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ON THE COFINALITY OF THE LEAST �-STRONGLY
COMPACT CARDINAL

ZHIXING YOU AND JIACHEN YUAN

Abstract. In this paper, we characterize the possible cofinalities of the least �-strongly compact cardinal.
We show that, on the one hand, for any regular cardinal, �, that carries a �-complete uniform ultrafilter, it
is consistent, relative to the existence of a supercompact cardinal above �, that the least �-strongly compact
cardinal has cofinality �. On the other hand, provably the cofinality of the least �-strongly compact cardinal
always carries a �-complete uniform ultrafilter.

§1. Introduction. In [1, 2], Bagaria and Magidor introduced the notion of
�-strong compactness (see Definition 2.1), which generalized the well-known notion
of strong compactness.
�-strong compactness shares some similarities with strong compactness. For

example, �-strong compactness can be characterized in terms of compactness
properties of infinitary languages, elementary embeddings, ultrafilters, etc. (see [1,
2, 13]).

It turns out that the notion of �-strong compactness, especially for the case � = �1,
provides a weaker large cardinal strength, which can be used to prove various results
known to follow from strong compactness. For example, the SCH holds above the
least �1-strongly compact cardinal (see [1]). Using this fact, recently Goldberg [8]
proved a celebrated conjecture of Woodin1 by showing that if the conjecture fails,
then there exists an �1-strongly compact cardinal, and the conjecture holds if the
SCH holds above some cardinal, and in particular, if there is an�1-strongly compact
cardinal. Besides these consequences, �-strong compactness also corresponds to the
exact large cardinal strength of some natural properties of interest in different areas
(see [1, 2]).

The least �-strongly compact cardinal is of particular interest, because it may
have very odd properties. Bagaria and Magidor [1] showed that this cardinal must
be a limit cardinal. But surprisingly, it may not be weakly inaccessible. Namely,
they showed that the first �1-strongly compact cardinal can be singular (see [2]).
Also recently Gitik [7] constructed a model of ZFC, relative to the existence of
a supercompact cardinal, in which the least �-strongly compact cardinal is not
strongly compact, but stays regular. He also constructed a model of ZFC, relative to
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570 ZHIXING YOU AND JIACHEN YUAN

the existence of two supercompact cardinals, in which the least �-strongly compact
cardinal is not a strong limit cardinal.

However, there are some limitations about the cofinality of the least �-strongly
compact cardinal. By a standard argument in [1], one can see the cofinality must be
greater than or equal to the least measurable cardinal.

Following the results of Bagaria–Magidor, we became very curious about the
exact limitations of the cofinality of the least �-strongly compact cardinal. This is
how our work got started.

In this paper, Theorem 4.2 extends the consistency result of Bagaria–Magidor
[2, Theorem 6.1] to �-measurable cardinals, and Proposition 4.7 shows this result is
optimal. As a corollary (Corollary 4.6), we show that relative to the existence of two
supercompact cardinals, for any regular cardinal � between them, it is consistent
that � is the cofinality of the least �1-strongly compact cardinal.

1.1. The structure of the paper. In Section 2 we cover some basic technical
preliminaries about �-strongly compact cardinals, Radin forcing and iterated
ultrapowers. We give the main idea of the proof of our consistency result in Section 3.
Finally, in Section 4 we prove the consistency result and show that it is optimal.

§2. Preliminaries. We use V to denote the ground model in which we work. For
any ordinals α < � , we use [α, �], [α, �), (α, �], and (α, �) for the corresponding
standard interval notation. Let idM denote the class identity function from M to
M, and we will simply write id when M is clear from the context. For a sequence u,
let lh(u) denote the length of u. For an elementary embedding j : V →M with M
transitive, crit(j) denotes the critical point of j.

For every � with Cantor normal form � = ��1 + ··· + ��n , where �1 ≥ ··· ≥ �n, we
let �� := 1 + �n. By induction, one may easily show that if � is a successor ordinal,
then �� = 1; and if � is a limit ordinal, then �� = lim supα<�(�α + 1).

For a cardinal �, a sequence 〈Cα | α < �+〉 is a ��,�-sequence if and only if
whenever α is a limit ordinal with � < α < �+,

(1) 1 ≤ |Cα | ≤ �, and
(2) for all C ∈ Cα :

(a) C is a club subset of α.
(b) C has order type at most �.
(c) If 	 is a limit point of C, then C ∩ 	 ∈ C	.

For every A with |A| ≥ κ, let Pκ(A) = {x ⊆ A | |x| < κ}. A set U ⊆ Pκ(A) is a
measure if it is a non-principal κ-complete ultrafilter on Pκ(A). A measure U on
Pκ(A) is fine if for every x ∈ Pκ(A), {y ∈ Pκ(A) | x ⊆ y} ∈ U . A measure U on
Pκ(A) is normal if for any function f : Pκ(A) → A with {x ∈ Pκ(A) | f(x) ∈ x} ∈
U , there is a set in U on which f is constant.

A cardinal κ is α-supercompact if there exists an elementary embedding j :
V →M with M transitive such that crit(j) = κ, j(κ) > α and M is closed under
sequences of length α. A cardinal κ is supercompact if it is α-supercompact for every
α. Equivalently, κ is supercompact if and only if for every α ≥ κ, there is a normal
fine measure on Pκ(α) (see [10, Section 22]).
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2.1. �-strongly compact cardinals.

Definition 2.1 [1, 2]. Suppose � ≥ � are uncountable cardinals.

(1) For every α ≥ �, � is �-strongly compact up toα if there exists a definable
elementary embedding j : V →M with M transitive, such that crit(j) ≥ �
and there exists a D ∈M such that j′′α ⊆ D andM |= |D| < j(�).

(2) � is �-strongly compact if � is �-strongly compact up to α for every α ≥ �.

It is easy to see that if � is �-strongly compact, then it is �′-strongly compact for
every uncountable cardinal �′ < �, and any cardinal greater than � is also �-strongly
compact.

We say that � is �-measurable if and only if it is �-strongly compact up to �.
Usuba gave a characterization of �-strongly compact cardinals in terms of

�-complete uniform ultrafilters [13, Theorem 1.2], which generalized a result of
Ketonen. The following proposition is a simple local version of the characterization.

Proposition 2.2. Suppose � ≥ � are uncountable regular cardinals. Then � is
�-measurable if and only if � carries a �-complete uniform ultrafilter, i.e., there is
a �-complete ultrafilter U over � such that every A ∈ U has cardinality �.

Proof. If � is �-measurable, then there exists a definable elementary embedding
j : V →M with M transitive, such that crit(j) ≥ � and there exists a D ∈M so
that j′′� ⊆ D and M � |D| < j(�). Since � is regular, we have j(�) is regular in
M. Hence sup(j′′�) < j(�). Now we may define a �-complete uniform ultrafilter U
over � by X ∈ U if and only if X ⊆ � and sup(j′′�) ∈ j(X ).

Conversely, if � carries a �-complete uniform ultrafilter, say U, then the canon-
ical embedding jU : V →MU ∼= Ult(V,U ) satisfies crit(jU ) ≥ � and sup(j′′�) ≤
[id]U < j(�). Thus jU witnesses that � is �-measurable. �

Theorem 2.3 [1]. The least �-strongly compact cardinal is a limit cardinal.

2.2. Radin forcing. We will generally follow [2, Section 6.1] for the presentation
of Radin forcing. For the sake of completeness, we also review its definition
and some related basic properties, including the coherence of measure sequences
(Lemma 2.5), the characterization of Radin generic objects via the geometric
conditions (Theorem 2.9), and the construction of Radin generic objects via iterated
ultrapowers (Theorem 2.12). For the readers’ convenience, we also give proofs for
some of these properties. Readers who are familiar with Radin forcing may skip
these details.

We first define measure sequences, which are the building blocks of the Radin
forcing.

Definition 2.4. A non-empty sequence u = 〈u(α) | α < lh(u)〉 is a measure
sequence if there exists a definable elementary embedding j : V →M with M
transitive such that u(0) = crit(j), and for each α with 0 < α < lh(u), u � α ∈M
and u(α) = {A ⊆ Vu(0) | u � α ∈ j(A)}.

For simplicity of notation, we write κ(u) for u(0), F(u) for
⋂

0<α<lh(u) u(α) if the
length of u is greater than 1, and F(u) for {∅} otherwise.
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The following lemma is a mild modification of a lemma of Cummings and Woodin
[6, Lemma 5.1], which shows that every measure sequence u with lh(u) < κ(u) is
coherent.

Lemma 2.5. Suppose u = 〈u(α) | α < lh(u)〉 is a measure sequence with
1 < lh(u) < κ(u). For every α with 0 < α < lh(u), let jα : V → Nα ∼= Ult(V, u(α))
be the canonical embedding. Then u � α ∈ Nα and the measure sequence of length
α + 1 given by jα is exactly u � (α + 1).

Proof. Let κ := κ(u). Since u is a measure sequence, we may find a definable
elementary embedding j : V → N with N transitive such that for every α with
0 < α < lh(u), u � α ∈ N and u(α) = {A ⊆ Vκ | u � α ∈ j(A)}.

Fix any α with 0 < α < lh(u). For any x ∈ Nα , we can find a function f : Vκ →
V representing it, and we denote x by [f]α . Now we will define an embedding
k : Nα → N . Let k([f]α) = j(f)(u � α) for every [f]α ∈ Nα . Then it is easy to see
k is well-defined and elementary, and j = k ◦ jα .

Claim 2.6. u � α = [id]α ∈ Nα .

Proof. By the definition of k, k([id]α) = j(id)(u � α) = u � α. So we only need
to prove that k(u � α) = u � α.

We will first prove k(κ) = κ. Note that for every � < κ, k(�) = k(jα(�)) =
j(�) = � , so crit(k) ≥ κ. Meanwhile, k([id]α(0)) = u(0) = κ since k([id]α) = u � α
with α > 0. But since k(�) = � < κ for every � < κ, it follows that [id]α(0) ≥ κ.
Thus [id]α(0) = κ. Consequently, k(κ) = κ and crit(k) > κ.

Now let us prove k(u � α) = u � α. It is easy to see Nα ∩ Vκ+1 = Vκ+1 = N ∩
Vκ+1 and

∀X ∈ Nα ∩ Vκ+1(k(X ) = X ). (1)

Take any 	 < α. Then u(	) = k′′u(	) ⊆ k(u(	)) by (1). SinceNα ∩ Vκ+1 = Vκ+1 =
N ∩ Vκ+1, and by the maximality of u(	) as a filter, we have k(u(	)) = u(	). Note
also that as k fixes the length of u � α, we have k(u � α) = u � α. �

Now we can prove that the measure sequence of length α + 1 obtained from jα ,
say v, is exactly u � (α + 1) by induction on � with � ≤ α. Obviously, v(�) = κ =
u(�) ∈ Nα if � = 0. Now suppose inductively that v � � = u � � ∈ Nα . For every
X ∈ Vκ+1,

X ∈ v(�) ⇔ u � � = v � � ∈ jα(X ) ⇔ u � � = k(u � �) ∈ k(jα(X ))

= j(X ) ⇔ X ∈ u(�).

The first and last “ ⇔ ” hold by definition, the first equality holds by induction, the
second “ ⇔ ” holds by elementarity of k, and the second equality was proved above.
Hence v = u � (α + 1). �

We define next the classU∞ of measure sequences as follows. LetU0 = {u | u is a
measure sequence}, and for every n < �, letUn+1 = {u ∈ Un |Un ∩ Vκ(u) ∈ F(u)}.
Finally, set U∞ =

⋂
n<� Un. The point is that if u ∈ U∞, then for every α with

0 < α < lh(u), u(α) concentrates on U∞ ∩ Vκ(u).
The class U∞ is non-empty if there exists a j : V →M with crit(j) = κ, Vκ+2 ⊆

M , and M is closed under sequences of length κ, for then we can get a measure
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sequence u from j with lh(u) ≥ (2κ)+ and for every α < (2κ)+, u � α ∈ U∞ (see [5]
or [6] for details). In particular, this also holds for everyα-supercompact embedding
with α ≥ |Vκ+2|.

In the sequel, if we say u is a measure sequence, we mean that u is in U∞. Given
a measure sequence u of length at least 2, we may now define the Radin forcing Ru .

Definition 2.7. Ru consists of finite sequences p = 〈(u0, A0), ... , (un, An)〉,
where:

(1) For every i ≤ n, ui ∈ U∞, Ai ∈ F(ui), and Ai ⊆ U∞.
(2) For every i < n, (ui , Ai) ∈ Vκ(ui+1).
(3) un = u.

(We say u0, ... , un occur in p.)
The ordering on Ru is defined as follows. If p = 〈(u0, A0), ... , (un, An)〉 and q =

〈(v0, B0), ... , (vm, Bm)〉 are in Ru , then p ≤ q if and only if:

(1) {v0, ... , vm} ⊆ {u0, ... , un}.
(2) For each j ≤ m and i ≤ n, if vj = ui , then Ai ⊆ Bj .
(3) If i ≤ n is such that ui /∈ {v0, ... , vm} and if j ≤ m is the least such that
ui(0) < vj(0), then ui ∈ Bj and Ai ⊆ Bj .

Given an Ru-generic filter G over V, let gG := 〈gα | α < lh(gG)〉 be the generic
sequence given by G. Namely, gG is the unique sequence consisting of all measure
sequences w, such that w �= u and w occurs in some p ∈ G ; and if α < � < lh(gG),
then κ(gα) < κ(g�). Also let CG = {κ(gα) | α < lh(gG)}. Then CG is a club subset
of κ(u). In addition, if lh(u) < κ(u), then there is a condition p ∈ Ru such that p
forces that the order type of CG is �–1+lh(u). (See [6] for details.)

It is not hard to see that G can be recovered from gG , so we may view gG as the
generic object. Indeed, G consists of all p ∈ Ru such that:

(1) If v occurs in p and v �= u, then v = gα for some α < lh(gG).
(2) For every α < lh(gG), gα occurs in some q ≤ p.

Definition 2.8. Suppose M is an inner model of ZFC and � is a limit ordinal.
Let w(�) be a measure sequence in M, and let w = 〈w(α) | α < �〉 be a sequence
of measure sequences in M. Then w is geometric with respect to w(�) and M if and
only if the following holds:

(1) The sequence 〈κ(w(α)) | α ≤ �〉 is increasing continuous.
(2) For every limit α ≤ � and every A ∈M ∩ Vκ(w(α))+1, A ∈ F(w(α)) if and

only if w � α is eventually contained in A, i.e., there exists an αA < α such
that for every � with αA < � < α, w(�) ∈ A.

The following theorem, due to W. Mitchell, characterizes Radin generic sequences
in terms of the geometric condition. We follow the notation of Definition 2.8 in the
statement of the next theorem.

Theorem 2.9 [11]. A sequence w is geometric with respect to w(�) and M if and
only if w is a Radin generic sequence given by some Rw(�)-generic filter over M.

According to (2) of Definition 2.8, for the case � < κ(w(0)), if w is geometric
w.r.t. w(�) and M, i.e., w is a Radin generic sequence given by some Rw(�)-generic
filter over M, then F(w(α)) concentrates on measure sequences of length less than
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lh(w(α)) for every α ≤ �. Hence, it is easily seen that lh(w(α)) = 1 if α < � is
a successor ordinal, and lh(w(α)) = lim sup�<α(lh(w(�)) + 1) if α < � is a limit
ordinal. In other words, lh(w(α)) = �α for every α ≤ �, where �α is defined at the
beginning of this section.

Now we may define u-iterated ultrapowers as follows.

Definition 2.10. Suppose lh(u) < κ(u), and � ≤ �–1+lh(u) is a limit ordinal.
(1) 〈Mα, �α,α′ | α ≤ α′ ≤ �〉 is an iterated ultrapower if and only if:

(a) M0 = V and �α,α = idMα for every α ≤ �.
(b) Mα+1

∼= Ult(Mα,Wα) is a transitive class, where Wα ∈Mα is a κα-
complete ultrafilter over κα (or Mα ∩ Vκα ) for some κα , and the
ultrapower is constructed in Mα ; �α,α+1 :Mα →Mα+1

∼= Ult(Mα,Wα)
is the canonical embedding, and for every � < α, ��,α+1 = �α,α+1 ◦ ��,α .

(c) If � ≤ � is a limit ordinal, thenM� is the direct limit of 〈Mα, �α,α′ | α ≤
α′ < �〉, and for every α < �, �α,� :Mα →M� is the corresponding
embedding.

(2) 〈Mα, �α,α′ |α ≤ α′ ≤ �〉 is a u-iterated ultrapower if and only if it is an iterated
ultrapower, and in (1b), κα = �0,α(κ(u)) andWα = �0,α(u)(�α).

For simplicity of notation, we write �α for �0,α for every α ≤ �, � for �� and M for
M� . Here we require that the length � of a u-iterated ultrapower is less than or equal
to �–1+lh(u), because �α should be less than lh(u) for every α < �.

Next, following the notation of the definition above, let 〈Mα, �α,α′ | α ≤ α′ ≤ �〉
be the u-iterated ultrapower of length �, letw = 〈�α(u) � �α |α < �〉, and letw(�) =
��(u) � �� .

We will use u-iterated ultrapowers to construct a Radin generic sequence over
some target model. We first prove the following lemma.

Lemma 2.11. Suppose � ≤ � is a limit ordinal. If 	 < � satisfies that �α < �� for
every α with 	 ≤ α < �, then for every Ā ∈ F(�	(u) � ��), we have

{w(α) | 	 ≤ α < �} ⊆ �	,�(Ā). (2)

In particular, for every limit � ≤ �, if A ∈ F(��(u) � ��) = F(w(�)), then

w � � is eventually contained in A. (3)

Proof. For every α with 	 ≤ α < �, since Ā ∈ F(�	(u) � ��) and �	,α
is elementary, we have Mα |= �	,α(Ā) ∈ F(�α(u) � ��). By our assumption,
�α < �� , so Mα |= �	,α(Ā) ∈ �α(u)(�α). Meanwhile, by the definition of the
u-iterated ultrapower 〈Mα′ , �α′,α′′ | α′ ≤ α′′ ≤ �〉, we have �α,α+1 :Mα →Mα+1

∼=
Ult(Mα, �α(u)(�α)). Note also that �α(u) is a measure sequence in Mα , and the
measure sequence of length �α + 1 obtained from �α,α+1 is exactly �α(u) � (�α + 1)
by Lemma 2.5. Hence,

Mα+1 |= w(α) = �α(u) � �α ∈ �α,α+1(�	,α(Ā)) = �	,α+1(Ā).

Since �α+1,� is elementary, and w(α) is fixed by �α+1,� , i.e., �α+1,�(w(α)) = w(α),
we haveM� |= w(α) ∈ �	,�(Ā). Hence w(α) ∈ �	,�(Ā). So (2) holds.

Now take any limit � ≤ �, and we prove that (3) holds. Since A ∈ F(��(u) � ��),
we can pick a sufficiently large �̄ < �, so that �α < �� for every α with �̄ ≤ α < �,
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and there exists an Ā ∈M�̄ such that ��̄,�(Ā) = A. Then Ā ∈ F(��̄(u) � ��). Hence
{w(α) | �̄ ≤ α < �} ⊆ A, which means w � α is eventually contained in A. �

The point of the lemma above is that by Lemma 2.5, for every α < �, the measure
sequence of length �α + 1 obtained from �α,α+1 is exactly �α(u) � (�α + 1). So for
any iterated ultrapower 〈Mα, �α,α′ | α ≤ α′ ≤ �〉, if the measure sequence of length
�α + 1 obtained from �α,α+1 is �α(u) � (�α + 1) for every α < �, then the lemma
above also holds. For example, we may let �α,α+1 be the ultrapower map given by
�α(u)(�) for every α < � in (1b) if there is a � with � < � < lh(u). Then the lemma
above also holds for this new iterated ultrapower.

The following theorem is essentially due to Radin [12] (see also [5, Theorem
6.7.1]).

Theorem 2.12 [12]. The sequence w is geometric with respect to w(�) and
M(=M�), and we have an Rw(�)-generic filter over M given by w.

Proof. We only prove (2) of the geometric condition here, i.e., for every
limit α ≤ � and every A ∈M ∩ Vκ(w(α))+1, A ∈ F(w(α)) if and only if w �
α is eventually contained in A.

If A ∈ F(w(α)), then by Lemma 2.11, w � α is eventually contained in A.
If A /∈ F(w(α)), then A /∈ �α(u)(�) for some � < �α . Let B =M ∩ Vκ(w(α)) \

{x ∈ A | lh(x) = �}. Then B ∈ F(w(α)). Hence, w � α is eventually contained in
B. Note also that 〈	 < α | �	 = �〉 is unbounded in α, and we have that w � α is not
eventually contained in A.

Therefore, w is geometric w.r.t. w(�) and M, and we have an Rw(�)-generic filter
over M obtained from w. �

§3. Main idea of the consistency result (Theorem 4.2). Suppose κ is a supercom-
pact cardinal and � < κ is a �-measurable cardinal. Let j : V →M be a suitable
supercompact ultrapower map, let i :M → N be an ultrapower map given by some
�-complete uniform ultrafilter in M, and let � = i ◦ j. Let u be the measure sequence
of length � obtained from j, and let G be a suitable Ru-generic filter over V.

For the purpose of making this paper easier to read, we next give the idea of the
proof of Bagaria–Magidor from [2, Theorem 6.1], as well as our idea of the proof
of Theorem 4.2.

In the proof of Bagaria–Magidor they only consider the case � = �, i.e., � is
measurable, and take the Radin forcing Ru to turn κ into a �-strongly compact
cardinal.

To prove the �-strong compactness of κ, they lift the composite embedding
� = i ◦ j in a �(Ru)/ĠRi(u)�� -generic extension of V [G ]. Here, j grants the �-strong
compactness of κ at the end, and i makes 〈(i(u) � �, i(A))〉 addible to �(〈(u,A)〉)
for every 〈(u,A)〉 ∈ G . Namely, 〈(i(u) � �, i(A)), (�(u), �(A)〉 ∈ �(Ru) for every
〈(u,A)〉 ∈ G . In addition, since Ru has a particular closure property, i ′′gG can
generate an Ri(u)��-generic filter by a variation of the transfer argument (see [2],
also [3, Proposition 15.1]). Thus by Silver’s criterion (see [3, Proposition 9.1]), a
lifting embedding of � can be obtained. However, this embedding is not definable in
V [G ]. To remedy this, Bagaria–Magidor use a closure argument, which relies not
only on the closure of the Radin forcing itself, but also on the closure of N, to show
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that the filter generated by the lifted embedding is �-complete. Thus κ is �-strongly
compact in V [G ] (here and next, actually κ is �-strongly compact up to κ′ for some
κ′, but a simple trick can solve this problem by lifting class-many embeddings with
the same u).

In our proof, we also take the Radin forcing Ru to turn κ into a �-strongly
compact cardinal, but handle the general case (i.e., � may not equal to �). The
major difference, or the novelty of the proof, is the lifting argument. The argument
is more complicated in the general case, because � is �-measurable, and so it may
have stronger consistency strength than measurability (however, we don’t know if
under the existence of a supercompact cardinal, it is possible to make some regular
cardinal, for example, �+, into a �-measurable cardinal). We next give more details
about the lifting argument.

We start with the strategy of Bagaria–Magidor, and we still consider to lift the
composite embedding � by using Silver’s criterion. But there is a problem. There
may exist unboundedly many α < � with sup(i ′′α) < i(α) below �, because � may
surpass the critical point of �. Then for every such α, there will be a gap below �(gα)
to be filled in, namely, a generic object in a similar sense of �(Ru)/ĠRi(u)�� . But there
is no place to fill in the gap below �(gα), since there are unboundedly many �(g�)
below �(gα). Hence, we can’t lift the embedding �.

To overcome the problem, we invoke Theorem 2.12, which states that a Radin
generic object can be generated by some iterated ultrapower, to fill in a gap. However,
we may need to fill in many gaps. Hence, a sequence of iterated ultrapowers should
be taken to fill in all these gaps (an iterated ultrapower above κ is also taken to fill
in the gap above κ, i.e., the counterpart of �(Ru)/ĠRi(u)�� , so that we can avoid the
closure argument).

So in the proof of Theorem 4.2, we may get an iteration given by a composition
of embeddings: an ultrapower map given by a �-complete uniform ultrafilter over
�, a sequence of iterated ultrapowers for filling in gaps below κ, a supercompact
embedding, and an iterated ultrapower for filling in gaps above κ. This iteration
lives inV [G ] since it is guided by theRu-generic object G over V. Then we can build
a �(Ru)-generic object H over the target model in V [G ]. In addition, �′′G ⊆ H . So
we may obtain a lifting embedding of � in V [G ] by using Silver’s criterion, which
witnesses the �-strong compactness of κ.

§4. Main results. The following proposition shows that Radin generic sequence
above an �1-strongly compact cardinal destroys the �1-strong compactness of the
smaller cardinal.

Proposition 4.1. Suppose u is a measure sequence of length at least 2. Then in an
Ru-generic extension of V, there is no �1-strongly compact cardinal below κ(u).

Proof. Let κ := κ(u) and let G be an Ru-generic filter. Suppose, towards a
contradiction, that there is a � < κ such that � is �1-strongly compact. Note that
there is a Prikry sequence contained in CG \ �. Then there is a ��,�-sequence, say
�C = 〈Cα | α < �+〉, for some � ∈ CG \ � (see [4, Theorem 4.2]). By the �1-strong
compactness of �, there exists an elementary embedding k : V [G ] →M ′ such that
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sup(k′′�+) < k(�+). Then k( �C ) is a �k(�),�-sequence inM ′. Let � := sup(k′′�+),
and pick a C ′ ∈ k( �C)(�). Then we have:

(i) C ′ is a club subset of � .
(ii) C ′ has order type at most k(�).

(iii) If α is a limit point of C ′, then C ′ ∩ α ∈ Cα .

It is easy to see that k′′�+ is a stationary subset of � , so there are unboundedly
many α < �+, such that k(α) is a limit point of C ′. For any such α, by (iii), we have
C ′ ∩ k(α) = k(C ′

α) for some C ′
α ∈ Cα . Hence, these C ′

α are pairwise compatible,
i.e., for any such α < α′, k(C ′

α′) ∩ k(α) = k(C ′
α). By elementarity of k, we have

C ′
α′ ∩ α = C ′

α . So the union of these C ′
α , say C, is a club subset of �+, and C ∩ α =

C ′
α for any such α. Hence, C has order type �+. However, any such C ′

α has order
type at most �, a contradiction. Hence, there is no �1-strongly compact cardinal
below κ. �

Theorem 4.2. Suppose κ is a supercompact cardinal, and � < κ is a �-measurable
cardinal for some uncountable cardinal �. Then in a Radin generic extension of V that
preserves the �-measurability of �, κ is the least �-strongly compact cardinal and has
cofinality �.

Proof. First let us find a measure sequence u on κ of length � in order to obtain
a suitable Radin forcing Ru .

For every κ′ > |Vκ+2|, let Uκ′ be a normal fine measure over Pκ(κ′), and let
jκ′ : V →Mκ′ ∼= Ult(V,Uκ′) be the corresponding supercompact embedding. Let
uκ′ be the measure sequence of length � obtained from jκ′ . Since there are at most 22κ

many such measure sequences of length �, there exists a proper class S of ordinals
and a measure sequence u = 〈u(α) | α < �〉 such that for every κ′ ∈ S, u = uκ′ .

Let Ru be the Radin forcing for u. Pick a condition 〈(u,C )〉 ∈ Ru so that C ∩
V�+1 = ∅ and it forces lth(gĠ) = �. Then C consists of measure sequences of length
less than �. Let G be an Ru-generic filter over V with 〈(u,C )〉 ∈ G . Then G adds no
new subsets of �, and so � is also �-measurable inV [G ]. Let gG = 〈gα | α < �〉 be the
generic sequence given by G. Then gG is geometric w.r.t. u and V by Theorem 2.9.

We will define a composite embedding �. Since � is �-measurable, by Proposition
2.2, there exists a �-complete uniform ultrafilter over �, say W. Let i : V → N0 =
Ult(V,W ) be the canonical map. W.l.o.g., we may assume crit(i) = �. Otherwise, let
�′ = crit(i). Then we can prove that κ is �′-strongly compact with the same proof.
Notice that as �′ ≥ �, κ is also �-strongly compact.

For simplicity of notation, let g� := u. For every α ≤ �, define

s(α) =

{
sup(i ′′α), if α is a limit ordinal,
i(α), otherwise.

(4)

Then the intervals [s(α), i(α)] for α ≤ � constitute a partition of i(�) + 1 by (4). So
for every � ≤ i(�), we may let [�] be the unique ordinal such that s([�]) ≤ � ≤ i([�]).

Take any κ′ ∈ S and let U := Uκ′ . Then in V [G ], we may construct an iterated
ultrapower 〈N�, ��,�′ | � ≤ � ′ ≤ i(�)〉 as follows:

(i) N0 = V .
(ii) ��,� = idN� for every � ≤ i(�).
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(iii) If � ≤ i(�) is a limit ordinal, then N� is the direct limit of 〈N�0 , ��0,�1 | �0 ≤
�1 ≤ �〉, together with elementary embeddings��0,� : N�0 → N� for all �0 < �.

(iv) If � ≤ i(�) is a successor ordinal with s([�]) ≤ � < i([�]), then N�+1 is the
transitive class isomorphic to Ult(N�, ��(U )) if � = s(�), or isomorphic
to Ult(N�, ��(g[�])(��)), otherwise; ��,�+1 : N� → N�+1 is the corresponding
ultrapower map, and for every � < �, let ��,�+1 = ��,�+1 ◦ ��,� .

(v) If � ≤ i(�) is a successor ordinal with � = i([�]), then N�+1 = N� ; ��,�+1 =
idN� , and for every � < �, let ��,�+1 = ��,� .

For simplicity of notation, let �� = �0,� ◦ i for every � ≤ i(�), and let � = �i(�) and
N = Ni(�). Letw = 〈��(g[�]) � �� | � < i(�)〉, letw(i(�)) = �i(�)(g�) � �i(�) = �(g�),
and let �κ = 〈κ(w(�)) | � ≤ i(�)〉. Then �κ = 〈��(κ(g[�])) | � ≤ i(�)〉 since κ(w(�)) =
κ(��(g[�])) = ��(κ(g[�])) for every � ≤ i(�).

In the iteration �, these identity class functions in (5) are used for simplicity of
notation.

The iterated ultrapower 〈N�, ��,�′ | � ≤ � ′ ≤ i(�)〉 is well-founded (see [9,
Theorem 19.30]), so N� is transitive for every � ≤ i(�).

Claim 4.3. In V [G ], w is geometric with respect to w(i(�)) and N. That is:

(1) The sequence �κ is increasing continuous.
(2) For every limit � ≤ i(�) and everyA ∈ N ∩ V [G ]κ(w(�))+1,A ∈ F(w(�)) if and

only if w � � is eventually contained in A.

Proof. For every α ≤ � with s(α) < i(α), note that 〈N�, ��,�′ | s(α) < � ≤ � ′ ≤
i(α)〉 is the �s(α)+1(gα)-iterated ultrapower of length i(α) over Ns(α)+1, we have
w � (s(α), i(α)] is geometric w.r.t. w(i(α)) and Ni(α) by Theorem 2.12. Note also
that Ni(α) ∩ V [G ]κ(w(i(α)))+1 = N ∩ V [G ]κ(w(i(α)))+1 and w(i(α)) ∈ N , it follows
that w � (s(α), i(α)] is also geometric w.r.t. w(i(α)) and N. Hence for the proof
of (1) and (2), we only need to consider the case that � ≤ i(�) is a limit ordinal and
� = s([�]).

Fact 4.4. For everyα ≤ �, if � ≤ s(α), then κ(gα) is fixed by �� , i.e., ��(κ(gα)) =
κ(gα).

Proof. If � < s(α), then the iterated ultrapower 〈N�, ��,�′ | s(α) < � ≤ � ′ ≤ �〉
is taken in V [w � [�]]. Since κ(gα) > κ(��(g[�])) is inaccessible in V [w � [�]], it is
fixed by �� .

If � = s(α), then � = lim�<α i(�). So for every 	 < ��(κ(gα)), there is a � < α and
an 	̄ < �i(�)(κ(gα)) such that�i(�),�(	̄) = 	. Meanwhile, sinceCG is a club subset ofκ
and �i(�)(κ(gα′)) = κ(gα′) for everyα′ with � < α′ ≤ α, we have {�i(�)(κ(gα′)) | � <
α′ < α} = {κ(gα′) | � < α′ < α} is also a club subset of �i(�)(κ(gα)) = κ(gα).
Hence, 	̄ < �i(�)(κ(gα′)) for some α′ < α. Then by elementarity of �i(�),� , we
have 	 = �i(�),�(	̄) < ��(κ(gα′)) = �i(α′)(κ(gα′)) < �i(α′)(κ(gα)) = κ(gα). Hence,
��(κ(gα)) = κ(gα). �

By the fact above, the sequence 〈κ(w(s(α))) |α ≤ �〉 = 〈κ(gα)) |α ≤ �〉 is increas-
ing continuous. Meanwhile, for every α < � with s(α) < i(α), �κ � (s(α), i(α)]
is between κ(w(s(α))) = κ(gα) and κ(w(s(α + 1))) = κ(w(i(α) + 1)) = κ(gα+1),
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and �κ � (s(�), i(�)] is above κ(g�). Notice also that �κ � (s(α), i(α)] is increasing
continuous, it follows that (1) holds.

Take any limit � ≤ i(�) with � = s([�]).

Lemma 4.5. For every 	 ≤ �, if B ∈ F(�	(g[�])), then there is an m < [�] such
that:

(i) For every α with m ≤ α < [�], we have �	(gα) ∈ B .
(ii) For every limit α with m < α < [�], we have B ∩ V [G ]�	(κ(gα)) ∈ F(�	(gα)).

Proof. We prove (i) and (ii) by induction on 	. If 	 = 0, then since �	 = i :
V → N0

∼= Ult(V,W ), |W | < κ(g0), like in Case 2 below, we easily know that there
is an m such that (i) and (ii) hold for B. Now suppose (i) and (ii) hold for every
� < 	. Then there are two cases for 	 (the case that 	 is a successor ordinal with
	 – 1 = i([	 – 1]) is trivial since �	–1 = id, so we omit it):

Case 1. 	 is a limit ordinal. Then there is an 	̄ < 	 and a B̄ ∈ N	̄ such that
�	̄,	(B̄) = B . SinceB ∈ F(�	(g[�])) and �	̄,	 is elementary, we have B̄ ∈ F(�	̄(g[�])).
Thus by induction, there is an m < [�] such that (i) and (ii) hold for 	̄ and B̄ . Since
�	̄,	 is elementary, it follows that for such an m, (i) and (ii) hold for 	 and B.

Case 2. 	 is a successor ordinal with s([	 – 1]) ≤ 	 – 1 < i([	 – 1]). Then 	 < �,
[	] < [�] and �	–1,	 is the ultrapower map given by �	–1(g[	–1])(�	–1). Since B ∈
F(�	(g[�])) is inN	, it can be represented by a functionf ∈ N	–1 with domainN	–1 ∩
V [G ]�	–1(κ(g[	–1])), and for every x ∈ dom(f), f(x) ∈ F(�	–1(g[�])). Now work in

N	–1, and let B̄ =
⋂
x∈dom(f) f(x). Then B̄ ∈ F(�	–1(g[�])) since F(�	–1(g[�])) is

�	–1(κ(g[�]))-complete and �	–1(κ(g[�])) > �	–1(κ(g[	–1])). By induction, there is an
m < [�] such that (i) and (ii) hold for 	 – 1 and B̄ .

Also, �	–1,	(B̄) ⊆ B since B̄ ⊆ f(x) for each x ∈ dom(f). Hence, since �	–1,	 is
elementary, it follows that for such an m, (i) and (ii) hold for 	 and B as well.

So, in any case, (i) and (ii) hold. Hence by induction, the lemma holds. �

Now we will prove that (2) holds. If A ∈ F(w(�)) = F(��(g[�]) � ��), then
w.l.o.g., we may assume A ∈ F(��(g[�])) since for every sufficient large � < �, the
length of w(�) is less than �� . Since � is a limit ordinal, there is a �̄ < � and an
Ā ∈ N�̄ such that ��̄,�(Ā) = A. Note that A ∈ F(��(g[�])) and ��̄,� is elementary,
we have Ā ∈ F(��̄(g[�])).

Now by Lemma 4.5, there is an m with [�̄] < m < [�] such that the following
holds:

(i) For every α with m ≤ α < [�], ��̄(gα) ∈ Ā.
(ii) For every limit α with m < α < [�], Ā ∩ V [G ]κ(�

�̄
(gα)) ∈ F(��̄(gα)).

For every α with m ≤ α < [�], since (i) holds and ��̄,� is elementary, it follows that
w(i(α)) = �i(α)(gα) = ��(gα) ∈ ��̄,�(Ā) = A. Hence,

{w(i(α)) | m ≤ α < [�]} ⊆ A. (5)

For every limit α with m < α < [�], since (ii) holds and ��̄,s(α) is elementary, we
have

��̄,s(α)(Ā) ∩ V [G ]κ(�s(α)(gα)) ∈ F(�s(α)(gα)).
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If s(α) < i(α), then �	 < �i(α) for every 	 with s(α) ≤ 	 < i(α). Hence by
Lemma 2.11,

{w(	) | s(α) ≤ 	 < i(α)} ⊆ ��̄,i(α)(Ā) ∩ V [G ]�i(α)(κ(gα)) ⊆ A. (6)

Therefore, we have {w(	) | i(m) < 	 < �} ⊆ A by (5) and (6) for some m < [�]. In
other words, w � � is eventually contained in A.

IfA /∈ F(w(�)), thenA /∈ w(�)(	) for some 0 < 	 < �� . Hence {� < � |w(�) /∈ A
and �� = 	} is unbounded in �, which means that w � � is not eventually contained
in A. �

In V [G ], let H ⊆ �(Ru) be the filter given by w. Namely, H is the set of all
p ∈ �(Ru) such that:

(i) If v occurs in p, then v = w(�) for some � ≤ i(�).
(ii) For any � ≤ i(�), w(�) occurs in some q ≤ p.

It follows from Claim 4.3 that H is �(Ru)-generic over N. Now we will prove that
�′′G ⊆ H . Take any condition p = 〈(gα1 , A1), ... , (gαn , An)〉 ∈ G , where αn = �.
We need to prove that �(p) ∈ H . Let α0 =– 1 for simplicity. Note that �(gαj ) =
�i(αj )(gαj ) = w(i(αj)) and �(Aj) = �i(αj )(Aj) for every 1 ≤ j ≤ n, so we have

�(p) = 〈(w(i(α1)), �i(α1)(A1)), ... , (w(i(αn)), �i(αn)(An))〉.

Then by the definition of H, we only need to prove that for every m ≤ n, w(�) ∈
�i(αm+1)(Am+1) for every � with i(αm) < � < i(αm+1). Take any such an m and a �.
Since p ∈ G , we have

{g	 | αm < 	 < αm+1} ⊆ Am+1. (7)

There are two cases:
Case 1. � = i([�]). Then [�] < αm+1, and g[�] ∈ Am+1. Since �i(αm+1) is elementary,

w(�) = �i([�])(g[�]) = �i(αm+1)(g[�]) ∈ �i(αm+1)(Am+1).

Case 2. s([�]) ≤ � < i([�]). Then [�] is a limit ordinal. By (7) and the
characterization of genericity, i.e., Theorem 2.9,Am+1 ∩ V [G ]κ(g[�])

∈ F(g[�]). Since
�� is elementary, it follows that ��(Am+1 ∩ V [G ]κ(g[�])

) ∈ F(��(g[�])). Note also
that �� < �i([�]), by Lemma 2.11 (for the case � = s(�), since the measure sequence
�s(�)(u) is obtained from �s(�),s(�)+1, this lemma is also true), we have

w(�) ∈ �i([�])(Am+1 ∩ V [G ]κ(g[�])
) = �i(αm+1)(Am+1 ∩ V [G ]κ(g[�])

) ⊆ �i(αm+1)(Am+1).

Hence in any case, w(�) ∈ �i(αm+1)(Am+1). So �′′G ⊆ H , and therefore, we may
lift � and obtain an elementary embedding �+ : V [G ] → N [H ] by using Silver’s
criterion.

LetD = �s(�)+1,i(�)(�′′s(�),s(�)+1(�s(�)(κ′))). Since �s(�),s(�)+1 witnesses that �s(�)(κ)
is �s(�)(κ′)-supercompact, we have �′′

s(�),s(�)+1(�s(�)(κ′)) ∈ Ns(�)+1. Note also that
�s(�)+1,i(�) is elementary, we have D = �s(�)+1,i(�)(�′′s(�),s(�)+1(�s(�)(κ′))) ∈ N . Mean-
while, �′′κ′ ⊆ D and N |= |D| < �(κ). So �+ witnesses κ is �-strongly compact up
to κ′.
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Since S is a proper class and κ′ ∈ S is arbitrary, κ is �-strongly compact in V [G ].
Now by Fact 4.1, we can see that κ is the least �-strongly compact cardinal in

V [G ] (actually, κ is the least �1-strongly compact cardinal).
This concludes the proof of Theorem 4.2.

Corollary 4.6. Suppose � < κ are supercompact cardinals. Then for every regular
cardinal � with � ≤ � < κ, there exists a generic extension of V, in which κ is the least
�-strongly compact cardinal and has cofinality �.

Proof. Since � is a supercompact cardinal and � is regular, it follows that � is
�-measurable. By Theorem 4.2, in some Radin generic extension that adds a Radin
generic sequence of length �, κ is the least �-strongly compact cardinal and has
cofinality �. �

The following proposition generalizes [1, Theorem 2.3] and shows that our
consistency result (Theorem 4.2) is optimal.

Proposition 4.7. Suppose κ is the least �-strongly compact cardinal and has
cofinality �. Then � is �-measurable. Namely, � carries a �-complete uniform ultrafilter
over �.

Proof. We first prove that there exists a definable elementary embedding j :
V →M with M transitive such that j(κ) > sup(j′′κ). Since κ is the least �-strongly
compact cardinal, it follows that κ is a limit cardinal by Theorem 2.3, and for every
� < κ, there is an α� > κ such that � is not �-strongly compact up to α� . Let
α = sup({α� | � < κ})+. Then 	 is not �-strongly compact up to α for every 	 < κ.

By the �-strong compactness of κ, there is a definable elementary embedding
j : V →M with M transitive, so that crit(j) ≥ � and there is a D ∈M such that
j′′α ⊆ D andM |= |D| < j(κ). If sup(j′′κ) = j(κ), then there is a cardinal 	 < κ
such thatM |= |D| < j(	). Thus j witnesses that 	 is �-strongly compact up to α, a
contradiction. Hence, sup(j′′κ) < j(κ).

For such an embedding j, we claim that sup(j′′�) < j(�). If not, j(�) = sup(j′′�).
Since κ is a limit cardinal and has cofinality �, there is an increasing cofinal sequence
�κ = 〈κα | α < �〉 of cardinals converging to κ. By elementarity, j(�κ) is an increasing
cofinal sequence on j(κ) in M. Then in V, 〈j(�κ)(j(α)) | α < �〉 is an increasing
cofinal sequence on j(κ), since j(�) = sup(j′′�). By elementarity, j(�κ)(j(α)) =
j(�κ(α)) = j(κα). So 〈j(κα) | α < �〉 is an increasing cofinal sequence on j(κ),
which means that j(κ) = sup(j′′κ), a contradiction. Therefore, j(�) > sup(j′′�).

Hence, � carries a �-complete uniform ultrafilter by the proof of Proposition 2.2,
and it is also �-measurable. �
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