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Energetics of mode-1 internal waves interacting with topographic ridges are investigated
using high-resolution two-dimensional simulations at spatial scales of O(100) m
that span between classical laboratory-scale (O(10) m) and field-scale simulations
(O(1000–10 000) m). This paper focuses on the energetics of wave–topography
interaction, with emphasis on systematically examining the partitioning of the incident
wave energy as a function of wave forcing and topographic parameters. Partitioning
of energy into the transmitted, reflected and dissipated components is quantified as a
function of wave Froude number Fr = U0/cph (U0 = velocity amplitude of forcing and
cph = internal wave celerity), slope criticality = γ /s, where γ = topographic slope and
s = wave characteristic slope, and the ratio of topographic height ht to water depth d.
As Fr increases, dense fluid from the base of the stratified water column surges upslope
with significant vertical inertia, leading to the formation of internal boluses that plunge
over and onto the downstream side of the ridge, resulting in elevated dissipation. Results
show that non-hydrostatic contributions to the total energy flux are significant (up to
50 %). Analysis of the energy flux budget shows that transmitted energy flux decreases
monotonically as γ /s increases for any given Fr and ht/d. At critical slopes (γ /s = 1),
the transmitted energy flux scales as a linear function of ht/d, with a mild dependence
on Fr, a key result that can be useful in energy flux parameterizations. Reflected energy
flux exhibits a nonlinear dependence on the ridge height, increasing sharply when ht/d >

0.5. Dissipation is enhanced at critical slopes, with a plateau evident for γ /s ≥ 1 and
ht/d = 0.5 for all Fr.
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1. Introduction

In oceanography the study of the interactions of internal waves with topography is an area
of research that sees continual attention. This is because such interactions are thought to
be one of the main sources of energy for sustaining ocean mixing. Thus, understanding
the process and flow structures that develop as a result of this interaction remains as
important to the understanding of oceanic processes as ever (Baines & Hoinka 1985;
Munk & Wunsch 1998). Surface tides and wind create sources of mechanical energy
that can convert to internal waves (St. Laurent & Garrett 2002; Wunsch & Ferrari 2004;
Garrett & Kunze 2007). Internal waves can be generated from wave–wave interactions
(Nikurashin & Legg 2011), lee-wave release resulting from a changing internal tide (Gayen
& Sarkar 2011) and from the interaction of first-mode internal tides with topography
(Holloway & Merrifield 1999; Klymak et al. 2006; Levine & Boyd 2006). Despite having
observations and measurement of these features, questions remain about the development,
evolution and fate of internal waves due to the complex dynamics of their interaction
with topography which can be difficult to measure directly in the field (Vlasenko &
Hutter 2002). Furthering our understanding of the nonlinear internal wave dynamics has
implications for our understanding of the processes that drive energy transport and mixing
in the oceans.

Breaking nonlinear internal waves occur when topography is encountered that has a
slope that matches the internal wave group velocity as described by Phillips (1977). Field
measurements have confirmed that significant amounts of turbulent mixing occur as a
result of the internal wave field interacting with oceanic ridges, seamounts, continental
slopes and underwater channels (Munk & Wunsch 1998; Kunze & Smith 2004; Polzin
2009; Alford et al. 2011; Ledwell et al. 2011; Buijsman, Legg & Klymak 2012; Pinkel,
Buijsman & Klymak 2012; Alford, Klymak & Carter 2014; Cusack et al. 2019; Girton
et al. 2019; Srinivasan et al. 2019; Zheng & Nikurashin 2019). The dynamics resulting from
these interactions converts energy from the internal wave field and may be a main source
available for vertical mixing of the water column. This mixing results in flow gradients
that drive global oceanic circulation. Understanding these processes has been bolstered by
an increasing knowledge of baroclinic tide generation and turbulence (Llewellyn Smith
& Young 2002; Althaus, Kunze & Sanford 2003; Llewellyn Smith & Young 2003; Nash
et al. 2004; Carter, Gregg & Lien 2005; Garrett & Kunze 2007; Gayen & Sarkar 2010;
Musgrave et al. 2016, 2017; Sarkar & Scotti 2017; Shakespeare & Hogg 2019) where low
first-mode internal waves allow for propagation of energy far from these sources (Ray &
Mitchum 1996; Alford et al. 2007) as well theoretical modelling (Bell 1975; Balmforth,
Ierley & Young 2002; Llewellyn Smith & Young 2002; Khatiwala 2003; Laurent et al.
2003; Aguilar, Sutherland & Muraki 2006). In addition to field observations, numerous
laboratory studies have been performed to study the interaction of internal waves with
topography (Cacchione & Wunsch 1974; Ivey & Nokes 1989; Ivey, Winters & De Silva
2000; Troy & Koseff 2005; Hult, Troy & Koseff 2006; Moore, Koseff & Hult 2016).

Computational fluid dynamics (CFD) has become one of the most important tools
aiding the study and understanding of stratified flow processes. As a result, studies using
CFD to study the internal wave–topography interactions are increasingly prevalent. Work
in this area has largely fallen into two broad categories; direct numerical simulations
(DNS) that resolve the turbulent processes near the laboratory scale (O ≤ 10 m) (i.e.
Slinn & Riley 1998; Javam, Imberger & Armfield 1999; Venayagamoorthy & Fringer
2006; Rapaka, Gayen & Sarkar 2013; Jalali, Rapaka & Sarkar 2014; Lamb 2014; Lamb &
Dunphy 2018; Puthan, Pawlak & Sarkar 2022) and relatively larger field-scale simulations
(O ≥ 1000 m) that do not resolve the full flow structure (i.e. Aguilar & Sutherland 2006;
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Legg & Klymak 2008; Klymak et al. 2012; Winters & Armi 2013; Legg 2014; Gemmrich
& Klymak 2015; Srinivasan et al. 2019; Perfect, Kumar & Riley 2020a,b). Within the study
of this problem there is a body of work using field-scale simulation to address the breaking
and scattering of internal waves interacting with a highly supercritical topography (e.g.
Laurent et al. (2003), Klymak et al. (2006), Klymak, Legg & Pinkel (2010), Klymak
et al. (2012) and references therein). In particular, the works of Laurent et al. (2003)
and Klymak et al. (2013) discuss the internal tidal generation, scattering and dissipation
associated with surface tides interacting with a highly supercritical and abrupt topography
using theoretical and numerical simulations.

More recently there has been an increasing number of studies that use large eddy
simulation (LES) in order to simulate more realistic flow structures near topography
(Armenio & Sarkar 2002; Jalali & Sarkar 2017; Puthan et al. 2020; Puthan, Sarkar
& Pawlak 2021). Venayagamoorthy & Fringer (2006) considered the generation of
upslope propagating bores leading directly to dissipation and mixing for a variety of
mode-1 internal wave forcings and slope steepnesses at a shelf break. Legg & Adcroft
(2003) completed Reynolds-averaged Navier–Stokes (RANS) simulations of field-scale
topography with slopes of various monotonic shapes. Studies using numerical modelling
of this interaction have been completed for subcritical and critical slope cases (Legg
& Klymak 2008; Legg 2014) as well as for critical and supercritical cases (Klymak
et al. 2012; Hall, Huthnance & Williams 2013). Works at the laboratory scale by Rapaka
et al. (2013), Chalamalla & Sarkar (2015) and Puthan et al. (2022) have emphasized the
importance of the energetics and turbulence from DNS of ridges or seamounts at the
laboratory scale. There are a wide range of codes that have been developed for simulation
of geophysical flows; see the references above for each specific code. Despite the large
body of work on this topic, there remains much to be understood regarding the energetics
and nonlinear dynamics of interaction processes with a particular emphasis on the energy
partitioning, dissipation and mixing.

The goal of this study is to systematically explore the energetics and ensuing mixing
from the interaction of low-mode internal waves with a ridge, which is a common
archetypal topographic feature found in the ocean. In particular, the key questions to be
investigated are: What is the partitioning of the incident internal wave energy over the
course of the interaction with a topographic ridge? Under what topographic and wave
forcing conditions do incoming low-mode waves break and lead to the formation of
nonlinear bores? And how much dissipation and mixing occurs in the vicinity of the ridge?
These questions are very important in many respects and their answers have important
implications for the conclusions drawn from both numerical models and field observations
focusing on breaking internal waves interacting with topographic features. These questions
are investigated using high-resolution two-dimensional numerical simulations of the
interaction of a first-mode internal wave field with a topographic ridge meant to emulate
oceanic ridges found around the globe and which are recognized hotspots for turbulent
mixing (Munk & Wunsch 1998). Analysis closely follows the structure presented in
Venayagamoorthy & Fringer (2006) (hereafter VF06). However, the emphasis here is
on investigating the partitioning and flux of energy from internal wave interaction with
different topographic ridges (i.e. varying height and slope steepness) as opposed to a shelf
as was investigated by VF06. The choice of a topographic ridge is similar to Rapaka et al.
(2013) but simulations in our analysis are completed at a relatively larger scale, O(100 m).
Legg & Klymak (2008) and Legg (2014) (hereafter L14) also show CFD results of internal
wave interaction with a ridge but at the full field scale, O(103–106 m), which results do
not resolve flow structures.
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This simulation study aims to provide a needed bridge to tie results between the highly
resolved DNS at the laboratory scale, exemplified by VF06 and Rapaka et al. (2013), and
the RANS simulations generally used for modelling of internal waves at the field scale,
exemplified by L14. Additionally, the analysis aims to show that, through careful parameter
choice and modelling consideration, not all turbulent flow structures need to be resolved
to achieve comparable results to DNS in terms of both the qualitative flow structures and
quantitative calculations of important flow quantities such as energy flux. The numerical
methods, formulation and simulation set-up are discussed in § 2. The results and discussion
of the wave–topography interaction are given in § 3, with conclusions given in § 4.

2. Formulation and numerical methods

Equation (2.1) is the Navier–Stokes equation with the Boussinesq approximation and a
constant kinematic viscosity ν, which is subjected to the continuity constraint given by
(2.2) and, in a stratified flow, is necessarily coupled with the scalar (density) transport
given by (2.3)

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u − g
ρ0

ρk, (2.1)

∇ · u = 0, (2.2)

∂ρ

∂t
+ ∇ · (ρu) = κ∇2ρ. (2.3)

In these equations u = (u, v, w) is the three-dimensional velocity field, ρ0 is a reference
density, p is the pressure, g is gravitational acceleration, κ is the thermal diffusivity
(constant) and k is the unit normal vector in the vertical direction. The depth of the
simulation domain is 10 m and the length of the domain 150 m. This size domain was
chosen in order to cover a simulation gap between the laboratory scale, O(≤ 10 m), and
full field-scale simulations, O(≥ 1000 m). Domain resolution of �x = �z = 0.05 m in the
horizontal and vertical directions, respectively, result in a total of nx × ny = 2800 × 200,
or 560 000 total grid points. This resolution, while not resolving all turbulent scales,
allows for realistic nonlinear and overturning flow structures to develop. As defined by
Kundu, Cohen & Dowling (2008), the Kolmogorov microscale is defined as a function
of the turbulent Reynolds number, ReT = UoLc/ν, where U0 is the velocity amplitude of
the wave forcing and Lc = U0/ω is the advective length scale of the internal wave, as
ηk = LcRe−3/4

T , where ω is the forcing frequency. The simulation grid size of 5 cm used
in these simulations is 3.7–10.9 times the corresponding pseudo-Kolmogorov microscale
range of 4.6–13.4 mm for the range of simulated flows calculated with ν = 1 × 10−5, see
Table 1 for details. Equations (2.1)–(2.3) are computed using the Massachusetts Institute
of Technology’s General Circulation Model (MITgcm) code within the two-dimensional
(x, z) domain depicted in figure 1. MITgcm is a CFD code that has been extensively used
and validated for simulations of stratified geophysical flows (e.g. Legg & Adcroft 2003;
Klymak et al. 2012; Legg 2014; Musgrave et al. 2016).

At the left boundary of the computational domain simulations are forced with a
first-mode internal wave given by

u(0, z, t) = U0 cos(mz) sin(ωt), (2.4)

where U0 is the velocity amplitude of forcing, m is the vertical wavenumber corresponding
to a mode-1 baroclinic wave with m = π/d, and u is the velocity component. Waves are
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(I ) (I I ) (III )
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ρ(z) Wave

beams

Figure 1. Schematic of the computational domain for the simulations presented. Lines (I), (II) and (III) are the
transects where the energy flux was calculated. The height, ht, and width, Wt, of the topography varied between
the simulations dependent on the topography-to-depth ratio, ht/d and the topographic slope-wave criticality,
γ /s. As a result, while the wavelength was set at ∼50 m for all simulations, the width of topography varied
between 20 and 70 m, where the slope length is defined by Ls. Simple schematic depictions of the forcing,
density stratification and internal wave characteristics are also shown for illustration.

propagated into a domain with an initial stratification (for all simulations) defined using a
linear background distribution ρb given by

ρ(z, t = 0)

ρ0
− 1 = ρb(z)

ρ0
= −Δρ

ρ0

( z
d

)
, (2.5)

where �ρ/ρ0 = 0.0001 results in a buoyancy frequency N = 0.01 s−1. In a linearly
stratified fluid, as defined for this analysis by (2.5), internal wave phases propagate
horizontally at the celerity (speed) defined by

cph = ω

k
= d

π
(N2 − ω2)1/2, (2.6)

where d is the fixed depth, k is the horizontal wave number and ω is the wave frequency.
Within this formulation in a stratified flow, the slope of the wave beam, s, is defined by

s = tan θ = k
m

=
(

ω2

N2 − ω2

)1/2

, (2.7)

where θ is the angle of the internal wave characteristic and m is the vertical wavenumber.
Coriolis rotation has been removed from (2.1) and (2.7). While rotation is important to
driving oceanic currents and the large-scale eddy structures, it has not been included due
to the scale of the simulation being smaller than the scales influenced by rotation. The
Rossby numbers (Ro = U0/Lcf ) for these simulations are ≈5, which is greater than a
Rossby number of 1, indicating that Coriolis rotation should not impact the dynamics in
a simulation of this domain size (Galperin et al. 1989; Kantha, Rosati & Galperin 1989;
Lindborg 2005; Klema et al. 2023). The analysis of Phillips (1977) shows that internal
waves contain phase-locked downward and upward propagating wave beams where the
wave modes propagate horizontally. When an internal wave encounters topography the
upward and downward beams decouple and the beams individually interact with the
topography and change the dynamics of the flow. The dynamic interaction of the internal
waves and topography is impacted by both the slope of the topography, γ = ht/Ls, and
the wave characteristic slope, s. It is common to see the relative bottom slope defined
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by the ratio γ /s. When the topographic slope is steeper than the wave characteristic
slope γ /s > 1, the slope is classified as supercritical. Subcritical slopes correspond to
γ /s < 1 and γ /s = 1 defines critical slopes. Critical slopes mean that the wave’s angle of
propagation matches the slope of the topography.

For all simulations a radiative boundary condition (Orlanski 1976) is applied at the
right hand boundary to allow for the propagation of the internal wave energy out of the
domain; a similar radiation boundary condition is applied in L14, for example. Under some
conditions, this boundary condition will allow higher-frequency wave modes to reflect
back into the domain. Care was taken with choosing the size of the domain and the test
section around the geometry to ensure that the calculations at the ridge were not affected.
On the bottom boundary a no-slip boundary condition is applied. At the top of the domain
a linearized free surface boundary condition is applied that allows non-zero vertical
motions (denoted η), which results in a contribution to the pressure from the boundary
displacement. The density field has a gradient-free boundary condition on all walls.
A Prandtl number of Pr = 1 for all simulations is set by prescribing a kinematic viscosity
of ν = 10−5 m2 s−1 and a thermal diffusivity of κ = 10−5 m2 s−1. Setting these values
for the kinematic viscosity and thermal diffusivity near to the accepted molecular values
allows for the large energy containing flow structures to be resolved similarly to a CFD
LES, where this slightly higher viscosity than normal will dissipate the eddying structures
near the grid scale. No hyperviscosity was used in the simulations, and numerical stability
of each simulation was achieved through optimization of the grid size and time step in
consideration of the Courant–Friedrichs–Lewy condition. In order to maintain numerical
stability the time step varied for each individual simulation, resulting in a range of
computational resources used to complete each simulation. The average computational
cost across all 40 simulations was 9000 core hours. The maximum computational cost for
a single simulation was 12 200 core hours.

Table 1 gives the details of the simulations completed in this analysis, where different
values of the topographic slope for different simulations allowed for variation of γ /s from
0 to 1.5 while holding N, ω and s at fixed values. The ratio of ω to N is a scaled quantity
and the individual values were chosen such that N > ω as well as to maintain realistic
values for the other parameters in the simulations. The range of subcritical-to-supercritical
slopes was achieved by variation of γ using the topographic ridge height, ht, resulting in
a change to the corresponding width, Wt. The relative topographic height ht/d ranged
from 0.25 to 0.75. The ridge geometry is calculated as a function of height from the
bed and is defined by the equation h = (d/2)[1 + cos((2πx − 6πλx)/Wt − π/2)], where
x is the horizontal location from the start of the topography and λx is the horizontal
wavelength of the internal wave. Velocity amplitude is varied between 0.3 and 2.5 cm s−1,
resulting in Froude numbers (Fr = U0/cph) between 0.1 and 0.84. This definition of the
Froude number is the ratio between the velocity amplitude of the wave forcing, U0, and
the internal wave celerity, cph, and is commonly referred to as the wave Froude number
(Venayagamoorthy & Fringer 2007; Legg 2014). This parameter space represents a wide
range of wave energy conditions and allows for assessment of various conditions resulting
from linear to highly nonlinear internal waves interacting with the topography. A schematic
of the computational domain and the relevant parameters associated with the simulation
domain are shown in figure 1. The third parameter in table 1 is commonly referred to as
the excursion number and is a measure of the wave excursion to the topographic length
scale Ls, where T is the internal wave period. This parameter is also sometimes used as a
measure of barotropic tide generation.
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Runs γ /s Fr = U0/cph U0T/πLs ht/d ReT = U0Lc/ν ηk (mm) Comments

1–5 0 0.1–0.84 — — 260–17 960 13.4–4.6 No-topography cases
6–8 0.25 0.1–0.84 0.03–0.27 0.5 260–17 960 13.4–4.6 Subcritical cases
9–11 0.5 0.1–0.84 0.06–0.52 0.5 260–17 960 13.4–4.6 Subcritical cases
12–16 1 0.1–0.84 0.12–1.03 0.5 260–17 960 13.4–4.6 Critical cases
17–19 1 0.25–0.84 0.62–2.06 0.25 1600–17 960 8.4–4.6 Critical cases
20–23 1 0.5–0.84 0.24–0.67 0.75 6430–17 960 6.0–4.6 Critical cases
24–26 1.25 0.1–0.84 0.29–2.43 0.25 260–17 960 13.4–4.6 Supercritical cases
27–29 1.25 0.1–0.84 0.15–1.21 0.5 260–17 960 13.4–4.6 Supercritical cases
30–32 1.25 0.1–0.84 0.1–0.81 0.75 260–17 960 13.4–4.6 Supercritical cases
33–35 1.5 0.1–0.84 0.33–2.78 0.25 260–17 960 13.4–4.6 Supercritical cases
36–38 1.5 0.1–0.84 0.17–1.39 0.5 260–17 960 13.4–4.6 Supercritical cases
39–40 1.5 0.5–0.84 0.56–1.39 0.75 6430–17 960 6.0–4.6 Supercritical cases

Table 1. Details of the 40 simulations showing the parameter space covered.

3. Results and discussion

3.1. Velocity and temperature/density fields
Time series snapshots of internal wave propagation through the computational domain
are shown in figure 2. Three simulation cases are shown in this figure for Fr = 0.1,
Fr = 0.5 and Fr = 0.84, depicting linear, nonlinear and highly nonlinear cases,
respectively. Values for the relative slope γ /s = 1 (i.e. critical slope) and topography-to-
depth ratio ht/d = 0.5 are consistent for the simulations depicted. Also, for all three
simulations, the frequency of the incoming internal wave is ω = 0.0035 rad s−1 and the
wave period T = 2π/ω = 1800 s. Forcing of the internal wave is modified by imposing
varied velocity amplitude U0 at the inlet of the domain. Each of the three cases in figure 2
shows six snapshots of the internal wave developing and propagating over the topographic
ridge. The time instants are normalized by T . The domain depicted starts at x = 50 m,
ends at the computational domain outlet x = 150 m and is coloured by the stratification,
depicted using the temperature anomaly.

With Fr = 0.1 the six panels in figure 2(a) show the propagation of an internal wave
forced by U0 = 0.3 cm s−1. The dynamics of this simulation is dominated by linear
oscillations of the flow field as the internal wave propagates to the ridge. Some minimal
magnitude displacement is visible in the flow field on the upstream side of the ridge as
well as above the peak in topography. While some dissipation and mixing occurs due to
the criticality of the topography, a greater portion of the energy is either transmitted past
the topography or reflected off the topography. Most of the small-scale features visible in
this series of visualizations are a result of the slope criticality leading to the decoupling
of the internal wave beams. In the simulations with Fr = 0.1 and sub- or supercritical
slopes, these features are lesser in extent. As the Froude number increases these features
also become less observable as the beam decoupling gets overwhelmed by the energy and
the resulting nonlinear dynamics.

Figure 2(b) shows a simulation with Fr = 0.5 set by U0 = 1.5 cm s−1. The presence of
nonlinear dynamics is visible in the snapshots of this simulation with dense fluid from the
base of the stratified water column propagating up and over the ridge (see panels (iv) and
(v)). These flow structures have been both simulated (Venayagamoorthy & Fringer 2006,
2007) as well as observed (Cacchione & Wunsch 1974) and are known as tidal bores,
or solibores. These flow structures are formed as a result of the internal wave creating a
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–0.20 –0.15 –0.10 –0.05 0

±T (°C)

0.05 0.10 0.15 0.20

(a)

(b)

(c)

(i) t/T = 4.77 (ii) t/T = 5.27

(iii) t/T = 5.53 (iv) t/T = 5.77

(v) t/T = 6.00 (vi) t/T = 6.27

(i) t/T = 4.75 (ii) t/T = 5.25

(iii) t/T = 5.50 (iv) t/T = 5.75

(v) t/T = 6.00 (vi) t/T = 6.25

(i) t/T = 4.75 (ii) t/T = 5.25

(iii) t/T = 5.50 (iv) t/T = 5.75

(v) t/T = 6.00 (vi) t/T = 6.25

Figure 2. Time series snapshots of an internal wave building and passing over the topographic ridge. Colour
spectrum denotes the temperature anomaly of the simulations. The relevant parameters for the simulations
depicted are γ /s = 1, ht/d = 0.5 for (a) Fr = 0.1, (b) Fr = 0.5 and (c) Fr = 0.84. As the Froude number
increases the dynamics of the internal waves’ interaction with the topographic ridge becomes more complex
with more overturning and transport of high density fluid from near the bottom boundary up and over the
ridge when Fr = 0.84. Note that the first 50 m of the domain is truncated in the figures to better visualize flow
structures near the ridge.

vortex core that advects dense fluid from low in the water column up onto a continental
shelf (as shown in VF06 for example) or over the top of ridge (as shown here). In addition
to the advection of dense fluid by bores, larger magnitude displacements of fluid are visible
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relative to the case with Fr = 0.1. Displacements of fluid, both on the upstream side of the
ridge as well as above the topographic peak, increase in magnitude. The drawdown of
fluid on the upstream side of the ridge as the internal wave advects toward the ridge, as
well as the propagation of the bore to the downstream side of the ridge, creates regions of
unstable stratification where denser fluid overlies less dense fluid. Visible in the snapshots
are the overturning structures that result from unstable stratification and the advection of
the bolus.

A velocity amplitude of forcing U0 = 2.5 cm s−1 sets a simulation with Fr = 0.84,
depicted in figure 2(c). It is clear from the series of snapshots that the dynamics
becomes highly nonlinear with significant instability with the increase in energy. Fluid
displacements, the size of the bore transporting mass over the ridge as well as the size
of the overturns resulting from unstable stratification are all of greater magnitude when
compared with the other two cases. In the case shown in figure 2(b) the bore is ejected
off the ridge, creating an overturn and mixing. In this case, the size/mass of the bore is
sufficiently large that it returns down the backside of the ridge. This downslope advection
of the bore (as shown in figure 2c-v) generates an overturning structure that is in the
opposite direction to the ejected bore depicted in figure 2(b-v). This final time series clearly
shows the complex dynamics that results from highly nonlinear internal waves interacting
with topography in a stratified flow.

Figure 3 shows the normalized zonal velocity u, normalized vertical velocity w and
normalized density profiles for the same three cases discussed for figure 2 at t/T = 6.25.
Figure 3(a) shows profiles for Fr = 0.1, figure 3(b) for Fr = 0.5 and figure 3(c) for Fr =
0.84. Each row of normalized plots correspond to transects I-III as depicted in figure 1,
respectively. The zonal velocity, vertical velocity and density profiles at profile § 1 in the
first row for each of the cases show a similar distribution as expected but normalization
of the velocities by U0 results in varied magnitudes due to the differences in the velocity
amplitude of forcing.

For the linear lowest energy case (Fr = 0.1) the profiles at transect II show a zonal
velocity distribution with increased values near the bed as the wave approaches the ridge.
The vertical velocity magnitude at transect II has also increased, as would be expected
with the zonal flow being redirected vertically over the ridge. The density profile steepens
near the bed, likely due to the energy of the internal wave pushing the dense fluid near
the bottom against the base of the ridge and creating a slight increase in the density
near the bottom of the profile. Row 3 of panel (a) shows the distributions of transect III,
the downstream side of the ridge. Both the zonal and vertical velocity magnitudes have
decreased. On the lee side of the ridge the zonal velocity should decrease as it is sheltered
from the incoming internal wave and the vertical velocity switches direction as some of
the flow moves down the back side of the ridge.

Figure 3(b) shows the normalized velocity and density profiles at transects I, II & III
for simulation with Fr = 0.5 at t/T = 6.25. At transect II the normalized zonal velocity
shows a velocity distribution representative of the drawdown on the upstream side of the
slope just before the arrival of an internal wave. This distribution is corroborated by the
corresponding image from figure 2(b-vi) showing the fluid being drawn downslope during
the simulation at this instant, resulting in the negative vertical velocity. The density profile
also shows the impact of the drawdown of lighter fluid from higher in the stratified fluid
column.

In figure 3(c) similar trends are observable for the simulation defined by Fr = 0.84
at t/T = 6.25. The increased velocity of this simulation results in a zonal velocity
distribution that is already propagating up the ridge at transect II. It had not yet arrived
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Figure 3. Normalized zonal velocity (u), vertical velocity (w) and density (ρ) profiles for t/T = 6.25.
Grouping (a) is for simulation where Fr = 0.1, grouping (b) Fr = 0.5 and (c) Fr = 0.84. The other relevant
parameters are γ /s = 1 and ht/d = 0.5 for all three simulations. Within each grouping row 1 denotes the
profile from transect I, row 2 the profile from transect II and row 3 from transect III on the downstream side of
the topographic ridge as depicted in the schematic shown in figure 1.

at the ridge in the previous case, resulting in the drawdown profile discussed above. The
density profiles from transects II and III show the result of the increase in energy of
this simulation with more varied distributions of density due to turbulence and mixing.
Regions of unstable stratification are also observed in the density profile at transect II.
The flow structures visible in all three of the simulation time series shown in figure 2 are
signatures of nonlinear as well as non-hydrostatic effects. These nonlinear structures are
sufficiently resolved in the current simulations to be visible within the flow, similar to
those seen in highly resolved simulations such as in VF06.

3.2. Energy flux and partition
Here, we repeat a concise portion of the derivation for the depth-integrated energy flux
presented in VF06 and Venayagamoorthy & Fringer (2005) but it will be applied here
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to a topographic ridge rather than a shelf. This analysis is also similar to the derivation
presented in Rapaka et al. (2013) for the energy flux components and the determination
of relative energy transmission, reflection and dissipation. Taking the dot product of (2.1)
with u and adding the resulting equation to the product of (2.3) and gz gives the governing
energetics equation

∂

∂t
(ρ0q + ρgz) + ∇ · f = −ρ0εk − 2κ

∂

∂z
(ρg), (3.1)

where q = u · u/2 is the kinetic energy per unit mass, εk = ν((∂ui/∂xj)(∂uj/∂xi)) is the
viscous dissipation rate of kinetic energy and the local energy flux is given by

f = u(ρ0q + p + ρgz) − μ∇q − κ(ρgz), (3.2)

with μ denoting the dynamic viscosity. From the equations derived above it follows that
the depth-integrated energy flux (units of W m−1) is given by

FE =
∫ 0

−d

[
u(ρ0q + ρgz + p) − μ

∂q
∂x

− κ
∂

∂x
(ρgz)

]
dz. (3.3)

Assuming that at t = 0 the density field is given by the imposed background density field
ρb and that the contribution of the diffusive terms to the energy flux is negligible, the
change in total energy can be computed using the simplified depth-integrated energy flux

FE =
∫ 0

−d
p′u dz, (3.4)

where p′ = ρ0q + ρgz + p. The time-integrated energy flux (units of J m−1) is given by

Eτ =
∫ t

0
FE(τ ) dτ. (3.5)

The pressure term p in (3.3) can be split into two terms denoting its hydrostatic (pH)
and non-hydrostatic (pNH) components gives p′ = ρ0q + ρgz + pH + pNH . If the total
density is defined by ρ = ρ0 + ρb + ρ′, (3.3) can be written to account for the energy
flux due to the work done by the hydrostatic pressure fluctuations (i), the work done
by the non-hydrostatic pressure (ii), the advection of kinetic energy (iii), the advection
of potential energy due to density fluctuations (iv), advection of potential energy due to
the mean background density field (v) and work done by the hydrostatic pressure due to
the mean background density field (vi). This derivation is analysed in detail, including
a discussion of each contributing term, in Venayagamoorthy & Fringer (2005), Kang
& Fringer (2010) and Kang & Fringer (2012). Each of the energy flux contributions
listed above can be determined from the numerical simulation data that are included
explicitly as part of the simulation. The analysis presented in Kang & Fringer (2012)
(among others) shows that terms (iv)–(vi) minimally contribute to the overall energy
flux and these findings were corroborated in our analysis. The results of VF06 show
that over 50 % of the energy flux results from the hydrostatic pressure anomaly while
approximately 30 % of the energy flux is contributed by the non-hydrostatic pressure term,
the two largest contributors to the energy flux budget in their analysis. Figure 4 shows
both the depth-integrated flux (solid blue lines) as well as the cumulative energy flux
(dashed magenta lines) for each of the three largest flux contribution terms (i)–(iii) for
simulations where Fr = 0.1, Fr = 0.5 and Fr = 0.84 with γ /s = 1 and ht/d = 0.5 in all
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Figure 4. Depth-integrated energy flux normalized by FL (blue solid line) and time-integrated (cumulative)
energy flux normalized by FL/ω (magenta dashed line) as a function of t/T at x = 105 m for simulations
with Fr = 0.1 (a), Fr = 0.5 (b) and Fr = 0.84 (c). These are the same simulations as presented in figure 2,
with γ /s = 1 and ht/d = 0.5 consistent between simulations. The calculations are as in transect III on the
downstream side of the ridge as denoted in figure 1.

three simulations. For the higher Fr simulations shown in figure 4, the hydrostatic pressure
anomaly term accounts for approximately 50 % of the energy flux and the non-hydrostatic
pressure term approximately 35 %–40 % of the total energy flux. Each energy flux term
plotted in figure 4 is normalized using a base estimate of the energy flux of the incoming
internal wave computed using linear wave theory (Kundu et al. 2008)

FL = ρ0ωU2
0

2k
d, (3.6)

where ρ0 is the reference density, ω is the forcing frequency, U0 is the velocity amplitude
of forcing, d is the full flow depth and k is the horizontal wavenumber obtained from the
dispersion relation for internal waves. This energy flux is the integral of the product of
the velocity and pressure perturbations. The evident contribution of the non-hydrostatic
pressure work term shows the impact of vertical inertia and the instantaneous importance
of the non-hydrostatic pressure. This figure shows that, as the Froude number increases,
both the hydrostatic and non-hydrostatic energy fluxes increase. This result corroborates
the laboratory-scale results of VF06 and illustrates the importance of the non-hydrostatic
dynamics in stratified flows and internal wave CFD simulation.

Using the notation presented by VF06, the energy budget can be approximated by

EI = ER + ET + ED, (3.7)

where EI is the total incident wave energy of the incoming wave, ER is the energy reflected
back toward the inlet of the computational domain from the topography, ET is the energy
transmitted past the topography and ED is the energy dissipated in the control volume
bounding the topography. Figure 5 shows a schematic depiction of the components of
the energy flux budget with the control volume centred over the topography between
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(No ridge)
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Figure 5. Depiction of the energy budget for the control volume centred over the topographic ridge between
vertical transects II and III. Panel (a) shows the base case where no topography is present (γ /s = 0) and panel
(b) shows the typical topographic ridge case (γ /s > 0). Schematic (c) shows how the fluxes are determined
from panels (a) and (b) to close the energy budget and determine the reflected and dissipated energy. Subscript
‘nt’ denotes the no-topography case and ‘wt’ denotes the case with a topographic ridge (modified from
Venayagamoorthy & Fringer (2006), not to scale).

the dashed lines denoting transects II and III as show in figure 5. The reflected energy
flux is determined by taking the difference in the total incident wave energy flux of
transect II (see figure 5(a)) of the simulation with no topography present, (Eτ )nt,II , and
the total wave energy flux that now includes both incident and reflected wave energies at
transect II (see figure 5(b)) in the simulation with the topographic ridge being evaluated,
(Eτ )wt,II . Dissipation of energy is determined from (3.7) by taking the difference between
the cumulative total wave energy flux of transect II and the cumulative energy flux of
transect III.

Analysis of how the energy is partitioned between these three components across a wide
range of pertinent parameters (i.e. Fr, γ /s and ht/d) will be insightful for understanding
the dynamics of the interaction process and is carried out next.

Figure 6 shows the cumulative transmitted, reflected and dissipated energy fluxes for
each simulation as a function of γ /s, for ht/d = 0.25, 0.5 and 0.75, respectively. All the
fluxes are normalized by the cumulative incident energy EI . When the ridge height is only
one quarter of the total flow depth, ht/d = 0.25 (figure 6a,d,g), the majority of the incident
wave energy (approximately 70 %) is transmitted through the domain at the critical slope
and reduces monotonically to approximately 50 % for γ /s = 1.5. The amount of energy
reflected is very small for the critical slope cases (regardless of Fr) but increases slightly
when the slope becomes supercritical, offsetting some of the reduction in transmitted
energy. The dissipation accounts for the remainder of the incident energy that is not
transmitted at critical slopes and slightly increases for supercritical slopes especially for
Fr = 0.84.

The second column of figure 6 shows the results for a ridge height ht/d = 0.5.
Subcritical slope simulations allow for the majority of the energy to transmit up and over
the topography but some energy is dissipated by turbulence in the flows with higher Froude
numbers. The transmitted energy decreases in a monotonic manner as γ /s increases
regardless of Fr, similar to the trend seen in VF06. Amounts of reflected energy are
very small, as would be expected as the internal wave beams forward reflect when the
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Figure 6. Normalized cumulative energy fluxes for all simulation runs as a function of the topographic
steepness parameter. Rows denote the normalized transmitted energy flux, normalized reflected energy flux
and normalized dissipated energy flux, respectively. Columns group the results by the topography height–total
depth ratio, ht/d.

slope is subcritical. For critical slopes approximately half of the energy is transmitted. The
amount of reflected energy remains the least significant of the three energy modes analysed
in the cases with critical slopes. However, for supercritical slopes, reflection increases
significantly, reaching almost 40 % at γ /s = 1.5. Both the proportions of transmitted and
reflected energy are always higher for the lower Fr cases for all γ /s values, a result
also seen in VF06. Dissipation magnitude varies as a function of Froude number, with
dissipation accounting for approximately 50 % of the energy difference at high Froude
numbers at critical slopes to less than 25 % for the lowest Froude number simulation,
Fr = 0.1 for subcritical slopes.

As the height of the ridge increases the amount of transmitted energy also decreases,
as shown in figure 6(c). Approximately 25 % of the energy is transmitted for a ridge
defined by a critical slope and the majority of the energy is reflected. For the least energetic
simulations defined by Fr = 0.1 the amount of energy transmitted through the domain is
very low, with over 70 % of the energy being reflected off the topography and the majority
of the difference being dissipated. Amounts of reflected energy vary significantly with
Fr, with total reflected energy decreasing as Froude number increases. Flows defined by
a larger Froude number lead to a more nonlinear dynamics and more of the energy being
captured by dissipation and mixing. The plots in figure 6 show how the partition of energy
flux is strongly dependent on all three non-dimensional parameters Fr, ht/d and γ /s.

On average 43 % more of the total wave energy is transmitted through the domain
when ht/d = 0.25 than when ht/d = 0.75. The amount of the total wave energy that is
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reflected for these two cases is almost inversely proportional, with 36 % more energy being
reflected on average for the simulations with ht/d = 0.75 when compared with the amount
of energy reflected from simulations with ht/d = 0.25. The amount of energy dissipated
is 16 % higher on average for ht/d = 0.75 than ht/d = 0.25, which can be attributed
to the increased length of the wave-to-bed interaction that results from the increasing
height of the topography. Results with ht/d = 0.5 necessarily fall in the middle of the
range in terms of wave energy transmission, reflection and dissipation. Results from this
subset of simulations with ht/d = 0.5 clearly illustrate the influence of γ /s. There is an
average decrease of 40 % of the total wave energy transmitted as γ /s increases (i.e. from
subcritical to supercritical slopes). Results show that, for ht/d = 0.5, there is an average
31 % increase in the amount of total wave energy reflected with increasing γ /s. Total wave
energy dissipated increases by 16 % with increasing slope steepness and the amount of
wave energy levels off at approximately 50 % after reaching a critical slope.

If the results presented in figure 6 are directly compared with the results in VF06 there
are a few notable differences. The two results are not directly comparable due to the
different simulation scales, a shelf being used in VF06 as compared with a topographic
ridge here and the different parameter value ranges explored (Fr, wave parameters etc.).
In particular, it should be noted that, in VF06, the topographic steepness and topographic
height were not independently varied, making a direct comparison difficult. Nonetheless,
comparisons between the two studies taken on an average basis show decreases in
transmission of 4 %. This decrease in transmission can be partially explained as a result
of the longer overall bottom length travelled by the internal wave while going over the
topographic ridge as opposed to travelling along the shelf. Additionally, the potential
energy contained by bolus mass cores at the top of the ridge is converted to kinetic energy
as the bolus is ejected and plunges off the top of the ridge. A significant component of
this kinetic energy that is not present in the shelf case in VF06 is in the vertical direction,
contributing to additional mixing. There is an increase in the average reflection of 5 % and
a decrease in the dissipation by 2 %. Increases in reflection are a result of the some of the
resulting re-circulations observed in these simulations that move fluid mass back past the
upstream toe of the ridge. The dissipation makes up the necessary difference.

Data presented in figure 7 depict a subset of the overall data presented in figure 6 at
the critical slope ratio, γ /s = 1. The proportions of transmitted, reflected and dissipated
amounts of energy are presented on the horizontal axis and the ridge height-to-depth ratio
on the vertical axis in order to maintain this quantity’s physically realistic orientation.
Each data point is coloured by Fr of the simulation. Figure 7(a) shows that the transmitted
energy flux decreases linearly with ht/d at the critical slope. As nicely discussed in L14,
in the near-critical slope regime, it can be shown that, for a finite-length critical slope with
a piecewise constant slope (e.g. a triangular ridge), the fraction of energy flux that will
be transmitted scales linearly with (1 − ht/d). The agreement, as shown by the dashed
line in figure 6(a), with the simulation results is remarkable despite the differences in
shape of the topography and variations in Fr. This finding is also corroborated in the
field-scale simulations of L14, where a similar monotonic decline in transmitted energy
with ht/d is seen at critical slopes. However, there are some changes with Fr that are
worth noting. At ht/d = 0.25, the effect of Fr is small with slightly less transmission
at higher Fr. At ht/d = 0.5, the effect of Fr increases in a non-monotonic manner with
the peak transmission ratio of approximately 0.5 at an intermediate Fr = 0.25. Such a
non-monotonic trend in the transmission ratio with Fr for a critical slope was also found
in VF06, wherein they report a value of approximately Fr = 0.34 at peak transmission.
Figure 7(b) shows that the proportion of reflected energy increases with ridge height in
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Figure 7. Energy transmission, reflection and dissipation for the three ridge heights at γ /s = 1. Energy
transmission increases as the ridge height decreases, panel (a), energy reflection increases with increases in
ridge height, panel (b), and energy dissipation peaks for the intermediate ridge height, panel (c). The linear
trend line in panel (a) directly follows from linear theory, as presented in L14, of ET/Etotal = 1 − ht/d.

a highly nonlinear manner. The increase in reflected energy is only slight (approximately
10 %) between the cases with ht/d = 0.25 and 0.5. On the other hand, the increase is
drastic when ht/d changes from 0.5 to 0.75. Given the linear trend in the transmitted
energy, it is clear that dissipation is significant at ht/d = 0.5. Figure 7(c) shows that
the dissipation exhibits a non-monotonic behaviour with a peak at the intermediate ridge
height for critical slopes. Even though there is a longer surface for the wave to traverse
in the cases of the taller ridges, this result is likely a result of the scale of incoming wave
energy and the scale of the topographic ‘obstacle’, where the amount of energy dissipated
decreases for the taller ridge. This finding has important implications for optimal mixing
‘hotspots’ in the ocean.

The simulation snapshots presented in figure 8 qualitatively depict this interaction
between the wave and topography. The first row of panels, (a–c), depicts the same time
snapshot of the simulations for Fr = 0.5 and γ /s = 1 at all three ridge heights. For the
smallest ridge depicted in figure 8(a) there is clearly some nonlinear fluid dynamics, as
shown by some overturning structures with denser fluid moving up over the ridge. In
figure 8(b) the bolus core of fluid ejected over the ridge is larger, but it is also clear that
there is an increase in the nonlinear dynamics with more visible mixing between the layers
of fluid. In the case of the tallest ridge, the scale of the incoming wave does not match the
scale of the topography so the bolus size decreases and the densest fluid is not able to go
over the top of the ridge.

If the simulation Froude number is increased to 0.84 this same result holds. At the
intermediate ridge height, the bolus structures increase in size from the Fr = 0.5 case with
the same ridge height, as can be seen in figure 8(e). For the tallest ridge (see figure 8f ),
there is also an increase in the bolus size and the amount of mass ejected over the ridge
when compared with the same ridge height at Fr = 0.5. However, when compared with
the intermediate ridge height case at Fr = 0.84 (figure 8e), there remains insufficient wave
energy to move the densest fluid over the ridge. Figure 8(d) gives a similar presentation of
the data as figure 7(a) for the transmission of wave energy but for all γ /s values and ridge
heights. Data are still coloured by simulation Froude number. Similar to the relationship
between ET/Etotal and ht/d, the relationship between γ /s and ET/Etotal follows a linear
relationship for all of the data. The trends in the transmitted energy are different with
respect to Fr and ht/d. For ht/d = 0.25 and ht/d = 0.5 the amount of energy transmitted
decreases with increasing Fr. This energy is being absorbed in the energy dissipation for
each constant ridge height across all γ /s. For ht/d = 0.75 a similar linearly proportional
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Figure 8. Panels (a–c) show a snapshot of internal wave interaction with topography for the three ridge heights
all at Fr = 0.5 and γ /s = 1. Panels (e–f ) show internal wave interaction with ht/d = 0.5 and ht/d = 0.75,
respectively, for Fr = 0.84, γ /s = 1. Panel (d) presents the energy transmission trends with respect to γ /s,
ht/d and Fr, where there is a clear, nearly linear trend in the decrease of transmitted energy as ridge height
increases. For ht/d = 0.25 and ht/d = 0.5 the amount of energy transmitted decreases as the Froude number
increases due to an increase in dissipation but it is worth noting the reverse Fr trend for simulations with
ht/d = 0.75 as more energy is needed to overtop the ridge.

relationship between γ /s and ET/Etotal as the other two ridge heights occurs, but the
amount of energy transmitted as a function of Fr has the opposite trend, as shown in
figure 8(d). For the taller ridges, increase in Fr provides more wave energy to transmit
energy over the tallest ridges and in balance appears to have the impact of reducing the
amount of energy dissipated, as shown in figure 6(i).

Figure 9 shows both a reproduction of the regime diagram presented as figure 2 in L14
and a series of simulation snapshots with various values of γ /s. The regime diagram,
presented on the left side of the figure, depicts the parameter space defined by the
relative topographic height and the slope ratio. All simulations completed in this study
are superimposed on this reproduced diagram. Regions A and C are defined by subcritical
topographic slopes. Regime region B is the near-critical slope region and the simulations
presented in this study overlap with the simulations completed in L14 in these regimes.
The bounds of region B are delineated by α1 and α2, where α1 = (1 − √

Fr)/(1 + √
Fr)

and α2 = (1 + √
Fr)/(1 − √

Fr). As defined in L14, Fr is the initial Froude number of
the simulation. Region D is dominated by lee-wave generation and region F is defined by
very small topography relative to the internal wave height and neither of these parametric
regime spaces were investigated in this study. This study fills a simulation regime gap
that has received less attention by completing simulations in the intermediate region E.
In this highly supercritical regime, the waves will transition from being dominated by
wave breaking toward lee-wave generation. Panels (c) and ( f ) in figure 9 show that,
even for γ /s = 1.5, there are still overturns generated from the internal wave–topography
interaction and the regime has not yet transitioned. Resolution of the vertical velocity field
and the non-hydrostatic contribution help these nonlinear features develop and may not
be well accounted for in simulations that neglect the non-hydrostatic contributions and/or
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Figure 9. On the left side of the figure is a reproduction of the regime diagram shown in L14 figure 2, where
the locations of the numerical experiments performed by this study are overlaid on the regime diagram for
context. Panels (a–f ) on the right side of the figure show simulation snapshots at ht/d = 0.5 but for a range
of γ /s values and two values of the Froude numbers. Panels (a–c) show results with Fr = 0.5 and with γ /s
values of 0.25, 0.5 and 1.5, respectively. Panels (d–f ) show the same iteration values for γ /s but at Fr = 0.84.

have an insufficient grid resolution. Regime D in the reproduction of the L14 diagram
in figure 9 has been studied previously (e.g. Laurent et al. 2003; Klymak et al. 2013)
and presents the ‘knife edge’ ridges having highly supercritical slopes. In Klymak et al.
(2013) the dissipation is concentrated near the peak of the ridges studied and is a result
of the interaction/scattering between different modes of the internal tide and topography.
While our cases are not directly comparable due to different regimes as well as a large
difference in Froude number, it is clear from the present study that non-hydrostatic effects
are important and result in mixing near the base of the ridge where a significant portion
of the nonlinear structures are generated and interact, just beyond the crest of the ridge.
The other result of note is that the simulations in figure 9(a,b,d,e) show internal wave
overturning and breaking where such would not be predicted by the analysis in L14. This
is a result of two distinct differences from the simulations in L14. First, the high-resolution
simulations at these intermediate scales allow for non-hydrostatic effects to be modelled
more precisely when compared with lower-resolution simulations that appear to minimize
the non-hydrostatic contributions, as discussed previously. The simulations presented here
also impose a no-slip boundary condition on the bottom boundary of the simulation
domain that many field-scale simulations do not due to lack of adequate grid resolution.
While these simulations still do not resolve the bottom boundary layer, imposing the
no-slip boundary condition also contributes to a change of the flow dynamics that leads to
overturning as the internal wave interacts with the bottom boundary and the topographic
ridge.

4. Summary and conclusion

Locations with topographic ridges in the Earth’s oceans have been identified as hotspots
for dissipation and mixing. This parametric study presents an analysis of highly resolved
two-dimensional numerical simulations of internal waves with varied velocity amplitude
of forcing U0 encountering topographic ridges with varying height ht and relative slope
criticality γ /s. These parametric variations result in flows characterized by a range of
Froude numbers with the correlated flow dynamics varying from conditions dominated by
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Figure 10. Interpolated contour trends of energy dissipation for all simulations completed in this study at
Fr = 0.1, Fr = 0.5 and Fr = 0.84, respectively.

linear oscillations at low values of the Froude number to a complex nonlinear dynamics at
high values of the Froude number.

For a ridge topography with subcritical relative slopes (γ /s < 1) the majority of the
available internal wave energy is transmitted as the internal wave beams are forward
reflected past the topographic ridge. Differences in the amount of the energy transmitted
in the different simulations with a subcritical slope are directly correlated with the internal
wave amplitude, however, more energy is lost to dissipation as the amplitude of the internal
waves increases (Fr = 0.67–0.84). Conversely, for supercritical slope values where γ /s >

1, the majority of the available energy is back reflected rather than transmitted and the
magnitude of dissipation has a similar dependence on the amplitude of the internal wave
forcing. As would be expected, more energy is transmitted when the ridge height is only
25 % of the flow depth than when the ridge height is 50 % or 75 % of the flow depth. The
magnitude of transmitted energy decreases as the ridge height increases and this holds for
both the subcritical and supercritical cases.

For critical slope cases with γ /s = 1 the rates of energy transmission, reflection
and dissipation are even more strongly correlated with the internal wave amplitude.
Topography with a critical slope concentrates the wave energy, leading to increased
complexity in the flow dynamics, illustrated by the formation and propagation of bolus
structures. Inherent flow instability at high Froude numbers leads to increased energy loss
due to dissipation as the wave breaks onto the ridge. This loss of energy in the interaction
process creates conditions where dense fluid is caught in the structure of the breaking
wave and the kinetic energy advects this mass of fluid onto the ridge. In some cases the
available energy is sufficient to move dense fluid over the top of the ridge and back down
the downstream side, generating enhanced mixing and turbulence in the stratified fluid
on the downstream side of the ridge. A key result from this study is the finding that, at
critical slopes, the transmitted energy scales as a linear function of the topographic height
ht/d as shown in figure 6(a). This is a key insight that can be helpful in energy budget
parameterizations for internal wave–topography interactions.

Figure 10 summarizes the overall trend in dissipation for all simulations completed for
Fr = 0.1, Fr = 0.5 and Fr = 0.84. While the full parametric space presented in this figure
has clearly not been completely explored by this study, important insights from our analysis
can be summarized in this figure. While there is clearly greater overall dissipation with
increasing Froude number, the relative difference between the minimum and maximum
normalized dissipations remains similar at ∼30 % ± 5 % across Froude numbers. The
partition of energy between transmitted, reflected and dissipated energy, as discussed
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within the analysis of the results, can be observed in this figure. Increasing ridge height and
criticality lead to less dissipation due to increased reflection of wave energy, however, as
the Froude number increases, the transmitted wave energy will increase at the expense of
dissipation. An important result is the plateau of energy dissipation that is evident across
all Froude numbers for ht/d = 0.5 and γ /s ≥ 1.

This analysis uses MITgcm, a tool validated and trusted for the simulation of
stratified flow and internal waves, but where most simulations have been completed
using a field-scale topography (≥ 1000 m). Simulation at this scale generally results in
a computational grid spacing of the order of tens to thousands of metres. On the other
extreme, DNS and LES simulations of internal waves at laboratory scales have a grid
size that is sufficiently small to resolve most or all of the turbulent scales but they do
not simulate flow that can be directly correlated to field measurements. A significant
contribution of this study is that the analysis is completed at an intermediate scale. These
results can illuminate information and build confidence in how DNS and LES results can
be applied to field-scale simulations. The simulations presented here are not completed
at a resolution that is fine enough to resolve the turbulent scales but by careful choice of
the parameters and grid resolution we are able to show results corroborating findings of
DNS studies without fully resolving the finest scales of the flow. This work aims to start
the building of ‘bridges’ or ‘ties’ between DNS and field-scale simulations. Resolution
matters, but as this analysis shows, a simulation does not need to be DNS to correctly
replicate the non-hydrostatic flow features such as overturns and bores that are visible in
visualizations of laboratory-scale DNS.

As computational power increases, field-scale simulations could be completed that
resolve smaller and smaller scales. Simulations at the intermediate scale that are able to
account for the non-hydrostatic influence on the flow, as presented here, are a necessary
step to ‘bridge’ modelling scales until more resolved field-scale simulations are realizable.
This analysis shows why it is important to analyse this simulation gap to illustrate the
difference in modelling at the two different scales. Two examples show that dissipation
drops without resolution of the dissipative (small) scales, as shown in the comparison with
VF06, and that the overturning and breaking of internal waves occurs at a lower Froude
number than shown by the field-scale simulation presented in L14, where the simulations
do not have a no-slip boundary and do not adequately resolve non-hydrostatic velocities.

Without simulations at the intermediate scale. the nuances of changes in the flow field
are obfuscated by the large step in simulation scale and large decrease in simulation
resolution. Simulations in three dimensions require significantly greater computational
resources, therefore, this type of parametric study allows for future three-dimensional
simulations to focus on cases that will form the most informative investigation of
overturning structures and the resulting dissipation/mixing. In three dimensions there
will be increased dissipation, secondary instabilities and a nonlinear dynamics (Fringer
& Street 2003), increasing the complexity of the simulation. Additionally, simulation at
this scale in three dimensions will allow investigation of different types of topographic
structures, such as seamounts or discontinuous ridges, allowing for flow separation and a
more complex flow dynamics to be studied.
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