Bull. Aust. Math. Soc. 107 (2023), 451–455 doi:10.1017/S0004972722000806

FINITE GROUPS WITH LARGE CHERMAK-DELGADO LATTICES

GEORGIANA FASOLĂ[®] and MARIUS TĂRNĂUCEANU^{®™}

(Received 16 June 2022; accepted 6 July 2022; first published online 25 August 2022)

Abstract

Given a finite group *G*, we denote by L(G) the subgroup lattice of *G* and by $\mathcal{CD}(G)$ the Chermak–Delgado lattice of *G*. In this note, we determine the finite groups *G* such that $|\mathcal{CD}(G)| = |L(G)| - k$, for k = 1, 2.

2020 Mathematics subject classification: primary 20D30; secondary 20D60, 20D99.

Keywords and phrases: Chermak–Delgado measure, Chermak–Delgado lattice, subgroup lattice, generalised quaternion 2-group.

1. Introduction

Let G be a finite group and L(G) be the subgroup lattice of G. The Chermak–Delgado measure of a subgroup H of G is defined by

$$m_G(H) = |H||C_G(H)|.$$

Let

 $m^*(G) = \max\{m_G(H) \mid H \le G\}$ and $C\mathcal{D}(G) = \{H \le G \mid m_G(H) = m^*(G)\}.$

Then the set $C\mathcal{D}(G)$ forms a modular, self-dual sublattice of L(G), which is called the *Chermak–Delgado lattice* of *G*. It was first introduced by Chermak and Delgado [4] and revisited by Isaacs [5]. In the last few years, there has been a growing interest in understanding this lattice (see [1–3, 6–8, 11–14]). We recall several important properties of the Chermak–Delgado measure:

- if $H \le G$, then $m_G(H) \le m_G(C_G(H))$, and if the measures are equal, then $C_G(C_G(H)) = H$;
- if $H \in C\mathcal{D}(G)$, then $C_G(H) \in C\mathcal{D}(G)$ and $C_G(C_G(H)) = H$;
- the maximal member *M* of $C\mathcal{D}(G)$ is characteristic and $C\mathcal{D}(M) = C\mathcal{D}(G)$;
- the minimal member M(G) of CD(G) (called the *Chermak–Delgado subgroup* of *G*) is characteristic, abelian and contains Z(G).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

In [12], the Chermak–Delgado measure of *G* has been seen as a function:

 $m_G: L(G) \longrightarrow \mathbb{N}^*, \quad H \mapsto m_G(H) \quad \text{for all } H \in L(G).$

If G is nontrivial, then m_G has at least two distinct values, or equivalently $C\mathcal{D}(G) \neq L(G)$ (see [11, Corollary 3]). This leads to the following natural question.

QUESTION 1.1. How large can the lattice $C\mathcal{D}(G)$ be?

The dual problem of finding finite groups with small Chermak–Delgado lattices has been studied in [6, 7].

Our main result is stated as follows.

THEOREM 1.2. Let G be a finite group. Then:

- (a) $|C\mathcal{D}(G)| = |L(G)| 1$ if and only if $G \cong \mathbb{Z}_p$ or $G \cong Q_8$;
- (b) $|C\mathcal{D}(G)| = |L(G)| 2$ if and only if $G \cong \mathbb{Z}_{p^2}$.

For the proof of the above theorem, we need the following well-known result (see, for example, [10, Volume II, (4.4)]).

THEOREM 1.3. A finite p-group has a unique subgroup of order p if and only if it is either cyclic or a generalised quaternion 2-group.

We recall that a *generalised quaternion* 2-*group* is a group of order 2^n for some positive integer $n \ge 3$, defined by

$$Q_{2^n} = \langle a, b \mid a^{2^{n-2}} = b^2, a^{2^{n-1}} = 1, b^{-1}ab = a^{-1} \rangle.$$

We also need the following theorem taken from [12].

THEOREM 1.4. Let G be a finite group. For each prime p dividing the order of G and $P \in Syl_p(G)$, let $|Z(P)| = p^{n_p}$. Then

$$|\mathrm{Im}(m_G)| \ge 1 + \sum_p n_p. \tag{1.1}$$

Finally, we indicate a natural open problem concerning the above study.

OPEN PROBLEM. Determine the finite groups G such that $|C\mathcal{D}(G)| = |L(G)| - k$, where $k \ge 3$.

Most of our notation is standard and will usually not be repeated here. Elementary notions and results on groups can be found in [5]. For subgroup lattice concepts, we refer to [9].

2. Proof of the main result

First of all, we solve the problem for generalised quaternion 2-groups.

LEMMA 2.1. With the above notation:

- (a) $|CD(Q_{2^n})| = |L(Q_{2^n})| 1$ if and only if n = 3, that is, $G \cong Q_8$;
- (b) $|C\mathcal{D}(Q_{2^n})| \neq |L(Q_{2^n})| 2 \text{ for all } n \ge 3.$

PROOF. We easily obtain

$$m^*(Q_{2^n}) = 2^{2n-2}$$
 for all $n \ge 3$,

and

$$C\mathcal{D}(Q_{2^n}) = \begin{cases} \{Q_8, \langle a \rangle, \langle b \rangle, \langle ab \rangle, \langle a^2 \rangle \} & \text{if } n = 3 \\ \{\langle a \rangle \} & \text{if } n \ge 4. \end{cases}$$

These lead immediately to the desired conclusions.

We are now able to prove our main result.

PROOF OF THEOREM 1.2. We divide the proof into two parts corresponding to the two parts of the theorem.

PART (a). Since $|C\mathcal{D}(G)| = |L(G)| - 1$, we have $C\mathcal{D}(G) = L(G) \setminus \{H_0\}$, where $H_0 \leq G$. We infer that $|\text{Im}(m_G)| = 2$ and so G is a p-group with |Z(G)| = p by Theorem 1.4. Then $m_G(1) < m_G(Z(G))$, implying that

$$H_0 = 1$$
 and $m^*(G) = m_G(Z(G)) = p^{n+1}$,

where $|G| = p^n$.

Assume that there exists $H \le G$ with |H| = p and $H \ne Z(G)$. Then $H \notin C\mathcal{D}(G)$, which shows that H = 1 and this contradicts the hypothesis. Thus, G has a unique subgroup of order p and Theorem 1.3 leads to

$$G \cong \mathbb{Z}_{p^n}$$
 or $G \cong Q_{2^n}$ for some $n \ge 3$. (2.1)

In the first case, we easily get n = 1, that is, $G \cong \mathbb{Z}_p$, while in the second one, we get $G \cong Q_8$ by Lemma 2.1(a).

PART (b). The condition $|C\mathcal{D}(G)| = |L(G)| - 2$ means $C\mathcal{D}(G) = L(G) \setminus \{H_1, H_2\}$, where $H_1, H_2 \leq G$. Then $|\text{Im}(m_G)| \leq 3$. Recall that we cannot have $|\text{Im}(m_G)| = 1$.

If $|\text{Im}(m_G)| = 2$, then

$$m_G(H_1) = m_G(H_2) \neq m^*(G)$$

and again *G* is a *p*-group with |Z(G)| = p. It is clear that one of the two subgroups H_1 and H_2 must be trivial, say $H_1 = 1$. Then *G* has at most two subgroups of order *p*, namely Z(G) and possibly H_2 . This implies that it has exactly one subgroup of order *p* because the number of subgroups of order *p* in a finite *p*-group is congruent to 1 (mod *p*). Consequently, one obtains again (2.1). For $G \cong \mathbb{Z}_{p^n}$, we easily get n = 2, that is, $G \cong \mathbb{Z}_{p^2}$, while for $G \cong Q_{2^n}$, we get no solution by Lemma 2.1(b).

If $|\text{Im}(m_G)| = 3$, then $m_G(H_1)$, $m_G(H_2)$ and $m^*(G)$ are distinct. Also, (1.1) becomes

$$3 \ge 1 + \sum_p n_p.$$

Since $n_p \ge 1$ for all p, we have the two possibilities described in Cases 1 and 2. *Case 1:* $|G| = p^n$ and $|Z(G)| \in \{p, p^2\}$. 453

Obviously, if G is abelian, we get $G \cong \mathbb{Z}_{p^2}$. Assume that G is not abelian. Since $m_G(1) < m_G(Z(G)) = m_G(G)$, we infer that one of the two subgroups H_1 and H_2 is trivial and that

$$m^*(G) = m_G(Z(G)) = m_G(G).$$

If |Z(G)| = p, then G has a unique subgroup of order p and so it is a generalised quaternion 2-group, contradicting Lemma 2.1(b). The same can also be said when $|Z(G)| = p^2$ because all subgroups of order p of G are outside of $C\mathcal{D}(G)$.

Case 2: $|G| = p^n q^m$ and the Sylow *p*-subgroups and *q*-subgroups of *G* have centres of orders p and q, respectively.

Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. Since $P \subseteq$ $C_G(Z(P))$, we have

$$m_G(Z(P)) = p |C_G(Z(P))| = p^{n+1}q^x$$
 for some x with $0 \le x \le m$,

and similarly,

$$m_G(Z(Q)) = p^y q^{m+1}$$
 for some y with $0 \le y \le n$

Also,

$$m_G(1) = p^n q^m$$
 and $m_G(G) = p^n q^m |Z(G)|$.

We observe that the measures $m_G(Z(P))$, $m_G(Z(Q))$ and $m_G(1)$ are distinct and consequently they are all possible measures of the subgroups of G. We distinguish two subcases.

Subcase 2.1: Z(G) = 1.

Then $m^*(G) = m_G(1) = m_G(G)$. Indeed, if $m^*(G) = m_G(Z(P))$, then 1, G and Z(Q)will be outside of $C\mathcal{D}(G)$, and this contradicts the hypothesis. In the same way, we cannot have $m^*(G) = m_G(Z(Q))$. Since $m_G(P)$ is divisible by p^{n+1} and $m_G(Q)$ is divisible by q^{m+1} , we infer that $m_G(P) = m_G(Z(P))$ and $m_G(Q) = m_G(Z(Q))$. Thus, $P, Z(P), Q, Z(Q) \notin C\mathcal{D}(G)$ and our hypothesis implies that P = Z(P) and Q = Z(Q), that is, G is a nonabelian group of order pq. Assume that p < q. Then $C\mathcal{D}(G)$ consists of the unique subgroup of order q of G and therefore we obtain |L(G)| = 3, and this contradicts the hypothesis.

Subcase 2.2: $Z(G) \neq 1$.

Then $m_G(1) < m_G(G)$, which shows that $m_G(G)$ equals either $m_G(Z(P))$ or $m_G(Z(Q))$. Assume that $m_G(G) = m_G(Z(P))$. Then x = m and |Z(G)| = p, implying that

$$Z(G) = Z(P). \tag{2.2}$$

Note that we cannot have $m^*(G) = m_G(Z(Q))$ because in this case, 1, Z(G) and G will be outside of $C\mathcal{D}(G)$, and this contradicts the hypothesis. Consequently,

$$m^*(G) = m_G(Z(P)) = m_G(P) = m_G(Z(G)) = m_G(G).$$

It follows that 1, Z(Q) and Q are not contained in $C\mathcal{D}(G)$, which leads to Q = Z(Q). In other words, $C\mathcal{D}(G) = L(G) \setminus \{1, Q\}$. Thus, $C\mathcal{D}(G)$ is the lattice interval

$$[G/Z(G)] = \{H \in L(G) \mid Z(G) \le H \le G\}$$

and [11, Corollary 2] shows that G is nilpotent. Then $G = P \times Q$ and it follows that $Z(G) = Z(P) \times Q$, which contradicts (2.2).

This completes the proof.

References

- [1] L. An, J. P. Brennan, H. Qu and E. Wilcox, 'Chermak–Delgado lattice extension theorems', *Comm. Algebra* **43** (2015), 2201–2213.
- [2] B. Brewster, P. Hauck and E. Wilcox, 'Groups whose Chermak–Delgado lattice is a chain', J. Group Theory 17 (2014), 253–279.
- B. Brewster and E. Wilcox, 'Some groups with computable Chermak–Delgado lattices', *Bull. Aust. Math. Soc.* 86 (2012), 29–40.
- [4] A. Chermak and A. Delgado, 'A measuring argument for finite groups', *Proc. Amer. Math. Soc.* 107 (1989), 907–914.
- [5] I. M. Isaacs, Finite Group Theory (American Mathematical Society, Providence, RI, 2008).
- [6] R. McCulloch, 'Chermak–Delgado simple groups', Comm. Algebra 45 (2017), 983–991.
- [7] R. McCulloch and M. Tărnăuceanu, 'Two classes of finite groups whose Chermak–Delgado lattice is a chain of length zero', *Comm. Algebra* 46 (2018), 3092–3096.
- [8] R. McCulloch and M. Tárnăuceanu, 'On the Chermak–Delgado lattice of a finite group', Comm. Algebra 48 (2020), 37–44.
- [9] R. Schmidt, *Subgroup Lattices of Groups*, de Gruyter Expositions in Mathematics, 14 (de Gruyter, Berlin, 1994).
- [10] M. Suzuki, Group Theory, I, II (Springer-Verlag, Berlin, 1982, 1986).
- M. Tărnăuceanu, 'A note on the Chermak–Delgado lattice of a finite group', Comm. Algebra 46 (2018), 201–204.
- [12] M. Tărnăuceanu, 'Finite groups with a certain number of values of the Chermak–Delgado measure', J. Algebra Appl. 19 (2020), Article no. 2050088.
- [13] E. Wilcox, 'Exploring the Chermak–Delgado lattice', Math. Mag. 89 (2016), 38–44.
- [14] A. M. Zuccari, V. Russo and C. M. Scoppola, 'The Chermak–Delgado measure in finite *p*-groups', *J. Algebra* **502** (2018), 262–276.

GEORGIANA FASOLĂ, Faculty of Mathematics, 'Al.I. Cuza' University, Iași, Romania e-mail: georgiana.fasola@student.uaic.ro

MARIUS TĂRNĂUCEANU, Faculty of Mathematics, 'Al.I. Cuza' University, Iași, Romania e-mail: tarnauc@uaic.ro

[5]

455