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Abstract
The ubiquitous marine radiocarbon reservoir effect (MRE) constrains the construction of reliable chronologies for
marine sediments and the further comparison of paleoclimate records. Different reference values were suggested
from various archives. However, it remains unclear how climate and MREs interact. Here we studied two pre-bomb
corals from the Hainan Island and Xisha Island in the northern South China Sea (SCS), to examine the relationship
between MRE and regional climate change. We find that the MRE from east of Hainan Island is mainly modulated
by the Southern Asian Summer Monsoon-induced precipitation (with 11.4% contributed to seawater), rather than
wind induced upwelling. In contrast, in the relatively open seawater of Xisha Island, the MRE is dominated by the
East Asian Winter Monsoon, with relatively more negative (lower) ΔR values associated with high wind speeds,
implying horizontal transport of seawater. The average SCS ΔR value relative to the Marine20 curve is –161±39
14C years. Our finding highlights the essential role of monsoon in regulating the MRE in the northern SCS, in
particularly the tight bond between east Asian winter monsoon and regional MRE.

Introduction

Marine sediments play an important role in interpreting past climate change which provides a crucial
clue for future climate forecasting (Lisiecki and Raymo 2005; Tierney et al. 2020; Wang et al. 2014).
Previous studies based on foraminifera, bivalve, and coral have made excellent progress in revealing the
past climate change (Yan et al. 2017; Yu 2012; Zhang et al. 2021). However, the ambiguous nature of
the marine radiocarbon reservoir effect (MRE) constrains the building of reliable chronology (Alves
et al. 2018; Burr et al. 2009; Stuiver et al. 1986), thus hindering the reconstruction and comparison of
these centennial to millennial scale climate changes. Hence, precisely evaluating temporal and spatial
MRE variations is urgently needed in paleoclimate research.

MREs often reflect air-sea exchange, regional ocean circulation, and freshwater input (Stuiver and
Ostlund 1983; Southon et al. 2002). AMRE can be expressed as the radiocarbon age difference between
the atmosphere and the surface ocean. This difference is expressed as the value R (reservoir age) in
radiocarbon years. Generally, MREs are cited as ΔR values, which are differences between measured
R values and modeled R values (e.g. difference between IntCal13 andMarine13 calibration curves) for a
particular region, based on calibration curves (e.g. Marine 13, Reimer et al. 2013).

Corals loyally document the 14C of seawater dissolved inorganic carbon (DIC) (Druffel 1997;
Grumet et al. 2004) and can be accurately dated by U-series (Yu et al. 2006) or absolutely refined annual
band, which provide the opportunity for evaluating ΔR. A series of studies have determined regional
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R and ΔR based on corals or known-age materials (Burr et al. 2009; Oliveira et al. 2019; Yoneda et al.
2007). However, R and ΔR are seen to vary with time in coral records (Hua et al. 2015; Yu et al. 2010)
and model results (Butzin et al. 2017). Hence R and ΔR are a function of time and location. Previous
studies have revealed a tight connection between seawater 14C and climate from pre- and post-bomb
corals (Grottoli et al. 2003; Hirabayashi et al. 2017). Nevertheless, the temporal relationship between
regional ΔR and climate change for most regions remains unknown.

As the largest marginal sea in the Pacific, with abundant riverine sediments and a high sedimentation
rate, the monsoon-dominated South China Sea (SCS) has been a focus of paleoclimate research (e.g.
Shen et al. 2022; Wang et al. 2014). A precise ΔR for the SCS and its temporal variability are of
importance for elucidating these paleoclimate records. Previous studies have suggested different ΔR
values for the SCS. For instance, ΔR at Hòn Tre Island, Vietnam (Bolton et al. 2016), was estimated to
be 18±29 14C years (relative to Marine 13, Reimer et al. 2013), larger than the ΔR at Con Dao Island
(Dang et al. 2004) of –74±39 14C years (relative to Marine 98, Stuiver et al. 1998) and the average ΔR
(Southon et al. 2002) of –25±20 14C years for the SCS (relative to Marine 98, Stuiver et al. 1998).
Nevertheless, decadal ΔR variations related to climate have yet to be determined. Furthermore, the
newly updated marine calibration curve (Marine20 curve) (Heaton et al. 2020), is almost 150 14C years
older than that implied by the Marine13 (Reimer et al. 2013) and previous marine curves. Hence, it is
crucial to reconcile regionalΔR time series records to clarify the relationship between ΔR and climatic
factors through time.

In this study, we present two coral radiocarbon records exceeding two decades from the east of
Hainan Island and Xisha Island in the northern SCS. The relationship between regional ΔR and
climatic factors (e.g. monsoon) in these corals were thoroughly examined and explored. Further, the
newly average ΔR for the SCS base on the most recent marine radiocarbon Curve-Marine20 (Heaton
et al. 2020) and its implication for paleoclimate research were specifically considered.

Materials and methods

Oceanographic setting of the SCS

As a semi-closed marginal sea, the SCS connects the surrounding sea through seven straits. The
Luzon strait, contributes to the primary water exchange with the northwest Pacific Ocean (Qu et al.
2009), with a deep sill of 2400m (Qu et al. 2006). In addition, two large rivers, the Pearl River and
Mekong River, supply a large amount of sediments into the north SCS and west SCS, with annual
runoffs of 3.3 and 4.7×1011 m3, respectively (Mckee et al. 2004). The surface circulation in the SCS
seasonally shifts due to the reversing monsoon winds, with clockwise flows in summer and anti-
clockwise flows in winter (Hu et al. 2000). Moreover, the summer monsoon influences coastal
upwelling prevails around east of Hainan, off Vietnam and off Guangdong province, while the
prevalent coastal upwelling west of Luzon is in winter under the effect of winter monsoon (Wu and Li
2003; Hu and Wang 2016).

The summer sea surface temperature (SST) in the SCS is roughly homogeneous above 28°C. In
contrast, the winter SST displays conspicuous ascent from north to south (Figure 1 a–d). These seasonal
differences in SST distribution patterns are mainly induced by seasonal reversing monsoon including
the East Asian Winter Monsoon (EAWM) and the Southern Asian Summer Monsoon (SASM) (Liu
et al. 2004). In this study, the two sample sites (shown in Figure 1 a and b) share distinct oceanography.
At east of Hainan Island, prevailing in summer, the prominent upwelling dominant the regional
circulation, which is mainly influenced by the SASM (Hu and Wang 2016; Jing et al. 2009). During
summer, shallow regional mixed layer depth is observed (Figure 1 e) (Zeng et al. 2016), which favors
upwelling of aged 14C to the surface. In contrast, at Xisha Island, an open ocean site, no seasonal
upwelling is observed (deep mixed layer depth, Figure 1 f). The annual average wind speed is larger in
Xisha Island than in Hainan Island, especially in winter (Figure 1 g and h). Besides, runoff from the
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Figure 1. Map and hydroclimate parameters of sampling site. (a) winter (December-January-
February) and (b) summer (June-July-August) mean 850 hPa stream line from the ERA-Interim (https://
climatedataguide.ucar.edu/climate-data/era-interim-derived-components), the red and black dots
represent the sampling sites of coral core 15WC23 and 15XS28 from east of Hainan Island and
Xisha Island, respectively. (c) Monthly mean sea surface temperature (SST), precipitation and (g) wind
speed at east of Hainan Island (centered at 19°N, 110°E within 2° × 2° grid) from NCEP Reanalysis
Dataset (https://psl.noaa.gov/cgi-bin/data/timeseries/timeseries1.pl). (d) Monthly mean sea surface
temperature (SST), precipitation and (h) wind speed at Xisha Island (centered at 17°N, 112°E within
2°× 2° grid) from NCEP Reanalysis Dataset. All the monthly mean data are ranged from 1948 to 2021.
(e) and (f) Monthly mean mixed layer (MLD) depth from SCSPOD14 (Zeng et al. 2016) ranging from
1971 to 2015 at east of Hainan Island (centered at 19.5°N, 111°E within 0.5° × 0.5° grid) and Xisha
Island (centered at 17°N, 112.5°E within 0.5° × 0.5° grid), respectively.
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Wanquan River and Wenjiao River at Hianan Island accounts for more than 6×109 m3 yr-1 (Zhang et al.
2013), while negligible runoff occurs at the Xisha Island.

Sampling

In 2015, two coral cores were obtained from living massive Porites lutea colonies from the northern
SCS. The coral core 15WC23 (19.39°N, 110.76°E) was collected at a water depth of 5 m, from a
fringing reef, off the east coast of Hainan Island (Figure 1 a and b, red dot). The other coral core 15XS28
(16.96°N, 112.25°E) was collected at a water depth of 4 m from Qilianyu Reef in the Xisha Islands
(Figure 1 a and b, black dot). The chronology of the coral cores was well established by the annual
density bands revealed by X-ray photograph (Figure S1, see Supplementary), with a growth period from
1900 to 2015 for 15WC23 (Chen et al. 2021) and from 1930 to 2015 for 15XS28 (Kang et al. 2021). The
powder samples were carefully milled along the main growth axis by a digitally controlled milling
machine (Deng et al. 2013). Limited by sample size, coral 15WC23 and 15XS28 were sampled with
biennial and annual resolution, respectively.

Radiocarbon dating

All pre-1950 powder samples (45 samples in total) were employed for radiocarbon analysis. For each
sample, about five to seven milligrams of coral powder were reacted with 85% phosphoric acid in a
Y-shaped vessel under vacuum of less than 1×10–1 torr. After complete reaction, the CO2 gas was
purified in a vacuum line and reduced to graphite using a zinc reduction method (Slota et al. 1987).
Graphite samples were then measured for 14C analysis at the Xi’an Accelerator Mass Spectrometry
(AMS) center (Zhou et al. 2016).

Result

The radiocarbon result (Table 1) of 45 coral samples is presented in Figure 2, expressed asΔR. TheΔR
data from east Hainan Island from 1900 to 1949 are cited with biennial resolution, while the Xisha
Island results from 1930 to 1949 are cited with annual resolution. Recalculated previous-published
average ΔR values from different sites around the SCS are summarized in Table 2, consisting of 725
ΔR values from eighteen sites. The R, ΔR and the associated Δ

14C are calculated by the following
equations (Stuiver et al. 1986; Stuiver and Polach 1977):

Measured R t� � � Measured 14C age t� � � Terrestrial 14C age t� � (1)

ΔR t� � � Measured R t� � �modeled R t� � (2)

Modeled R t� � � Modeled marine 14C age t� � � Terrestrial 14Cage t� � (3)

Measured 14C age t� � � �8033 × ln F� � (4)

Δ
14C � Feλ 1950�t� ��1 × 1000‰ (5)

Where t is the true living age of the sample in cal BP (based on the counted annual density band),
F represents the fraction of Modern carbon, λ=1/8267 yr–1 is the radiocarbon decay constant associated
with a 5730-yr half-life, and t is the calendar age of the sample (Stuiver and Polach 1977). The terrestrial
and modeled 14C age were obtained from Intcal20 Curve and Marine20 Curve, respectively.

4 L Yang et al.

https://doi.org/10.1017/RDC.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/RDC.2024.118
https://doi.org/10.1017/RDC.2024.118


Table 1. ΔR result from east of Hainan Island and Xisha Island

East of Hainan Island (19.39°N, 110.76°E)

Lab number Sample number True age F value Error 14C age (BP) Error (y) ΔR Error
XA52553 WC-34 1948 0.9519 0.0016 396 13 –208 13
XA53923 WC-35 1946 0.9513 0.0017 401 15 –203 15
XA52567 WC-36 1944 0.9532 0.0015 385 13 –219 13
XA53921 WC-37 1942 0.9474 0.0020 434 17 –170 17
XA52551 WC-38 1940 0.9492 0.0015 419 13 –185 13
XA53922 WC-39 1938 0.9522 0.0017 393 15 –211 15
XA52566 WC-40 1936 0.9504 0.0016 408 14 –196 14
XA53919 WC-41 1934 0.9460 0.0016 446 14 –158 14
XA52552 WC-42 1932 0.9496 0.0015 416 13 –188 13
XA53920 WC-43 1930 0.9518 0.0018 397 15 –207 15
XA52565 WC-44 1928 0.9540 0.0019 379 16 –226 16
XA53918 WC-45 1926 0.9490 0.0024 421 21 –184 21
XA52550 WC-46 1924 0.9501 0.0016 412 13 –193 13
XA53917 WC-47 1922 0.9487 0.0016 423 14 –182 14
XA52564 WC-48 1920 0.9520 0.0017 395 15 –210 15
XA53916 WC-49 1918 0.9467 0.0018 440 15 –165 15
XA52549 WC-50 1916 0.9491 0.0015 420 13 –185 13
XA53915 WC-51 1914 0.9426 0.0016 475 14 –131 14
XA52563 WC-52 1912 0.9541 0.0017 378 14 –229 14
XA53914 WC-53 1910 0.9452 0.0017 452 14 –155 14
XA52548 WC-54 1908 0.9500 0.0016 412 14 –196 14
XA53913 WC-55 1906 0.9487 0.0015 423 13 –186 13
XA52562 WC-56 1904 0.9510 0.0015 403 13 –208 13
XA53912 WC-57 1902 0.9457 0.0016 448 14 –164 14
XA52547 WC-58 1900 0.9483 0.0017 427 14 –186 14

Xisha Island (16.96°N, 112.25°E)

Lab number Sample number True age F value Error 14C age (BP) Error (y) ΔR Error
XA53632 XS-66 1949 0.9521 0.0018 394 15 –210 15
XA53631 XS-67 1948 0.9451 0.0021 454 18 –150 18
XA53633 XS-68 1947 0.9485 0.0021 425 18 –179 18
XA52580 XS-69 1946 0.9537 0.0018 381 15 –223 15
XA53630 XS-70 1945 0.9510 0.0019 404 16 –200 16
XA53627 XS-71 1944 0.9504 0.0022 409 18 –195 18
XA53628 XS-72 1943 0.9492 0.0017 419 15 –185 15
XA52579 XS-73 1942 0.9545 0.0020 374 17 –230 17
XA53629 XS-74 1941 0.9518 0.0020 397 17 –207 17
XA53626 XS-75 1940 0.9511 0.0017 403 15 –201 15
XA53625 XS-76 1939 0.9519 0.0019 396 16 –208 16
XA52576 XS-77 1938 0.9507 0.0015 407 13 –197 13
XA52603 XS-78 1937 0.9528 0.0021 388 18 –216 18
XA52602 XS-79 1936 0.9496 0.0018 416 15 –188 15
XA52601 XS-80 1935 0.9506 0.0018 407 15 –197 15
XA52575 XS-81 1934 0.9500 0.0016 412 14 –192 14
XA52600 XS-82 1933 0.9521 0.0021 394 18 –210 18
XA52599 XS-83 1932 0.9527 0.0018 389 15 –215 15
XA52598 XS-84 1931 0.9509 0.0019 404 16 –200 16
XA52574 XS-85 1930 0.9519 0.0017 396 15 –209 15
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ΔR results from Hainan Island and Xisha Island

As shown in Figure 2, 25 ΔR results from east of Hainan Island (blue dotted line) fluctuate from –229
±14 to –131±14 14C years (average value –190±23 14C years) from 1900 to 1949. Additionally, 20ΔR
data from Xisha Island (green dotted line) range from –230±17 to –150±18 14C years (average value
–201±16 14C years) from 1930 to 1949. Generally, our sites have more negative average ΔR values
than other SCS sites (Table 2, published ΔR values were all recalculated using Marine20), except for
Con Dao Island, Vietnam (–226±18 14C years) (Dang et al. 2004; Mitsuguchi et al. 2007) and Janao
Bay, Philipines (–216±50 14C years) (Southon et al. 2002). Additionally, the average Hainan IslandΔR
value is lower than that off Hòn Tre Island, Vietnam (–135±12 14C years) (Bolton et al. 2016; Goodkin
et al. 2019), although upwelling occurs at both sites.

Averaged ΔR for the SCS

As summarized in Table 2, overall 725 ΔR values from 18 sites were compiled to recalculate the
regionalΔR around the SCS ranging from 1900 to 1950. The majority ofΔR values were obtained from
the coral skeletons. Twelve sites and 130ΔR values in total were included within the SCS. The updated
SCS ΔR values varied from –61±14 14C years to –241±40 14C years, with the maximum ΔR value
from Houbihu, Nanwan Bay, Taiwan, and the minimum ΔR from Con Dao Island, Vietnam. The
average SCS ΔR is –161±39 14C years. Note that the average value and error were calculated by the
formulas from http://calib.org/marine/AverageDeltaR.html.

Discussion

ΔR is mainly regulated by the regional upwelling, freshwater input, and the circulation (Stuiver and
Ostlund 1983). Normally, areas with notable upwelling have high ΔR values, and areas with more
freshwater have relatively lowΔR values. The effect of surface circulation onΔR depends on theΔ14C
value upstream of the site. Besides, the decreasing atmospheric Δ14C (Suess effect, Suess 1955) since
the industrial revolution probably influence ourΔR calculation. However, given the ambiguous trend of
ΔR at the Hainan Island and long equilibration times (∼10 yr) between atmosphere and ocean (Bolton
et al. 2016), we believed negligible impact of the Suess effect on our coral Δ14C. Moreover, the Suess
effect was ignored at Marine20 calibrated curve (Heaton et al. 2020), by its nonsignificant statistics.
Therefore, we neglected potential influence from the Suess effect. As mentioned above, the ΔR

Figure 2. The ΔR result from east of Hainan Island (15WC23, blue dotted line) and Xisha Island
(15XS28, green dotted line).
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Table 2. The detailed information of collected and recalculated ΔR data around the SCS

Longitude Latitude Area Range (year) Type Number
Average ΔR
(14C year) Error Reference

Within the SCS
109.3 12.21 Near Hòn Tre Island, Vietnam 1900–1949 Coral 100 –135 12 Bolton et al. 2016; Goodkin et al. 2019
112.3 16.7 Xisha island 1905–1948 Coral 3 –136 47 Southon et al. 2002
112.25 16.96 Xisha island 1930–1949 Coral 20 –201 16 This study
120.7 21.9 Houbihu Island 1942–1945 Coral 2 –76 98 Ramos et al. 2019
120.48 17.98 Currimao Coast 1945–1949 Coral 10 –142 38 Hirabayashi et al. 2019
119.01 11.48 Palawan island 1947–1949 Coral 13 –108 16 Wu and Fallon 2020
106.55 8.66 Con Dao, Vietnam 1948–1949 Coral 2 –226 16 Mitsuguchi et al. 2007; Dang et al. 2004
110.76 19.39 Wenchang, Hainan Island 1900–1949 Coral 25 –190 23 This study
120.5 12.5 Mindoro Strait, Philippines 1908 Bivalve 1 –69 71 Southon et al. 2002
120.9 13.8 Janao Bay, Luzon, Philippines 1916 Gastropod 1 –216 50 Southon et al. 2002
99.7 9.6 Ko Ang Trang, Thailand 1923 Gastropod 1 –175 71 Southon et al. 2002
106.8 10.8 Saigon 1945 Bivalve 1 –164 57 Southon et al. 2002
103.8 2.9 Singapore 1945 Bivalve 1 –156 39 Southon et al. 2002
Outside the SCS
122.2 18.5 Palaui Island 1945–1948 Coral 2 –99 105 Ramos et al. 2019
119.06 5.03 Langkai Island 1900–1949 Coral 451 –129 34 Fallon and Guilderson 2008
134.25 7.28 Palau Archipelago 1945–1949 Coral 5 –154 21 Glynn et al. 2013
124 24 Ishigaki Island 1947–1949 Coral 9 –176 72 Hirabayashi et al. 2017
130 29.32 Kikai Island 1901–1947 Coral 6 –200 27 Hirabayashi et al. 2017
144.84 13.60 Guam Island 1939–1949 Coral 72 –153 38 Andrews et al. 2016
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difference between Xisha Island and Hainan Island reflects their different oceanographic setting
(Hainan Island is a coastal site and Xisha is an open ocean site). Thereby the difference in sampling
resolution would exert negligible effect on our ΔR variability. Considering the seasonal climate-

Figure 3. Comparison of ΔR from Hainan Island with regional climate. (a) comparison of ΔR (black
dotted line) withΔδ18 O (orange line) from Hainan Island corals (Deng et al. 2017). (b) comparison of
ΔR (black dotted line) with SST anomaly (SSTA, blue line) from Hainan Island corals (Liu et al. 2013).
(c) comparison of ΔR (black dotted line) with Indian monsoon index (purple line) derived from Indian
rainfall anomaly (Singh et al. 2019). (d) comparison ofΔR (red dotted line) off Hòn Tre Island, Vietnam
(Bolton et al. 2016) with ΔR (black dotted line) at east Hainan Island.
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dominant circulation in the SCS (Hu et al. 2000), we compare indicators of regional climate and
corresponding ΔR values to explore possible linkages.

Monsoon rainfall influenced regional ΔR off east Hainan Island

As demonstrated by SST (Wu and Li 2003), nutrient (Hu et al. 2021), climatological Advanced Very
High-Resolution Radiometer SST image and numerical model (Jing et al. 2009), wind-induced coastal
upwelling at east of Hainan Island has been thoroughly investigated. Thus,ΔR values here are probably
controlled by regional upwelling. However, the ΔR from Hainan Island showed poor correlation
(Figure 3b, r=0.3, p=0.12) with reconstructed intensity of regional upwelling based on the summer sea
surface temperature anomaly from a 121-yr coral record (Liu et al. 2013). In addition, despite our ΔR
values displayed consistent variations with the Indian rainfall anomaly (viewed as intensity of SASM,
Singh et al. 2019) in part, insignificant correlation (Figure 3c, r<0.2, p>0.5) between them did not
support the dominant influence from SASM on ΔR off Hainan Island. Therefore, we excludeded the
SASM induced wind as a driver for influencing ΔR off Hainan Island.

Significantly, reconstructed regional SASM precipitation index (Δδ18O) from Hainan Island
correlated well (r=0.45, p<0.05) with ourΔR (Figure 3 a, Deng et al. 2017), which probably indicated
that monsoon rainfall dominated regional ΔR. The minor difference between average ΔR value in
Xisha Island (–201±16 14C years) and Hainan Island (–190±23 14C years) suggested the underlying
effect of runoff/rainfall from Hainan Island, considering that aged seawater vigorously upwelled off
Hainan Island. The influence from freshwater, lowering the ΔR values, likely explained the lower
average ΔR values than the average ΔR off the coastal site at Hòn Tre Island, Vietnam (Bolton et al.
2016), areas with distinct upwelling activity (Figure 3 d). Furthermore, previous research indicated that
both the river plume and coastal upwelling contributed to the carbonate system at east of Hainan
according to observation data from 2014 to 2015 (Dong et al. 2017). Lin et al. (2016) suggested that
freshwater impacted the northeastern coast of Hainan Island more than the eastern coast of Hainan
Island, based on cruise observations and reanalysis data from 2009. Therefore, we proposed that runoff/
rainfall dominated the ΔR values off Hainan Island. Further, as part of SASM, wind and precipitation
from SASM both have an impact on Hainan Island, the former dominates the upwelling off Hainan
Island (Hu and Wang 2016; Li et al. 2012), while the latter regulates the regional ΔR.

As mentioned above, upwelling off Hainan Island held less contribution to variable ΔR, despite the
seawater ages still older than the atmospheric. To quantify how the freshwater input contributed to ΔR
off Hainan Island, a two end-members model was used as follows.

For convenience, all measured F value were employed for the model. We supposed the F value of the
freshwater runoff was determined from atmospheric F value of the same year. The F value of the
upwelled deepwater was equated with the F value of off Hòn Tre Island, Vietnam (Bolton et al. 2016),
considering its characteristics with significant upwelling activity. The contribution of the two end-
members were computed using Equations (6–7):

fr � fw � 1 (6)

Frfr � Fwfw � Fobs (7)

where f indicates the fractions of runoff or freshwater (fr), upwelled deepwater (fw). Fr, Fw, and Fobs
denote the F value of the runoff, the deepwater, and the measured F value east of Hainan Island,
respectively. Given the negligible difference of DIC between runoff (1805 mol kg–1) and the offshore
seawater (1937 mol kg–1, observational data from 2014) (Dong et al. 2017), fr and fw are assumed to
represent the runoff and deepwater fractions.

The two end-members model results revealed that the fr varied from 0% to 19.2%, with an average of
11.4%. The calculated runoff proportion correlated well (r=-0.53, p<0.01) with the local precipitation
reconstructed from the coral (Figure S2, see Supplementary) (Deng et al. 2017). This correlation
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reinforced our two end-members model, despite previous study suggested nearly 50% runoff
contribution, as observed from measured pH value (Dong et al. 2017). Hence,ΔR off Hainan Island was
mainly dominated by the SASM induced precipitation rather than wind, namely the upwelling activity.

EAWM influenced regional ΔR in Xisha Island

Different from Hainan Island, the oceanographic setting around Xisha Island is not dominated by
upwelling. Due to negligible runoff, freshwater input is expected to exert a minor impact on seawater
Δ

14C. Hence, ΔR values at Xisha Island were dominated by the regional circulation. Lacking
observational data, we correlated the Xisha Island ΔR with the reconstructed SST (Sun et al. 2004),
precipitation (Han et al. 2019), and wind speed (intensity of EAWM, Song et al. 2012) from Xisha
Island corals (Figure 4 a–c). We observed a negative correlation between EAWM and ΔR (with one
year lag, r=−0.37, p<0.1), and an insignificant relationship betweenΔR and reconstructed SST (r<0.1,
p>0.5) and precipitation (r=−0.15, p>0.5). Similarly, the SASM displayed a negligible correlation
(r<0.1, p>0.5) with the ΔR. Therefore, the ΔR in Xisha Island was mainly modulated by the EAWM,
the same as the surface circulation in winter.

However, given the Ekman transport, the stronger the wind, the more overturning of the deep water,
thus the more negative seawater DIC Δ

14C and higher ΔR values (Druffel and Griffin 1993; Grumet
et al. 2004). The abnormal negative correlation here probably reflects horizontal water mass movement.
Not unique, a seasonal Δ14C signal from 1968 to 1995, in Currimao, the Philippines, was found to be
positively correlated with winter wind speed, implying horizontal transport from the Luzon Strait
(Hirabayashi et al. 2017). Moreover, the winter Δ14C variations from coral at Houbihu (Ramos et al.
2019) in the 1970s displayed a distinct positive correlation between Δ

14C and EAWM. Despite post-
bomb rather than pre-bomb relationship between coral Δ14C and EAWM was revealed, the positive
correlation between coral Δ14C and EAWM did support the horizontal transport of sea water from the
Luzon Strait. This horizontal transport of sea water was consistent with our proposal mentioned above.
Furthermore, from the Luzon Strait to the Xisha Island, the ΔR should gradually decrease as a result of
keeping exchanging between the seawater and air, as can be seen theΔR values along the path from the
Palaui island (–99±105 14C years) (Ramos et al. 2019) to Currimao (–142±38 14C years) (Hirabayashi
et al. 2019), and Xisha Island (–201±16 14C years). Consequently, the strong EAWM would facilitate
the transport of surface water from Luzon Strait to Xisha Island, leading to a distinct negative correlation
with the ΔR. Likewise, in spite of the long time, the one-year lag of ΔR probably represents the
transporting time.

Implication for paleoclimate

As shown in Figure 5, the average ΔR inside the SCS (–161±39 14C years) is similar to the ΔR on
Guam Island (–153±38 14C years) (Andrews et al. 2016) and Palau Island (–154±21 14C years) (Glynn
et al. 2013). This similarity implies that the water in the SCS originated from the western Pacific (Qu
et al. 2009), despite that the Kuroshio Current (KC) furnished the SCS to a large extent and the ΔR
along the KC path progressively decreased (Nan et al. 2015; Yoneda et al. 2007). Nevertheless, theΔR
inside the SCS is not uniform. The distribution of regional average ΔR was nearly paralleled with the
circulation. From the Luzon Strait to the south SCS, the gradually decreasedΔR probably indicated that
the seawater kept exchanging with the air along the current path. In addition, the upwelling area held the
larger ΔR due to the upwelled depleted Δ

14C water, like the Hon Tre Island (Bolton et al. 2016). In
contrast, supplied by plentiful runoff, theΔR values from estuary was extremely low, like the minimum
ΔR in Con Dao Island (Dang et al. 2004). Additionally, near the Luzon Strait, the regional ΔR ranged
from –76±98 to –99±105 14C years, higher than the ΔR from other sites. Considering the regional
bedrock (without limestone) and the special deep circulation across the Luzon Strait, the higherΔRmay
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be contributed to the overturned deepwater in the Bashi Strait (Qu et al. 2006). Moreover, there seems
homogeneous ΔR in the south SCS and northwest SCS, with ΔR of nearly –161±9 14C years (average
of ΔR in Singapore, Saigon and Ko Ang Trang in Thailand) and –194±22 14C years (average of ΔR in
Xisha and Hainan Island), respectively. In summary, the average ΔR of –161±39 14C years in the SCS
was similar to ΔR in the western Pacific. The northwest SCS and estuarine area (such as the Mekong
River estuary) were characterized with lowΔR, the Luzon Strait area and the upwelling zone processed
high ΔR.

Previous studies indicated that the El Niño Southern Oscillation (ENSO) and the East Asian summer
monsoon affected the SCS ΔR values through time, using paired 14C and U-Th dates on pristine corals
from the past 8000 years (Hua et al. 2020; Yu et al. 2010). However, in spite of the short duration of our
ΔR time series data, our results indicated that the monsoon (like SASM and EAWM) mainly modulated

Figure 4. Comparison of ΔR from Xisha Island with regional climate. (a) comparison of ΔR (black
dotted line) in Xisha Island with reconstructed SST (red line) from coral in Xisha Island (Sun et al.
2004). (b) comparison of ΔR (black dotted line) with Δδ18O (orange line) from coral at Yongxing
Island (Han et al. 2019). (c) comparison of ΔR (black dotted line) with reconstructed winter wind
velocity anomaly (blue line) from coral in Xisha Island (Song et al. 2012). Note thatΔR lagged the wind
velocity anomaly by one year.
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the ΔR in the north SCS. Normally, large-scale ΔR variability will be dominated by ocean circulation
(Stuiver and Ostlund 1983), with minor effect near estuarine area. These tight relations have been
verified from coral Δ14C (Druffel et al. 2014; Fallon and Guilderson 2008; Rafter et al. 2017). In
addition, based on the interannual coral Δ14C records from the Luzon Strait, Ramos et al. (2019)
highlighted that the monsoon primarily control inside the SCS, while ENSO dominated outside the SCS.
Therefore, given the negative correlation between ΔR from Xisha Island and EAWM, the glacial SCS
ΔR was probably lower than interglacial period, rather than expected from previous studies (Siani
et al. 2001).

Conclusion

Here two corals from the north SCS were studied to reveal temporalΔR variation and its relationship to
climate change. The coral ΔR at east of Hainan Island was modulated by the Southern Asian Summer
Monsoon (SASM), which affected the regional runoff, rather than wind induced upwelling. The
freshwater from runoff contributed average 11.4% based on the two end-members model. Different
from Hainan Island, the coral ΔR at Xisha Island was mainly regulated by the East Asian Winter
Monsoon (EAWM), which blew the surface water to Xisha Island along the circulation. Hence the
stronger the wind, the lower theΔR at Xisha Island, especially during glacial, when the EAWM became
stronger. The average ΔR in the SCS was –161±39 14C years, by compiling the radiocarbon data from
1900 to 1950, based on the new calibration curve, Marine20. In spite the limited data, our result from

Figure 5. The distribution of ΔR around the SCS. The ΔR was based on Marine 20 Curve, expressed
as regional average ΔR with errors (black symbol). Information of the sites (blue dot) is given in
Table 2. The average ΔR for Xisha Island of –200±19 14C years shown in this figure was calculated
using data from this study and from Southon et al. (2002). The red circles denote the coastal upwelling
area (Hu and Wang 2016). The thick gray line represents circulation outside the SCS, while the thin
gray solid and dashed line represents winter and summer circulation inside the SCS, respectively (Fang
et al. 1998). NEC = North Equatorial Current, KC = Kuroshio Current, MC = Mindoro Current.
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Xisha Island and Hainan Island together implied that theΔRwas mainly regulated by the monsoon. The
newly averageΔR for the SCS would contribute to paleoclimate research in the SCS. Further research is
needed for the long-term and seasonal ΔR variety.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/RDC.2024.118.
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