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We consider a sequential treatment problem with covariates. Given a realization
of the covariate vector, instead of targeting the treatment with highest conditional
expectation, the decision-maker targets the treatment which maximizes a general
functional of the conditional potential outcome distribution, e.g., a conditional quan-
tile, trimmed mean, or a socioeconomic functional such as an inequality, welfare, or
poverty measure. We develop expected regret lower bounds for this problem and
construct a near minimax optimal sequential assignment policy.

1. INTRODUCTION

An expanding literature is concerned with statistical treatment rules, important
contributions including Chamberlain (2000), Manski (2004), Dehejia (2005),
Hirano and Porter (2009), Stoye (2009), Bhattacharya and Dupas (2012), Stoye
(2012), Tetenov (2012), Manski and Tetenov (2016), Kitagawa and Tetenov
(2018), Kitagawa and Tetenov (2019), Manski (2019), Athey and Wager (2021),
and Zhou, Athey, and Wager (2022) (cf. also the overview in Hirano and Porter,
2019). These references all study a nonsequential setup, in which the dataset
has been sampled before the policymaker enters the picture. The data could
be observational or the outcome of a randomized controlled trial. In any case,
the task of the policymaker in the nonsequential case is to construct policies
with good properties given the data at hand. Sequential policies, on the other
hand, allow the policymaker to enter already in the sampling phase and thus
to fine-tune the treatment program as outcomes are observed. This opens the
opportunity to gradually target the sampling effort where it is most useful, by
monitoring the outcomes of the treatments as these are observed. There has been

We are grateful to the Editor, a Co-Editor, and three anonymous referees for their valuable comments. Address
correspondence to Bezirgen Veliyev, Department of Economics and Business Economics, Aarhus University,
Fuglesangs Alle 4, 8210 Aarhus V, Denmark; e-mail: bveliyev@econ.au.dk.

© The Author(s), 2023. Published by Cambridge University Press.. 1

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466623000051
mailto:bveliyev@econ.au.dk.
https://doi.org/10.1017/S0266466623000051


2 ANDERS BREDAHL KOCK ET AL.

a recent appreciation of this opportunity in the context of treatment allocation as
witnessed by the works of Kasy and Sautmann (2021) and Kock, Preinerstorfer,
and Veliyev (2022), both articles building on the literature on multi-armed bandits.
The work of Currie and MacLeod (2020) studying the factors influencing medical
doctors’ optimal prescription strategies of antidepressants also draws on ideas from
sequential decision-making.

The classical multi-armed bandit literature considers a policymaker who
attempts to assign subjects to the treatment with the highest expected outcome,
and without observing covariates. Two strands of developments of this idealized
sequential setting that are particularly relevant for socioeconomic problems have
attracted much attention: (i) Allowing the decision-maker to incorporate a vector of
covariates in the assignment of each subject (cf. Woodroofe, 1979; Yang and Zhu,
2002; Rigollet and Zeevi, 2010; Perchet and Rigollet, 2013). This is important
as not incorporating individual-specific heterogeneity into the policy does not
exploit that individuals may react differently to every treatment. (ii) Problems
where instead of targeting the outcome distribution with highest expectation,
the decision-maker is interested in targeting another functional of the outcome
distribution (cf. Sani, Lazaric, and Munos, 2012; Maillard, 2013; Tran-Thanh and
Yu, 2014; Zimin, Ibsen-Jensen, and Chatterjee, 2014; Vakili and Zhao, 2016; Kock
and Thyrsgaard, 2018; Cassel, Mannor, and Zeevi, 2018; Vakili, Boukouvalas, and
Zhao, 2019; Ma et al., 2020). Of particular relevance for the present article is the
recent paper Kock et al. (2022). In that article, a theory for sequential assignment
problems was built for a policymaker targeting a general functional of the outcome
distributions of the treatments. The functionals covered include quantiles, moment-
based functionals, and a large range of inequality, welfare, and poverty measures.
However, a setting without covariates was considered.1 That targets other than the
expected outcome are relevant in economic decision-making has recently been
underscored by Bitler, Gelbach, and Hoynes (2006) or Rostek (2010).2

The only article we are aware of to provide regret bounds on a policy for a target
other than the conditional expectation and in the presence of covariates is Kock and
Thyrsgaard (2018). This paper has two limitations: First, it considers the special
class of functionals which can be written as a Lipschitz-continuous function of the
conditional mean and the conditional variance. Many fundamental functionals are
not covered by their theory, e.g., conditional quantiles or many inequality, welfare,
and poverty measures. Second, regret lower bounds for functional targets (beyond
the mean) are not derived, and thus the question whether the algorithm they suggest
is optimal is left unanswered.

1In fact, in early arXiv versions of Kock et al. (2022), the first version dating back to December 2018, a chapter on
incorporating covariates is contained, which was later dropped from that paper and builds the basis for the present
article.
2We kindly thank a referee for pointing out another related strand of literature on “distributional robust policy
learning.” In this literature, however, the target is the expected outcome, which one intends to maximize in a
distributionally robust way (cf. Si et al., 2020b; Zhou et al., 2021b; Si et al., 2020a).

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000051


FUNCTIONAL SEQUENTIAL TREATMENT ALLOCATION 3

From a technical point of view, it is nontrivial to incorporate covariate informa-
tion as the setting under investigation in the present article allows the covariates
to be continuously distributed. Hence, one cannot simply fully condition on the
covariates by treating each of the (infinitely many) values of the covariate vector
separately. In the terminology of Stoye (2009), this would result in “no-data rules”
since each value of the covariate vector would be observed at most once with
probability 1. Thus, more care needs to be taken in the construction of good polices,
and one needs to clarify which assumptions are necessary for informative policies
to even exist for any given functional of interest.

The goal of the present article is to develop a minimax expected regret optimality
theory for sequential treatment problems with functional targets and covariates.
The regret function we work with is cumulative and, thus, has the following
properties that are relevant in many situations:

• Every subject not assigned to the best treatment contributes to the regret.
• A loss incurred for one subject cannot be compensated by future assignments.

Although there are interesting regret notions that do not satisfy these criteria, there
are certainly many situations where every individual matters such that a suboptimal
assignment of one individual cannot be nullified by an improved assignment for
the next individual.

Our contributions are as follows: To fix the setup, we begin by investigating
which assumptions are necessary for informative policies to even exist. It turns out
that even when the conditional potential outcome distributions depend uniformly
equicontinuously on the covariates, i.e., under considerable regularity, no policy
with sublinear maximal expected regret in the number of assignments exists. Here,
we note that our cumulative regret notion implies that no policy will have a
worse than linear dependence of regret in the number of assignments. This insight
motivates us to impose a minimally stronger Hölder-equicontinuity assumption. As
a consequence, even a slight relaxation of this assumption would imply that every
policy incurs the worst-case linear maximal expected regret. We also show that if
a policy does not incorporate covariate information, then its regret grows linearly
even without considering the worst-case regret. We then introduce the functional
upper-confidence-bound (F-UCB) policy in the presence of covariates. This is a
binned version of the F-UCB policy introduced in Kock et al. (2022). Binning
continuous covariates builds on the UCBogram of Rigollet and Zeevi (2010) and
the work of Perchet and Rigollet (2013) who, however, focused exclusively on the
conditional mean. We then establish regret upper bounds for the F-UCB policy and
obtain lower bounds, proving its near minimax expected regret optimality when
targeting general functionals. A challenge that arises when considering general
functional targets compared with the setting of targeting the conditional mean in
Rigollet and Zeevi (2010) is that we cannot rely on the specific linearity properties
of the conditional mean and the ensuing concentration inequalities for sample
averages. Instead, we work under a Lipschitz-type continuity assumption, which
is satisfied by many functionals.
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From a technical point of view, obtaining sharp lower bounds is the greatest chal-
lenge: In contrast to establishing lower bounds for policies targeting the conditional
mean, it does not suffice to simply study regret over Bernoulli distributions. First,
many functionals do not show sufficient variation over these. Second, lower bounds
based on Bernoulli distributions are not informative in settings where one considers
continuous outcome distributions. Hence, the standard arguments for providing
lower bounds do not apply and we provide a novel construction that for any given
functional exhibits distributions for which all policies must incur a high regret.
This is challenging since the construction must obey several smoothness conditions
when combining families of conditional distributions into a joint distribution. We
stress that the lower bounds are established under an assumption that essentially
only requires the functionals not to be constant over the set of potential outcome
distributions considered. This requirement is very weak, and thus guarantees that
the lower bounds hold even under quite stringent restrictions on the conditional
outcome distributions.

2. THE SETUP AND TWO IMPOSSIBILITY RESULTS

The observational structure in this paper is the one of a multi-armed bandit problem
with covariates. That is, the subjects to be treated t = 1, . . . ,n arrive sequentially,
and have to be assigned to one out of K ≥ 2 treatments. The assignment decision
can incorporate previously observed outcomes, covariates, and randomization.
We denote the potential outcome of assigning subject t to treatment i by Yi,t,
and assume throughout that a ≤ Yi,t ≤ b, where a < b are real numbers. Let
Dcdf ([a,b]) be the set of all cdfs F such that F(a−) = 0 and F(b) = 1. The
vector of potential outcomes is defined as Yt = (Y1,t, . . . ,YK,t); note that per subject
only one coordinate of this vector can be observed. The covariate vector that
comes with subject t is denoted by Xt, and we assume throughout that Xt ∈
[0,1]d. Furthermore, for every t, we let Gt be a random variable, which can be
used for randomization in assigning the tth subject. Throughout this article, we
assume that (Yt,Xt) = (Y1,t, . . . ,YK,t,Xt), for t ∈ N, are i.i.d., and we assume that
the sequence of randomizations Gt is i.i.d., and is independent of the sequence
(Yt,Xt). The distribution of Gt will be referred to as the randomization measure,
which we think of as being fixed, e.g., the uniform distribution on [0,1]. Note
that the dependence structure within each Yt is not restricted. We denote the
distribution of (Yt,Xt) by PY,X , and let PX be the marginal distribution of Xt. The
conditional cumulative distribution function (cdf) of Yi,t given Xt = x is defined
as Fi(y,x) = Ki((−∞,y],x), where Ki : B(R)× [0,1]d → [0,1] denotes a regular
conditional distribution of Yi,t given Xt, where B(R) are the Borel sets of R. We
shall often impose the following condition (cf. Remark 3.5 for a discussion of
discrete covariates).

Assumption 2.1. The distribution PX is absolutely continuous w.r.t. Lebesgue
measure on [0,1]d, with a density that is bounded from below and above by c > 0
and c, respectively.
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A policy π is a triangular array {πn,t : n ∈ N,1 ≤ t ≤ n} of (measurable) func-
tions,3 where the assignment of the tth subject πn,t takes as input the covariates Xt,
previously observed outcomes, covariates, and randomizations (i.e., the complete
observational history), and a randomization Gt. We therefore have

πn,t : [0,1]d ×
[
[a,b]× [0,1]d ×R

]t−1 ×R → I. (1)

Given a policy π and n ∈ N, the input to πn,t is denoted by (Xt,Zt−1,Gt),
where Zt−1 is defined recursively: The first treatment πn,1 is a function of
(X1,Z0,G1) = (X1,G1). The second treatment is a function of X2, of Z1 :=
(Yπn,1(X1,Z0,G1),1,X1,G1), and of G2. For t ≥ 3, we have

Zt−1 := (Yπn,t−1(Xt−1,Zt−2,Gt−1),t−1,Xt−1,Gt−1,Zt−2).

The (t − 1)(d + 2)-dimensional random vector Zt−1 can be interpreted as the
information available after the (t −1)th treatment outcome has been observed.

Remark 2.2. In this article, we do not explicitly study the case of subjects
arriving in batches, i.e., when the decision-maker cannot update the policy after
every single observation, but only after the outcomes of all subjects in the current
batch have been observed. If all subjects in the same batch need to be assigned to
the same treatment and all batches are of a comparable size, the variable Yi,t may be
interpreted as a summary statistic of the outcomes of batch t when all of its subjects
were assigned to treatment i, e.g., the average outcome. Likewise, the covariate
vector Xt can be interpreted as a summary statistic of the covariates in batch t,
e.g., the average of the individual covariate vectors. With this reinterpretation, our
results then go through as they are (the assumptions now being imposed at the level
of the summary statistics).

The treatments are evaluated according to a functional T : Dcdf ([a,b]) → R of
the conditional potential outcome distribution, where the conditioning is on the
covariates. As discussed after Assumption 2.3, our theory allows the policymaker
to use a diverse set of functionals including many popular inequality, welfare,
and poverty measures. The specific functional chosen by the policymaker will
depend on the application, and encodes the particular distributional characteristics
the policymaker is interested in. The best assignment for a subject with covariate
vector x ∈ [0,1]d is defined as

π�(x) = minarg max
i∈I

T(Fi(·,x)),

where the minimum has been taken as a concrete choice of breaking ties. Thus,
the best assignment for a subject with covariate vector x ∈ [0,1]d is one whose
conditional outcome distribution maximizes the functional of interest T.

3We allow a policy to incorporate n, because a decision-maker who knows the number of subjects to be assigned
might want to incorporate this into the assignment mechanism and thus choose different sequences of assignments
for different n.
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We denote the “parameter”-space of all potential conditional cdfs Fi(·,x) by D .
More precisely, we assume that

{Fi(·,x) : i = 1, . . . ,K and x ∈ [0,1]d} ⊆ D, (2)

where D is a potentially large and nonparametric subset of Dcdf ([a,b]). The set
D encodes the assumptions one is willing to impose on the conditional outcome
distributions. For example, it is sometimes convenient to restrict attention to
conditional cdfs that are sufficiently smooth.

The main assumption on T we work with in the present paper is a Lipschitz-
type condition first introduced in Kock et al. (2022) in a setting without covariates.
The assumption takes the following form, where (F,G) �→ ‖F −G‖∞ denotes the
supremum metric on the set of cdfs on R.

Assumption 2.3. The functional T : Dcdf ([a,b]) →R and the nonempty set D ⊆
Dcdf ([a,b]) satisfy

|T(F)−T(G)| ≤ C‖F −G‖∞ for every F ∈ D and every G ∈ Dcdf ([a,b]),
(3)

for some C > 0.

As discussed at length in Appendices E and G of Kock et al. (2022), under suit-
able assumptions on D , Assumption 2.3 is satisfied, e.g., for quantiles, moment-
based functionals such as the variance, (trimmed) U-functionals, and generalized
L-functionals (cf. Serfling, 1984), and many inequality, poverty, and welfare
measures important for socioeconomic decision-making. The results in Appendix
G of Kock et al. (2022) apply more generally, and can be used to show that
Assumption 2.3 is also satisfied for other functionals, e.g., the semivariance. In
the present paper, we keep the functional abstract and refer the interested reader
to the just-mentioned appendices for examples and detailed discussions. Finally,
we point to Lambert (2001), Chakravarty (2009), or Cowell (2011) for textbook
treatments of policy relevant functionals. Apart from Assumption 2.3, we shall
also impose the following measurability condition, which does not impose any
practical restrictions.

Assumption 2.4. For every m ∈ N, the function on [a,b]m that is defined via
x �→ T(m−1∑m

j=11{xj ≤ ·}), i.e., T evaluated at the empirical cdf corresponding to
x1, . . . ,xm, is Borel measurable.

We now introduce the regret function used in the present paper to compare
different policies. Given a policy π , we define its (cumulative) regret as

Rn(π) = Rn(π;F1, . . . ,FK,Xn,Zn−1,Gn)

=
n∑

t=1

[
T
(
Fπ�(Xt)(·,Xt)

)−T
(
Fπn,t(Xt,Zt−1,Gt)(·,Xt)

)]
.
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This regret function incorporates the notion that every individual matters in the
sense that a suboptimal allocation made for an individual cannot be nullified by
later assignments. In the absence of covariates, this type of regret was also used
in Kock et al. (2022).4 In other settings going beyond the mean, cumulative regret
functions have previously been used by Maillard (2013), Zimin et al. (2014), and
Kock and Thyrsgaard (2018). Furthermore, Vakili et al. (2019) have stressed the
practical importance of cumulative regret in the context of clinical trials where the
loss to each individual must be controlled.

Remark 2.5. If we interpret T(Fi(·,Xt)) as subject t’s subjective utility under
uncertainty of treatment i, one may interpret the regret function we work with
as that of a utilitarian planner, who intends to take each subject’s utilities under
uncertainty equally into account while learning what is best for each individual.
We owe this interpretation to a referee.

We evaluate policies based on their worst-case behavior, i.e., we shall study
minimax expected regret properties of policies. Here, the maximum will be taken
over sets of possible joint distributions PY,X .

When establishing lower bounds on maximal expected regret, we shall impose
the following rather weak condition. It guarantees that there is a minimal amount
of variation in the functional over a small subset of D (the set of all potential
conditional outcome distributions).

Assumption 2.6. The functional T : Dcdf ([a,b]) → R satisfies Assumption 2.3,
and D contains two elements H1 and H2, such that

Jτ := τH1 + (1− τ)H2 ∈ D for every τ ∈ [0,1],

and such that, for some c− > 0, we have

T(Jτ2)−T(Jτ1) ≥ c−(τ2 − τ1) for every τ1 ≤ τ2 in [0,1]. (4)

We emphasize that equation (4) in Assumption 2.6 is satisfied if, e.g., τ �→ T(Jτ )

is continuously differentiable on [0,1] with an everywhere positive derivative.
Up to this point, no assumption has been imposed on the dependence of the

conditional cdfs Fi(·,x) on x ∈ [0,1]d. Keeping this dependence unrestricted would
allow two subjects with similar covariates to have completely different conditional
outcome distributions. We now prove that the maximal expected regret of any
policy increases linearly in n if the dependence of Fi(·,x) on x is not further
restricted. It even turns out that this statement continues to hold if one imposes the
restriction that subjects with similar covariates have similar outcome distributions

4In the decision problem considered in Kock et al. (2022), one could alternatively try to develop policies that maximize
the functional evaluated at the empirical cdf of all outcomes observed. If the functional is quasi-convex, this essentially
results in the objective of assigning as many subjects to the best treatment as possible, which is strongly related to
minimizing cumulative regret.
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in the sense that5

{Fi(y,·) : i = 1, . . . ,K and y ∈ R} is uniformly equicontinuous. (5)

The theorem we give next is obtained as an application of the lower bound
developed in Theorem 3.9 of Section 3.2. Recall that Assumption 2.3 (which is
a part of Assumption 2.6) implies that T is bounded, from which it follows that no
policy will have a maximal expected regret increasing faster than linearly in n.

Theorem 2.7. Suppose K = 2 and that Assumption 2.6 is satisfied. Then there
exists a constant cl > 0 such that for every policy π and any randomization
measure, we have

supE[Rn(π)] ≥ cln for every n ∈ N,

where the supremum is taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where PY,X

satisfies equations (2) and (5), and where PX is the uniform distribution on [0,1]d.

Theorem 2.7 thus shows that without imposing further restrictions beyond
equations (2) and (5), every policy incurs the worst-case linear maximal expected
regret.

Theorem 2.7 shows that further assumptions beyond the uniform equicontinuity
in (5) are needed in order for policies with nontrivial regret properties to exist.
We shall from now on impose a Hölder-equicontinuity condition instead. This
condition is only slightly stronger than uniform equicontinuity, but will turn out to
be enough to ensure existence of (near) minimax optimal policies with nontrivial
maximal expected regret. Throughout the article, || · || denotes the Euclidean norm.

Assumption 2.8. There exist a γ ∈ (0,1] and an L > 0 such that, for every i =
1, . . . ,K and every y ∈ R, we have

|Fi(y,x1)−Fi(y,x2)| ≤ L||x1 − x2||γ for every x1,x2 ∈ [0,1]d.

Before studying policies that incorporate covariate information, one may won-
der (e.g., as a sanity check of the framework considered) what happens if one uses
a policy that ignores covariates. Our next result shows that—unless the underlying
distribution PY,X happens to be such that the covariates are completely irrelevant
for the assignment problem—any policy that ignores covariates must incur a linear
expected regret. Formally, a policy π is said to ignore covariates, if there exists
another double array π̃n,t :

[
[a,b]×R

]t−1 ×R → I of measurable functions, such
that, for every n and every t = 1, . . . ,n, we have πn,t = π̃n,t ◦�t, where the function
�t projects every w = (x,z,g) in the domain of πn,t to (z̃,g), z̃ being obtained from

z ∈ [[a,b]× [0,1]d ×R
]t−1

by dropping the (t − 1) coordinates taking values in
[0,1]d. Note that, then, πn,t(Zt−1,Gt) = π̃n,t(Z̃t−1,Gt), where, for t ≥ 2, we have
Z̃t−1 = (Yπ̃n,t−1(Z̃t−2,Gt−1),Gt−1, . . . ,Yπ̃n,1(Z̃0,G1),G1) and (Z̃0,G1) = G1.

5The assumption in equation (5) imposes that, for every ε > 0, there exists a δ > 0 such that ‖x1 − x2‖ ≤ δ, for ‖ · ‖
the Euclidean norm, implies |Fi(y,x1)−Fi(y,x2)| ≤ ε for every i = 1, . . . ,K and every y ∈ R.
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Theorem 2.9. Let K = 2, suppose that T : Dcdf ([a,b]) →R satisfies Assumption
2.3, and let PY,X satisfy equation (2) and Assumption 2.8. Define the sets

A1 := {x ∈ [0,1]d : T(F1(·,x)) > T(F2(·,x))},
A2 := {x ∈ [0,1]d : T(F1(·,x)) < T(F2(·,x))}.
Then there exists a cl > 0 such that for every policy π ignoring covariates, and
any randomization measure, we have

E[Rn(π)] ≥ cl min(PX(A1),PX(A2))n for every n ∈ N. (6)

Thus, the expected regret of any policy ignoring covariates must increase at the
worst-case linear rate in n, for any distribution PY,X for which the identity of the
best treatment depends on the covariates in the sense that

min
(
PX(A1),PX(A2)

)
> 0.

The proof of Theorem 2.9 relies on a direct construction rather than the classic
technique for establishing lower bounds by a reduction to a suitable testing
problem and an application of the Bretagnolle–Huber inequality (as exposited in,
e.g., Chapter 2 of Tsybakov, 2009). As a result of this direct construction, and
contrary to all other lower bounds established in this article, the lower bound in
Theorem 2.9 is valid even pointwise, since it makes a statement about any fixed
distribution PY,X . That is, the linear increase in expected regret in (6) is not a result
of considering a worst-case scenario.

3. THE F-UCB POLICY IN THE PRESENCE OF COVARIATES

We now introduce a version of the F-UCB policy that incorporates covariate
information. This policy generalizes the UCBogram in Rigollet and Zeevi (2010)
from the conditional mean setting to the general functional setup. It also gen-
eralizes the F-UCB policy of Kock et al. (2022) by allowing the policymaker
to incorporate covariate information in a setting where one targets a general
functional of the outcome distributions. Since we are studying a setting with
continuously distributed covariates, it is not possible to construct policies with low
maximal expected regret by fully conditioning on the infinitely many values of x
based on a fixed number of observations: Such a full conditioning would result in
“no-data rules” as in Stoye (2009) since each value of x ∈ [0,1]d would be observed
at most once with probability 1 irrespective of n ∈N. Thus, incorporating covariate
information requires more care. The underlying idea that we use is to categorize
subjects into groups according to the similarity of their covariate vector and to run,
separately within each group, a policy targeting the treatment that is best for the
“average” subject in each group. This will be justified by Assumption 2.8.

Two covariate vectors x1 and x2 are considered similar, if they fall into the
same element of a given partition Bn,1, . . . ,Bn,M(n) of [0,1]d, where every Bn,j is
a nonempty Borel set. Targeting the “on average”-best treatment for each group
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here means that for Bn,j with PX(Bn,j) > 0 our policy targets a treatment that attains
maxi∈I T(Fi

n,j), where Fi
n,j is the conditional cdf of Yi,t given Xt ∈ Bn,j, i.e.,

Fi
n,j(y) := 1

PX(Bn,j)

∫
Bn,j

Fi(y,x)dPX(x). (7)

Note that in general arg maxi∈I T(Fi
n,j) �= arg maxi∈I T(Fi(·,x)) even though x ∈

Bn,j. Targeting maxi∈I T(Fi
n,j), hence, results in a bias. The choice of the partition

Bn,1, . . . ,Bn,M(n) needs to balance this bias against an increase in variance due to
having fewer subjects in each group. This is akin to choosing a bandwidth to
balance variance and bias terms in nonparametric estimation problems.

In order to describe the F-UCB policy in the presence of covariates, we need to
introduce the following notation. For any policy π and Bn,1, . . . ,Bn,M(n) as above,
let

Si
n,j(t) =

t∑
s=1

1{Xs∈Bn,j, πn,s(Xs,Zs−1,Gs)=i}

be the number of times that it has assigned treatment i to individuals with covariates
in Bn,j up to time t. On the event {Si

n,j(t) > 0}, define the empirical cdf based on the
outcomes of all subjects in {1, . . . ,t} with covariates in Bn,j that have been assigned
to treatment i as

F̂i
n,t,j(z) = 1

Si
n,j(t)

t∑
s=1

1{Yi,s≤z}1{Xs∈Bn,j, πn,s(Xs,Zs−1,Gs)=i}.

The F-UCB policy with covariates, π̄ , is described in Policy 1 (where C is the
constant from Assumption 2.3). We note that it amounts to using the F-UCB policy
π̂ , say, of Kock et al. (2022) locally on each Bn,j. Their policy was defined in a
setting without covariates and external randomization. Furthermore, as discussed
after Theorem 3.1, we must carefully deal with the fact that the number of
observations falling in each group is random as it is a function of the covariates.
Choosing the tuning parameter β = 2+√

2 minimizes the constant in the uniform
upper bounds on expected regret (cf. Theorem 3.1).6

3.1. Upper Bounds on the Maximal Expected Regret of π̄ and a First
Lower Bound

The following theorem gives an upper bound on the maximal expected regret of
the F-UCB Policy 1 in the presence of covariates, and for any choice of partition.
This flexibility may be useful since the policymaker is often constrained in the way
groups can be formed. The result quantifies how the partitioning affects the regret
guarantees. We denote log(x) := max(1, log(x)), for x > 0.

6Note that the policy π actually does not incorporate randomization, which we do not suppress notationally, however.
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Policy 1: F-UCB policy with covariates π̄

Inputs: β > 2, Partition Bn,1, . . . ,Bn,M(n) of [0,1]d into non-empty Borel
sets

Set: Nj = 1 for j = 1, . . . ,M(n)

for t = 1, . . . ,n do
for j = 1, . . . ,M(n) do

if Xt ∈ Bn,j and Nj ≤ K then
assign π̄t(Xt,Zt−1,Gt) = Nj

Nj ← Nj +1
end
if Xt ∈ Bn,j and Nj > K then

assign π̄t(Xt,Zt−1,Gt) =
minargmaxi∈I

{
T(F̂i

n,t−1,j)+C
√

β log(Nj)/(2Si
n,j(t −1))

}
Nj ← Nj +1

end
end

end

Theorem 3.1. Suppose Assumptions 2.3 and 2.4 hold. Assume further
that D is convex. Consider the F-UCB policy with covariates π̄ , and let
Vn,j = supx1,x2∈Bn,j

‖x1 − x2‖ be the diameter of Bn,j. Then, for c = c(β,C) =
C

√
2β + (β +2)/(β −2), it holds that

supE[Rn(π̄)] ≤
M(n)∑
j=1

[
c
√

KnPX(Bn,j)log(nPX(Bn,j))+2CLVγ

n,jnPX(Bn,j)

]
, ∀n ∈ N,

(8)

where the supremum is taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where PY,X

satisfies equation (2) and Assumption 2.8 with L and γ , and wherePX, the marginal
distribution of Xt, is fixed.7

Each of the summands j = 1, . . . ,M(n) in the upper bound on the maximal
expected regret in equation (8) consists of two parts: The first part is structurally
very similar to the upper bound of Theorem 4.1 in Kock et al. (2022), which
the proof of Theorem 3.1 draws on. The difference is that the total number of
subjects to be treated, n, has now been replaced by nPX(Bn,j), the number of
subjects expected to fall into Bn,j. Inspection of the proof shows that the first part
of the upper bound in (8) is the regret we expect to accumulate on Bn,j, compared
to always assigning the treatment that is best for the “average subject” in Bn,j,

7Here, PX(Bn,j)log(nPX(Bn,j)) is to be interpreted as 0 in case PX(Bn,j) = 0.
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12 ANDERS BREDAHL KOCK ET AL.

i.e., compared to always assigning an element of arg maxi∈I T(Fi
n,j), where we

recall the definition of Fi
n,j from equation (7). The second part in each summand

in the upper bound in (8) is a bias term: It is the approximation error incurred
due to π̄ effectively targeting maxi∈I T(Fi

n,j) instead of T
(
Fπ�(x)(·,x)) for every

x ∈ Bn,j.
The proof of Theorem 3.1 introduces the following challenges compared to that

for conditional mean only in Rigollet and Zeevi (2010) and Perchet and Rigollet
(2013). First, we cannot rely on the special linear structure of the conditional mean
and the related concentration inequalities. Second, since Policy 1 relies on using
the F-UCB policy separately for each group, it is important that the Fi

n,j in (7)
belong to (the closure of) D as the Fi

n,j become the groupwise treatment outcome
distributions of interest. Otherwise, one would not be able to invoke Assumption
2.3 separately for each group. That Fi

n,j belongs to the closure of D for each j with
PX(Bn,j) > 0 is established in Lemma A.3 by an approximation argument relying
on the convexity of D . Finally, we overcome the fact that the number of subjects
falling in each group (that is, the sample size for each group) is random by means
of careful conditioning arguments. These arguments are different from those used
for the conditional mean in Rigollet and Zeevi (2010) and Perchet and Rigollet
(2013) as we do not impose a margin condition and cannot make use of the special
linearity structure of the conditional mean (cf. the arguments beginning after (C.4)
in the proof of Theorem 3.1).

A frequently used class of partitions of [0,1]d are hypercubes, which are
obtained by hard thresholding each coordinate of Xt. The so-created groups may
not only result in low regret, but are also relevant due to their simplicity and
resemblance to ways of grouping subjects in practice. More precisely, fix P ∈ N

and define, for every k = (k1, . . . ,kd) ∈ {1, . . . ,P}d, the hypercube{
x ∈ [0,1]d :

kl −1

P
≤ xl � kl

P
, l = 1, . . . ,d

}
, (9)

where � is to be interpreted as ≤ for kl = P, and as < otherwise. This defines
a partition of [0,1]d into Pd hypercubes with side length 1

P each. We now order
these hypercubes lexicographically according to their index vector k, to obtain
the corresponding cubic partition BP

1, . . . ,B
P
Pd . The following result specializes

Theorem 3.1 to this specific partition and for a choice of P that will be shown
to be optimal below.

Corollary 3.2. Suppose Assumptions 2.3 and 2.4 hold. Assume further that D
is convex. Let γ ∈ (0,1]. Consider the F-UCB policy with covariates π̄ , based on a
cubic partition Bn,j = BP

j , for j = 1, . . . ,M(n) = Pd, as defined in equation (9), and
with P = �n1/(2γ+d)�. Then there exists a constant c = c(d,L,γ ,c̄,C,β) > 0 such
that

supE
[
Rn(π̄)

]≤ c
√

Klog(n) n1− γ
2γ+d for every n ∈ N, (10)
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where the supremum is taken over all (Yt,Xt) ∼ PY,X for t = 1, . . . ,n, where PY,X

satisfies equation (2), Assumption 2.1 with c (and any c), and Assumption 2.8 with
L and γ .

Corollary 3.2 reveals that it is possible to achieve sublinear (in n) maxi-
mal expected regret under the Hölder-equicontinuity condition imposed through
Assumption 2.8. This is interesting also in light of Theorem 2.7, which showed
that under the slightly weaker assumption of uniform equicontinuity, every policy
has linearly increasing maximal expected regret. Hence, there is little room for
weakening Assumption 2.8. Note that a “curse of dimensionality” is present, in
the sense that the upper bound in Corollary 3.2 gets close to linear in n, as the
number of covariates d increases. This is due to the fact that as a part of the regret
minimization, one sequentially estimates the conditional distributions Fi(y,·) of
the treatment outcomes, where each cdf is a function of d variables. Finally, we
observe that the upper bound is increasing in the number of available treatments
K. Intuitively, this is because more observations must be used for experimentation
when more treatments are available.

The partitioning used in Corollary 3.2 results in a near minimax optimal policy,
as we show in the following theorem, which establishes a lower bound on maximal
expected regret. The statement follows from Theorem 3.9 in Section 3.2.

Theorem 3.3. Suppose K = 2 and that Assumption 2.6 is satisfied. Let γ ∈
(0,1]. Then, for every ε ∈ (0,γ /(2γ +d)), every policy π , and any randomization
measure, we have

supE[Rn(π)] ≥ n1− γ
2γ+d n−εcl(ε) for every n ∈ N,

where the supremum is taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where PY,X

satisfies equation (2), Assumption 2.8 with parameters γ and L = 1/
√

17, PX is
the uniform distribution on [0,1]d, and where

c−1
l (ε) = 641+1/α(ε)(8d(c−2L)−α(ε) +1)1/α(ε) with α(ε) = (2γ +d)ε/γ .

Comparing the lower bound on maximal regret in Theorem 3.3 to the upper
bound on maximal expected regret established in Corollary 3.2 reveals that the
F-UCB policy with a cubic partition and with P = �n1/(2γ+d)� is near-optimal:
If a policy with strictly smaller maximal expected regret exists, the order of
improvement must be o(nε) for all ε ∈ (0,γ /(2γ + d)), e.g., logarithmic. In
particular, this also means that if nothing prohibits cubic partitioning, not much can
be gained from a maximal expected regret point of view in searching for “better”
partitions under the given set of assumptions.

Remark 3.4 (Unknown horizon and the doubling trick). The policy π̄ with
cubic partitioning P = �n1/(2γ+d)�, as considered in Corollary 3.2, can be used in
practice only if one knows n, i.e., the policy is not “anytime.” If n is unknown,
however, one can use the “doubling trick” to construct a policy with an upper
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bound on the maximal expected regret that is of the same order as in Corollary 3.2,
but with higher multiplicative constants. In essence, the doubling trick works by
“restarting” the policy at times 2m, m ∈N. We refer to Shalev-Shwartz (2012) and
the recent work by Besson and Kaufmann (2018) for more details on the doubling
trick.

Remark 3.5 (Discrete covariates). We mostly focus on the case of continuous
covariates (although this is not formally required in Theorem 3.1). A natural, and
also near minimax rate-optimal, solution to incorporate discrete covariates would
be to fully condition on these, i.e., to apply the F-UCB policy of Kock et al.
(2022) separately for each combination of discrete covariates. In the present article,
we omit formal statements concerning discrete covariates, but we emphasize that
corresponding results can be obtained by conditioning arguments.

3.2. Optimality Properties under the Margin Condition

Besides mild conditions on PX , our results so far have only assumed that the
conditional distributions of the treatment outcomes are Hölder-equicontinuous. In
particular, the sets of distributions over which the F-UCB policy has been shown
to be optimal do not restrict the (unknown) similarity of the best and second-
best treatment. In the present section, we shall see that in classes of distributions
where the best and second-best treatment are “well separated,” the upper bound on
maximal expected regret of the F-UCB policy can be lowered (without changing
the policy), and that the F-UCB policy optimally adapts to the degree of similarity
of the best and the remaining treatments.

Besides being of interest in their own right, the results in the present section are
instrumental in proving our impossibility result Theorem 2.7 and to establishing
the expected regret lower bound in Theorem 3.3.

To formally define the well-separateness condition we shall work with, we
need to define, for every x ∈ [0,1]d, the second-best treatment π�(x); note that
in principle there can be multiple treatments that are as good as the best treatment
π∗(x). For x ∈ [0,1]d, if mini∈I T(Fi(·,x)) < T

(
Fπ�(x)(·,x)), we define the second-

best treatment as

π�(x) := minarg max
i∈I

{
T(Fi(·,x)) : T(Fi(·,x)) < T

(
Fπ�(x)(·,x))},

and we set π�(x) = 1 otherwise, i.e., if all treatments are equally good. We can
now introduce the margin condition.

Assumption 3.6. There exist an α ∈ (0,1) and a C0 > 0 such that8

PX
(
x ∈ [0,1]d : 0 < T

(
Fπ�(x)(·,x))−T

(
Fπ�(x)(·,x))≤ δ

)≤ C0δ
α for all δ ∈ [0,1].

8We note that the events in the displayed equation of Assumption 3.6 are not necessarily Borel measurable. Therefore,
Assumption 3.6 implicitly imposes measurability on all events considered. Note, however, that in case Assumptions
2.3 and 2.8 as well as the inclusion in equation (2) are assumed, this measurability condition is easily seen to be
satisfied.
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The margin condition restricts how likely it is that the best and second-best
treatment are close to each other. In particular, it limits the probability of these two
treatments being almost equally good, i.e., being within a δ-margin. Assumptions
of this type have previously been used in the works of Mammen and Tsybakov
(1999), Tsybakov (2004), and Audibert and Tsybakov (2007) in the statistics
literature. In the context of statistical treatment rules, the margin condition has
recently been used in the work of Kitagawa and Tetenov (2018), who considered
empirical welfare maximization in a static treatment allocation problem. Finally,
the margin condition was used by Rigollet and Zeevi (2010) and Perchet and
Rigollet (2013) in the context of a multi-armed bandit problem targeting the
conditional mean. The proofs of the results in the present section draw on their
ideas.

Adding the margin condition, the maximal expected regret of the F-UCB policy
based on cubic partitions can be bounded as follows.

Theorem 3.7. Suppose Assumptions 2.3 and 2.4 hold. Assume further that D is
convex. Let γ ∈ (0,1]. Consider the F-UCB policy with covariates π̄ , based on a
cubic partition Bn,j = BP

j , for j = 1, . . . ,M(n) = Pd, as defined in equation (9), and
with P = �n1/(2γ+d)�. Then there exists a constant c = c(d,L,γ ,c,c̄,C,C0,α,β) > 0
such that

supE
[
Rn(π̄)

]≤ cKlog(n)n1− γ (1+α)
2γ+d for every n ∈ N, (11)

where the supremum is taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where PY,X

satisfies equation (2), Assumption 2.1 with c and c, Assumption 2.8 with L and γ ,
and Assumption 3.6 with α ∈ (0,1) and C0 > 0.

Compared with Corollary 3.2, the exponent on n in the upper bound on regret is
smaller, the difference depending on α. Thus, in the presence of Assumption 3.6,
the regret guarantee of the F-UCB policy is stronger, even without incorporating
α into the policy. We shall see in Theorem 3.9 that the upper bound on maximal
expected regret in Theorem 3.7 is optimal in n up to logarithmic factors. Further-
more, the order of the upper bound on maximal expected regret in Theorem 3.7 is,
up to logarithmic factors, the same as the rate that Rigollet and Zeevi (2010) and
Perchet and Rigollet (2013) obtained for the case of targeting the mean functional.
The margin condition also allows us to prove an upper bound on the expected
number of suboptimal assignments made by the F-UCB policy. We shall define
the number of suboptimal assignments for a policy π over the course of a total of
n assignments as

Sn(π) = Sn(π;F1, . . . ,FK,Xn,Zn−1,Gn)

=
n∑

t=1

1
{
πn,t(Xt,Zt−1,Gt) �∈ arg max {T(Fi(·,Xt)) : i = 1, . . . ,K}} .
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We now establish a uniform upper bound on E[Sn(π̄)] for the F-UCB policy π̄

based on cubic partitions.

Theorem 3.8. Suppose Assumptions 2.3 and 2.4 hold. Assume further that D is
convex. Let γ ∈ (0,1]. Consider the F-UCB policy with covariates π̄ , based on a
cubic partition Bn,j = BP

j , for j = 1, . . . ,M(n) = Pd, as defined in equation (9), and
with P = �n1/(2γ+d)�. Then there exists a constant c = c(d,L,γ ,c,c̄,C,C0,α,β) > 0
such that

supE
[
Sn(π̄)

]≤ c[Klog(n)]
α

1+α n1− αγ
2γ+d for every n ∈ N, (12)

where the supremum is taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where PY,X

satisfies equation (2), Assumption 2.1 with c and c, Assumption 2.8 with L and γ ,
and Assumption 3.6 with α ∈ (0,1) and C0 > 0.

The upper bound in Theorem 3.8 is a useful theoretical guarantee because it
limits the number of subjects who receive suboptimal treatments. As the last result
in this section, we prove that the upper bounds in Theorems 3.7 and 3.8 are near-
minimax optimal. This ensures, in particular, that the good behavior of the maximal
expected regret of the F-UCB policy does not come at the price of excessive
experimentation, leading to unnecessarily many suboptimal assignments.

Theorem 3.9. Suppose K = 2 and that Assumption 2.6 is satisfied. Let γ ∈
(0,1]. Then, for every policy π and any randomization measure, we have

supE[Rn(π)] ≥ n1− γ (1+α)
2γ+d

/[
641+1/α(C0 +1)1/α

]
for every n ∈ N, (13)

and

supE[Sn(π)] ≥ n1− αγ
d+2γ

/
32 for every n ∈ N, (14)

where both suprema are taken over all (Yt,Xt) ∼ PY,X, for t = 1, . . . ,n, where
PY,X satisfies equation (2), Assumption 2.8 with parameters γ and L = 17−1/2,
Assumption 3.6 with α ∈ (0,1) and C0 = 8d(c−2L)−α , and where PX is the uniform
distribution on [0,1]d.

Together with Theorem 3.7, the statement in equation (13) shows that the F-UCB
policy is near minimax optimal in terms of maximal expected regret. Similarly,
together with Theorem 3.8, the lower bound in equation (14) proves that the F-
UCB policy assigns the minimal number of suboptimal treatments.

To prove (13), we first use the margin condition to lower-bound the expected
regret by the expected number of false assignments (cf. Lemma C.1). This strategy
is similar to the one used by Rigollet and Zeevi (2010), who target the conditional
mean functional. Their proof of the lower bound on maximal expected regret when
targeting the conditional mean is based on considering joint distributions of (Yt,Xt)

for which the conditional distribution of Yt given Xt is Bernoulli distributed with

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000051


FUNCTIONAL SEQUENTIAL TREATMENT ALLOCATION 17

the success probability being a function of Xt. Thus, they obtain a useful lower
bound over all sets D containing such distributions. Depending on the functional
considered, however, Bernoulli distributions may not create sufficient variation in
the functional to get good lower bounds. Furthermore, Bernoulli distributions may
not be contained in D , if, e.g., the latter does not contain discrete distributions, in
which case a lower bound derived for Bernoulli distributions is not informative. For
these two reasons, we have tailored the lower bounds in Theorem 3.9 toward the
functional and parameter space D under consideration. In particular, Step 2 of the
proof of Theorem 3.9 establishes, for any functional T satisfying Assumption 2.6,
the existence of a family of joint distributions of (Yt,Xt) over which any policy
must incur high maximal expected regret. This family is, of course, a subset of
those over which the supremum is taken in Theorem 3.9. We stress that a family
of joint distributions that results in useful lower bounds for one functional may not
give informative lower bounds for other functionals. This motivates our general
construction which is applicable to a large set of functionals.

4. SIMULATION STUDY

In this section, we investigate the performance of Policy 1 by simulations. The
functional of interest is the Gini welfare

T(F) =
∫

xdF(x)− 1

2

∫ ∫
|x1 − x2|dF(x1)dF(x2) (15)

(cf. Sen, 1974). When targeting this functional, a treatment is favorable if it has a
high mean and low dispersion. It follows from Appendix D of Kock et al. (2022)
that Assumption 2.3 is satisfied with D = Dcdf ([a,b]), which is trivially convex,
and with constant C = 2(b−a). We study the setting of a single covariate x ∈ [0,1]
(i.e., d = 1) and K = 2 treatments. The covariate is uniformly distributed on [0,1].

Treatment 1 follows a Beta distribution with shape parameters x + 1 and 1,
whereas Treatment 2 is Beta distributed with shape parameters 2 − x and 1.9

Figure 1 shows the Gini welfare of the two treatments as a function of the covariate
x: for small values of x, Treatment 2 is best, whereas Treatment 1 yields the highest
welfare for large values of x. By construction, the two treatments have identical
outcome distributions for x = 0.5. A routine calculation shows that Assumption
2.8 is satisfied with γ = 1.

We use n = 50,000 and approximate the expected regret by an average over
1,000 Monte Carlo replications. Policy 1 is implemented as in Corollary 3.2,
resulting in a partition of [0,1] into 37 intervals of equal length (and near minimax
optimal regret). Specifically,

Bn,j =
[

j−1

37
,

j

37

)
for j = 1, . . . ,36, and Bn,37 =

[
36

37
,1

]

9The Beta distribution is a natural choice in the context of the Gini welfare measure as it has a long history in modeling
income distributions (see, for example, Thurow, 1970; McDonald, 1984; McDonald and Ransom, 2008).
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Figure 1. Gini welfare of Treatments 1 and 2 as a function of the covariate x.
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Figure 2. Boxplots indicating the fraction of subjects assigned to Treatment 1 in each group over all
1,000 replications.

such that larger values of x correspond to larger group numbers. The maximization
step in Policy 1 causes no complications as it merely locates the maximum of K = 2
real numbers.

Figure 2 indicates the fraction of subjects that were assigned to Treatment 1 in
each of the 37 groups, i.e., the fraction of subjects assigned to Treatment 1 as a
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Figure 3. Expected regret as a function of t ∈ {1, . . . ,n}.

function of x. Among the subjects with large x, a much higher share is assigned to
Treatment 1. This is desirable in light of Figure 1 as Treatment 1 yields the highest
welfare for such subjects and vice versa for subjects with small values of x.

Finally, Figure 3 shows the expected regret as a function of t. As anticipated by
our theoretical results, the expected regret accumulates at a decreasing rate.

5. CONCLUSION

In the present paper, we have established lower and upper bounds on maximal
expected regret in a functional sequential assignment problem with covariates.
Targeting distributional characteristics beyond the mean is important for policy-
makers who are concerned about inequality, welfare, or poverty implications of
their decisions.

In practice, the environment and outcome distributions of treatments may
change over time as the treatment is rolled out. Therefore, fruitful avenues to gen-
eralize our results include the development of policies allowing for nonstationary
environments, i.e., relaxing the i.i.d. assumption.

Appendix A. Auxiliary Results

We shall use similar notational conventions as discussed in Appendix A of Kock et al.
(2022). We repeat them here for the convenience of the reader: The (unique) probability
measure on the Borel sets of R corresponding to a cdf F will be denoted by μF (cf.,
e.g., Folland, 1999, p. 35). We employ standard notation and terminology concerning
stochastic kernels and their semidirect products as discussed, e.g., in Appendix A.3 of Liese
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and Miescke (2008) (cf., in particular, their equation (A.3)). The random variables and
vectors appearing in the proofs are defined on an underlying probability space (�,A,P)

with corresponding expectation E. This underlying probability space is assumed to be
rich enough to support all random variables we work with. A generic element of � shall
be denoted by ω. For a definition and proofs of elementary properties of the Kullback–
Leibler divergence KL(P,Q) between two probability measures P and Q, we refer to
Tsybakov (2009). We use the following general version of a chain rule for Kullback–Leibler
divergences. A proof can be found in Appendix B of Kock et al. (2022).

Lemma A.1 (“Chain rule” for Kullback–Leibler divergence). Let (X ,A) and (Y,B) be
measurable spaces. Suppose that B is countably generated. Let A,B : B×X → [0,1] be
stochastic kernels, and let P and Q be probability measures on (X ,A). Then,

KL(A⊗P,B⊗Q) =
∫
X

KL(A(·,x),B(·,x))dP(x)+KL(P,Q)

= KL(A⊗P,B⊗P)+KL(P,Q). (A.1)

We begin by establishing two auxiliary results that will be useful in the proofs of
Theorems 3.1 and 3.7. For n ∈ N, let Bn,1, . . . ,Bn,M be a partition of [0,1]d , where every
Bn,j is Borel measurable. Given such a partition, for every j such that PX(Bn,j) > 0, we

shall denote by F∗
n,j an element of {Fi

n,j : i = 1, . . . ,K} (see equation (7) for a definition of

Fi
n,j) such that T(F∗

n,j) = maxi∈I T(Fi
n,j). Furthermore, we often write πn,t(Xt) instead of

πn,t(Xt,Zt−1,Gt) in many places throughout the appendix.

Lemma A.2. Suppose that Assumptions 2.3 and 2.8 are satisfied (the latter with γ ∈ (0,1]
and L > 0), and assume that the inclusion in equation (2) holds. Let Bn,1, . . . ,Bn,M be a
partition of [0,1]d, where every Bn,j is Borel measurable. As in the statement of Theorem
3.1, we let Vn,j = supx1,x2∈Bn,j

‖x1 − x2‖. Then, for every i ∈ {1, . . . ,K}, every j ∈ {1, . . . ,M},
and every pair x and x̃ ∈ Bn,j, we have

|T(Fi(·,x))−T(Fi(·,x̃))| ≤ CLVγ
n,j and |T(Fπ�(x)(·,x))−T

(
Fπ�(x̃)(·,x̃))| ≤ CLVγ

n,j;
(A.2)

furthermore, if PX(Bn,j) > 0 holds, then

|T(Fi
n,j)−T(Fi(·,x))| ≤ CLVγ

n,j and |T(Fπ�(x)(·,x))−T(F∗
n,j)| ≤ CLVγ

n,j. (A.3)

Proof. Fix i, j, x, and x̃ as in the statement of the lemma. By Assumption 2.8,

||Fi(·,x)−Fi(·,x̃)||∞ ≤ L||x− x̃||γ ≤ LVγ
n,j. (A.4)

Assumption 2.3 and (2) thus imply the first inequality in (A.2), and the second follows from

|T(Fπ�(x)(·,x))−T
(
Fπ�(x̃)(·,x̃))| = |max

i∈I
T(Fi(·,x))−max

i∈I
T(Fi(·,x̃))|

≤ max
i∈I

|T(Fi(·,x))−T(Fi(·,x̃))| ≤ CLVγ
n,j.
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Next, assume that PX(Bn,j) > 0. For every y ∈ R, from equation (A.4), we obtain

|Fi
n,j(y)−Fi(y,x)| ≤ 1

PX(Bn,j)

∫
Bn,j

|Fi(y,s)−Fi(y,x)|dPX(s) ≤ LVγ
n,j.

The first inequality in (A.3) is now a direct consequence of Assumption 2.3 and (2) (noting
that Fi

n,j ∈ Dcdf ([a,b])), and the second inequality follows via

|T(Fπ�(x)(·,x))−T(F∗
n,j)| = ∣∣max

i∈I
T(Fi(·,x))−max

i∈I
T(Fi

n,j)
∣∣

≤ max
i∈I

|T(Fi(·,x))−T(Fi
n,j)|. (A.5)

�
Lemma A.3. Suppose that Assumption 2.3 is satisfied and that D is convex. Suppose

further that PY,X is such that equation (2) holds, and that Assumption 2.8 is satisfied. Then,
for every Borel set B ⊆ [0,1]d that satisfies PX(B) > 0 and every i = 1, . . . ,K, the cdf

Gi := PX(B)−1
∫

B
Fi(·,x)dPX(x) (A.6)

is an element of the closure of D ⊆ Dcdf ([a,b]) w.r.t. ‖ · ‖∞.

Proof. Let i ∈ {1, . . . ,K}. We construct a sequence of convex combinations of (finitely
many) elements of D that converges to Gi in ‖·‖∞-distance: To this end, let Bm,1, . . . ,Bm,lm ,
for m ∈ N, be a triangular array of partitions of [0,1]d into nonempty Borel subsets, such
that the maximal diameter vm := supi=1,...,lm supx1,x2∈Bm,i

‖x1 − x2‖ → 0 as m → ∞. For

simplicity, define the probability measure P∗ on the Borel sets of Rd by P∗(A) = PX(A ∩
B)/PX(B). Write

Gi =
∫

Fi(·,x)dP∗(x) =
lm∑

j=1

∫
Bm,j

Fi(·,x)dP∗(x). (A.7)

For every m and every j, pick an xm,j ∈ Bm,j. Note that Fi(·,xm,j) ∈ D by equation (2).

From Assumption 2.8, we know that, for any x ∈ Bm,j we have ‖Fi(·,xm,j)−Fi(·,x)‖∞, ≤
L‖xm,j − x‖γ ≤ Lvγ

m. Thus,

‖Gi −
lm∑

j=1

P∗(Bm,j)F
i(·,xm,j)‖∞ ≤

lm∑
j=1

∫
Bm,j

‖Fi(·,x)−Fi(·,xm,j)‖∞dP∗(x) ≤ Lvγ
m → 0.

(A.8)

�
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Appendix B. Proofs of Results in Section 2

B.1. Proof of Theorem 2.7

Because Assumption 2.8 (for any γ ∈ (0,1] and any L > 0) implies the assumption in
equation (5), the statement follows immediately from the lower bound in equation (13)
in Theorem 3.9 upon letting γ → 0.

B.2. Proof of Theorem 2.9

If min(PX(A1),PX(A2)) = 0, then the statement in the theorem trivially holds. Hence,
assume that p := min(PX(A1),PX(A2)) > 0. Let n ∈ N, and let π be a policy that ignores
covariates, i.e., as described before Theorem 2.9. We write πn,t = πt. Fix a randomization
measure PG.

As a preparation, for every m ∈ N, define

A1,m := {x ∈ [0,1]d : T(F1(·,x)) > m−1 +T(F2(·,x))},
A2,m := {x ∈ [0,1]d : T(F1(·,x))+m−1 < T(F2(·,x))}.

The sets A1,A2 and A1,m,A2,m for m ∈ N are Borel measurable, because Assumptions 2.3
and 2.8 together with equation (2) imply the continuity of x �→ T(Fi(·,x)) for i = 1,2. Note
that Ai,m ⊆ Ai,m+1 and

⋃
m∈NAi,m = Ai hold for i = 1,2. Hence, as m → ∞, PX(Ai,m) →

PX(Ai) for i = 1,2. Because of p > 0, we can conclude the existence of an m̄ ∈ N such
that pm̄ := min(PX(A1,m̄),PX(A2,m̄)) > p/2. To prove the inequality in equation (6), note
that by definition, and since π is a policy that does not depend on covariates, i.e., the tth
assignment only depends on the previously observed outcomes and randomizations, Z̃t−1
and a novel randomization Gt, we have (cf. the discussion and notation discussed right
before the statement of Theorem 2.9) that

Rn(π) =
n∑

t=1

∣∣T(F1(·,Xt)
)−T

(
F2(·,Xt)

)∣∣1{π�(Xt) �=π̃t(Z̃t−1,Gt)}.

Note furthermore that[
{Xt ∈ A1,m̄}∩ {π̃t(Z̃t−1,Gt) �= 1}

]
∪
[
{Xt ∈ A2,m̄}∩ {π̃t(Z̃t−1,Gt) �= 2}

]
(B.1)

⊆ {π�(Xt) �= π̃t(Z̃t−1,Gt)}, (B.2)

where the union in the first line is a disjoint union. Hence,

Rn(π) ≥ m̄−1
n∑

t=1

(
1A1,m̄(Xt)1{π̃t(Z̃t−1,Gt) �=1} +1A2,m̄(Xt)1{π̃t(Z̃t−1,Gt) �=2}

)
.

Since Xt is independent of Z̃t−1 and Gt, the law of iterated expectations implies that
E(Rn(π)) ≥ np/(2m̄).
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Appendix C. Proofs of Results in Section 3

C.1. Proof of Theorem 3.1

Fix n ∈ N, and let (Yt,Xt) ∼ PY,X , for t = 1, . . . ,n, where PY,X satisfies equation (2), and
Assumption 2.8 with L and γ . Because n is fixed, we abbreviate Bn,j = Bj, Vn,j = Vj, M(n) =
M, and denote π̄n,t = π̄t. First, we decompose Rn(π̄) =∑M

j=1 R̃j(π̄), where

R̃j(π̄) :=
n∑

t=1

[
T
(
Fπ�(Xt)(·,Xt)

)−T
(
Fπ̄t(Xt)(·,Xt)

)]
1{Xt∈Bj}, (C.1)

where, as often done in the present section, we dropped the argument Zt−1 from π̄t. Note
furthermore that the policy does not rely on an external randomization Gt, which is therefore
suppressed in the notation as well.

Note first that the boundedness of T on D (cf. Assumption 2.3) implies E(R̃j(π̄)) = 0 for
every j such thatPX(Bj) = 0. Hence, we now fix an index j ∈ {1, . . . ,M} such thatPX(Bj) > 0.

Then, recalling the definition of Fi
n,j in equation (7), which we here abbreviate as Fi

j , each
summand in (C.1) can be written as[
T(Fπ�(Xt)(·,Xt))−T(F∗

j )+T(F∗
j )−T(Fπ̄t(Xt)

j )+T(Fπ̄t(Xt)
j )−T(Fπ̄t(Xt)(·,Xt))

]
1{Xt∈Bj},

(C.2)

which, by Lemma A.2, is not greater than T(F∗
j )−T(Fπ̄t(Xt)

j )+2CLVγ
j , and where F∗

j was
defined just before Lemma A.2. Therefore, we obtain

R̃j(π̄) ≤
n∑

t=1

[
T
(
F∗

j
)−T

(
Fπ̄t(Xt)

j

)]
1{Xt∈Bj} +2CLVγ

j

n∑
t=1

1{Xt∈Bj}. (C.3)

Obviously, E(
∑n

t=11{Xt∈Bj}) = nPX(Bj). Hence, to prove the theorem, it remains to show
that, for c = c(β,C) as defined in the statement of the theorem, it holds that

E

⎛
⎝ n∑

t=1

[
T
(
F∗

j
)−T

(
Fπ̄t(Xt)

j

)]
1{Xt∈Bj}

⎞
⎠≤ c

√
KnPX(Bj)log(nPX(Bj)). (C.4)

To this end, we will use a conditioning argument in combination with Theorem 4.1 in Kock
et al. (2022). Define, for every v = (v1, . . . ,vn) ∈ {0,1}n, the event

�(v) := {ω : 1{Xt∈Bj}(ω) = vt for t = 1, . . . ,n}, (C.5)

and denote f :=∑n
t=1[T

(
F∗

j

)−T
(
Fπ̄t(Xt)

j

)
]1{Xt∈Bj}. Then,

E(f ) =
∑

v∈{0,1}n

E(1�(v)f ) =
∑

v∈{0,1}n

P(�(v))E(f |�(v)), (C.6)

where (as usual) we define

E(f |�(v)) :=
{
P−1(�(v))E(1�(v)f ), if P(�(v)) > 0,

0, else.
(C.7)
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Fix v �= 0. Denote the elements of {s : vs = 1} by t1, . . . ,tm̄, ordered from smallest to largest.
On the event �(v), i.e., for every ω ∈ �(v), we can use the definition of π̄ (cf. the description
of the F-UCB policy with covariates of display Policy 1) to rewrite

f =
m̄∑

s=1

[
T(F∗

j )−T

(
Fπ̂s(Ws−1)

j

)]
, (C.8)

where π̂ is the F-UCB policy from Kock et al. (2022), and where Ws is defined recursively
via Ws = (Yπ̂s−1(Ws−1),ts,W

s−1) with W0 the empty vector (cf. also the discussion before
our Policy 1). Hence, for ω ∈ �(v), f is a function of (Yt1, . . . ,Ytm̄), i.e., f = H(Yt1, . . . ,Ytm̄),
say. We conclude that

E(f |�(v)) = E
(
H(Yt1, . . . ,Ytm̄)|�(v)

)= Ev(H(Yt1, . . . ,Ytm̄)), (C.9)

where the probability measure Pv corresponding to Ev is defined as the P-measure with
density P−1(�(v))1�(v). Note that, for Ai ∈B(RK), for i = 1, . . . ,m̄, we have that Pv(Yt1 ∈
A1, . . . ,Ytm̄ ∈ Am̄) equals

P−1(�(v))P
(
Yt1 ∈ A1, . . . ,Ytm̄ ∈ Am̄,�(v)

)=
m̄∏

s=1

P(Yts ∈ As,Xts ∈ Bj)

P(Xts ∈ Bj)
(C.10)

=
m̄∏

s=1

P(Yts ∈ As|{Xts ∈ Bj}). (C.11)

Hence, the image measurePv ◦(Yt1, . . . ,Ytm̄) is the m̄-fold product ofQ(·) :=P(Y1 ∈ .|{X1 ∈
Bj}). For i.i.d. random K-vectors Y∗

1 , . . . ,Y ∗̄
m, say, each with distribution Q, it hence follows

from the definition of H that

E(H(Yt1, . . . ,Ytm)|�(v)) = E(H(Y∗
1 , . . . ,Y ∗̄

m)) = E

⎛
⎝ m̄∑

s=1

[
T(F∗

j )−T

(
F

π̂s(Z∗
s−1)

j

)]⎞⎠,

(C.12)

where Z∗
s = (Y∗

π̂s(Z∗
s−1),s

, . . . ,Z∗
s−1) (and where Z∗

0 is the empty vector). The rth marginal of

Q has cdf Fr
j , which by Lemma A.3 is an element of the closure of D ⊆ Dcdf ([a,b]) w.r.t.

‖·‖∞, which we here denote as cl(D). Therefore, it now follows from Theorem 4.1 in Kock
et al. (2022), applied with cl(D) (cf. their Remark 2.3) and with “n = m̄,” that the quantity

in the previous display, and thus E(f |�(v)), is not greater than c
√

Km̄log(m̄). From (C.6)
(noting that f vanishes on �(0)), we see that

E(f ) ≤ c
∑

v∈{0,1}n

P(�(v))
√

Km̄log(m̄). (C.13)

Recall that m̄ =∑n
s=1 vs. Hence, we can interpret m̄ as a random variable on the set {0,1}n,

equipped with the probability mass function p(v) = P(�(v)). Obviously, this random
variable is Bernoulli-distributed with success probability PX(Bj) and “sample size” n.
Thus, its expectation is nPX(Bj). It remains to observe that the function h defined via

x �→ (Kxlog(x))0.5 is concave on [0,∞), allowing us to apply Jensen’s inequality to upper-
bound the right-hand side in the previous display by ch(nPX(Bj)), which establishes the
statement in equation (C.4).
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C.2. Proof of Corollary 3.2

Fix n ∈ N, and let (Yt,Xt) ∼ PY,X , for t = 1, . . . ,n, where PY,X satisfies equation (2),
Assumption 2.1 with c and c, and Assumption 2.8 with L and γ . We shall apply Theorem
3.1 to get an upper bound on E[Rn(π̄)]. The specific partition results in M(n) = Pd and
Vn,j = √

dP−1, where P = �n1/(2γ+d)�. Furthermore, from Assumption 2.1, we obtain

PX(Bn,j) ≤ cP−d . Therefore, equation (8) implies the upper bound

E[Rn(π̄)] ≤ c(β,C)

√
Knc̄Pdlog(nc̄P−d)+2CL(

√
dP−1)γ nc̄, (C.14)

which (using monotonicity of log, and log(xy) ≤ log(x) + log(y) for positive x and y) is
bounded from above by

c(β,C)

√
Kc̄(1+ log(c̄))log(n)nPd +2CLdγ /2c̄nP−γ ≤ c∗

(√
Klog(n)nPd +nP−γ

)
(C.15)

≤ c∗
√

Klog(n)

(√
nPd +nP−γ

)
, (C.16)

where c∗ := max[c(β,C)(c̄(1 + log(c̄)))1/2,2CLdγ /2c̄]. From P−γ ≤ n−γ /(2γ+d) and
Pd ≤ 2dnd/(2γ+d), we obtain the bound

E[Rn(π̄)] ≤ (2d/2 +1)c∗
√

Klog(n)n
1− γ

2γ+d , (C.17)

which proves the theorem.

C.3. Proof of Theorem 3.3

The statement follows from the first lower bound established in Theorem 3.9, upon setting
α = α(ε) = (2γ +d)ε/γ there; note that α(ε) is an element of (0,1) because ε ∈ (0,γ /(2γ +
d)) holds by construction.

C.4. Proof of Theorem 3.7

Define c1 := 4CLdγ /2 + 1. Recall that P = �n1/(2γ+d)�. Note first that it suffices to
establish the inequality in equation (11) for all n large enough (n ≥ n0, say), such that
c1P−γ ≤ 1 holds (this will allow us to apply Assumption 3.6 with δ = c1P−γ in the
arguments below). To see this, note that, by Assumption 2.3, for all n < n0, it holds (for
all random vectors as in the statement of the theorem) that E[Rn(π)] ≤ Cn0. Hence, once
the claimed inequality in the theorem has been established for all n ≥ n0, the constant c in the
statement of Theorem 3.7 can be chosen large enough to deal with the initial terms smaller
than n0. Hence, fix n ≥ n0. Because n is fixed, we abbreviate Bn,j = Bj, Vn,j = Vj = √

dP−1,
and denote π̄n,t = π̄t.

Let (Yt,Xt) ∼ PY,X , for t = 1, . . . ,n, where PY,X satisfies equation (2), Assumption 2.1
with c and c, Assumption 2.8 with L and γ , and Assumption 3.6 with α ∈ (0,1) and C0 > 0.

We establish E[Rn(π̄)] ≤ cKlog(n)n
1− γ (1+α)

2γ+2 for a constant that depends on the quantities
indicated in the statement of the theorem in five steps.
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Step 1: Decomposition of bins into different types. To obtain the desired upper bound,
we shall treat three types of bins separately. An analogous division of bins was also used
in Perchet and Rigollet (2013) to establish the properties of their successive elimination
algorithm in a classic bandit problem targeting the distribution with the highest (conditional)
mean. The bins are split into

J :=
{

j ∈ {1, . . . ,Pd} : ∃ x̄ ∈ Bj,T(Fπ�(x̄)(·,x̄))−T(Fπ�(x̄)(·,x̄)) > c1P−γ

}
,

Js :=
{

j ∈ {1, . . . ,Pd} : ∃ x̄ ∈ Bj,T(Fπ�(x̄)(·,x̄)) = T(Fπ�(x̄)(·,x̄))
}

,

Jw :=
{

j ∈ {1, . . . ,Pd} : 0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x)) ≤ c1P−γ for all x ∈ Bj

}
.

(C.18)

The bins corresponding to indices in J , Js, and Jw will be referred to as “well-behaved,”
“strongly ill-behaved,” and “weakly ill-behaved” bins, respectively. Note that Jw and J ∪
Js are clearly disjoint. That J and Js are disjoint is shown in Step 2 below. Hence, the sets
of bins corresponding to indices in J , Js, and Jw constitute a partition of the set of all Pd

bins Bj, and we can thus write

E(Rn(π̄)) =
∑
j∈Js

E(R̃j(π̄))+
∑

j∈Jw

E(R̃j(π̄))+
∑
j∈J

E(R̃j(π̄)), (C.19)

where, as in equation (C.1), we define

R̃j(π̄) :=
n∑

t=1

[
T
(
Fπ�(Xt)(·,Xt)

)−T
(
Fπ̄t(Xt)(·,Xt)

)]
1{Xt∈Bj}. (C.20)

Step 2: Strongly ill-behaved bins. For every j ∈ Js, by definition, there exists a x̄ ∈ Bj

such that T
(
Fπ�(x̄)(·,x̄)) = T

(
Fπ�(x̄)(·,x̄)). From the definition of π�, it thus follows that

T
(
Fπ�(x̄)(·,x̄)) = T

(
Fi(·,x̄)) for every i ∈ I. Therefore, for every x ∈ Bj and every i ∈ I,

Lemma A.2 yields

T(Fπ�(x)(·,x))−T(Fi(·,x))
= T(Fπ�(x)(·,x))−T(Fi(·,x))− [T(Fπ�(x̄)(·,x̄))−T(Fi(·,x̄))]
≤ 2CLdγ /2P−γ ≤ c1P−γ .

(C.21)

First of all, this shows that J and Js are disjoint. Furthermore, from equations (C.20) and
(C.21), we obtain

∑
j∈Js

R̃j(π̄) ≤ c1P−γ
∑
j∈Js

n∑
t=1

1{Xt∈Bj}1{0<T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))} (C.22)

≤ c1P−γ
n∑

t=1

1{0<T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))≤c1P−γ }. (C.23)

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000051


FUNCTIONAL SEQUENTIAL TREATMENT ALLOCATION 27

From Condition 3.6, we, hence, obtain

∑
j∈Js

E[R̃j(π̄)] ≤ c1nP−γ PX
(
0 < T

(
Fπ�(X)(·,X)

)−T
(
Fπ�(X)(·,X) ≤ c1P−γ

)

≤ C0c1+α
1 nP−γ (1+α).

(C.24)

Step 3: Weakly ill-behaved bins. Since {Xt ∈ Bj} for j ∈ Jw are disjoint subsets of

{0 < T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt)) ≤ c1P−γ },

we obtain from Condition 3.6, recall that P(Xt ∈ Bj) ≥ c
Pd , that

|Jw| c

Pd
≤
∑

j∈Jw

P(Xt ∈ Bj) ≤ P
(
0 < T

(
Fπ�(Xt)(·,Xt)

)−T
(
Fπ�(Xt)(·,Xt)

)≤ c1P−γ
)
(C.25)

≤ C0cα
1 P−γα, (C.26)

which yields |Jw| ≤ (C0cα
1 /c)Pd−γα . Using (C.3) and (C.4) with Vj = √

dP−1 and

PX(Bj) ≤ c̄P−d , we obtain (by similar arguments as in Section C.2)

E[R̃j(π̄)] ≤ c′
(√

Knlog(n)P−d/2 +nP−γ−d
)

, (C.27)

where c′ depends on d,L,γ ,c̄,C,β, but not on n. Combining (C.27) with |Jw| ≤
(C0cα

1 /c)Pd−γα leads to

∑
j∈Jw

E[R̃j(π̄)] ≤ c′′(√Knlog(n)Pd/2−γα +nP−γ (1+α)
)
, (C.28)

where c′′ depends on d,L,γ ,c,c̄,C,C0,α,β, but not on n.

Step 4: Well-behaved bins. For every j ∈ J , let xj ∈ Bj be such that

T(Fπ�(xj)(·,xj))−T(Fπ�(xj)(·,xj)) > c1P−γ . (C.29)

Next, define the following sets of indices (“corresponding to the optimal and suboptimal
treatments given xj”):

I�j := {i ∈ I : T
(
Fπ�(xj)(·,xj)

)= T(Fi(·,xj))},
I0
j := {i ∈ I : T

(
Fπ�(xj)(·,xj)

)−T(Fi(·,xj)) > c1P−γ }.

Clearly, π�(xj) ∈ I�j and π�(xj) ∈ I0
j (cf. (C.29)). Hence, I�j and I0

j define a nontrivial

partition of I. For every j ∈J , we can thus decompose R̃j(π̄) defined in equation (C.20) as
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the sum of

R̃j,I�j
(π̄) :=

∑
i∈I�j

n∑
t=1

[
T
(
Fπ�(Xt)(·,Xt)

)−T
(
Fi(·,Xt)

)]
1{Xt∈Bj}1{π̄t(Xt)=i},

R̃j,I0
j
(π̄) :=

∑
i∈I0

j

n∑
t=1

[
T
(
Fπ�(Xt)(·,Xt)

)−T
(
Fi(·,Xt)

)]
1{Xt∈Bj}1{π̄t(Xt)=i}.

(C.30)

Step 4a: A bound for E(R̃j,I�j
(π̄)). For any i ∈ I�j and every x ∈ Bj satisfying

T(Fπ�(x)(·,x)) �= T(Fi(·,x)), the triangle inequality, the definition of π�, and Lemma A.2
yield

0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x))
≤ T(Fπ�(x)(·,x))−T(Fi(·,x))
= T(Fπ�(x)(·,x))−T(Fπ�(xj)(·,xj))+T(Fi(·,xj))−T(Fi(·,x))
≤ 2CLdγ /2P−γ ≤ c1P−γ ,

the last inequality following from c1 = 4CLdγ /2 + 1. But this means (applying the
inequality chain in the previous display twice) that, for any i ∈ I�j and every x ∈ Bj,

T(Fπ�(x)(·,x))−T(Fi(·,x)) ≤ c1P−γ1{v:0<T(Fπ�(v)(·,v))−T(Fπ�(v)(·,v))≤c1P−γ }(x).
(C.31)

We deduce that

E[R̃j,I�j
(π̄)] ≤ E

n∑
t=1

c1P−γ1{0<T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))≤c1P−γ }1{Xt∈Bj}

≤ nc1P−γ qj, (C.32)

where qj := P(0 < T(Fπ�(Xt)(·,Xt))− T(Fπ�(Xt)(·,Xt)) ≤ c1P−γ ,Xt ∈ Bj), which is inde-
pendent of t due to the Xt being identically distributed.

Step 4b: A bound for E(R̃j,I0
j
(π̄)). By Lemma A.2, noting that PX(Bj) > cP−d > 0, for

every x ∈ Bj and every i ∈ I0
j , we have (abbreviating Fi

n,j by Fi
j)

T(Fπ�(x)(·,x))−T(Fi(·,x)) ≤
[
T(F∗

j )−T(Fi
j)
]
+ c1P−γ , (C.33)

from which it follows that

E[R̃j,I0
j
(π̄)] ≤

∑
i∈I0

j

�i
jES(i,n,j)+ c1P−γ

∑
i∈I0

j

ES(i,n,j),
(C.34)
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where, for every i ∈ I0
j , we let S(i,n,j) := ∑n

t=11{Xt∈Bj}1{π̄t(Xt)=i} and �i
j := T(F∗

j ) −
T(Fi

j). We now claim that (this claim will be verified before moving to Step 4c below)

ES(i,n,j) ≤ 2C2β log(c̄nP−d)

[�i
j]

2
+ β +2

β −2
. (C.35)

Define �j := mini∈I0
j
�i

j. We note that �j > 0 follows from inserting x = xj in equation

(C.33), and from using the definition of I0
j . Next, noting that maxi∈I0

j
�i

j ≤ 2C by Assump-

tion 2.3, and combining equations (C.34) and (C.35), we obtain the bound

E[R̃j,I0
j
(π̄)] ≤ K

2C2β log(c̄nP−d)

�j

(
1+ c1P−γ

�j

)
+ (c1 +2C)K

β +2

β −2
. (C.36)

It remains to prove the claim in equation (C.35). To this end, we apply a conditioning
argument as in the proof of Theorem 3.1. We shall now use some quantities (in particular,
the sets �(v)) that were defined in that proof: Note that

ES(i,n,j) =
∑

v∈{0,1}n

P(�(v))E(S(i,n,j)|�(v)). (C.37)

Arguing as in the proof of Theorem 3.1, it is now easy to see that E(S(i,n,j)|�(v)) can
be written as the expected number of times treatment i is selected in running the F-UCB
policy π̂ (without covariates) in a problem with m̄ = ∑n

s=1 vs (fixed) i.i.d. inputs with
distribution Q (the marginals of which have a cdf that lies in the closure of D w.r.t. ‖ · ‖∞
as a consequence of Lemma A.3). We can, hence, (cf. Remark 2.3 in Kock et al. (2022))
apply the bound established in equation (C.19) of Appendix C of Kock et al. (2022), to the
just mentioned problem, to obtain

E(S(i,n,j)|�(v)) ≤ 2C2β log(m̄)

[�i
j]

2
+ β +2

β −2
. (C.38)

We can now combine the obtained inequality with equation (C.37) to see that

ES(i,n,j) ≤
∑

v∈{0,1}n

P(�(v))
2C2β log(m̄)

[�i
j]

2
+ β +2

β −2
. (C.39)

The claim in (C.35) now follows from Jensen’s inequality, and (cf. the end of the proof of
Theorem 3.1)

∑
v∈{0,1}n P(�(v))m̄ ≤ c̄nP−d .

Step 4c: A bound for E(R̃j(π̄)) with j ∈ J . For all i ∈ I0
j and all x ∈ Bj, the triangle

inequality and Lemma A.2 with Vj = √
dP−1 show that c1P−γ is smaller than

|T(Fπ�(xj)(·,xj))−T(Fi(·,xj))|
≤ |T(Fπ�(xj)(·,xj))−T(Fπ�(x)(·,x))|+ |T(Fπ�(x)(·,x))−T(Fi(·,x))|

+ |T(Fi(·,x))−T(Fi(·,xj))|
≤ 2CLdγ /2P−γ +|T(Fπ�(x)(·,x))−T(Fi(·,x))|.

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000051


30 ANDERS BREDAHL KOCK ET AL.

Recalling that c1 = 4CLdγ /2 +1, we obtain

T
(
Fπ�(x)(·,x))−T(Fi(·,x)) > (1+2CLdγ /2)P−γ . (C.40)

(In particular, since I0
j �= ∅ holds, 0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x)), for all x ∈ Bj if j ∈J ,

an observation we shall need later in Step 4d.) For every i ∈ I0
j and every x ∈ Bj, (C.40) and

Lemma A.2 (recalling that PX(Bj) > cP−d > 0) imply

�i
j = T(F∗

j )−T(Fi
j) ≥ T(Fπ�(x)(·,x))−T(Fi(·,x))−2CLdγ /2P−γ > P−γ ; (C.41)

in particular, for any j ∈ J , we have �j = mini∈I0
j
�i

j > P−γ . Recalling that R̃j(π̄) =
R̃j,I∗j (π̄) + R̃j,I0

j
(π̄), we combine (C.32) and (C.36) (with the just observed �j > P−γ )

to see that, for any j ∈ J ,

E[R̃j(π̄)] ≤ nc1P−γ qj + 2C2(c1 +1)Kβ log(c̄nP−d)

�j
+ (c1 +2C)K

β +2

β −2
. (C.42)

Step 4d: A bound for
∑

j∈J E[R̃j(π̄)]. Using equation (C.42) and |J | ≤ Pd , we obtain

∑
j∈J

E[R̃j(π̄)] ≤ (c1 +2C)K
β +2

β −2
Pd +nc1P−γ

∑
j∈J

qj +
∑
j∈J

2C2(c1 +1)Kβ log(c̄nP−d)

�j
.

(C.43)

Since the Bj are disjoint, we obtain, recalling the definition of qj after equation (C.32), that

nc1

Pγ

∑
j∈J

qj ≤ nc1

Pγ
P
(
0 < T(Fπ�(X1)(·,X1))−T(Fπ�(X1)(·,X1)) < c1P−γ

)
(C.44)

≤ C0c1+α
1 nP−γ (1+α), (C.45)

where we used Assumption 3.6 to obtain the last inequality.
To deal with the last sum in the upper bound in (C.43), we need a better lower bound on

the �j-s than the already available P−γ . For notational simplicity, suppose that the well-

behaved bins are indexed as J = {1,2, . . . ,j1} such that 0 < P−γ ≤ �1 ≤ �2 ≤ ·· · ≤ �j1 .
Fix j ∈ J . Then, for any k = 1, . . . ,j, we claim that

Bk ⊆
{

x : 0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x)) < �j +2CLdγ /2P−γ

}
. (C.46)

To see (C.46), note that, by definition, there exists an i ∈ I0
k such that �k = T(F∗

k )−T(Fi
k).

Given x ∈ Bk, Lemmas A.2 and A.3 and Remark 2.3 in Kock et al. (2022) yield (the first
inequality following from the observation after equation (C.40))

0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x)) ≤ T(Fπ�(x)(·,x))−T(Fi(·,x))
≤ �k +2CLdγ /2P−γ

≤ �j +2CLdγ /2P−γ ,
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and thus x is an element of the set on the right-hand-side of (C.46). Since all bins Bk are
disjoint and �j +2CLdγ /2P−γ ≤ c1�j (obtained by recalling c1 = 4CLdγ /2 +1, and using

�j > P−γ ), the inclusion (C.46) yields that, for any j ∈ J ,

PX
(
x : 0 < T(Fπ�(x)(·,x))−T(Fπ�(x)(·,x)) < c1�j

)≥
j∑

k=1

PX(Bk) ≥ cj

Pd
. (C.47)

Denote j2 := max{j ∈ J : �j ≤ 1/c1} (here interpreting the maximum of an empty set as
0). Then, for each j ∈ {1, . . . ,j2} by Assumption 3.6,

PX
(
0 < T(Fπ�(X)(·,X))−T(Fπ�(X)(·,X)) < c1�j

)≤ C0(c1�j)
α . (C.48)

Combining (C.47), (C.48), and �j > P−γ , for any j ∈ {1, . . . ,j2}, we obtain the inequality

�j ≥ max
(
c∗
(
jP−d)1/α

,P−γ
)
, with constant c∗ := c−1

1 c1/αC−1/α
0 . Combining this with

the identity �j > 1/c1, for j > j2, we obtain that

∑
j∈J

1

�j
≤

j2∑
j=1

min
(

c−1∗
(
Pd/j

)1/α
,Pγ

)
+

j1∑
j=j2+1

c1

≤
Pd∑
j=1

min
(

c−1∗
(
Pd/j

)1/α
,Pγ

)
+ c1Pd .

For P̃ := �Pd−αγ � (in fact, for any P̃ ∈ {1, . . . ,Pd}, and thus in particular for our particular
choice), it holds that

Pd∑
j=1

min
(

c−1∗
(
Pd/j

)1/α
,Pγ

)
≤

P̃∑
j=1

Pγ + c−1∗ Pd/α
∞∑

j=P̃+1

j−1/α ≤ c∗∗Pd+γ (1−α),

for c∗∗ := [2 + c−1∗ (α−1 − 1)−1], where we used
∑∞

j=P̃+1
j−1/α ≤ (α−1 − 1)−1P̃1−α−1

.

Hence, equations (C.43) and (C.44) and the bounds in the previous two displays imply

∑
j∈J

E[R̃j(π̄)] ≤ c′′′ (nP−γ (1+α) +Klog(nP−d)Pd +Klog(nP−d)Pd+γ (1−α)
)
, (C.49)

for a constant c′′′, say, that depends on d,L,γ ,c,c,C,C0,α and β, but not on n.

Step 5: Combining. From equations (C.19), (C.24), (C.28), and (C.49), we obtain that
E[Rn(π̄)] is bounded from above by

c′′′′
4

(
nP−γ (1+α) +

√
Knlog(n)Pd/2−γα +Klog(nP−d)Pd +Klog(nP−d)Pd+γ (1−α)

)
,

(C.50)
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for a constant c′′′′ that depends on d,L,γ ,c,c̄,C,C0,α and β, but not on n. From P =
�n1/(2γ+d)�, we get n ≤ P2γ+d , and obtain

E[Rn(π̄)] ≤ c′′′′
4

Klog(n)
(

nP−γ (1+α) +n1/2Pd/2−γα +2Pd+γ (1−α)
)

(C.51)

≤ c′′′′Klog(n)Pd+γ (1−α), (C.52)

from which the conclusion follows.

C.5. Proof of Theorem 3.8

To prove the theorem, we just combine Theorem 3.7 and the following lemma, which allows
one to upper-bound the number of suboptimal assignments made by any policy.

Lemma C.1. Suppose Assumptions 2.3 and 3.6 hold. Let D0 ≥ max(2,C−1
0 ), and define

C̃(α,D0,C0) = (1 − 1/D0)/(C0D0)1/α . Then, for any policy π , for any randomization
measure, and for all (Yt,Xt) ∼ PY,X, such that PY,X satisfies equation (2) and Assumption
2.8, it holds that

E[Rn(π)] ≥ C̃(α,D0,C0)n−1/α
(
E[Sn(π)]

)1+1/α for every n ∈ N. (C.53)

Remark C.2. In Lemma C.1, we impose Assumptions 2.3 and 2.8 and equation (2) to
guarantee that Rn(π) and Sn(π) are random variables, and that π� and π� are measurable
(cf. also the discussion in the footnote of Assumption 3.6).

Proof. The proof idea is quite standard, and we follow Rigollet and Zeevi (2010): Choose
D0 ≥ max(2,C−1

0 ), implying that 1/(C0D0)1/α ≤ 1. Let n ∈ N, and let π be a policy as
defined in Section 2. We write πn,t = πt. Let PG be a randomization measure. We show
that

E[Rn(π)] ≥ C̃n−1/α
(
E[Sn(π)]

)1+1/α
, (C.54)

for C̃ = C̃(α,D0,C0). IfE[Sn(π)] = 0, (C.54) trivially holds. Thus, suppose thatE[Sn(π)] >

0. Note that, for any δ > 0,

Rn(π) ≥ δ

n∑
t=1

1{T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))>δ}1
{
πt(Xt,Zt−1,Gt) �∈arg maxi∈I {T(Fi(·,Xt))}

}

= δSn(π)− δ

n∑
t=1

1{T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))≤δ}

×1{
πt(Xt,Zt−1,Gt) �∈arg maxi∈I {T(Fi(·,Xt))}

}
= δSn(π)− δ

n∑
t=1

1{0<T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))≤δ}

×1{
πt(Xt,Zt−1,Gt) �∈arg maxi∈I {T(Fi(·,Xt))}

}
≥ δSn(π)− δ

n∑
t=1

1{0<T(Fπ�(Xt)(·,Xt))−T(Fπ�(Xt)(·,Xt))≤δ},
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where the second equality used that if πt(Xt,Zt−1,Gt) �∈ arg maxi∈I {T(Fi(·,Xt))}, then

0 < T(Fπ�(Xt)(·,Xt)) − T(Fπ�(Xt)(·,Xt)). Choosing δ := (E[Sn(π)]/(nC0D0))1/α ≤
1/(C0D0)1/α ≤ 1 (the first inequality following from E[Sn(π)] ≤ n), Assumption 3.6
yields

E[Rn(π)] ≥ δ(E[Sn(π)]−C0nδα) = δ(1−1/D0)E[Sn(π)]

= C̃n−1/α
(
E[Sn(π)]

)1+1/α
, (C.55)

which proves (C.54). �

C.6. Proof of Theorem 3.9

Let π be a policy, let PX be the uniform distribution on [0,1]d , let PG be a randomization
measure, and fix an n ∈ N. To simplify notation, we abbreviate πn,t = πt. The proof of the
inequalities in (13) and (14) now proceeds in five steps.

Step 0: Preliminary observations and some notation. (a) From the maintained assump-
tions and Assumption 2.3 (imposed through Assumption 2.6), it follows that

c−(τ2 − τ1) ≤ T(Jτ2)−T(Jτ1) ≤ C‖Jτ2 − Jτ1‖∞
≤ C(τ2 − τ1) for every τ1 ≤ τ2 in [0,1]. (C.56)

Let ε := 2/
√

17 < 1/2, set Hv := J1/2+v for every v ∈ [−ε,ε], and define the map
h : [−ε,ε] → [h(−ε),h(ε)] via v �→ T(Hv); note that h is strictly increasing because of
c− > 0 and the observation in the previous display. (b) The previous display also implies
that h is Lipschitz continuous with constant C and that h(w)− h(v) ≥ c−(w − v) for every
v ≤ w in [−ε,ε]; implying that h possesses a Lipschitz-continuous inverse function h−1 :
[h(−ε),h(ε)] → [−ε,ε], say, with constant c−1− . (c) Note that the map v �→ Hv (as a map
from [−ε,ε] to Dcdf ([a,b]) equipped with the supremum metric) is Lipschitz-continuous

with constant 1. (d) Finally, we verify that, for ζ := c−1− (0.52 −ε2)−1/2, we have (recalling
the notational conventions introduced in the first paragraph of Appendix A)

KL1/2(μHv,μHw) ≤ ζ
(
T(Hw)−T(Hv)

)
for every v ≤ w in [−ε,ε]. (C.57)

By definition, T(Hw)−T(Hv) = h(w)−h(v). Hence, the statement in (C.57) follows from

observation (b) once we verify KL1/2(μHv,μHw) ≤ (w− v)/
√

0.52 − ε2. But the latter is a
simple consequence of Lemma B.3 in Kock et al. (2022) (and is established similarly as the
last claim in Lemma B.4 in Kock et al., 2022).

Step 1: Construction of a family of functions C. For P ∈ N (to be chosen in Step 4),
let BP

1 , . . . ,BP
Pd be the hypercubes defined in (9), and sorted lexicographically; we shall

drop the superscript P in the following. Let qi, i = 1, . . . ,Pd , denote the center of Bi. Let
m := �Pd−γα�, and observe that 1 ≤ m ≤ Pd . Next, let �m := {−1,1}m, |�m| = 2m, and
define Cm = C := {fσ : σ ∈ �m}, where for σ ∈ �m we construct fσ : [0,1]d → R via

fσ (x) := h(0)+ c−ε

m∑
j=1

σjϕj(x);
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for every j ∈ {1, . . . ,Pd}, we denote ϕj(x) := 4−1P−γ φ(2P(x − qj))1Bj(x), where φ(x) :=
(1−||x||∞)γ , and ‖x‖∞ := max1≤i≤d |xi| for x ∈ Rd . Note that every fσ is continuous.

We now show that every fσ is Hölder-continuous. More precisely, we show that, for every
fσ ∈ C,

|fσ (x1)− fσ (x2)| ≤ c−ε2−1||x1 − x2||γ for every x1,x2 ∈ [0,1]d, (C.58)

with ‖ · ‖ denoting the Euclidean norm. We note that, for any pair x1,x2 ∈ [0,1]d , one has
|φ(x1)−φ(x2)| ≤ ||x1 −x2||γ∞ ≤ ||x1 −x2||γ ; the second inequality is obvious, and the first
inequality follows from |pγ −qγ | ≤ |p−q|γ for p,q ≥ 0 and 0 < γ ≤ 1, together with the
reverse triangle inequality. Now, to show (C.58), we consider two cases: First, if x1,x2 ∈ Bj

for j ∈ {1, . . . ,Pd}, the definition of fσ and |φ(x1)−φ(x2)| ≤ ||x1 − x2||γ lead to (note that
if j > m, the following inequality trivially holds)

[c−ε]−1|fσ (x1)− fσ (x2)| ≤ |ϕj(x1)−ϕj(x2)| ≤ 2γ

4
||x1 − x2||γ ≤ 1

2
||x1 − x2||γ . (C.59)

We remark that by continuity of fσ , equation (C.59) continues to hold if x1 and x2 are
elements of the closure of Bj, i.e., of B̄j. Second, suppose that x1 ∈ Bj,x2 ∈ Bk, for j �=
k. Let S := {θx1 + (1 − θ)x2 : θ ∈ [0,1]}. Define y1 := argminz∈S∩B̄j

||z − x2|| and y2 :=
argminz∈S∩B̄k

||z − x1||. Clearly, y1 and y2 are the elements of the boundary of Bj and Bk,
respectively, implying ϕj(y1) = ϕk(y2) = 0. Denote σ̄i = σi, for i = 1, . . . ,m, and σ̄i = 0,
for i > m. We obtain

[c−ε]−1|fσ (x1)− fσ (x2)| = |σ̄jϕj(x1)− σ̄kϕk(x2)| ≤ |ϕj(x1)−ϕj(y1)|+ |ϕk(y2)−ϕk(x2)|
≤ 2γ

4
(||x1 − y1||γ +||y2 − x2||γ )

≤ 2−1||x1 − x2||γ ,

where for the second inequality we made use of the second inequality in (C.59) (cf. also the
remark immediately after (C.59)), and for the third inequality, we combined (aγ + bγ ) ≤
21−γ (a+b)γ for 0 < γ ≤ 1 and a,b ≥ 0 with ||x1 −y1||+ ||y2 −x2|| ≤ ||x1 −y1||+ ||y1 −
y2||+||y2 −x2|| = ||x1 −x2||. Since the hypercubes B1, . . . ,BPd define a partition of [0,1]d ,
this establishes equation (C.58).

Step 2: Construction of probability measures Pf indexed by C. Recall from Obser-
vation (b) in Step 0 that h : [−ε,ε] → [−h(ε),h(ε)] defined via v �→ T(Hv) permits
a Lipschitz-continuous inverse h−1 : [h(−ε),h(ε)] → [−ε,ε], say, with corresponding
Lipschitz constant c−1− . By construction, the range of f ∈ C is contained in [h(−ε),h(ε)],
because h(ε)−h(0) ≥ c−ε and similarly h(0)−h(−ε) ≥ c−ε. Hence, for every f ∈ C, the
composition Af := h−1 ◦ f : [0,1]d → [−ε,ε] is well defined, and equation (C.58) shows
that Af is Hölder-continuous with constant ε/2 and exponent γ . Note that by definition

f (x) = h
(

h−1 ◦ f (x))
)

= h(Af (x)) = T

(
HAf (x)

)
for every x ∈ [0,1]d and every f ∈ C.

(C.60)

We next show that μHAf (·) (·) : B(R)× [0,1]d → [0,1], defined via B × x �→ μHAf (x) (B), is

a stochastic kernel: (i) By definition, μHAf (x) is a probability measure for every x ∈ [0,1]d .

(ii) Recall from Observation (c) in Step 0 that ‖Hv − Hw‖∞ ≤ |v − w| for every pair
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v,w ∈ [−ε,ε]. From continuity of Af , it follows that x �→ HAf (x)(c) = μHAf (x) ((−∞,c])

is continuous (and hence measurable) for every c ∈ R. Since {(−∞,c] : c ∈ R} is a “π -
system” that generates the Borel σ -algebra on R, Lemma 1.40 of Kallenberg (2001) shows
that μHAf (·) (·) : B(R)× [0,1]d → [0,1] is a stochastic kernel.

For every f ∈ C, we define the probability measure

Pf := μH0 ⊗ [μHAf (·) ⊗PX], (C.61)

noting that the product in brackets is a semidirect product. For later reference, we note that
if (Yt,Xt) ∼ Pf , it holds for every x ∈ [0,1]d that F1(·,x) = H0 and F2(·,x) = HAf (x). In
particular, equation (2) is satisfied as a consequence of Assumption 2.6. Now, for every t =
1, . . . ,n, denote by Pt

π,f the probability measure on the Borel sets of R(d+2)t induced by the
(recursively defined) random vector Zt = (Yπt(Xt,Zt−1,Gt),t,Xt,Gt, . . . ,Yπ1(X1,G1),1,X1,G1)

with i.i.d. (Yt,Xt,Gt) ∼ Pf ⊗PG. In the sequel, for t = 1, . . . ,n, the symbol zt will denote a

“generic” element of R(d+2)t (i.e., a “realization” of the random vector Zt).
We close this step with an important observation: Note that K̄t,f : B(R)× [0,1]d ×R×

R(t−1)(d+1) defined via

B× x×g× zt−1 �→ μH0 (B)1{πt(x,zt−1,g) = 1}+μHAf (x) (B)1{πt(x,zt−1,g) = 2}
(C.62)

is a regular conditional distribution of Yπt(Xt,Zt−1,Gt),t given (Xt,Gt,Zt−1), and that, for
every t = 1, . . . ,n, we can therefore write (noting that Zt = (Yπt(Xt,Zt−1,Gt),t,Xt,Gt,Zt−1),
interpreting Z0 as the empty vector)

Pt
π,f = K̄t,f ⊗ [PX ⊗PG ⊗Pt−1

π,f ], (C.63)

with the convention that in case t = 1, one has to drop the factor Pt−1
π,f in the previous display

and the “zt−1” in equation (C.62). Hence, interpreting KL(Pt−1
π,f1

,Pt−1
π,f2

) = 0 in case t = 1,
and with the just mentioned “dropping” convention, the Chain Rule of Lemma A.1 implies
that, for f1,f2 ∈ C and any t = 1, . . . ,n, we have

KL(Pt
π,f1

,Pt
π,f2

) = KL

(
K̄t,f1 ⊗ [PX ⊗PG ⊗Pt−1

π,f1
],K̄t,f2 ⊗ [PX ⊗PG ⊗Pt−1

π,f2
]
)

= KL(Pt−1
π,f1

,Pt−1
π,f2

)+KL

(
K̄t,f1 ⊗ [PX ⊗PG ⊗Pt−1

π,f1
],K̄t,f2 ⊗ [PX ⊗PG ⊗Pt−1

π,f1
]
)
,

the right-hand-side being equal to the sum of KL(Pt−1
π,f1

,Pt−1
π,f2

) and

∫
[0,1]d×R×R(t−1)(d+2)

KL(K̄t,f1(·,x,g,zt−1),

K̄t,f2(·,x,g,zt−1))d(PX ⊗PG ⊗Pt−1
π,f1

)(x,g,zt−1).

Using equation (C.62), this sum further simplifies to

KL(Pt−1
π,f1

,Pt−1
π,f2

)+
∫
{πt=2}

KL(μHAf1
(x),μHAf2

(x) )d(PX ⊗PG ⊗Pt−1
π,f1

)(x,g,zt−1),
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which, noting that Pt−1
π,f1

is obtained by a coordinate projection from Pn
π,f1

, implies

KL

(
Pt

π,f1
,Pt

π,f2

)
≤KL(Pt−1

π,f1
,Pt−1

π,f2
)+

∫
{πt=2}

KL(μHAf1
(x),μHAf2

(x) )d(PX ⊗PG ⊗Pn
π,f1

)(x,g,zn).

By induction, it now immediately follows that, for every t = 1, . . . ,n,

KL

(
Pt

π,f1
,Pt

π,f2

)
≤
∫ t∑

i=1

1{πi = 2}KL(μHAf1
(x),μHAf2

(x) )d(PX ⊗PG ⊗Pn
π,f1

)(x,g,zn).

(C.64)

Step 3: Verifying Assumptions 2.8 and 3.6 for every Pf . Fix f = fσ ∈ C. To verify
Assumption 2.8 (with γ and L = ε/2 as given in the theorem; cf. Step 0 for the definition
of ε) for Pf , which was defined in (C.61), note that

‖F2(·,x1)−F2(·,x2)‖∞ = ‖HAf (x1) −HAf (x2)‖∞ ≤ |Af (x1)−Af (x2)| ≤ L‖x1 − x2‖γ ,

the first inequality following Observation (c) in Step 0, and the second following from Af
being Hölder-continuous with constant L = ε/2 and exponent γ , as observed in Step 2
right before equation (C.60); note further that F1(·,x) = H0, and that the previous display,
hence, trivially holds for F2 replaced by F1. Next, to verify Assumption 3.6 (with α and
C0 = 8d[c−ε]−α as given in the theorem), it suffices to show (recall that K = 2) that

PX

(
x ∈ [0,1]d : 0 < |T(HAf (x))−T(H0)| ≤ c−εδ

)
≤ 8dδα for all δ ≥ 0. (C.65)

The statement in (C.65) is trivial for δ = 0. Let δ > 0. We use equation (C.60) to write

[c−ε]−1|T(HAf (x))−T(H0)| =
m∑

j=1

ϕj(x),

where we used that Bj ∩Bk = ∅ for j �= k. Noting that
∑m

j=1 ϕj(x) = 0 for x /∈⋃m
j=1 Bj, we

obtain

PX

(
x ∈ [0,1]d : 0 < |T(HAf (x))−T(H0)| ≤ c−εδ

)
=

m∑
j=1

PX

(
x ∈ Bj : 0 < ϕj(x) ≤ δ

)
,

which we can write as

mPX
(
x ∈ B1 : φ(2P(x−q1)) ≤ 4Pγ δ

)= m(2P)−d
∫

[−1,1]d
1{φ≤4Pγ δ}dx

= mP−d
∫

[0,1]d
1{φ≤4Pγ δ}dx,

where the first equality follows upon substituting u = 2P(x − q1), and the second equality
follows from φ(x) being invariant to multiplying coordinates of x by −1. To upper-bound
the expression to the right in the previous display, we consider two cases: If 4Pγ δ > 1, then

mP−d
∫

[0,1]d
1{φ≤4Pγ δ}dx = mP−d ≤ 2P−γα ≤ 8δα,

https://doi.org/10.1017/S0266466623000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000051


FUNCTIONAL SEQUENTIAL TREATMENT ALLOCATION 37

where we used m = �Pd−γα� ≤ Pd−γα + 1 ≤ 2Pd−γα and α ∈ (0,1). On the other hand,
if 4Pγ δ ≤ 1, we write 1{φ≤4Pγ δ} = 1−1{4Pγ δ<φ} = 1−1{‖·‖∞<1−(4δ)1/γ P} to obtain

mP−d
∫

[0,1]d
1{φ≤4Pγ δ}dx = mP−d(1−

∫
[0,1]d

1{‖·‖∞<1−(4δ)1/γ P}dx)

= mP−d[1− (1− (4δ)1/γ P)d],

which, using (1− (1− s)d) ≤ ds for s ∈ [0,1], m ≤ 2Pd−γα , P ≤ (4δ)−1/γ , and α ∈ (0,1),
is bounded from above by

mP1−dd(4δ)1/γ ≤ 2dP1−αγ (4δ)1/γ ≤ 2d(4δ)α ≤ 8dδα .

Step 4: Lower bounding the suprema in equations (13) and (14). We start with equation
(14). We already know that, for every f ∈ C, the measurePf satisfies the inclusion in equation
(2) and Assumptions 2.8 and 3.6. It therefore suffices to verify

sup
f ∈C

E(Pf ⊗PG)n
[
Sn(π)

]≥ n
1− αγ

d+2γ
/

32, (C.66)

where E(Pf ⊗PG)n denotes the expectation w.r.t. the product measure
⊗n

t=1(Pf ⊗PG) (here,
we interpret, with some abuse of notation, Sn(π) as a function on the range space of
(Xt,Yt,Gt) for t = 1, . . . ,n, and we shall denote a generic realization of (Xt,Yt,Gt) by
(xt,yt,gt) to make this convention explicit, where we sometimes drop the subindex t, if
no confusion can arise).

We first observe that for Pfσ , denoting f̄σ := [c−ε]−1[fσ −h(0)] =∑m
j=1 σjϕj, we have

Sn(π) =
n∑

t=1

1{T(F1(·,xt)) �= T(F2(·,xt)), π�(xt) �= πt(xt,zt−1,gt)}

=
n∑

t=1

1{f̄σ (xt) �= 0, 2πt(xt,zt−1,gt)−3 �= sign(f̄σ (xt))},

where for the second equality we used that π�(x) = 3/2 + sign(f̄σ (x))/2 (with the
convention that the sign of 0 is −1), and where we recalled from equation (C.60) that
T(F1(·,x)) �= T(F2(·,x)) is equivalent to f̄σ (x) �= 0. Noting that the random vectors Xt, Zt−1,
and Gt are independent, it follows that their joint distribution equalsPX ⊗Pt−1

π,fσ
⊗PG. Using

Tonelli’s theorem, writing EG for the expectation w.r.t. PG, abbreviating 2πt(x,zt−1,g)−
3 := π̌t(x,zt−1,g), and noting that the tth summand in the previous display depends on zt
only via zt−1, we can write supf ∈C E(Pf ⊗PG)n [Sn(π)] as

sup
σ∈�m

n∑
t=1

Et−1
π,fσ

EG
[
PX
(
x : f̄σ (x) �= 0, π̌t(x,zt−1,gt) �= sign(f̄σ (x))

)]

≥ sup
σ∈�m

m∑
j=1

n∑
t=1

Et−1
π,fσ

EG[PX(x ∈ Bj : π̌t(x,zt−1,gt) �= σj)]

≥ 1

2m

m∑
j=1

n∑
t=1

∑
σ∈�m

Et−1
π,fσ

EG[PX(x ∈ Bj : π̌t(x,zt−1,gt) �= σj)], (C.67)
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where we used that m ≤ Pd and PX(x ∈ Bj : f̄σ (x) = 0) = 0 (and where we use a
corresponding “dropping” convention for the index t = 1 as introduced after equation
(C.63)). For every j ∈ {1, . . . ,m} and t ∈ {1, . . . ,n},

Qj
t :=

∑
σ∈�m

Et−1
π,fσ

EG[PX(x ∈ Bj : π̌t(x,zt−1,g) �= σj)]

=
∑

σ−j∈�m−1

∑
i∈{−1,1}

Et−1
π,f

σ i−j

EG[PX(x ∈ Bj : π̌t(x,zt−1,g) �= i)],

where σ−j := (σ1, . . . ,σj−1,σj+1, . . . ,σm) and σ i−j := (σ1, . . . ,σj−1,i,σj+1, . . . ,σm) for

i ∈ {−1,1}. Define for every j ∈ {1, . . . ,m} the probability measure P
j
X via P

j
X(A) :=

PX(A ∩ Bj)/PX(Bj) for A ∈ B(Rd), and let Ej
X be the corresponding expectation operator.

Recalling PX(Bj) = P−d , we obtain for any zt−1 ∈ R(t−1)(d+1) and any g ∈ R that

PX({x ∈ Bj : π̌t(x,zt−1,g) �= i}) = P
j
X({x : π̌t(x,zt−1,g) �= i})/Pd,

from which we see that the sum over i in the penultimate display coincides, for every
σ−j ∈ �m−1, with

1

Pd

⎛
⎝Et−1

π,f
σ
−1
−j

EGE
j
X1{π̌t(x,zt−1,g)=1} +1−Et−1

π,f
σ1−j

EGE
j
X1{π̌t(x,zt−1,g)=1}

⎞
⎠=:

1

Pd
e(σ,j,t).

(C.68)

Clearly, e(σ,j,t) is the sum of the Type 1 and Type 2 error of the test (x,zt−1,g) �→
1{π̌t(x,zt−1,g)=1} for

H0 : Pj
X ⊗Pt−1

π,f
σ
−1
−j

⊗PG against H1 : Pj
X ⊗Pt−1

π,f
σ1−j

⊗PG.

Using Theorem 2.2(iii) of Tsybakov (2009), we obtain

e(σ,j,t) ≥ 1

4
exp

[
−KL

(
P

j
X ⊗Pt−1

π,f
σ
−1
−j

⊗PG,P
j
X ⊗Pt−1

π,f
σ1−j

⊗PG
)]

= 1

4
exp

[
−KL

(
Pt−1

π,f
σ
−1
−j

,Pt−1
π,f

σ1−j

)]
,

(C.69)

the equality following, e.g., from the Chain Rule in Lemma A.1.
To upper-bound KL

(
Pt−1

π,f
σ
−1
−j

,Pt−1
π,f

σ1−j

)
, we will now apply (C.64) with f1 = f

σ−1
−j

and

f2 = f
σ 1−j

. Note first that f1(x) = f2(x) for x /∈ Bj, and (f1(x),f2(x)) = (h(0)−c−εϕj(x),h(0)+
c−εϕj(x)) for x ∈ Bj, from which it follows from equations (C.57) (note that Af1(x) ≤ Af2(x)

follows from strict monotonicity of h−1; cf. Step 0) and (C.60) that

KL(μHAf1
(x),μHAf2

(x) ) ≤
{

[2ζc−εϕj(x)]
2, if x ∈ Bj,

0, if x /∈ Bj.
(C.70)
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Since [2ζc−εϕj(x)]
2 ≤ [ζc−ε2−1P−γ ]2 =: r̄P−2γ holds for x ∈ Bj, equation (C.64)

delivers

KL(Pt−1
π,f

σ
−1
−j

,Pt−1
π,f

σ1−j

) ≤ r̄P−2γ

∫ t−1∑
i=1

1{G(i,j)}d(PX ⊗PG ⊗Pn
π,f

σ
−1
−j

) ≤ r̄P−2γ Nj,σ−j,

with G(i,j) := {(x,zn,g) : x ∈ Bj,πi(x,zi−1,g) = 2}, Nj,σ−j := ∫ ∑n
i=11{G(i,j)}d(PX ⊗

PG ⊗Pn
π,f

σ
−1
−j

). The dependence of Nj,σ−j on π has been suppressed. In combination with

equations (C.68) and (C.69), we hence obtain

n∑
t=1

Qj
t =

n∑
t=1

∑
σ−j∈�m−1

1

Pd
e(σ,j,t) ≥

n∑
t=1

∑
σ−j∈�m−1

1

4Pd
exp

[
−r̄P−2γ Nj,σ−j

]

= n

4Pd

∑
σ−j∈�m−1

exp
[
−r̄P−2γ Nj,σ−j

]

≥ 2m−1 n

4Pd
exp

[
−r̄P−2γ �j

]
,

the last inequality following from Jensen’s inequality and �j := 21−m∑
σ−j∈�m−1

Nj,σ−j .

Furthermore, from the definition of Qj
t, one directly obtains via Tonelli’s theorem that

n∑
t=1

Qj
t =

n∑
t=1

∑
σ−j∈�m−1

∑
i∈{−1,1}

Et−1
π,f

σ i−j

EG[PX(x ∈ Bj : π̌t(x,zt−1,gt) �= i)]

≥
n∑

t=1

∑
σ−j∈�m−1

En
π,f

σ
−1
−j

EG[PX(x ∈ Bj : πt(x,zt−1,gt) = 2)]

=
∑

σ−j∈�m−1

En
π,f

σ
−1
−j

EG

n∑
t=1

[PX(x ∈ Bj : πt(x,zt−1,gt) = 2)]

=
∑

σ−j∈�m−1

Nj,σ−j = 2m−1�j.

Combining the lower bounds in the previous two displays with (C.67) yields

sup
f ∈C

E(Pf ⊗PG)n [Sn(π)] ≥ 1

2m

m∑
j=1

n∑
t=1

Qj
t ≥ 1

2

m∑
j=1

max

(
n

4Pd
exp

[
−r̄P−2γ �j

]
,�j

)
,

which can further be lower-bounded by

1

4

m∑
j=1

(
n

4Pd
exp

[
−r̄P−2γ �j

]
+�j

)
≥ m

4
inf
�≥0

(
n

4Pd
exp

[
−r̄P−2γ �

]
+�

)

≥ m

4r̄P−2γ
inf
�≥0

(
nr̄

4Pd+2γ
exp

[−�
]+�

)
.

This lower bound holds for any P ∈ N and corresponding m = �Pd−γα�. We now set P :=
�(nr̄/4)1/(d+2γ )�, and can thus use wexp(−�)+� ≥ w for every � ≥ 0 and every 0 < w ≤ 1
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to lower-bound the quantity in the last line of the previous display by

mn

16Pd
≥ Pd−γαn

16Pd
= n

16
P−γα ≥ n

16
[(nr̄/4)1/(d+2γ ) +1]−γα

≥ n
1− αγ

d+2γ

16
[(r̄/4)1/(d+2γ ) +1]−γα .

By definition, r̄ = [ζc−ε2−1]2 = [(0.52 − ε2)−1/2ε2−1]2. Recalling ε = 2/
√

17 implies
r̄ = 4. Thus, the lower bound in the previous display simplifies to

n
1− αγ

d+2γ

16
2−γα ≥ n

1− αγ
d+2γ

/
32. (C.71)

This establishes equation (14). Finally, Lemma C.1 (cf. Step 3, which verifies the assump-
tions needed) with D0 = 2 + C−1

0 shows that the lower bound established in Lemma

C.1 holds for the corresponding constant (1 − (2 + C−1
0 )−1)/(2C0 + 1)1/α ≥ 2−1(2C0 +

1)−1/α ≥ 2−(1+1/α)(C0 +1)−1/α . This version of Lemma C.1 and the already established
equation (14) prove equation (13).
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