quadratic drag law predictions (4.7) with
three different CDα values.

the canopy. The displacement d was calculated following

d =

∫ D/2

0

∂τxz,c

∂z
z dz∫ D/2

0

∂τxz,c

∂z
dz

. (4.8)

In our study, d varies with both KC and Uw/Uc (figure 8c,d). The displacement d is
often written as d = kh, where h is the height of the physical roughness element. At
small KC and Uw/Uc (current-dominated), d/D is around 0.3 for both the strong and
weak current cases, which gives the value k = 0.6. When the wave velocity is larger than
the current velocity, Uw/Uc > 1, and the wave orbital excursion is substantial relative
to the hemisphere diameter (KC > 3), d/D is much smaller, around 0.05 to 0.1 (k = 0.1
to 0.2). The relatively small values of k in our study are probably due to the relatively
sparse configuration of roughness elements. The zero-plane displacement d decreases with
Uw/Uc for cases with the same KC (figure 8d), because waves enhance vertical momentum
transport by turbulence and dispersion in the canopy layer.

When roughness elements are small relative to the water depth, there is a portion of the
boundary layer where turbulence is not affected by either the roughness elements or the
water depth, resulting in a logarithmic velocity profile shape. The velocity profile in the
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logarithmic layer is typically written (Jackson 1981) as

uc = u∗
κ

ln
(z − d)

z0
, (4.9)

where uc is the current velocity at height z above the bottom and κ is the von Kármán
constant. In this study, although the mean velocity profile appeared to be logarithmic
over part of the water depth, the slope differed significantly from u∗/κ . This occurred
because roughness-element height was a significant fraction of the water depth (0.125)
and therefore no region existed in which turbulence was not affected by processes at the
boundary or constrained by the water depth. For this reason, we do not report estimates for
u∗, d or z0 from logarithmic fits to velocity profiles.

4.4. Effects of current on waves
To investigate how the current affects the waves, we used the phase-varying part of the
spatially and phase-averaged momentum equations in (2.6). The momentum equation for
the wave component is derived by subtracting (4.6) from (4.5), which yields

∂(〈ū〉w − uw,∞)

∂t
= −fP,w + 1

ρ

∂τxz,w

∂z
. (4.10)

Here uw,∞ = Uw sin(ωt) is the oscillating part of the free-stream velocity and fP,w is the
oscillating part of the force on the fluid from the pressure field around the hemisphere
(drag and added-mass forces). The oscillating shear stress includes Reynolds stress
and dispersive stress components, τxz,w = ρ(−〈u′w′〉w − 〈ū′′

c w̄′′
w〉 − 〈ū′′

ww̄′′
c 〉 − 〈ū′′

ww̄′′
w〉w).

The wave components of the stress terms are calculated as 〈u′w′〉w = 〈u′w′〉 − 〈u′w′〉c,
〈ū′′

ww̄′′
w〉w = 〈ū′′

ww̄′′
w〉 − 〈ū′′

ww̄′′
w〉c, in which the subscript c means time average.

As indicated previously, the dispersive stress can be important in the dynamics
when waves are present. To examine the relative contributions of the dispersive stress
components and their variation through the wave cycle, figure 9 shows the decomposition
of the dispersive stress term for a wave-dominated case and a current-dominated case.
For the weak current (wave-dominated) case, the oscillatory dispersive stress (figure 9a)
is much larger than the time-averaged dispersive stress (figure 9e). The spatial correlation
between oscillating horizontal and vertical velocity components, 〈ū′′

ww̄′′
w〉w, is the dominant

term, and it has peaks near the top of the canopy at phases when the flow changes direction
before and after the wave trough, indicating strong vertical momentum transfer at the top
of the canopy. For the strong current (current-dominated) case, the oscillatory dispersive
stress (figure 9f ) is similar in size to the time-averaged dispersive stress (figure 9j). The
wave–wave component, 〈ū′′

ww̄′′
w〉w, is small and the wave–current interaction terms almost

cancel. The oscillatory dispersive stress is generally less significant for current-dominated
cases than for wave-dominated cases.

The wave momentum budget terms for a wave-dominated case (Uw/Uc = 8.36, KC =
12) and a current-dominated case (Uw/Uc = 0.7, KC = 4) are presented as functions of
wave phase in figure 10. For both cases, drag and inertial forces are dominant terms
within the canopy. There is a narrower peak and a longer, flatter trough in the drag
force for the current-dominated case, and more symmetric peak and trough for the
wave-dominated case (see also figure 5). The biggest difference between the wave- and
current-dominated cases is the stress terms. Momentum transfer by turbulence is small for
the weak current, wave-dominant case (figure 10d), while it is of first-order importance for
the current-dominated case (figure 10f ). In contrast, the dispersive stress gradient is more

931 A11-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.941


X. Yu, J.H. Rosman and J.L. Hench

(a)
W

ea
k
 c

u
rr

en
t

z/
D

z/
D

0

0.5

1.0

0
0 2ππ

0.5

1.0

S
tr

o
n
g
 c

u
rr

en
t

ω t
0 2ππ

ω t
0

0 0.005–0.005–0.010 0.010

2ππ

ω t
0 2ππ

ω t
0 2ππ

ω t

〈u–′′w– ′′〉w 〈u–′′w– ′′〉c w 〈u–′′w– ′′〉w c 〈u–′′w– ′′〉c〈u–′′w– ′′〉ww w(b) (c) (d) (e)

(i) ( j)( f ) (g) (h)

Figure 9. Dispersive stress components versus wave phase and height above bottom for (a–e) weak current
and strong waves (case 4), and ( f –j) strong current and weak waves (case 7). Columns are (a,f ) total oscillatory
dispersive stress and (b–d,g-i) oscillatory dispersive stress components, which sum to (a,f ). The time-averaged
(steady) dispersive stress is shown in (e,j) for comparison. Stresses are non-dimensionalized by UwωD to
indicate their size relative to the pressure gradient force driving the oscillatory flow within the canopy layer.
Dashed lines indicate the top of the canopy layer.
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Figure 10. Momentum budget for waves, plotted as the difference between the momentum budget in the
canopy layer and the momentum budget in the free stream. Momentum budget terms are shown versus phase
and height above bottom for (a–e) weak current and strong waves (case 4), and ( f –j) strong current and
weak waves (case 7). Force terms in panels (b–e,h–j) sum to acceleration terms in panels (a,f ). All terms are
non-dimensionalized by Uwω to indicate their size relative to the pressure gradient force driving the oscillatory
flow. Dashed lines indicate the top of the canopy layer.
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Figure 11. Oscillatory momentum budget for cases with (a) KC = 4 and (b) KC = 12, presented as the
difference between canopy layer and free-stream momentum budgets (4.10). Values plotted are r.m.s.
momentum budget terms normalized by Uwω to indicate their size relative to the pressure gradient driving
the oscillatory flow. Magenta dotted lines are quadratic drag law predictions for different CDα values.

significant for the wave-dominated case, particularly near the top of the canopy layer at the
flow reversal prior to the wave trough (figure 10e,j).

The relative sizes of terms in the momentum budget for waves clearly differ depending
on whether the oscillatory or steady flow component dominates in the canopy. These
patterns are explored further by examining how the relative sizes of terms in the wave
momentum budget vary with Uc/Uw and KC (figure 11). For a sinusoidal within-canopy
velocity Uc + Uw sin ωt, the ratio of the r.m.s. drag term to the r.m.s. oscillatory pressure
gradient can be predicted using a quadratic drag approximation to be

fD,w,rms

Uw,rmsω
= 1√

2π
CDαλF

UwT
D

× r.m.s.

[(
Uc

Uw
+ sin ωt

) ∣∣∣∣ Uc

Uw
+ sin ωt

∣∣∣∣ −
(

Uc

Uw
+ sin ωt

) ∣∣∣∣ Uc

Uw
+ sin ωt

∣∣∣∣
]

,

(4.11)

where λF = πD2/8S2 is the ratio of frontal area to bottom area in the canopy layer.
Therefore, the ratio of the r.m.s. drag force to the r.m.s. free-stream acceleration is
predicted to increase with KC = UwT/D, and also with Uc/Uw.

Momentum budget terms from the simulations are generally consistent with quadratic
drag law predictions. At low KC (figure 11a) and small currents, flow separation is weak
and the inertial force (fα) dominates the dynamics (see also Yu et al. 2018). The relative
importance of the drag force fD,w increases with Uc/Uw, as the current enhances flow
separation, consistent with the quadratic drag law prediction (solid lines in (4.11)). At high
KC, flow separation is strong even when the current is small, so the drag force is always
important and similar in size to the inertial force (figure 11b). The drag force only increases
slightly relative to other momentum budget terms with Uc/Uw for the high KC simulations,
again consistent with quadratic drag predictions.

The stress terms significantly affect the shape of the oscillatory velocity profile within
the canopy (figure 10); however, when integrated vertically over the canopy layer, they are
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generally small compared with other momentum budget terms (figure 11). This indicates
that the net difference in oscillatory velocity between the canopy layer and the free stream
is not strongly affected by stress gradients, and the stress at the top of the canopy exerted
on the overlying oscillatory flow is small compared to the drag force per unit bottom area
exerted on water within the canopy. For low KC cases, the turbulent stress term, ∂τ turb

xz /∂z,
increases with Uc/Uw and approaches a constant at large Uc/Uw. The dispersive stress
term does not show clear patterns with Uc/Uw but it is generally more significant for high
KC cases than for low KC cases.

5. Discussion

5.1. Dynamics of combined waves and current over large roughness elements
The spatially and phase-averaged governing equations for combined steady and oscillatory
flows presented in this paper provide a valuable framework for understanding the dynamics
of combined wave–current flows over topography. A spatial averaging approach has been
used extensively for steady flows in terrestrial and aquatic vegetation canopies (Raupach &
Shaw 1982; Nepf 2012). Our previous work derived spatially and phase-averaged equations
for purely oscillatory flows and applied them to study wave dynamics over large roughness
elements (Yu et al. 2018). In this study, the spatially and phase-averaged equations
were further decomposed into equations for the mean flow (current) and equations for
oscillatory flow (waves). This procedure resulted in terms in each equation that represent
wave–current interactions and can be used to understand the effects of waves on currents,
and the effects of currents on waves over very rough bottoms.

Using the momentum budget for current, it can be seen that waves have important effects
on form drag and stress gradients in the canopy layer. Owing to the nonlinear (quadratic)
relationship between drag force and incident velocity, waves enhance the time-averaged
drag on the current. Waves also enhance the time-averaged stress at the top of the canopy
and this drives flow through the canopy and balances drag. Waves result in a new dispersive
stress component that represents time-averaged vertical momentum transport due to spatial
correlations in the oscillatory flow around roughness elements. We show that, as the ratio
of wave orbital velocity to current increases, dispersive stresses are increasingly important
relative to turbulent stresses for mean vertical momentum transfer in the canopy layer.

In the momentum budget for waves, drag and inertial forces are always important in
the canopy layer, but dominant stress terms vary depending on the current. Drag increases
relative to inertial forces as the Keulegan–Carpenter number increases, consistent with
previous laboratory and field studies (Lowe et al. 2005, 2007). We show that drag also
increases relative to inertial forces as the ratio of current to wave orbital velocity increases.
These patterns are again predicted by a quadratic relationship between drag force and
instantaneous velocity. When wave velocities are large relative to currents, dispersive
stress gradients are the most important stress terms, while Reynolds stress gradients
are most important when currents dominate. When waves are small relative to currents,
waves modulate the strength of the current in the canopy layer but the flow does not
change direction during the wave cycle. These modulations in velocity magnitude result
in a modulation of the Reynolds stress, and these variations appear in the oscillatory
momentum budget and affect the wave orbital motion in the canopy layer. For the range
of parameters in this study, stress gradient terms did not significantly affect wave orbital
motion above the obstacles, and dissipation of wave energy was largely confined to the
canopy layer.
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The impact of waves on drag acting on the current and the impact of current on drag
acting on waves were generally quite well represented by a quadratic drag law using
the instantaneous total velocity in the canopy layer (figures 5, 8 and 11); however, the
CDα value required to parametrize this drag varied depending on Uw/Uc and KC. When
currents were very small relative to wave velocities, CDα increased dramatically with
KC up to KC ≈ 10, as flow separation became stronger and more well developed. The
CDα value also increased as current strength increased relative to wave orbital motion
(decreasing Uw/Uc, figure 4). For most of the cases in this study, the wave orbital velocity
was larger than the current in the canopy layer. The current therefore causes asymmetry
where flow separation develops with a stronger velocity and a longer time when the wave
velocity is with the current, and a weaker velocity and shorter time when the wave velocity
opposes the current.

One can define effective Keulegan–Carpenter numbers that separately represent the
ratios of flow excursion to obstacle diameter in the forward (KC+) and reverse (KC−)
directions. Estimates of these effective KC are derived by setting the instantaneous velocity
to Uc + Uw sin ωt and integrating with respect to time over the positive (KC+) and negative
(KC−) parts of the wave cycle to obtain flow excursions in the forward and reverse
directions, respectively:

KC+ =
⎡
⎣(

π

2
+ arcsin

Uc

Uw

)
Uc

Uw
+

√
1 −

(
Uc

Uw

)2
⎤
⎦ UwT

D
, (5.1)

KC− =
⎡
⎣(

π

2
− arcsin

Uc

Uw

)
Uc

Uw
−

√
1 −

(
Uc

Uw

)2
⎤
⎦ UwT

D
. (5.2)

Note that these expressions represent the total distance water travels when velocity is
positive and negative, respectively, divided by the hemisphere diameter and multiplied
by π, and both expressions converge to KC when Uw 	 Uc. The current increases the
effective KC in the forward direction but decreases the effective KC in the reverse direction
(figure 12). Since the part of the wave cycle in which total velocity is in the same direction
as the current is larger than the part in which total velocity is in the opposite direction
to the current, the enhancement of flow separation in the forward direction dominates the
impact on drag over the full wave cycle, resulting in the observed enhancement of CDα for
a given KC as Uw/Uc decreases (figure 4).

If the current is larger than the wave velocity in the canopy layer, which can occur for
large roughness elements (our cases 1, 6 and 7), then the oscillating wave velocity can be
thought of as modulating the strength of the current. In this case, an additional parameter
that indicates the degree to which flow separation adjusts to variations over the wave cycle
can be defined (Duvall, Rosman & Hench, unpublished) as the ratio of the time scale over
which the flow varies (the wave period) to the average time it takes for water to move past
the obstacle:

KCc = UcT
D

. (5.3)

When KCc 
 1, the flow separation does not adjust significantly to changes in flow
magnitude during the wave period and is dominated by the current. When KCc 	 1,
the flow separation adjusts to flow variations due to the wave to some extent. For
current-dominated cases in our study, KCc varied from 4 (case 1) to 6 (cases 6 and 7),
indicating that flow separation was expected to vary somewhat with wave velocity during
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Figure 12. Effective Keulegan–Carpenter numbers, representing flow excursion in the forward (with current)
and reverse (against current) directions relative to hemisphere diameter. Effective Keulegan–Carpenter numbers
are normalized by KC for the same wave conditions in the absence of current.

the wave period. These values are greater than, but of the order of, unity, suggesting that
flow separation may not fully adjust to flow variations over a wave cycle. This may explain
why variations in the drag force over the wave cycle were overpredicted by a quadratic
drag law using the instantaneous velocity for these cases (figure 5).

Here, we focused primarily on flow dynamics in the layer containing obstacles,
and how these change with current and wave velocities in the canopy layer. Because
roughness-element height was a significant fraction of the water depth, there was no true
inertial sublayer in which turbulence was affected by neither water depth nor roughness
geometry. Although the velocity profile was observed to be logarithmic in part of the
water column, its shape was not consistent with the standard log law equation (4.9), most
likely due to the finite roughness height to water depth ratio (0.125). Similar boundary
layer profiles have been observed in laboratory studies of unidirectional flow over gravel
beds with large roughness elements (Gaudio, Miglio & Dey 2010; Mohajeri et al. 2015).
Further work is needed on turbulence dynamics and implications for the steady velocity
profile shape in combined wave–current flows over large roughness elements in shallow
water.

5.2. Scaling up: parametrizing bottom friction
Bottom friction in turbulent flows associated with pure wave motion or steady currents
is typically represented using a quadratic drag law that relates the bottom shear stress, or
drag per unit horizontal bottom area, to the instantaneous velocity (Jonsson 1966). In a
combined wave and current flow, this can be written as

τb = 1
2ρfw(uc + uw)2, (5.4)

where fw is a friction factor associated with the combined flow, and uc and uw
are the characteristic velocities for current and wave orbital motion, respectively. For
characteristic wave velocity, the wave component of the free-stream velocity immediately
above the bed can be used. Choice of characteristic current velocity is more complex, due
to the strong variation of current velocity with height above bottom in the boundary layer.
Here, we used the depth-averaged current velocity inside the canopy, Uc, because this is
representative of the water velocity that interacts with the hemisphere to generate drag,

931 A11-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

94
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.941


Combined wave–current flows over large roughness elements

and avoids complications in interpreting friction factors in a combined wave–current flow
due to the different shapes of the wave orbital velocity profile and the current boundary
layer.

The friction factor was calculated from simulation results by spatially averaging the drag
force over the simulation domain. We used the drag force alone, since, in wave dissipation
studies, τeff represents the component of the total force exerted by the bottom that removes
energy from the oscillatory flow. The inertial force is in quadrature with the water velocity
and does not do work. It can be shown that the friction factor, representing force per unit
horizontal bottom area, is related to the drag coefficient CD for an individual obstacle by

fw = αCDλf

(1 − φ)
, (5.5)

where α is defined in (4.4), λf = Ahem/AT is the frontal area per unit plan bottom area,
following the notation by Britter & Hanna (2003), and φ is the solid volume fraction. It
is assumed that the same reference velocity, the instantaneous within-canopy velocity, is
used in the definitions of CD and fw. Drag coefficients (figure 4) were converted to friction
factors using this expression.

Friction factors determined from our simulations, including both pure wave cases (Yu
et al. 2018) and combined wave–current cases (this study), are compared with previous
laboratory studies, as well as empirical and theoretical curves proposed in the literature,
in figure 13. We only include data from studies in which ks and fw were measured
independently and omit those that used an expression for fw as a function of ζ/ks to
back out ks because they will necessarily fall on the theoretical curves that were used.
As in Yu et al. (2018), we used the diameter of the hemisphere as the roughness scale ks
for simplicity, which gives the ratio of wave orbital excursion amplitude to roughness
scale ζ/ks = KC/2π. The simulations were all in the parameter range where wave
boundary thickness predicted from the total bottom shear stress is small compared with
the roughness-element height (grey shaded region); therefore, oscillatory turbulent stress
at the top of the canopy layer is small compared with drag within the canopy layer, and
friction factor curves based on wave boundary layer theory for small roughness elements
are not appropriate. While friction factors from the simulations approached values from
previous laboratory studies and wave boundary layer theory at large ζ/ks, they diverged
for small ζ/ks for this reason.

At small ζ/ks, friction factors obtained from wave–current cases with the same ζ/ks
are much larger than pure wave cases, because of the asymmetry induced by the current,
which results in a substantially larger flow excursion for a larger portion of the wave
cycle as described above (figure 12). For the six combined wave–current runs with
ζ/ks < 1, three correspond to Uw/Uc < 1 (cases 1, 6 and 7). For these cases, flow does
not reverse and drag is dominated by flow separation associated with the current, so the
Keulegan–Carpenter number does not represent the dynamics, and these may be better
represented by the Reynolds number and KCc. For the other three runs (cases 2, 5 and 10),
Uw/Uc is 1.33, 2.77 and 1.59; therefore, from (5.1), KC+/KC is 2.5, 1.6 and 2.2. Shifting
these three points to the higher effective KC values would bring them closer to alignment
with the pure waves simulations. Overall, these analyses show that friction factor cannot
be represented as a function of KC alone when Uw/Uc is of the order of unity, due to the
enhancement of flow separation and hence drag coefficient by the current. Rather, friction
factor is a function of both KC and Uw/Uc in the canopy layer. If the current and wave
directions are not aligned, the angle between wave and current will also be important.
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S/D = 1.5 (drag only)

S/D = 1.5 (total force)

S/D = 2 (drag only)

S/D = 2 (total force)

S/D = 4 (drag only)

S/D = 4 (total force)

Weak current (drag only)

Strong current (drag only)

← fw = 0.5κ–2 (ζ/ks)
–2

Figure 13. Friction factors (fw) versus the ratio of wave orbital excursion amplitude (ζ ) to roughness length
(ks). Values of fw from this study (triangles) were calculated from the r.m.s. drag force per unit horizontal area
and ks was set to the hemisphere diameter D. Also shown are fw values from previous simulations with waves
only (Yu et al. 2018); diamonds are values computed from the r.m.s. drag force and circles are values computed
from the r.m.s. total force, which includes both drag and inertial forces. Black symbols are previous laboratory
measurements and lines are previously proposed curves based on wave–current boundary layer theory (Grant
& Madsen 1979) and empirical fits (Nielsen 1992). The grey shaded area indicates the parameter range where
the wave boundary layer height would be smaller than the height of roughness elements.

Friction factors determined from our simulations were one to two orders of magnitude
smaller than friction factors that have been deduced from measurements of wave
attenuation across reefs (Monismith et al. 2015; Lentz et al. 2016). This is not surprising,
because, for the range of KC in this study, dissipation of wave energy is predominantly due
to turbulence generated in roughness-element wakes, which can be estimated as work done
by the drag force. Drag coefficients in oscillatory flows vary with the height, shape and
density of the roughness elements (Sleath 1987; Mirfenderesk & Young 2003), so some
variation in friction factors is expected due to these factors alone. More significantly, drag
force per unit bottom area is proportional to frontal area per unit bottom area within the
canopy, so geometries with larger λf generate larger drag and have correspondingly larger
friction factors (5.5). The hemisphere arrays in this study were both smooth and had low
frontal area per unit plan area (λf = 0.1); hence the relatively low friction factors. On real
reefs, fw is expected to vary with the geometric properties of the topography.

6. Conclusions

Here we developed spatially and phase-averaged governing equations for combined
steady and oscillatory flows. This framework is useful for understanding the dynamics
of combined waves and currents over topography and parametrizing bottom friction in
larger-scale models. The framework was applied to combined current and oscillatory flow
over roughness elements at low Keulegan–Carpenter number (KC = 2–12), a previously
unexplored region of the parameter space that is important for coastal systems like
reefs. The analyses showed that waves enhance the drag force on the current and the
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time-averaged stress at the top of the canopy. As the ratio of wave orbital velocity to
current (Uw/Uc) increases, dispersive stresses due to spatial velocity correlations within
the averaging volume are increasingly important relative to turbulent stresses in the
canopy and roughness sublayers. While stresses have important effects on currents, for
the parameter range in this study they did not significantly affect the oscillatory motion.
The main effect of the bottom on the oscillatory flow was from forces due to the pressure
field around solid obstacles. Form drag, which does work and results in removal of energy
from the oscillatory flow, increases relative to the added-mass force as KC increases and as
Uc/Uw increases. The dependences of drag and added-mass forces on KC and Uc/Uw were
well predicted by the Morison equation with a quadratic drag law based on the velocity in
the canopy layer, although the drag coefficient increased with KC and Uc/Uw due to more
fully developed flow separation.

The spatial averaging framework provides a formal procedure for scaling up drag
on individual obstacles to the net bottom friction on the spatially averaged steady and
oscillatory flow. The resulting friction factors were significantly larger for cases with
current and waves than for cases with waves alone due to the more fully developed flow
separation, and they varied with KC and Uc/Uw in the same way as the drag coefficient.
The analyses illustrate that, in flows with waves and small KC (<20), bottom friction
should be modelled as the sum of forces on obstacles per unit bottom area, rather than
the shear stress above the roughness layer. The results show that, in this parameter range,
friction factors not only depend on KC, but also vary strongly with Uc/Uw and the frontal
area per unit plan area of the topography.
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