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Abstract. We introduce a notion of normality for a nested pair of (ergodic) discrete
measured equivalence relations of type II t. Such pairs are characterized by a group
Q which serves as a quotient for the pair, or by the ability to synthesize the larger
relation from the smaller and an action (modulo inner automorphisms) of Q on it;
in the case where Q is amenable, one can work with a genuine action. We classify
ergodic subrelations of finite index, and arbitrary normal subrelations, of the unique
amenable relation of type Hi. We also give a number of rigidity results; for example,
if an equivalence relation is generated by a free 11,-action of a lattice in a higher
rank simple connected non-compact Lie group with finite centre, the only normal
ergodic subrelations are of finite index, and the only strongly normal, amenable
subrelations are finite.

0. Introduction
The purpose of this paper is to study subrelations of ergodic equivalence relations.

Let HQG be countable groups, and suppose G acts as measure-preserving
automorphisms on a standard space (X, 38, p); we suppose the action (x, g )e
X x G-» xg € X is free, that fi(X) = 1 and that H acts ergodically, so that if E e 38
with Eh = E for all h e H, then / i (£ ) e {0,1}. We let

Sf = {(x,xg):xeX,geG}=>9t={(x,xh):xeX,heH}
be the equivalence relations generated by the actions of G and H. In this context,
our basic question is: to what extent does the pair 0t s S" 'remember' the pair
H s G ? Although this question is too vague to admit a precise answer, we shall see
that there are circumstances in which the pair S c ^ has a good memory. In
particular, we shall show that if H is normal in G, the pair 3? s y determines G/H,
and that if H = T is a lattice in a higher rank (simple connected non-compact) Lie
group L, and if H is normal in G with G/H amenable and torsion-free, then if
determines the rank of L.

t To the memory of HENRY ABEL DYE, teacher, friend and colleague.
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The proper context for our results is to consider an ergodic discrete measured
equivalence relation if on a standard probability space (X, 58, fx), and to study its
subrelations 01. Thus if^XxX is an equivalence relation and in 93x38, the
equivalence classes if{x) are countable, and the measure of any ^-saturated element
of 38 is either 0 or 1; we will also assume that if is of type II,, a technical condition
corresponding in the preceding discussion to the invariance of fj, under G. We note
that isomorphism of such equivalence relations if on (X, 38, /x), and if' on
(X', 58', fj.') (i.e. existence of a bimeasurable map <j>: (X, 58, /x)-»(X', 58', /x') with
/x' ° <£ equivalent to ^ and <j>{if(x)) = 5̂ "(</>(x)) for ^t-almost all xeX) corresponds,
in the case that if and if' are generated by free actions of countable groups G and
G', to H. A. Dye's notion [5], of orbit equivalence for such actions i.e. the existence
of a measure space isomorphism <f>: (X, 58, /*)-» (X', 58', /x') with <f>(xG) = <f>(x)G'
for almost all xeX. While it is known that a IIj ergodic equivalence relation
generated by a free action of a lattice in a higher-rank Lie group determines that
rank [12], it is also known that any two ergodic finite-measure-preserving free actions
of discrete amenable groups are orbit equivalent [5,3], so it might seem surprising
that the pair 3 ? c y retains any significant information about the underlying groups
at all.

The plan of the paper is as follows. In § 1 we show how to associate to any pair
i c ^ o f discrete measured II, equivalence relations, a countable index set J and
a cocycle aeZ\S, £ (J)), where £ (J) is the full permutation group of /. The
cardinality of / is called the index of 5? £ if. The cocycle is called the index cocycle
and depends, up to cohomology and automorphisms of if, only on the isomorphism
class of the pair 5$ c if. We use the index cocycle to prove a 'duality' between pairs
i c ^ and extensions 5? -> if (i.e. measured discrete equivalence relations 01 on
(Y, v) for which there is a map/?: (Y, v)^> (X, /x) with p(&{y)) = 0l{p{y)) for almost
all ye Y). The extension associated with 01 s if is the skew product ifxaj = 0i
where a is the index cocycle; the pair associated to an extension 5? -> if is the pair
5?c# , where if = {(y, y'): (p{y),p{y'))^if}. These constructions are intimately
related to Jones 'basic construction', [13], in the study of sub-von-Neumann algebras;
this aspect will be taken up in a subsequent paper [21].

The second section introduces the idea of a normal pair 5? c if of equivalence
relations. In the case of equivalence relations arising from free group actions of
H c.G described above, it corresponds roughly to normality of H in G. In the
general case of 01 s if it is denned by the triviality of the index cocycle a of the
pair 5? c if on 5?, and corresponds via the duality operation, to normality (as in
[26]) of the extension g| 4. if.

In the case where 9ft is ergodic, normality of 5? in if may be viewed as an
axiomatization of the following situation: there is a countable group Q and a map
<f>: pe Q^> <j>pe Aut (5?, /A) such that e ° </> is a faithful homomorphism (e being the
quotient map from Aut (3?, /x) to Out (5?, fj,)) and such that

if = {(x, x ' ) e X x X : (x, <j>p{x'))e 01 for some p 6 Q}.

The group Q is uniquely determined by the pair Sftzif (up to isomorphism) and
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appears as the quotient, in a precise sense, of if by 9t; in the case of actions of H
and G, with H normal in G as above, the quotient of if by 91 is precisely G/ H so
that i c ^ 'remembers' G/H (even though in general 91 £ if need not remember
G or H). This is precisely the group found in [26], although the present viewpoint
is a little different.

The case where 91 is normal in if but not ergodic is more subtle, and leads to a
'quotient groupoid' Si rather than a group, and an 'action' of St on 9t by endomorph-
isms rather than automorphisms. We also introduce in § 2 a notation of strong
normality for a pair 91 c <f; here we demand that if be generated by 3ft. and a
countable number of automorphisms of 91. When 9t is ergodic, normality and strong
normality coincide, but in general strong normality is a strictly stronger condition—
see Theorem 2.15, where we establish a link with the information cocycle of [20].

In § 3, we prove some classification results. In particular we provide a complete
classification of the finite index subrelations of the amenable IIj ergodic equivalence
relation if, and of its normal ergodic subrelations; the invariants are respectively
conjugacy classes of transitive subgroups of finite permutation groups, and the
quotient groups (which are amenable). We also prove a 'correction' result: if Q is
a countable amenable group and <j>: Q->Aut(9t) is a map with e ° <f> a faithful
homomorphism into Out (91), then there is a homomorphism «/»: Q-* Aut (3?) with
e o $ = s ° </f—here 9i is an ergodic II, discrete equivalence relation which (perhaps
surprisingly) is not assumed to be amenable.

In § 4, we present a variety of 'rigidity type' results. In particular, we show that
if if is generated by a free II, action of a lattice F in a simple, connected, non-compact
Lie group L then the only strongly normal amenable subrelations of if are finite,
and (in the higher rank case) the only ergodic normal subrelations of if are of finite
index. This is the ergodic-theoretic analogue of the assertion that such lattices T
have only finite or cofinite normal subgroups, [16]. We also show that if 9t is
generated by a free ergodic II, action of a lattice in a higher rank Lie group L as
above, then if 91 is normal in if and the quotient Q is amenable and torsion free,
then if remembers the rank of L. This set of results draws heavily on [24] and
should be regarded as complementary to the results contained there-in.

There are many unsolved problems connected with this work - some of these are
collected in the final section, with comments. We believe that most of the results
may be generalized to the case where 91 and if are not discrete, but if is, in an
appropriate sense 'smooth modulo 9t\ We hope to treat this in a later paper.

A note concerning the exposition. We work throughout with equivalence relations
which are of type II,. At the end of each section we indicate how to extend the
results to equivalence relations of other types. We hope this simplifies the exposition
without detracting from the level of generality of the work.

Notation and terminology. Unless otherwise specified, if will denote throughout an
ergodic discrete measured equivalence relation on a non-atomic standard measure
space (X, 28, fi), of type II,, as in [10]. Thus n is a probability measure, and there
exists a countable group G which acts on (X, %, fi) via (x,g)-*xg in such a way
that if = {(x, xg): xeX,ge G}, fi is invariant under G, and such that G-invariant
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measurable sets have measure 0 or 1. 0t will denote a subrelation of if which is
also a Borel subset of X x X, so that 0t is also a discrete measured (not necessarily
ergodic) equivalence relation on (X, 38, n).

If 01^ if on (X,9B,/A) is given, and <f> is a measure space automorphism of
(X, 98, /i), we write <j> e Aut (SO if for almost all (x, x')sXxX, (x, x')e if if and
only if (<£(*), <£(*')) eS", <£eInt(SO if </>eAut(SO and (0(x) ,x )ey /x-a.e. (so
Int(SO is the full group [if] ofif, as in [10]), and Auty (3?) = Aut (3?)nlnt (SO-
We identify elements of these groups if they agree a.e. Note Int (SO is normal in
the group Aut (SO; the quotient is denoted by Out (SO- We shall also have to deal
with endomorphisms <f> of (X, 38, fi) i.e. measurable maps <f>: X-*X with /x ° <j>~1

equivalent to fi (in the sense of having the same null sets). End (SO will denote
those endomorphisms <f> of (X, 38, fi) for which (x, x') e if implies (4>(x), #(*')) e S*,
and End^ (3?) denotes those endomorphisms <f> of 3? for which (0x ,x )e^ a.e.

We let if{x) = {*'e X: (x, x') e if) and for £ e 38, S"(£) = U*S£ ^(*); thus Sf(x)
is countable for each xeX, and /*(S^(£)) = 0 if /u(£) = 0.

Given S'' on (X, 38, jt), and a Polish group A, ZHS', A) will denote the space of
measurable maps <r: Sf~* A for which <T(X, Z) = a(x, y)cr{y, z) a.e. on

Vl2) = i((x, y), (y, z)): (x, y) e ST, (y, z) € Sf},

where two such maps are identified if they agree a.e. The elements of Zl{y, A) are
called A -valued 1-cocycles on £f; cocycles alt <r2 are said to be cohomologous if
there is a measurable map v: X-* A with o-1(x,y) = v(x)cr2{x,y)v(y)~1 a.e. on SP.

If SF is given on (X, 38, /t), and £e38 with /*(£)> 0, we let Sf\E denote the
reduction S^n(£x£) of Sf to £—it again is a discrete measured ergodic IIj
equivalence relation.

We shall also need to use discrete measured groupoids {% v), as discussed in
[19]; for such groupoids, r and s denote the range and source maps, $(0) the space
of units, and $<2) the domain of the partially defined multiplication, so

1. The index cocycle and duality
Let if be an ergodic, discrete, measured II, equivalence relation on (X, 33, fi), and
let 01 £ if be a Borel subrelation as in § 0. Note that 3? induces an equivalence
relation on each S -̂class if{x); we let J(x) denote the quotient if{x)l0l.

LEMMA 1.1. (a) The cardinality \J(x)\ is constant jt-a.e.
(b) If N is the cardinal in (a), there are Borel functions fy: X-*X such that for

fj.-a.e. xeX, {0t{<f>j(x)),O<j<N} partition if(x).

Proof, (a) By [10, Theorem 1], we may choose Borel actions of countable groups
H and G on X which generate 01 and if respectively. If h, k e H and g , , . . . , gn e G,
set

E(gi,..., gn, h, k) = {x e X: hg^c * kgpc for all i,j with 1 ^ i,j =£ n and i #,/};

i. • • •, gn, h, k) is a Borel set and since

U PI
(g in) Kk
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x-*\J(x)\ is Borel. To complete the proof of (a) observe that if for z e ^ x ) , [z]x

denotes the canonical image of z in J(x), then the map 6(x, y): J(y) -» J(x) defined
for (x,y)eS by 6{x, y)([z]y) = [z]x is a bijection, so that x + \J(x)\ is constant on
5^-classes; since if is ergodic, \J(x)\ is constant /u.a.e.

(b) Let G = {gn}nsl be as in the proof of (a) and define inductively 4>0(x) = x and

<t>n(x) = SmM where
r «-i

m = inf \ k: gkx si (J

It is routine to show that the functions {<£,} satisfy the conclusions of the
lemma. •

We will refer to any set of functions satisfying the conclusion of Lemma 1.1.6 as
choice functions for the pair » c ^ ; the cardinal N = \J(x)\ in Lemma 1.1 will be
called the index of 3t in if—we allow infinite indices. Finally, £ (N) will denote
the full permutation group on {0 ,1 , . . . , N -1} for N < <x> or {0,1,2,...} for N = oo.

LEMMA 1.2. Let {</>,} be choice functions for &tg.y, and define o~:if-

(r(x, y)(i) =j if»(4>,(y)) = »($,(*))• Then
(a) treZW.ZAN));
(b) the class of a in H\if, X (N)) is independent of the choice functions

Proof (a) If (x, y), (y, z)eif and <r(y, z){i) =j, cr(x, y)(j) = k then

so <r{x, z)(i) = A: and o~(x, y)o-(y, z) = a(x, z) as claimed.
(b) Let {<f>j} be another set of choice functions for i c y , and let a' be the

corresponding cocycle. For each xeX, there is a unique ^ e H ( N ) such that
9t(4>j(x)) = 0t(^>'Vx(j)) for a l l / A routine calculation shows that

cr'ix, y) = v'1 ° o-(x, y) ° vy

and (b) follows. •

The cocycle a constructed in Lemma 1.2, or its cohomology class, will be called
the index cocycle of the pair i c y . We note that any cocycle cohomologous to an
index cocycle arises from a suitable selection of choice functions.

LEMMA 1.3. Let&t^Sf on (X, 38, fi) be given with 9L ergodic, and let {<£,} be choice
functions for & cSf. Then there are choice functions {ty} such that
(a) each ty is an automorphism of (X, 38, /A),
(b) (fy(x), 4>j(x))e®for ^-a.e. x

Proof For each j , there is a partition {Ek} of X such that <f>j is injective on each
Ek. Since

j
k k

there are elements VfceInt(S?) such that {Vk<f>j(Ek)}k partition (X, fi)—see [5]. If
we define ^ by tyix) = Vk<j>j{x) for xeEk, {^} are the desired choice
functions. •
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We now turn to an important 'duality principal', which, as will be explained in
[21], is the analogue in ergodic theory, of Jones 'basic construction', [13].

Let 01 ^y on (X, fi) be given with index cocycle o - e Z 1 ^ , ! (N)), and let
J = {0 ,1 , . . . , N-l} if JV<oo or {0,1,2,...} if JV = oo.

Definition 1.4. (a) 0i = y~KaJ is the equivalence relation on X x J denned by
((*, i){y,j)) e 91 if and only if (x, y) e & and <r(x, y)(j) = i.

A A.

(b) y is the equivalence relation on X x J defined by ((x, i"), y,j)) e & if and only

We note that 01 is defined up to isomorphism by the pair 0t £ y, by virtue of
Lemma 1.2. Also note that if we choose an action (x, g) € X x G -* xg of a countable
group G to generate y, we may define an action of G on X x J by (x, i)g =
(xg, <r(xg, x)(i)) which generates 01; further, the map p(x, i) = x from X x J to X
is equivariant for the G-actions, so that the system (01, Sf, p) fits into the 'extension'
context of [25]. We will return to this point of view later.

The map p above has the property that its restriction to each 9t class 0t(x, i) is
a bijection of 0l(x, i) with 5^(x); such maps have been considered in the groupoid
context in [1], under the name *-bijections, but we will use the term class-bijective
to describe this property. Evidently, if y, ST are measured equivalence relations on
(X, fi) and (Y, A) and q is a countable-to-one class-bijective homomorphism from
5" to y, there is a Borel cocycle <rzZ\if, X (AT)) and an isomorphism 6 of ?T with
#" x , / such that p°6 = q. (Of course, Sf x^ J exists for any cocycle cr e Z\y, X (N)).

PROPOSITION 1.5. With notation as above, if@lc.Sf is given, then
(a) there is a Borel bijection <I>: X x / -» X x J such that, if9~(J) denotes the transitive

relation on J, ((x, i)(y, i)) e ̂  (respectively &) if and only if (<&(x, i), &(y,j)) e
&t x 5"(/) (respectively Sfx3~(J));

(b) 3? is ergodic if and only if 01 is ergodic.

Proof. Let {<£,} be choice functions for 3 ? c ^ with each <f>j bijective, and define
$: X x / - » X x / by &(x,j) = (<f>j(x),j); the properties ascribed to 4> in (a) are
routine to verify, and 4> is evidently bijective since each of the functions <£, are,
yielding (a). The assertion (b) is now trivial. •

THEOREM 1.6. Let & on (X, fi) be given. Then
(a) ifaeZ1(Sf,Y. (J)) is such that S x^J is ergodic, a is the index cocycle of some

ergodic subrelation 91 of!/;
(b) if 01,91'^y are ergodic and have index cocycles a e Z ' ^ X (J)), <r'e

Z\y, X (J')) then 9t and 01' are conjugate under Aut (50 (respectively Int (Sf))
if and only ifJ = J' and [o-] = [<r'] up to Aut (50 (respectively [<r] = [a1]).

Proof, (a) Let aeZ\<f,"Z(J)) be ergodic, and let

0t={(x,y)ey:o-(x,y)(O) = O}.

Since yxaj is ergodic, we may choose Borel functions <j>y. X-*X, jzJ with
(x, <f>j(x))ey and a(x, <f>j(x))(O) = j . We claim that {</>,} are choice functions for
m s y. For if (x, y)ey and cr(x, y)(0) =j, then o-(^(x), j)(0) = 0 and so (<fc(x), >0 e
$ ; also if ze9t(<t>j(x))n9t(<f>k(x)), then o-(z, x)0) = 0 and <r(z, x)(k) = 0, so that
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j = k. Finally 9t(4>j(x)) = 9t(<f>k(y)) if and only if o-(4>j(x), <f>k(y))(O) = 0, and hence
if and only if cr(x, y)(k) =j, since

o-(x, y) = <r(x, <t>j(x))o-(<t>j(x), <t>k{y))<r{<l>k{y), y)-

Thus the index cocycle for 9t c 5? defined by {#;} is precisely o-.
(b) Let ^ S ' c ^ b e given, and suppose {<£,•}, {</>j} are (bijective) choice functions

for 3? and 3?'. If 0 € Aut (if) and 6(91) = &', then for each x, 0T(x) = 691(6'*x), so
that we may choose <£j(x) = 0° <f>j° 6~1(x); a straightforward calculation shows that
with these choice functions a'(6(x), 6(y)) = cr(x, y). Since, if 0 is inner (i.e. 6 e [if]),
a'°(6x6) is cohomologous to cr', we obtain one of the desired implications.
Conversely, suppose o-'°(0x0) is cohomologous to cr. Replacing 91' by 0'\9i'),
we may suppose that a' is cohomologous to cr; changing the choice functions for
either 91 or 9t' we may assume that cr = a'. We now have if xaj = S x^J; by
Proposition 1.5(c), the map

(x,y)eA:xJ^(071o</,j(x),y)

gives an isomorphism of 91' x 2T(J) with 9t x ST(J). Since

(<f>J1°<t>'J(x),x)eif /x.a.e.inx,

any of the maps 6j = <j>~1 ° <f>'j provides an inner automorphism of if which carries
9t' to 91 as required. •

For completeness we record the following.

PROPOSITION 1.7. Let 9t c ^ have index cocycle aeZl(^, X (/)). Then a cobounds
if and only if there is a partition {Xj}^,1 ofX such that fi(X}) > 0, 9t(Xj) = Xj and
®\Xj = y\xj for each jeJ.

Proof. Suppose X = \JN=~o xj w i t h XjnXk = (f>, ,x(Xj)>0, 9i(Xs) = Xj and
y\xi = 9t\X} for each/ By ergodicity of y we may choose Borel maps < :̂ X-*Xj
with {9t(4>j(x))}j partitioning !?(x) for each x. The cocycle a defined by the choice
maps {4>j} is easily seen to be the identity.

Conversely if 9t c y has trivial index cocycle, there are choice maps {<£,-} such
that for (x, y) e if, 9i(^{(x)) = 9t(<f>j(y)) if and only if i =j. With Xj = 9t(<j>j(X)), it
is easily checked that {Xj} partition X, and 9t\x. = if\Xj for a l l / •

We note in particular that if 91 c if is ergodic, the index cocycle for the pair
91 c if does not cobound.

We take the opportunity to correct an error in [22, Theorem 5.2, p. 1082] where
it is asserted that '5ifn = a'l(Hn) has finite equivalence classes'. The correct assertion
is that S€n is smooth - we conclude that 5if = U"= x^n is a union of smooth
equivalence relations, and hence hyperfinite, so the conclusion of [22, Theorem 5.2]
remains true. The smoothness is justified by the following result.

LEMMA 1.8. Let 9t = AX c if have choice functions {</>,} and associated cocycle o; and
let

):n(i) = i foralli>«}.

Then cr~i(Hn) is smooth.
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Proof. Note (x, y) e cr~l(Hn) if and only if 0,(x) = faiy) for all i>n. Thus {<£,: i > n)
are a countable family of o-~'(^n)-invariant Borel functions which distinguish
cr~1(Hn)-equivalence classes. By [14, Theorem 6.2], <r~x{Hn) is smooth. •

Finally some comments on the case where if on (X, 58, fi) is not assumed to be
of type Hi. Lemma 1.1, 1.2 and Proposition 1.7 remain true as stated; Lemma 1.3
is true if if (and hence 01) admits any invariant measure equivalent to n (i.e. if is
of type II), or if 0t admits no invariant measure equivalent to n (i.e. 01 is of type
III). The proofs in these cases are routine, but we do not know if the Lemma remains
true in the remaining case (0t of type II, and if of type III). Proposition 1.5 and
Theorem 1.6 hold as stated whenever Lemma 1.3 holds, with the same proof; in
fact 1.5(a) holds in general with the word 'bijective' replaced by 'map', and 1.5(b)
and 1.6(a) hold as stated in the general case.

2. Normality
We now isolate a distinguished class of subrelations, the normal ones. We keep the
notation of § 1.

Definition 2.1. Let 0t^if have index cocycle a. Then 01 is normal in if if the
restriction o-\m of a to 0t cobounds.

We note that any finite (or indeed any smooth) subrelation of if is normal, since
any such relation has trivial first cohomology.

THEOREM 2.2. Let 01c. if be given, with index cocycle o\ Then the following are
equivalent.
(a) 01 is normal in if;
(b) there are choice functions {</>,} for 0tc if with </>j e Endy (0t) for allj;
(c) the extension p:0t = ify.<rJ^ifis normal in the sense of Zimmer, [25];
(d) there is a discrete, ergodic measuredgroupoid (.2, v) andahomomorphismd: if '-*2L

such that
(i) ker0 = &
(ii) for any y 6 3. and xeX with 0(x) - s(y), the source of y, there existsyeX

with (y, x)eif and 6{y, x) = y;
(iii) for any discrete ergodic measured groupoid (&', v') and homomorphism

O':if^2L' with ker 0' 2 0t there is a homomorphism K : 2. -* 2.' with K° 0 = 6'.

Before we begin the proof, some comments are in order. By normality in the
sense of Zimmer, we mean the following adaptation of [25, Definition 5.4].

Definition 2.3. If if on (X, /A) and a e Z\if, £ (N)) are given, and ua(x, y): t\J) -•
£2{J) is the unitary cocycle defined by (M(T(X, y)g)(j) = £(«•(*, y)~\j)) for £e £\J),
we say a is normal or the extension p: if x^J^if is normal, if

u^(pxp)eZ\ifx,TJ

cobounds.
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We note that this is equivalent to [25, Definition 5.4] in the case where y is
generated by an action of a countable group G, and we view ^ x r j as being
generated by the action G described in the discussion following Definition 1.4.

The property ascribed to 6 in Theorem 2.2(d)(ii) will be referred to as class-
surjectivity. In view of 2.2(d)(iii), the groupoid {Si, v) is unique up to isomorphism
and will be referred to as the quotient £f\9t of &by 91.

Proof of Theorem 2.2.
(a)o(b). If o-\m cobounds, we may select choice functions {<£,} for 9t £ <f such

that if <r is the associated cocycle, cr(x, y) = l for (x, y) e 9t. But now, for (x, y) e 9t,
<r(x, y)(i) = i so that 9t{<f>i{x)) = »{<f>,iy)), or (<£,(*), </>,(>>)) e 9i for all i Conversely
if {<f>i}e Auty {91) are choice functions, the associated cocycle o- clearly satisfies
<T(X, y) = 1 for (x, y) e 91.

(a)o(c). Suppose that <T{X, y) = 1 for (x, y) e 91. Now MO.(X, y) = 1 for (x, y) e 9t.
For each xeX, choose io(x) e J such that (x, (ff^x^x)) e 91 and note that for y =

y, k))eSfx^J, we have ? = y1(x,7)r2r1(y, fc)"1, where

and

Since (<£,(*), <t>k{y))e9l and <r= 1 on 9t we have

so that ua °(pxp) cobounds, as required.
Conversely, suppose ua°(px.p) cobounds; from the factorization y =

y\{x,j)y2y\(y,k)~l above, we see that the cocycle (x, y) e 91-> u^ix, y) also
cobounds. So suppose u^(x,y) = v^x)'1 v2(y) for (x,y)e.9L where x+vx{x) is a
Borel family of unitaries on £2{J). Observe that if si = /°°(/) acting on £\J),
Mua{x,y){sd) = s4, so Ad vx{y)(si) = Ad v^{x){si) for {x,y)e9t. We may thus
choose a Borel family of unitaries x-* w(x) on £2(J), constant on 91 -classes, such
that if v2(x) = w(x)vt(x), Ad v2{x)($i) = si and u^x, y) = v2(x)~1v2(y) for (x, y) e 91.
Now each of the unitaries v2(x) is of the form v2(x) = M(x)v3(x), where M(x) is
a multiplication operator and v3{x) is of the form (v3(x)^)(j) = £{vx{j)) for some
permutation vx of J; it follows that o-(x, j )~ ' = f^x1 so that cr also cobounds on
9i. (The argument above is adapted from [9, p. 178]).

(b)<=>(d) We suppose first that there is a discrete measured ergodic groupoid
{Si, v) and a homomorphism 0: #"-> .2 with the properties given in (d). Since (2., v)
is ergodic and discrete, the sets {ye 3.: r(y) = y € S(0)} have constant cardinality, so
that there is a Borel isomorphism K: 3. -*• YxJ with g ° K = K ° s, where q is the
projection on Y - here Y = «(0) and / = {0,1,2,. . . , N -1} or {0,1,2,...} as usual.
In view of property (d)(ii), and using a routine selection argument we may choose
Borel maps <(>/. X-»X such that for each JCS X, K ° 6{<j>j(x), x) = {K{6{X))J). Note
that if (x, x') e 91, 6{x) = d(x') so that K ° 0(</>,(x), x) = K ° 6(<f>j(x'), x') and hence
(since 6(x, x') is a unit 5) 0(4>j(x), <j>j(x')) is also a unit in 2L. Since ker d = £% we
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conclude that </>j £ Endy (3?). To see that {<£,-} are choice functions for 01 ^ yt note
that if (z, x) e y and K ° 0(z, x) = (y,j), then 0(z, x) = 0(<t>j(x), x) so that (z, <£,(*)) e
0t; it follows that {&(4>j(x)} partition S^x), as required.

We note that the argument above in fact shows that the kernel of any class-
surjective homomorphism from y to a discrete ergodic measured groupoid is normal
in^ .

We now turn to the construction of the quotient groupoid y\0i\n the case 01 is
normal in y. Choose a family {<£,} of choice functions for 0t c y with <£, 6 Endy (R).
We let fJL = J® fjLydv(y) be the ergodic decomposition of /J. with respect to 0t. We
will produce a groupoid structure on J x Y; of course if 0t is ergodic, V is just a
point, and our groupoid will in fact be a group. Forj, kej and xeX, define j *xk = £
tomeanthat3?((^(0fc(x)) = S?(^(x)). Since <^eEndy (<%) for all j , j *x k is constant
on S%-classes, so there is a well defined Borel map (j,y,k)eJx YxJ-*j*ykeJ
satisfying j * a(x) k =j *x k, where a: X -» V is the canonical projection. In addition,
since JC-» a(<f>j(x)) is constant on S?-classes for each jeJ, there is a Borel map
$ / y-» Y such that 3>ji ° a = a ° <j>j.

We now define a groupoid structure 3. on JxY by

with product

(k,^j(y))(j,y) = (k*j,y).
y

We will check shortly that SL is indeed a groupoid with unit space (isomorphic
to) Y, and that (3., v) is a discrete measured ergodic groupoid, but first we introduce
the 'homomorphism' 0 and establish some of its properties. We define

0(x',x) = (j,a(x)) if {x',ct>j(x))e0l.

The class-surjectivity follows from the observation that &(<f>j(x),x) = (j,a(x)) for
each / Secondly, if

(x",x')ey,(x',x)ey and 6(x", x') = (k, «(*')), 0(x',x) = (j, a(x)),

than the product (k, a(x'))(j, a(x)) is defined in 3. and equal to (k*xj,a(x)).
However

x" ~m <f>k(x') ~m <t>k(<t>j(x)) ~m <l>,(x) where €=k*j;

thus 6(x", x) = (k *xj, a(x)) and 0 is multiplicative. To see 3 is a groupoid, we need

LEMMA 2.3. The product in 3 is associative, and a Borel map from 3(2) to 3.

Proof. Suppose that x, y, zeX, and that the product (j, a(x))((k, a(y)){£, a{z)) is
defined in 3. Then

a(y) = <$e(a(z)), a(x) = <&m(a(z)) where m = k * (,
a(z)

and the triple product is (j *a(z) (k *a(z) /, o(z)).

A routine calculation shows that 4>m(a(z)) = 4>fc($<.(a(z))), so the product
(j, a(x))(k, a(y)) is defined in 3 and equal to {j *o(>,) k, &({a{z))). Thus the triple
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product ((j, a(x))(k, a{y))){H, a(z)) is defined and equal to
(0' *a(y)k) *«(z) t, «(z))- It thus suffices to show

(j * k) * t=j * (k * €).
a(y) a(z) a(z) or(z)

But j *a(z) (k *a(z) £) = n if and only if

and (j *a(y) k) * a ( z ) / = n if and only if ^(<t>j ° <pk{<f>Az))) — &(<f>n(z))', associativity

is thus established. The fact that the product map and its domain in Si x SI are Borel
trivial. •

LEMMA 2.4. For all ye Si, there are unique elements u,veSl, with uy=y = yv.

Proof. For each xeX, there is a unique io(x)eJ such that 0i{<t>io(x){x)) = 0l(x).
Observe that i0 is Borel and constant on 3?-class, so that we may view j 0 as being
defined on Y. It is now routine to verify that y = (k,y)eSi, then u =
(io(®k(y)), ^k(y)) and v = (io(y), y) are the desired left and right units. •

It is now evident that the unit space of 2L can be identified with Y.

LEMMA 2.5. Si admits inverses, and y-* y"1 is Borel on Si.

Proof. Given (k, x) e J x X, there is a unique / = £{k, x) with 9t(<f>,(<f>k(x)) = ®(x);
further, £(k,x) is Borel and, for each k, constant on £%-classes, so we may view /
as being defined on / x Y. For (k, y) e Si we have

trivially, while

since {%(<f>k ° 4>e(k,x)i<i>k{x)) = &(<f>k(x)), which implies that with z =

Thus (k, yy1 = (/(fc, y), ^k{y)); evidently, (*,?)->(*, y)~l is Borel. D

We now return to the proof of Theorem 2.2. First, note that if E £ Y is v-null,
then a~\E), and hence </>k(a~l(E)) and ®(<f>k{a~l(E))), are /i-null, so that if F
is the ^-saturation of E, v{F) = ii{{Jk0t{<f>k{a'lE))) is also zero. The ergodicity
of {Si, v) follows automatically from that of &1 on (X, fi). To determine ker 6, let
(x',x)e&>, and observe that d(x',x) = (io(a(x)), a{x)) is a unit if and only if
(*'» <t>to(x)(x)) e S? and hence if and only (x', x) e 9t, by the choice of io(x).

Finally, suppose 6': Sf->Si' is a homomorphism of if to a discrete measured
groupoid {Si', v') with ker d' ^ 91. Since 0 is class-surjective, for each ye 3. and each
xe X with 0{x) = s(y), we may choose <£(x) e X with &(<f>(x), x) = y; by [10], we
may assume <f> is Borel. Note x-* 0'(</>(x), x) is constant on ^-classes in a'^siy));
but 91 is ergodic on (a~\y), fiy) for each y e Y, so that 6'(<f>(x), x) is equal /ts(T)-a.e.
to a constant which we denote by /c(y).

Clearly K is Borel and respects the measure classes in Si and Si'. To see that it is
a homomorphism, let {yi,yz)eSim, and choose Borel maps <f>t, <f>2 with

),x) = y,. for xea-1(s(yj)),j = l,2. Since s(y,) = r(y2), 02(x)ea
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for xea~1(s(y2)), so (<f>\° 4>2{x),x)ey is defined for xe a~\s(y2)). Since
0(</>, °4>2{x),x) = y{y2 and

0'(*i o <£2(x), x) = 0'(tf>, o <£2(x), tf>2(x))0'(4>2(x), x)

we obtain K{yly2) = n{y\)K{y2) as required. •

We also include the following result, which is intended as further justification
for the nomenclature 'normal subrelation'. Recall that if if is an ergodic equivalence
relation on (X, /JL), if G is a real algebraic group and a e Zx{if, G), then there is
an algebraic subgroup H of G such that
(a) a is cohomologous to ;6, where /?(SOs H;
(b) H is minimal among algebraic subgroups satisfying (a), and
(c) if a is cohomologous to y and y ( ^ ) c L where L s G is algebraic, then L

contains a conjugate of H.
Thus H is unique up to conjugacy; it (-or more precisely its conjugacy class) is

called the algebraic hull of a. (See [24] for further discussion.)

THEOREM 2.6. Let 0tc if be normal and ergodic, and let aeZx{if,G) be a cocycle,
where G is real and algebraic, and suppose that the algebraic hull of a is G. Then the
algebraic hull H of a\® is normal in G.

Proof. We know if is generated by 01 and a countable family {</>,}£ Auty (5?) from
Theorem 2.2, and Lemma 1.3. Since for (x, y) e 01 and $ € Auty (£%) we have

<*(y, (t>y) = a(y, x)a(x, (f>x)a(<t>x, <t>y)

and a($l) s H, we conclude a(y, <f>y) e Ha(x, <j>x)H, so that if [ ]: G-*H\G/H is
the canonical map, xe X-*[a(x, <£x)] is constant on 3?-classes. Since H\G/H is
countably separated [24, p. 34], we may assume [a(x, <f>x)~\ is constant, so there
exists gj,£G and measurable maps h^, k^,: X-*H such that a(y, <l>y) =
M^'&f.M*) for al] x- F r o m

a(x, 4>x)~ia(x,y)a(y, <fiy) = a(<f>x, <j>y),

we obtain

k<l,(xy1g^h4,(x)a{x, y)h^,(yyig+k+iy) = a{<f>x, <f>y)

so that (recalling a(&)cH and fc^,(X)s H),

gl%(x)a(x, y)h+(y)-lgt e H for (x, y) e 01.
Now since H is the algebraic hull of a\m, {/i^(x)a(x, y)/j<^(>')~1: (x, y) € 3?} generates
H as an algebraic group and we conclude that g^Hg^, s H. But the algebraic hull
of a is G, so if u {g^} generates G as an algebraic group, and H is thus normal. D

The crucial property of algebraic groups used in the argument above is the fact
that H\G/H is countably separated. The following assertion may be proved by the
same technique as used above.

THEOREM 2.7. Suppose 0t is normal in $f and ergodic, let Gbe a locally compact group
with H a closed subgroup and let a e Z\&, G). Suppose that
(a) a is not equivalent to a cocycle with values in a proper closed subgroup of G,
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(b) a\m cobounds into H, but not into any strictly smaller closed subgroup, and
(c) H\G/H is countable separated.

Then H is normal in G.

We note that the hypotheses (a) and (b) of the Theorem are met if if xa G and
01 xaH are ergodic and hypothesis (c) is met if G is discrete or compact. We also
note that if a e Zl(if, K) where K is compact, then we can find closed subgroups
G, H of K to which the theorem applies (see [25]).

We now turn to examples of normal subrelations and their quotients.

Example 2.8. Let if be given on (X, fi) as usual, and let 01 s if be a smooth relation.
As already noted, 01 is normal in if. Let F s X b e a Borel set which meets almost
all equivalence classes of 01 in a singleton; note /x(F)>0, and set 2 = if\F, the
reduction of if to F. For each xeX, let 0(x) e F be the unique point in 9?(x) n F.
Observe that (x,y)ei/'->(d(x), d(y))e£ is a homomorphism with kernel 0t, and
which is class surjective; 0 also has the universal property in Theorem 2.2(d), since
if 6': if -* 2' is a homomorphism with ker 8' 2 01, the restriction K of 6' to 3 provides
the factorization 6' = K° 6. Thus the quotient is (if\rn\F).

Example 2.7. If H is a countable group acting freely and ergodically on (X, /A),
generating an equivalence relation if, and if X s H is a normal subgroup which
generates 5? £ if, then 01 is normal in S. Indeed if {hj} are a complete set of coset
representatives for K in H, so H = {Jj Khj, and <f>j(x) = hjx, then {<̂ } is a set of
choice functions for ^ c ^ (whether X is normal or not), and <£,eAuty(£%)
whenever K is normal. Note that in this case, with the notation used in the
construction of the quotient groupoid Sf/0t,j*kk =jk, where jk is the product in
H/K. Note the parameter space (Y, v) for the ergodic decomposition of 01 carries
a natural non-singular action of G = H/K; the quotient groupoid is nothing but
GxY, and the quotient map 6 is given by 0(hx, x) = (hK, a(x)) where a is the
canonical map from X to Y. In view of the fact that the quotient Sf/01 depends
only on the isomorphism class of the pair 9? c y, we obtain the following result.

COROLLARY 2.10. For j =1 ,2 , let Hj be a countable group acting freely and non-
singularly on (Xj,fij), and let KJ^HJ be normal subgroups which act ergodically.
Suppose 0: Xx -* X2 is a Borel bijection with fi2° 0 ~ fix and

e(H1x) = H26(x), 6(Kl,x) = K2(8x) for^a.a.x

Then Hxl Kx is isomorphic with H2/K2.

Example 2.11. Let (2., v) be an arbitrary discrete measured ergodic groupoid. We
will construct a pair 01 £ if of countable non-singular equivalence relations with &
ergodic, 0t normal in if and if 101 isomorphic with (3., v). For y€ Y = 2.m let
Siy = {yeSL:r(y) = y}, let I(y) = 2yx N, let X(y) = UHy)Z2, with ft, the Haar
measure on X(y), and let 0ly be the equivalence relation on X(y) defined by the
natural action of the subgroup \j Hy) Z2. For y e 2. with s( y) = y, r( y) = y', define an
isomorphism ty: X(y)^X(y') by {tyx){yx, n) = x(y~1y1, n); observe that ty is an
isomorphism of % with Sty, that friT2 = *,,,*„ for (y,, y2) e 2.(2\ and that if r(y) =
s( y) = y, ty is an outer automorphism of 0ty unless y is a unit. By choosing (arbitrary)
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bijections of I(y) with N, we obtain an isomorphism of Yy.\\NZ2 with X =
{Jy X(y), and hence a standard Borel structure on X. We let \L - J® py dv{y) on X,
and let p: X-* Y be the obvious surjection. Define 0i on X by (x, x')e0t if and
only if p(x) = p(x') and (x, x') e 0tp(x). Define #" on X by (x, x') e if if and only if
there is a -ye 3 withp(x) = r(y), p(x')-s(y) and (x, tr(x'))e9tp(x). It is routine to
verify that if is ergodic on (AT, /u.). If we define 0: if-* 3. by 0(x, x') = y whenever
p{x) = r{y), p{x') = s(-y) and (x, ty(x')) e RP(X), it is straightforward to verify that 9
is class-surjective and has kernel 0i. It follows from the proof of Theorem 2.2 that
0t is normal in if, and from the construction of if/91 in Theorem 2.2 that if/® is
indeed isomorphic with {Si, v). We remark that in this example, 0t is hyperfinite
and of type Hi, and the type of if is controlled in the obvious way by the type of
the equivalence relation associated to (2L, v). Finally, we note that in an obvious
sense if is the skew product of the family of relations y e 2.i0)-* 0iy by the 'action'
of Si; however we will not pursue this here.

We now focus attention on normal ergodic subrelations. We first remark that if
0tzif is normal and ergodic, the group Q = if/3ft is (isomorphic to) the group
associated in [25,9] to the extension p: 9? -»#* - we leave the verification to the reader.

For our next result, we need the following observation. If 01 on (X, fi) is a discrete
measured equivalence relation, G a countable group and g -* $g a map from G to
the non-singular maps on (X, n) with the properties.

(a) if (x, x') e 01, (</>g(x), <£g(x')) € 0t for all geG, and
(b) (<£g ° 4>h(.x), 4>gh(x))e0l for all xeX we may define a new non-singular

equivalence relation if on (X, fx) by (x, x') e if if and only if, for some geG,
(x, 4>g(x')) e 0t. We refer to such a map <j> as a near action of G on Si by endomorphisms,
(or automorphisms if <f>geAut(0l) for all geG), and as an outer near action if
(<f>g(x), x)£0i for all g ^ e. We write if = 9l\i<t,G, and note that if the near action
is outer, there is a homomorphism 0: 9iv ^G^G defined by d(x, x') = g if
(x, <f>g{x'))e0t; clearly 6 is class surjective, has kernel 0i, and (Mv+G)/® is
precisely G.

THEOREM 2.12. Let 01 c Sf be normal and ergodic with quotient group Q. Then
(a) there is an outer near action <j>by Q as enolomorphism of 01 such that if = 9? v ^Q;
(b) the index cocycle <reZi(S, X ((?)) may be realized as a = p° 0, where d is the

quotient homomorphism and p is the Cayley representation ofQ in £ (Q) as right
translations.

Proof. Since the quotient map 6 is class-surjective, we may choose Borel maps
<l>q: X -* X with (<f>q(x), x)eif and 9{<f>qx, x) = q. It is automatic that q^*<j>q provides
an outer near action by (non-singular) endomorphisms, and that if = 01M ^.Q.

Further, since {<f>q}qsQ are choice functions for &izif, we may calculate the
associated cocycle <r by observing that a-(<f>qx, x)(p) = r if and only if 0t(<f>p(x)) =
0t{<f>r<i>q{x)) and hence if and only if p — rq, so o-(<f>qx, x) is right translation by q
on Q as required. •

THEOREM 2.13. Let 01 be normal and ergodic in if with if/01 = <?, and let {<£„} be a
near action of Q on 01 with 01 v $Q = if as in Theorem 2.10. For each subgroup H of
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Q, let ?FH = 01 si ^H. Then H -» STH is a lattice isomorphism from the subgroups of Q
the subrelations 5" of S with 0tzST^if, and 01 is normal in STH with 9~H/0t = H.
Further, STH is normal in if if and only if H is normal in Q.

Proof For each subgroup H of Q, it is clear that STH is an equivalence relation with
0t normal in 3~H and SfH/0l = H. Conversely suppose I s J c y , and let

Qx = {qeQ:(<t>qx,x)eSr},

for xeX. Since <j>q e Endy (<%) for each 4> we find Qx = Qy for (x, y) e 01, and by
ergodicity of 01, we conclude there is a subset H of Q such that Qx = H a.e. Since
ST is an equivalence relation, it follows that H is in fact a subgroup; trivially 2T = 3~H

(except possibly on a null set). By construction, H-* STH is a lattice isomorphism.
If H is normal in Q, it is clear that 3~H is normal in if (cf. Example 2.7). Conversely

if STH is normal in if and {qk} are coset representatives for H in Q (so Q = U #<&),
then if \fik = 0 ^ , {i/^} are choice functions for ^"H c 5̂ , and the associated cocycle
crH may be realized as o-H(x,y) = t(6(x,y)), where 0:y-»<2 is the canonical
homomorphism, and t is the action of Q on H \ Q by right translation. If o-H

cobounds on STH, o-H(x, y) = vxv~l for v: X-*^ (H\Q); then, since ker 0 = 0t and
0t is ergodic, t-x is constant a.e. We conclude crH = identity, so that for all Ice H\Q
and h e H, m(tjjk(hx)) = 0l{\jfk(x)); thus Hgkh = Hgk for all k and /i e f/, from which
normality of H follows easily. •

We will need in § 4 a notion stronger than that of normality; we will (provisionally)
call this strong normality.

Definition 2.14. Let 0t c if be a subrelation. We say 01 is strongly normal in if if

Since always Int {01) c Auty (3?) c Int (5^), Auta (5^) gives rise to an equivalence
relation, say % with 0tcqic<f. One easily sees that % is generated by a countable
subgroup of Int {if), so °ll is measurable. Strong normality is thus equivalent to
equality of °U and if. Clearly strong normality implies normality, but the converse
does not hold as the following example (which we owe to K. Schmidt) shows. In
the example if/01 is a measured equivalence relation, and thus far from being a
group.

THEOREM 2.15. Let 0t^ if be as usual on {X, /A), with 01 normal in if, and suppose
that if/01 is an equivalence relation ?T on {Y, v). Then, the equivalence relation
generated by Auty {01) on X {called °U above) is precisely {{x, x'): J{x, x') = 0}, where
J is the information cocycle of the pair {01, 3~) as in [20]. In particular, 0t is strongly
normal in if if and only if V = 0.

Proof. Let 6: &-* ST be the quotient map. We regard 0 as a map from X to Y with
H o 0"1 = v, 0{S{x)) = &(0{x)) for all xe X, and ker 6 = 01. We let Sy, Sg- denote
the Radon-Nikodym cocycles of if, 3~ with respect to the measures /A, V represen-
tively, and note 8? = 1, and / = log h? ° 0(2).

Note that if <f> e Endy (£%), then the map x e X - » 0{<f>{x)) is constant on ^-classes,
so there is a unique map <£: Y-* Y which is non-singular for v and such that
$ ° 0 = B ° (}). a.e. Then we may assume any such endomorphism carries fibres of </>
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to fibres of <t>. We will also write fi = J® \iy dv{y) for the decomposition of fi with
respect to the map 0, and note for later reference that fiy may be assumed ergodic
for 52 for each ye Y, and that (92, fj.y) is of uniformly type IIt or In, for some n.

Suppose now <£ e Auty (9?); we show that J((f>x, x) = 0 a.e. Observe that for almost
all y, (ji$y o 0 is an invariant probability measure for 92 on <f>~l{y), and that p$y ° <f>
is equivalent to \xy by the essential uniqueness of the decomposition of /* with
respect to <f>. Thus n$y ° <j> = \xy a.e. In view of the relation

d f l ' ( ) ° < f > , e ( x ) )

we conclude 8?(0(<f>x), 6{x)) = 1 a.e. since 6y = l and fi^y ° </> = fiy p-a.e. Thus
(<£x, x)eker/ .

Conversely, observe that 92 £ ker J is normal so that, by a slight modification of
the arguments of 1.1 (to allow for the possible non-ergodicity of ker J) we may
assume there exists endomorphisms {t/»,}; s Endy (92) with (x', x) e ker J if and only
if (*', il>j(x)) G 91 for some j . It thus suffices to show that if ^ e Endy (9?) is such
that (tli(s), x )eker / for all xeX, then there exists 4>eAuty(9S) such that
(<f>(x), 4i(x)) G 94 for almost all x

To see this, observe that since (e/»x, x)e.y for all x, there is a partition {Ek} of X
such that i//k = i/f|Et is 1-1 for each k (see [10]). Since ifo preserves MU,, , and since
sA^y, y) = 1 a.e., we conclude that /t^t ° if>k(Ek) = /^(Ek) a.e. in y for all fc, so that
Zk P*y(<l'k(Rk)) = 1 a.e. in j \ Using the ergodicity of (9?, /x^) and the fact that it is
finite, we conclude there exists partitions {F£} of 0~1(<A(.F)) and elements Vie
[K]M,(V) such that Vy

k($k(Ek n <f>~\y)) = Fy
k. The map 4>:X + X defined by <£(x) =

*̂<Ak(̂ ) for xeEkr\tf>~x(y) is thus a bijection; and routine arguments show we
may choose the sets {Fi} and maps Vy

k in such a manner that <f> and <f>~1 are
measurable. Since (<£(x), *l>(x))e(% for each xeX, by construction, the proof is
complete. •

We note that [20] provides a variety of examples of quotient relations 2T for
which the information cocycle / is not trivial. Also, Example 2.11 shows how to
construct a pair 92 s if for any given ?F.

Again, we close the section with comments regarding the situation where if is
not of type II,. All the material up to and including Theorem 2.11 holds, as stated
and as proved, in the general context. If if is of type II,*, (or indeed if Lemma 1.3
holds for 92 s if), we may strengthen the conclusion of Theorem 2.2(b) to read
"There are choice functions {<£,} for 92 s if with <£,€ Auty (9?) for all j \ Clearly,
Theorem 2.13 is special to the case where if is of type H,.

3. Classification results
Throughout this section, if denotes as usual, a discrete ergodic equivalence relation
on (X, fi), which is of type II]. We refer to [3] for a discussion of amenability of
such relations.

THEOREM 3.1. Suppose if is amenable. Then for each N<oo there is a bijective
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correspondence between the ergodic subrelations 5" of if of index N (up to automorph-
isms of if), and the conjugacy classes of transitive subgroups of £ (N).

Proof. Let 9t s if be ergodic of index TV, and let a creZ\if, £ (N)) be an index
cocycle for 91 = if. As noted in [25], there is a unique (up to conjugacy) subgroup
K of £ (TV) such that <r cobounds into K and, as a cocycle into X is ergodic. The
ergodicity of 91 and hence 9t x^J implies that K acts transitively on / =
{ 0 , 1 , . . . . N - l } .

Conversely, if K is a transitive subgroup of X (TV), then by [12], there is a cocycle
o-&Zl{if, K) which is ergodic, and this cocycle is unique up to cohomology and
automorphisms of if. Since a is ergodic into K and K acts transitively on
{1,2,. . . , N}, if xaj is ergodic. By Theorem 1.6(a) there is thus an ergodic sub-
relation 9t £ if whose index cocycle is cr, and by Theorem 1.6(b), 9t is uniquely
determined up to automorphisms of if. •

We note that in the Theorem above, the normal subrelations 91 of finite index N
in if correspond to transitive freely acting subgroups of £ (TV) of minimal order.
Theorem 3.1 has also been obtained (in the context of extensions) in [11].

THEOREM 3.2. Let if be amenable. Then for each countable amenable group Q, there
is a normal ergodic subrelation 91 of if such that if 191 is isomorphic with Q; further,
9t is unique up to automorphisms of if.

Proof. Suppose Q is a given countable amenable group. By [12], there is an essentially
unique ergodic aeZx(if,Q) and, again using Theorem 1.6, this determines an
ergodic subrelation 9t of if, unique up to automorphisms, with if/91 isomorphic
to Q.

Conversely, suppose 9t^ if is a given normal ergodic subrelation with if 191 = Q.
In order to prove that 9t is uniquely determined up to automorphisms of if by Q,
it suffices to show that Q is amenable, and to then appeal to [12] and Theorem 1.6.

Let {px} be a measurable, translation-invariant family of means on if, as in [3].
For each fe.£°°{Q) define F on if by F=f° 6, where 6 is the quotient map of
Theorem 2.2. Evidently F is a Borel function. For each x e X, let 6* be the restriction
of 6 to ry'(x) and note that x -* px{f ° 8X) is invariant under 9t since for {x, y) e 9t,
f° 6X = \(x, y)(f° 6y) and since, for (x, y) e if, px ° X(x, y) = py - here X(x, y) is the
map from t°°(ryl(y)) to / " W M ) defined by (A(x,y)<t>)(z) = <f>(z). Since 9t is
ergodic, px(f° 02) is thus constant a.e.; we denote this constant by m(f).

Evidently m is a positive linear functional on £°°(Q) with m(l) = 1. Further, if
q 6 Q, one easily checks that K(y, x)(/° 6X) = («/) ° 6y where 0(y, x) = q and "/(/>) =
fiq^p). We thus obtain px(f ° 0X) = py("f) whenever 6{y,x) = q, so that m(f) =
mCf) for each qe Q and/e/°°(<2). Thus Q is amenable, as required. •

We note that one may introduce a notion of 'relative amenability' for equivalence
relations 9io.if which corresponds under the duality operation 91 -* 9t of § 1 to
Zimmers notion of a relatively amenable extension. This, together with a number
of other closely related considerations, will be taken up in a subsequent paper, [21].

https://doi.org/10.1017/S0143385700004958 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004958


256 /. Feldman et al.

We note one further consequence of our classification result.

COROLLARY 3.3. Let &1 be amenable, and let 9 5 c ^ be normal and ergodic with
if 101 = Q. Then there is a homomorphism 6: Q-> Aut {01) with if= 01 v eQ.

Proof. It suffices to produce, for any amenable discrete group Q, an outer action of
Q on a type 11,̂  ergodic amenable relation 0t such that if = 01 v eQ is of type IIt.
This is routine. •

Perhaps surprisingly the requirement that 01 be amenable in Corollary 3.3 can
be dropped.

THEOREM 3.4. Let 0t be a discrete measured ergodic equivalence relation of type II , ,
and suppose that cf>: Q-»End {01) is an outer near action of a countable amenable
group Q as endomorphisms of 01. Then there is an outer action </»: Q-» Aut {01) with
{<f>q{x), il>q{x)) £ 0t for almost all x&X.

The proof of this result will occupy the remainder of the section. Note that by
elementary considerations (cf Lemma 1.3) we may assume that <t>q e Aut {01) for all
q e Q. The strategy of the proof will be to produce inductively a sequence of maps
(j>"\ Q^Aut{0t) such that
(i) for each x e X and qeQ, cj>"q{x) stabilizes as n-»oo;

(ii) {4>n
q{x), <t>q{x)) e 01 for all x and n;

(iii) for each p, q e Q, <f>"p ° <\>"p = <f>p
pq on sets Xn

M, with U n X"P,q = X (mod n).

If we can achieve this, and define 4>q{x) = <f>q{x) for large enough n, ip will satisfy
the conclusions of the Theorem.

To achieve the situation described above, we will use a 'cutting and stacking'
technique, a standard construction in ergodic theory (see for example [18]). There
are two complications. First in building the stack, we will not be able to use arbitrary
maps between levels of the stack, but use maps whose graphs lie in 0t—this will
critically use ergodicity of 01. Secondly, the various levels of the stack will be labelled
by elements of Q rather than integers, and to achieve the desired conclusions we
will need to use a variation of the 'e-quasi-tiling' technique in amenable groups, as
described in [18]. For the readers convenience, we recall some of the basic concepts
and results from [18]. Throughout, Q is a countable group; \A\ is the cardinality
of a set A

Definition 3.7. Finite subsets Alt..., An of Q are e-disjoint (where e > 0) if there
exists subsets B} £ Ah 1 <y < n which are disjoint and |B,|/|A,|> 1 - e , l < j < « .

Definition 3.8. The finite subsets A , , . . . , An of Q are said to be e-tiles if for each
finite subset FcQt there are finite subsets C , , . . . , Cn of Q such that

(i) for each j , the sets {Ap, ce Q} are e-disjoint;
(ii) the sets AJCJ, l s j s n are disjoint;

(iii) | (U;« ,4 ,C;)nF |>( l -«0 |F | .
By [18, § 1.3, Theorem 3], for any e >0, there exists neM and 5 , , . . . , Sn>0

such that whenever A , c A 2 £ - • sAM are finite subsets of Q with eeA} and
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Aj+i(AjAJl, 8j)—invariant for j = 1 , 2 , . . . , n -1, then Ax,...,An are e-tiles (Here

B being (D, 8) invariant means that \{pe B: Dpr, B # 0 and Dp n (Q - B) 5* 0 } | <

Note that if the set F above is sufficiently invariant under A , , . . . , An we can ensure
(iv) UJ^AJCJQF;

to do this, one simply replaces C, by C\ = {ce Ct: A,cg F} and notes that (i), (ii),
(iii) continue to hold.

The choice of C l 5 . . . , Cn satisfying (i)-(iv) above is called an e-tiling of F by
Ai,..., An, and the members of C , , . . . , Cn are called the e-tiling centres. We shall
want an additional property for our e-tilings.

Definition 3 .9 . T h e e - t i l e s A , , . . . , A n a r e s a i d t o h a v e distribution p = (pi,..., p n ) ,
where pj > 0, £ "=, ps•,— 1 if for each 8 > 0 there exists an 77 such that for each
(U"=i A> v)-invariant finite set F, there is an e-tiling C 1 ; . . . , Cn of F such that
(i)-(iv) holds, and

(v) for each i, \ l A - C l / U ^ , AJCJ\ -p,\ < 8.

L E M M A 3.10. Given e > 0, there exists ne N and 8lt... ,8n>0 such that ifee A , c

• • • c A , are finite sets with Aj+l(AjA~], 5,) invariant ( l < j < n - l ) , then A,,..., An

are e-tiles with some distribution p = (p,,...,pn).

Proof Lemma 2 of [18, § 1.3] guarantees that for any sufficiently invariant set F, we
may find a set Dm with {Amd: d e Dm) e-disjoint, contained in F, and \{JdeDm Amd\ >
e/2|F| i.e. we can cover at least a fixed fraction of any sufficiently invariant set by
almost disjoint translates of any of A,,..., Am. We thus take pn = e/2, pj =
e/2( l -£"=;+! Pt) for j>2, and />, = 1 - X ^ a 2 / v , and note that that by choosing
e-tiling centres Cn, Cn^x,... ,Ct successively so that AjCj covers a fraction within
8 of e/2 of F-\J(>j A(C(, the proof of [18, § 1.2, Theorem 6] still applies. We
leave the details to the reader. •

LEMMA 3.11. Let Q be a countable amenable group. Then there are sequences e,-»0,
n, e N such that for each i there is a sequence e e ^ c ^ c . - c A'ni of finite subsets
of Q and finite subsets C'jk ofQ(l ^j^ nt, 1 < fc< «,+i) and probability distributions
p' = (p\,...,p'n,) such that

(i) A'nicA\+\ and each A'k
+l is (A^A^)'1, e,+1)-invariant,

(ii) the sets {A)c: ce C'hk} are er disjoint for each fixed i and k;
(iii) the sets {A)C'jk: 1 < > < n} are, for each i and k, disjoint;
(iv) |U;=, AjCj,t| > (1 - e,)|AL+1| for each i, k;
(v) l j ; i , KC)M S ̂ ^ ' for each i, k;

(vi) I I^JC^I/IU;:, A)C\k\ -p)\ < ei+l;
(vii) \A^\Cik\/\A'k

+l\<p)foralli,j,k;

(viii) UT.i< = Q-
Proof. We first show the existence of appropriate sequences satisfying (i)-(vi) and
(viii). Let et > 0 be arbitrary and choose a system of ertiles A\,..., A\x, with some
distribution p\ Now take e 2

> 0 and choose e2-tiles A\,..., A2
n with some distribu-
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tion p2, and each A2
k sufficiently invariant under U" i i Aj so that by Lemma 3.10

there is an e,-tiling C2
tk,..., C\^k of A\ such that (iii)-(vi) are satisfied for i = 1.

Now proceed inductively; by amenability of Q one can simultaneously ensure (viii).
In order to achieve (vii), note we may choose ei+l < e,/4n, for each i; using (iv)

and (vi), we may choose each A'k
l so that l/\C'Jtk\<ei+i. Now observe that if

initially (iv) had been sharpened to |U"li A)C'jtk\> {\- eJ2)\A'k
x\ (which we may

clearly do) then by deleting one or more members of C)j(t, k = 1 w1+1, we may
bring each ratio lAjUCJ^/ lAn below p) without reducing |U"l , AJCJ>k|/|AJt+I| by
more than E{/2. •

We now return to the proof of Theorem 3.4. For brevity, we use the term £%-map
to mean a Borel map 6 defined and bijective on a set E s X with (x, &(x)) e 5? for
all xeE. Recall that if E, F e X with /*(£) = / t (F) , there exists an Si-map 0 with
e(E) = F (mod fi) (see for example [5]). We now establish the initial step in our
inductive construction; we will keep the notation of Lemma 3.11.

LEMMA 3.12. Let <j> = <j>° be an outer near action of Q as automorphisms of {9t, /*).
Then there are disjoint sets Sj, 1 ^j s «, of measure p)/\ A)\ and an outer near action
0 1 ofQ on (91, ft) such that

(i) (<£°(x), <t>l(x))€ 0t for allxeX and qeQ;
(ii) the map (q, x) e A) x S) -* 4>\(x) is bijective;

(iii) the sets Tj = U«€/tJ <t>l(Sj) are disjoint, 1 <j < n,;
(iv) ifp, q and pq e A), then </>, ° </»* = <f>\q on S).

Proof. Choose arbitrary disjoint sets S), 1 < J < M , with ii(S}) = p)/\A)\. Choose
98-maps djip), peA] such that {e){p)<j>°p{S}), pe A), \<j<nx} are disjoint—this
is possible since we have £" : , |Ajj/t(5j) = EJ_, p) = 1. Put fyip) = 6](p)<f>°p (p e A}),
and T} = \J,*A)Pj(p)Sj.

We now construct 4>'. For p e Aj and qe A) with pqe Aj , and for x e S ] , define
<f>pPj{q)x = Pj(pq)x. For abitrary p e Q , let R)(p) be those points of T) at which
<̂ J, is now defined, so R)(p) = 0 if pi A], and

*](/>) = U WtfSj-- °eA},P°£ A}) forp€ A>.

Observe that in both cases, <j>°p(T}-R){p)) and T)-<f>\{R}(p)) have the same
measure, so we may choose an 9?-map y){p) sending the first of these sets bijectively
to the second, and define <f>p = y){p) ° <f>°p on T) -R){p). By construction each </>,
is now an automorphism which leaves each Tj invariant, and such that
{<t>p(x), <j>°p(x))e^. for all x and p, so that (i), (ii), (iii) of the Lemma are satisfied.

It remains to check (v). If p, q and pq e Aj, and xeSJ, then

4>p o <j>\{x) = <l>1
pp1(q)x = P,{pq)x = 4>pq{x),

as required. •

We now proceed to the inductive step.

LEMMA 3.13. Assume that for £^i we have disjoint sets S/, 1 < J < M ^ of measure
p{j/\AJ\ and outer near actions <f>e of Q as automorphisms of'91 such that
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(i) tf is bijective from AfxSJ to T/= <f>'(Af)Sf;
(ii) the sets 7*/, 1 < y < n( are disjoint;

(iii) <t>e
pq{x) = </>p<££(x) /or x 6 Sf provided p, q and pq e Af.

Then we may choose disjoint subsets S'k
+1, 1 s & < ni+l of measure p'k

+l/\Ak
+l\ ana% an

outer near action <£'+1 of Q as automorphisms of 01 such that conditions (i), (ii), (iii)
above are satisfied (for i+l in place of i) and
(iv) (<^+1(x), KM)6 » M all x e X;
(v) for p e /4j~' / o r some j , <f>'p = <f>'p

+l on a set of measure at least (1 — 2e,)( l — e,).

Proof. Choose arbitrary disjoint subsets S'k
+1,1 < fc < «1+1 of X of measure plt+1/l^!k+1|»

and for c€Cj>fc, choose 0?-maps flj,fc(c) from ^c('S'(c+1) into S-, so that the sets
O'j.k ° <^c(5Jc+1) are disjoint for ce C\k—this is possible since

where we have used Lemma 3.1 l(vii) to obtain the inequality.
For ce C[k, choose subsets B'jik(c)^Aj such that the sets {B'Mk(c)c: ce C'Mk} are

disjoint and |Sj>k(c)|/|y4j|> (1 -e,)—the existence of such sets is guaranteed by
Lemma 3.11(ii). Define a map pi+1 on

U. Blj.k(c)c)xS'k
+i)(

by

pi+1(pc, x) = t'McMix) forpe B[k(c),xeS'k
+1;

by the choice of d'jk and hypothesis (ii) of this Lemma, /3,+1 is injective. We extend

A+i to

by defining

i + 1 -U U. B[k{c)c and xeSk
+i,

where v'k
x(p) is an 5?-map chosen so that the images f}i+i(p, S'k

+l) of Sf1 under
x-»/JI+1(p, x) are disjoint as p ranges over A'k

+1 and k varies from 1 to «,+,; thus

n+l= u Bl+l(P,sn
are disjoint, 1 < k< «,+1, and / i ( n + 1 ) = pi+1, so that {Jk:\ T'k

+1 = X.
We now define <t>i+1. If p, q and pgev4jt+1, and xe S'k

+l, set

Note that if p, q and pq e A'j+l, and x € 5J+1,

4>'+\x) = Pi+1(pq, x) = <(>P
+1(Pi+1(q, x)) = $p

+i o <j>'q
+\x),

so that (iii) is satisfied. To extend the definition of <f>i+i to Uk-1 Tk
+X, let /?l+1(p)

be the set of points of Tk
x at which <j>'p

+i is already defined. (Thus, if pi A?1,
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R'k
+\p) = 0). Since

-<f>'p
+l(R'k

+l(p)) being a subset of T'k
+i—we may choose an 02-map 4>'p

+i from

4>P(itl-Rlk1(p)) to n + 1 - 0 ; + 1 ( ^ i c + 1 ( p ) ) - We now clearly have <)>p
+x a bijection

of Tk
+X to itself for each k, 1 < k < «i + 1, and (<£p+1(x), 4>j,(*)) e ^ for all x e X.

Conditions (i), (ii), (Hi) are now satisfied (for i + 1); clearly (iv) is also satisfied.
To check (v), suppose that x e S'k

+1 for some k, p e A) for some j , c e C)>k, q e Bj fc(c)
and that pq e Aj (so that p, q, c, pq, qc, pqc all lie in A'k

+l); then we have

4>'P ° <t>£\x) = 0 i (A + i («c , x)) = ^ o ^ ; o O'jjicMx) = d>'p
+

q\l3i+1(c, x))

= <^;+1 o 4'q
+\pl+l(c x)) = <^;+1()3,.+1(qc, x)) = < ^ . ; + 1 » ^ ( x ) ,

so that </.; = < ĵ,+1 on (^^ ' (S^ 1 ) . Now for p e Ajr1,

using the e,-invariance of A] under Al
£

 l and the fact that |BJfc(c)|/|Aj| > 1 - e,. The

union of all the sets <j>'qV{Sl
k
l) for q, c as above thus has measure at least

-2ef) I I \Aj\\Cj,k\n(Sk ),

and this is at least

k

Proof of Theorem 3.4. We first show that for any peQ, the sequence </>'p(x) stabilizes
as i -» oo for almost all x. For p e A\, let

G(i,p) = {xe X: <j>e
p{x) = (f>e

p
+l(x) for all / s i+1} ;

note that by Lemma 3.13(v),

so if G(i) = Ope/*i G{i,p),
oo

e=t+\

By choosing et to decrease sufficiently rapidly, we have / A ( G ( I ) ) > l~Vi> where TJ,-

decreases to zero as rapidly as we please. Thus ju,(X-l iminf G(i)) = 0. Since for
any peQ, peA\ eventually and since for x e l i m inf G(i), <j>'p

+i(x) is eventually
constant, we are done.

Finally, we check multiplicativity. Recall from Lemma 3.13(iii), <f>'pq = <f>'p ° <j>'q on
S'j provided p, q, pq 6 A]. Thus if p, q, r, pq, qr, pqr are all in A),

<t>'pq ° <f>'r(x) = <t>'pqr(x) = <f>'p ° <l>'qr(x) = <f>'p ° <j>'q o <f>'r(x) for xe S'j,

and <j>'pq = <f>'p ° <j>'q on a set whose measure is at least 1 - TJ,, where 17, -» 0 as rapidly
as we please—this follows by an argument very similar to that used in the proof of
Lemma 3.13(v), the details of which we leave to the reader. Arguing now as in the
paragraph immediately above, we see that if typ = l i m , ^ <f>'p,peQ, then ^ » ^ , = i(/pq

for all p,qeQ. U
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We note that for groups Q with property T of Kazhdan, there is always at least
one near action of Q as automorphisms of an ergodic IIj relation which cannot be
perturbed to be an action - an example may be built using the construction of [4]
as a model, with essentially the same proof. Details are left to the reader. The
situation for non-discrete groups Q and discrete equivalence relations is completely
unknown.

Again, we close with comments on the situation for discrete ergodic equivalence
relations not of type IIj. Theorems 3.1 and 3.2 remain valid when 01 is amenable
and type lico, with no essential change in the proof, as does Corollary 3.3. However,
the 'uniqueness' part of Theorem 3.2 changes - an additional invariant appears.
Using the notation of Corollary 3.3, the homomorphism 0: Q-> Aut (0t) gives rise
to a homomorphism mod 0: Q-* R defined by

mod 0(g) = log

It is proven in [28] that mod 0 is a complete invariant for the action of Q on R up
to outer conjugacy, and therefore also for the pair 0t s <% v eQ.

It is easy to see from Proposition 1.5 that Theorem 3.4 remains valid for any
discrete group Q, amenable or not, and any properly infinite discrete ergodic
equivalence relation 0t. Again it is now possible to classify pairs S g y with if
amenable by applying further results of [29,30].

4. Rigidity
Our concern here is to investigate pairs of equivalence relations f c ^ under the
assumption that 01 or if is generated by a free (or essentially free) II, ation of a
lattice F in a semi-simple Lie group, plus additional assumptions on the nature of
the pair 0tcif. The results are, for the most part, variations on a theme developed
in [24 and the references therein], and we will draw heavily on results from these
sources.

THEOREM 4.1. Let G be a semi-simple non-compact connected Lie group with U-
r a n k ( G ) s 2 , and the centre of G being finite. Let F c G be a lattice, let (X, fi) be
any free ergodic II, T-space, let if'<= X x X be the associated equivalence relation, and
let 0tc if be a normal ergodic subrelation. Then 01 has finite index in if.

Proof. (First part.) We suppose first that if 101 = Q is amenable, and let 0: if-* Q
be the canonical cocycle with kernel 0t. Since T has Kazhdan's property T, 0 is
cohomologous to a cocycle 0O taking values in a finite subgroup Qo of Q, [24,
p. 162]. Since if xeQ and hence if x9o Q is ergodic, Qo= Q is finite as required.

We will complete the proof by showing that if 101 must be amenable. This will
be accomplished via the sequence of lemmas which follow. We keep the notation
and hypothesis of the Theorem throughout our discussion.

We will need to work with induced actions, and begin by recalling the definition
[24, p. 75] and some basic facts. If (Z, v) is a (right) F-space, and h: s e r \G-» G
is a Borel section for the projection, we may define an action of G on (Z, v) =
(T\GxZ, mx.v) where m is the finite invariant measure on T\G, by (s,z)g =
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(sg, zh(s)gh(sgy1). The G-space (Z, v) is called the G-space induced from the
T-space (Z, v). The map p: Z^>Y\G denned by p(s, z) = s is evidently Borel and
G-equivariant. We record the following basic facts.

LEMMA 4.2. Let (Z, «/), (Z,, vx) be Y-spaces (where the action on (Z,, «/,) is the
restriction to Y of a G action) and let (Z, £), (Z,, £,) be the induced G-spaces, with
p, px the projections on Y\ G. Then

(i) there is a G-equivariant isomorphism (ZxZt) -*ZxZj which commutes with
the projections to T\G. (Here ZxZx carries the diagonal action of Y, and ZxZx the
diagonal action of G.)

(ii) If there is a G-equivariant isomorphism #: (Z, £)-»(Z,, vx) such that the
diagram

r\G
commutes, then, for almost all seY, the actions of the isotropy groups G5 (of G on
T\G) at s on p~\s) and pjl(s) are conjugate.

Proof, (i) This is routine, and left to the reader.
(ii) This is the ergodic theory analogue of Mackey's Imprimitivity Theorem,

[15,23], and a proof may be constructed using the same technique; again, we leave
details to the reader. •

LEMMA 4.3. Suppose (Z, v) is an ergodic IIj Y-space, (Z,, vx) is a V-space, and P c G
is a parabolic subgroup. Suppose there are measurable Y-equivariant maps f: Z x
P\G-*Z,, g: ZX-*Z with g °f(z, Pg) = z. Then there is a parabolic subgroup P^P
of G and a Y-equivariant isomorphism <t> of Zx with Z x P^G so that

ZxP\G

\
ZxPx\G

commutes, where the maps in the bottom line are the obvious ones.

Proof. Let (Z x P\G)~, Zx, Z be the induced G-spaces, and let / , g be the induced
isomorphisms of G-spaces. By 4.2.1, we may identify (ZxP\G) with ZxP\G,

and then obtain a G-equivariant diagram

ZxP\G - U Z, - ^ Z.

By [24, p. 150], there is a parabolic subgroup P , 2 P and an G-equivariant iso-
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morphism <j> from Zx to Z x PX\G such that the diagram

J

ZxP\G

ZxPx\G

is G-equivariant and commutes, and the maps at the bottom are the obvious ones.
Since all the maps in this last diagram commute with the canonical projections on
T\G we may apply 4.2(ii) to obtain the desired conclusion. •

We note that Margulis [16] proves Lemma 4.3 in the case where Z is a point.
We will use the Lemma in a spirit very close to that of [16].

Proof of Theorem 4.1. (Final part.) Let £f/0l = Q and 0: V-* Q be as in the first
part, and suppose Q is not amenable. Let A be a compact convex subset of a
separable Banach space and IT: Q^ Aft (A) be an affine action of Q on A with no
fixed point. Thus IT ° 8: Sf-* Aft (A) is a cocycle; we let P s G be a minimal parabolic
and consider the cocycle £: (X x P\G) xF-* Aft (A) which is the composition of
IT" a with the projection onto XxF = $f. By [24, 4.3.4, 4.3.7] XxP\G is an
amenable T-space, so there exists a measurable map <f>:XxP\G->A such that
P«x, Pg)y) o <t>{(x, Pg)y) = <j>(x, Pg) for r €Fand (x, Pg)eXx P\G,or TT<> 0(x, y)-

Let Z = X x A with the skew product action (x, a)y = (xy, (IT ° 0(x, y)y\a)) of
F, define <&:XxP\G^>Z by $(*, Pg) = (x, </>(*, Pg)) and let V = (/M xm) °®~\
where m is a probability measure on P\G equivalent to the canonical quasi-invariant
measure on P\G. A routine calculation shows that <!> is F-equivariant; since the
composition of $ with the natural projection from X x A to X is the projection of
XxP\G to X, we may apply Lemma 4.3 to conclude that as T-spaces, there is a
parabolic subgroup PX^P and a T-equivariant isomorphism of X x Pt\G with Z
such that

XxPx\G » XxA

V
commute (the diagonal maps being projection).

We now claim P, ̂  G. If not, there is a T-invariant Borel map t/»: X -* A i.e. t//
satisfies IT ° d(x, •y)~1i/'(JC)= <M*y)- But now <}/(x) = ij>(xy) for (x, xy) € 9t, and since
91 is ergodic, if/(x) is a constant aoeA for /n-a.e. JC; evidently, a0 is fixed under
ir(Q), contradicting the choice of (A, IT). We may thus assume P, ¥= G.

Let U:G^>aU(L2{Px\G)) = aU be the natural unitary representation of G on
L2(P,\G); we note that U acts without fixed vectors, so that by [24, Theorem 2.2.20].
U(G) is strongly closed in <%. We also note that as P, ̂  G, U is faithful.
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Let i: if = A"xF-»F be the canonical cocycle, and 0\ia be the composition of i
with the inclusion F s G. In view of the isomorphism of X x PX\G with the skew
product X x , . 4 / 4 (as F-spaces), and in view of the triviality of rr ° d\gf we conclude
that the restriction of l /° iG to 5? is trivial as a cocycle into °li. There is thus an
3?-equivariant Borel map u:X-»% with u(x)= U(y)u(xy) for (x,xy)e&. The
measure fi ° u~' is now ergodic for the action of U(G) on % by left translation,
and hence supported on a single orbit U(G)u0, since <M/U(G) is countably
separated, (see for example [8]). Write u(x)= U{g(x))u0 and note that we now
have U{g(x))= U(ia(x,xy))U(g(xy)) for (x, xy)e.0t so that iG\& cobounds as a
cocycle into G. Thus g(x)g(xy)~1 = -y whenever (x, xy)e 0t. Choose a set XozX
of positive measure on which g is bounded, so that for x e Xo, {y e F: (x, xy) e S%, x e
Xo and JcyeX0} is also bounded. But this means that 0t\Xo has finite equivalence
classes, contradicting the ergodicity of £%. The proof is now complete. •

THEOREM 4.4. Let G be a simple, connected, non-compact Lie group, and let F c G
be a lattice. Let if be the equivalence relation generated by a free II, action of F on
(X, fi), and let Sic y be strongly normal and amenable. Then 0t is finite i.e. 9t{x) is
finite for almost all x.

Before beginning the proof, we note that Theorem 4.5 has no rank assumptions
on G, so the result applies to free groups. Further, Theorem 4.1 and 4.5 together
constitute an analogue of Margulis' result that a normal subgroup of a (higher rank)
lattice is either finite, or of finite index, [16].

Proof of 4.4. Let i: if^>Y be the natural cocycle, and suppose that 0t is not finite.
By Lemma 4.5 (see below), there is an algebraic, amenable non-central subgroup
Ac.G and an ^-invariant Borel map ij/:X->A\G i.e. i/»(x)i(x, y) = i/>(xy) for
(x, xy)e 0t. Since G is simple and A is amenable, the normalizer NG(A°) of A0 in
G is not all of G. Since NG(A°) is algebraic, we conclude by Lemma 4.6 (see below)
the map p ° t/>: X -* NG(A°)\G is i-invariant, and hence equivariant for the obvious
F-actions. Since X carries a finite F-invariant measure, there is a finite F-invariant
measure v on Na(A°)\G. However, by [24, § 3] the stabilizer Gv of v is algebraic;
since Gv 2 F and F is Zariski dense, Gv = G. By the Borel density theorem [24,
p. 41], JVG(A°) is discrete, so A0 is trivial, and NG(A°) = G. This contradiction
completes the proof modulo Lemmas 4.5, 4.6, which follow. •

So suppose 91 is not finite. Since Auty (£%) generates if and if is ergodic, we
conclude that the function x € X -* |58(x)| (the cardinality of &t(x)) is constant a.e.,
and hence infinite. We conclude that 9? is in fact ergodic.

LEMMA 4.5. Assume S? is ergodic, and let i: if^-Y be the canonical cocycle, let iG be
the composition of i with the inclusion into G, and let A be the algebraic hull of iO\® •
Then
(a) A is algebraic, amenable and non-central in G;
(b) there is ia\m invariant Borel map tp: x-> A\G and any two such maps i/» and i/>'

satisfy p ° ty = p <> ip', where p: A\G-* Na(A°)\G is the natural map.
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Proof, (a) The fact that the algebraic hull A of iG\m is algebraic and amenable
follows exactly as in [24, Theorem 9.2.3]. If A is central, then the composition of
'oi» with the projection of G onto G/3(G) (3(G) = the centre of G) cobounds and
the argument of the last paragraph of the proof of Theorem 4.1 shows that ia\m
cobounds, and so that 91 is finite. Thus A is non-central.

(b) follows from the arguments of [24, p. 174, last paragraph] without
change. •
LEMMA 4.6. Let i, A, t/» be as in Lemma 4.6. Then p ° t/j is invariant under i.

Proof. Let <f> e Auty ( $ ) , and define </»*: X-» A\G by t/i4'(x) = tjj(<f>x)i(<f>x, x). Note
that if (x, x') e 9t,

**(x')i(x; x) =

so that i/»* is also iO|g8 invariant. From 4.5(b) we conclude p ° </» = p ° i/»*, so that
/?»i/» is invariant under the restriction of iG to the equivalence relation generated
by 9t and (j>. Since if is generated by 3? and a countable set of elements from
Auty (3?), /> ° iff is in fact iG invariant as required. •

We remark that the only essential use of the hypothesis of strong normality of 91
in if is in the discussion immediately preceding Lemma 4.5, since the argument in
Lemma 4.6 works equally well for endomorphisms <f> e Endy {91). The conclusion
of Theorem 4.5 is thus valid for normal subrelations 91 of if provided |£%(x)| is a.e.
constant.

There is another situation in which the conclusions of Theorem 4.5 remain valid.

THEOREM 4.8. Let Nbe a complete finite volume Riemannian manifold with sectional
curvature fcsc<0, where c is fixed, and let Fez irx(N). Then if T is not amenable,
the conclusions of Theorem 4.5 are valid for F.

Proof. We give a sketch only, since the ideas involved are already contained in [27]
and the proof of Theorem 4.5.

Let N be the universal cover of N, let dN be boundary of N as in [6,27], and
consider the natural action of T on TV by deck transformations, and on d N as in
[6]. Recall that the stabilizer of any one or two-point set in dN is amenable,
[7, Corollary 3.3]. In addition, if M(dN) is the space of probability measures on
dN, and yn e T is a sequence with yr -» 00, there is a one or two-point set S = S({yn}) £
dN such that if ynv^* v0 for some v, voe M(dN), then supp (v0) s 5; 5 is uniquely
determined by {%,} - see [27, Theorem 3.7].

Suppose now 9t c y> is as in the statement of Theorem 4.8, and 9t is not finite.
As in the proof of Theorem 4.5, we may suppose 9t is ergodic. Let i: if-* F be the
canonical cocycle, and note that since 9t is amenable, there is an i|a -invariant
function v from X to M^N) . Aigviing as "in tYie proof of Lemma 5.2 of \Y)\
supp(^x) is a one or two-point set S(x) for almost all x, and S(x) is uniquely
determined. By perturbing v by elements of Auty (9t) as was done to </> in the proof
of Lemma 4.6, we conclude that x̂ > v(x) e M(3N) is in fact i-itwariant (on aU of
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Sf). Transporting the F-invariant measure fi to d N, i.e. considering vo =
J v(x) d/x(x), we deduce the existence of a F-invariant measure v0 on dN. Now
i>o has support in a one or two point set, and we conclude that F is amenable. This
contradiction completes the proof. •

We turn now to our final rigidity type result. As shown in [24, Corollary 5.2.2],
lattices in distinct connected simple Lie groups (of rank at least two) can never
have orbit equivalent free ergodic IIractions. We shall prove that such equivalence
relations remain distinct even when enlarged by an outer action of a discrete
amenable torsion free group. The torsion-free hypothesis is almost certainly not
necessary, but at this point, we do not see how to remove it.

We begin with some generalities. Let G be a connected simple Lie group with
trivial centre and with rank G > 2, let F c G be a lattice, and let 01 be the equivalence
relation generated by a free ergodic II, F-action on (X, fi). Let y be a 11,-equivalence
relation on (X, /J,) with 01 normal in if, and suppose if 101 = A. We let {<f>a: a e A}c
Auty (01) be automorphisms with <t>a<l>b = <f>ab modulo Int 01 and 01 v ̂ A = Sf.

Let (X,/I) be the induced G-space, and let 0t denote the equivalence relation
generated by the G-action. As noted in [24, p. 75], 0t is isomorphic with 0t x ^"(F\G),
where ST(Y\G) is the transitive relation on F\G. Evidently, <j>a = <t>ax\d are now
automorphisms of 01, and 0t v jA = &' =

PROPOSITION 4.9. With {4>a: aeA} as above, there exist homomorphisms aeA-*ij/ae
Aut (01), aeA->ya€ Aut (G) such that
(i) (4>a(y),4>a(y))€& for each aeA and ye X,

(H) fagta1 = 7a(g), g ̂  G.
Furthermore, ya is uniquely determined up to inner automorphisms of G.

Proof. The proof of [24, Theorem 5.2.1] guarantees for each aeA the existence of
automorphisms ipa, ya satisfying (i) and (ii). We first prove uniqueness of ya up to
Int(G). Evidently it is enough to show that if i ^ e l n t ( ^ ) and ij/g<j/~l = i<(g) for
some K e Aut (G) then K is inner.

Write <j>(y) = yh(y) for yeX, where h: X-* G is Borel. Since 4>g4>~* = K(g) we
obtain ygh(yg) = yh(y)i<(g) a.e. and hence gh(yg) = h(y)n(g) or^h(yg) =
g~lh(y)i<(g). Thus h: X -> H is equivariant for the given action of G on X and the
action g,-*g~lg\x(g) of G on itself. Since G is algebraic, and K is automatically
algebraic (see [2]), this last action is smooth ([24, p. 33]). Thus fi ° h ~1 is concentrated
on an orbit G/Go, where Go is the stabilizer of a point goe G. Now

which is an algebraic subgroup. But G/Go supports a finite invariant measure
ix o h~l, so by the Borel density Theorem ([24, p. 41]), G0 = G, and >c(g) = go'ggo
for all g, as required.

Thus, if e: Aut (G)-» Aut (G)/Int (G) is the quotient homomorphism, e ° y is a
homomorphism. By [2], e is split, so that modifying 4>a if necessary, we may assume
that y is a homomorphism.
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To complete the proof, note that if 4> is in Int (3?) and tj/giji~l = g on X for each
g then, writing t(i(y) = yh(y) with h: X^G Borel, we obtain /i(yg) = g-1fc00g- As
above /x ° /T1 is supported on the orbit of some point goe G, so that G/Ca(g0)
carries a finite invariant measure, Ca(g0) being the centralizer of g0 in G. Using
Borel density again, Ca(g0) = G, so g0, being central, is the identity, and h{y) is
the identity for all y. We conclude $ is the identity. It now follows that if (4>a, ya)
satisfy (i) and (ii) of Proposition 4.9, and if y is a homomorphism, so is i£ •

Let y and i£ be as in Proposition 4.9, and consider the semi-direct product G xyA.
We note the map

(g, a) € G xy A-> g<£a e Aut (X, /I)

is now a representation of G x r A on (X, /I) which generates ^, with the G action
generating &.

THEOREM 4.10. For j = 1,2, let G} be simple connected centre-free Lie groups with
rank Gj s 2, let F, s G, be lattices, and let 0ij be the equivalence relations generated
by free ergodic Wi-actions of F, on (Xj, fij). Let Sfj be II,-equivalence relations with
0ij normal in Zfj, and £fj/9lj = A,- amenable and torsion free. Then, if' &X and Sf2 ore
isomorphic, Gx is isomorphic with G2.

Proof. Let 9fy, ^ be the induced equivalence relations on (Xj, (L}), and let yy. A,-*
Aut (Gj) be as provided by Proposition 4.9. If #", and #"2 are orbit equivalent, so
are &x and §2. Let 4> be such an orbit equivalence and let a e Z 1 ^ , G2 x^ A2)
be the associated cocycle. If TT2 is the projection of G2xr2A2 on A2, 7r2°ae
Z'(^, ,A2); since A2 is torsion free, ir2° a|^, cobounds by [24, p. 162]. We may
thus assume that a\&t takes values in G2 and that there is a map <^: Xl-*X2 with
^i(j'g) = <?i(>')«(j', yg) for ( ,̂ g) e Xx x Gj, and with 6x(y) lying on the A2-orbit of
6(y) for almost all yeX, . Note /I2(fl,(X,))>0, so we conclude that £ , ($,00)2
^2(^i(>')) for almost all ^ e X , .

Let C2c G2 be the algebraic hull of a|gs, (see [24, p. 166]) and let N 2 s C2 be
the maximal normal amenable subgroup. We may assume that a|j?, takes values in
C2. Note that if N2= C2, C2 is amenable, so by [24, p. 162], a cobounds into a
compact subgroup K2 of C2. There is thus a Borel map 8[: Xt->X2 with

^2(e[(y)) = ^2(el(y)) a.e.

and

But X2 acts smoothly, so for some fixed y2eX2, 6\(y) e ̂ 2X2 for almost all y e Xi.
But then ^I(^)Gy2G2 for almost all yeX2 which is a contradiction. We may thus
assume C2/N2 is non-trivial.

Since C2/ N2 has no compact subgroup, the cocycle super-rigidity theorem of [24,
p. 98] guarantees the existence of a non-trivial rational homomorphism n\: G,-»
C2/N2. However, there is a local splitting from C2/N2 to C2, so there is a non-trivial
local homomorphism irx: Gl-*G2.

Reversing the roles of Sfx and &2, we similarly obtain a non-trivial local rational
homomorphism ir2: G2-*GX, and hence isomorphism of Gx and G2. •
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5. Unsolved problems
We would like to conclude by mentioning some unsolved problems which merit
consideration.

The first and simplest is in regard to Theorem 4.10; the hypothesis that Aj is
torsion free should not be necessary (j = 1,2), but we do not know how to remove
it.

The second is in relation to Theorem 2.13, which establishes a lattice isomorphism
between intermediate relations 5 " , S c J c ^ and subgroups of the quotient if/01 =
Q (when 01 is normal and ergodic in if). If 01 is amenable, and N is the maximal
normal amenable subgroup in Q, it is routine to check that 2TN is a maximal, normal,
amenable subrelation of if. We know of examples of relations if which contain
distinct maximal normal amenable subrelations, but we know of no examples of
relations if admitting maximal normal amenable subrelations which are not conju-
gate under Aut (if). On the other hand, Theorem 4.4 and 4.8 give examples of
equivalence relations which admit no amenable, ergodic, normal subrelations. We
are thus faced with two problems: determine when a given equivalence relation
admits a normal amenable ergodic subrelation, and determine under what conditions
maximal such subrelations are unique up to conjugacy.

The final problem concerns what might be called the 'algebra of normal subrela-
tions'. Thus for example, if 01, OF are normal and ergodic in if, we should have
0tv &/01 isomorphic with if/01 n 2f, and this is indeed true if 0t n 2T is ergodic. It
would be desirable to find a correct version of this statement when 01 n J is not
ergodic, and to find analogues of the other standard computational tools for normal
subgroups from group theory.
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