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The breakup of coaxial cone-jet interfaces to compound droplets in axisymmetric co-flow
focusing (CFF) upon actuation is studied through numerical simulations. Due to the
coupling effect of double interfaces, the response behaviours of coaxial cone-jet flow to
actuation are more complex than those of a single-layered interface structure. Particularly,
the coaxial jet presents totally different response modes between weak and strong interface
coupling situations. In this work, the phase diagrams of response modes for coaxial jet
breakup are depicted, considering the effect of perturbation frequency, amplitude and
liquid flow rates. In particular, the breakup of a coaxial jet can be synchronized with
actuation within a frequency range containing the natural breakup frequency, resulting
in uniform compound droplets with a single core inside the shell, and the size of droplets
can be adjusted by frequency. As the perturbation frequency exceeds the upper critical
value, the external perturbation is unable to dominate the jet breakup, while below the
lower critical frequency, the jet breaks up with multiple droplets generated in one period.
The perturbation amplitude mainly affects the jet breakup length and also leads to the
transition between different response modes. The coaxial cone upstream of the orifice can
act as a buffer layer, regulating the perturbation amplitude of the coaxial jet downstream.
The degree of buffering effect is affected by the perturbation frequency and amplitude.
As the perturbation amplitude approaches unity, the decrease of perturbation frequency
leads to the intermittent jet behaviour from the cone tip with a vibrating manner of the
coaxial cone. Based on the linear instability analysis on the simplified single jet models for
weak-coupled and strong-coupled jets, scaling analyses are carried out, which predict the
jet breakup length and the natural frequency and critical frequency for the synchronized
breakup. Finally, a strong pulse is added on the perturbation to produce compound droplets
with a controllable number of cores. The present work provides valuable guidance for the
practical application of on-demand compound droplet generation through active CFF.
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1. Introduction

Microcapsules refer to the compound droplets with double-layered core-shell structures
at micro scales, and have been widely applied in many industrial fields such as
pharmaceutics, biology, chemistry, food industry and materials science (Vladisavljević,
Nuumani & Nabavi 2017; Chen et al. 2021; Zhu & Wang 2022). In these applications, the
compound droplets are usually required to have a large production rate, high encapsulation
rate, controllable geometry and be suitable to different materials, which brings challenges
to the preparation of compound droplets. The capillary flow method is a popular way to
produce compound droplets, which is able to stretch the fluid interface to microscale purely
through mechanical force (Barrero & Loscertales 2007; Anna 2016; Guerrero et al. 2020).
Among the various configurations of capillary flow, one typical kind is called co-flow
focusing (CFF) (Herrada et al. 2010; Gañán-Calvo et al. 2013). The configuration of CFF
mainly comprises a coaxial capillary tube and a focusing orifice. In CFF the core and shell
liquid flow through the coaxial tube and get focused by the continuous focusing fluid at
the orifice. A converging coaxial cone forms upstream of the orifice and the coaxial jet
forms downstream of the orifice in an unbounded environment. The disintegration of the
coaxial jet further leads to the formation of the compound droplets. Compared with the
single-axial flow focusing that has a mono-layered interface structure (Gañán-Calvo 1998;
Herrada, Gañán-Calvo & Ojeda-Monge 2008), more complex interface morphologies can
be observed for the double-layered coaxial cone and jet in CFF. Mechanical actuation has
also been added to modulate the breakup of a coaxial liquid jet, realizing the on-demand
generation of compound droplets (Bocanegra et al. 2005).

In CFF a stable coaxial cone is the precondition for the establishment of a coaxial liquid
at the orifice downstream. Gañán-Calvo et al. (2007) studied the morphology of a coaxial
liquid cone under different combinations of core and shell liquids. They found that the core
droplets with diameters smaller than submicrometre can be formed when the flow rate of
the core phase decreases close to the continuum limit, resulting in droplets with a much
smaller size than those produced via single-axial flow focusing (Gañán-Calvo 1998). Based
on the slender-body theory, Evangelio, Campo-Cortes & Gordillo (2016) predicted the
interface profiles of the coaxial cone, which reached a good agreement with experimental
results. Mu et al. (2022) carried out a comprehensive investigation on the morphology and
instability of the coaxial cone in a triple-liquid system. It was observed that the liquid flow
rates, viscosities, interfacial tensions and the geometrical parameters all have a significant
influence on the cone instability, and the dimensional analysis was carried out to quantify
the effect of these parameters. It is also found that under certain conditions, a recirculation
flow occurs inside the inner liquid cone. The mechanism for the occurrence of recirculation
flow can be attributed to the balance of shear force at both sides of the interface.

Under a stable coaxial cone, a coaxial liquid jet can emit from the cone tip and eventually
breakup to a chain of compound droplets. Due to the interplay between the inner and outer
jet interfaces, the coupling manner on the instability of double interfaces can be very
complex, leading to more abundant breakup behaviours of the coaxial jet than those of
the single jet (Gañán-Calvo & Riesco-Chueca 2006; Gañán-Calvo & Montanero 2009; Si
et al. 2009; Mu, Ding & Si 2018a). In the experimental results of Herrada et al. (2010), it
was observed that the relative flow rate between the inner and outer jets has a significant
impact on the jet breakup characteristics, and the number of cores inside the shell droplets
decreases with an increase of the inner flow rate. In order to study the interface coupling,
Mu, Ding & Si (2020a) conducted a series of experiments in which the flow velocity
and the outer diameter of the coaxial jet were kept constant, but the inner jet diameter
was varied. It was found that at a small diameter ratio between the inner and outer jets, the

977 A14-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.978


Modulation of coaxial cone-jet instability in active CFF

breakup of inner and outer jets was rather independent, suggesting a weak coupling manner
between the double interfaces. However, at a relative large diameter ratio between inner
and outer jets, the evolution of inner and outer jets was almost synchronized, indicating a
strong coupling manner between double interfaces. Apart from experimental investigation,
numerical simulations are also widely utilized to study the dynamic behaviours of a coaxial
jet (Liu et al. 2017; Wang et al. 2020; Zhang et al. 2021). Numerical simulations can
provide quantitative data such as the velocity field and pressure distribution of the jet,
which are often difficult to measure in experiments.

Linear instability analysis is a powerful tool to investigate the breakup of liquid jets,
which has developed considerably in the last hundred years (Eggers 1997; Lin 2003;
Eggers & Villermaux 2008). For the coaxial jet, it has been found that the double
interface exists in two typical perturbation modes, which are the in-phase stretching
mode and the anti-phase squeezing mode (Chauhan et al. 2000; Chen & Lin 2002).
The perturbation growth of the stretching mode was found to be faster than that of the
squeezing mode, except at some extreme cases (Craster, Matar & Papageorgiou 2005). The
physical mechanism for the dominance of the stretching mode over the squeezing mode
can be explained as follows: the growth of interface perturbation on the inner jet gives rise
to capillary pressure inside the outer jet, and the high pressure zone between the double
interfaces leads to the in-phase perturbation of the coaxial jet (Mu et al. 2020a). Recently,
a theoretical model of a coaxial liquid jet that considers the real flow field in CFF was
developed (Mu, Li & Si 2020b). By comparing the perturbation growth rate between the
coaxial jet model and the single jet models, the typical ranges of jet diameter ratio dividing
the weak and strong interface coupling behaviours were obtained (Mu et al. 2020b).

Although CFF has been proven to be an efficient way to produce compound droplets,
some non-negligible limitations also exist. For example, the breakup of the coaxial jet is
not entirely periodic due to the random perturbation on the interface; therefore, the droplet
size usually falls within some range, and satellite droplets always form with the main
droplet. Moreover, it is very challenging to control the core-shell geometry of a compound
droplet accurately. These shortcomings highlight the necessity for on-demand control of
jet breakup and droplet production. Currently, the controlled breakup of a single jet falling
into a stationary air environment has been widely studied, and the jet breakup has been
successfully modulated by laser illumination (Liu et al. 2021; Zhao et al. 2021), a thermal
field (Basaran, Gao & Bhat 2013; Kamis, Eral & Breugem 2021), electrical field (Yang
et al. 2014; Xu et al. 2022a) and mechanical vibration (Moallemi, Li & Mehravaran 2016;
She et al. 2022; Luo et al. 2023). As for the flow focusing system with an immiscible
liquid phase, previous works by our group have considered the response of a liquid jet to
an external periodic perturbation added to the flow rate, either through experiments (Yang
et al. 2019) or numerical simulations (Mu et al. 2018b). When the frequency of the supplied
actuation is close to the natural frequency of jet breakup, the liquid jet breaks up with
the external actuation synchronously, and droplets with a uniform size can be generated.
The forced jet breakup in a much faster driving air stream was also studied (Xu et al.
2022b). Compared with the liquid-driven situation, the gas-driven flow focusing leads to
a much faster breakup frequency of the jet. Up to now, the investigation on the active
modulation of the coaxial jet breakup is very limited. Bocanegra et al. (2005) applied
sinusoidal excitation on both the inner and outer jet in a CFF system. As the frequency of
the supplied actuation is very close to the natural frequency for the breakup of stretching
perturbation, they realized the synchronized breakup of both the inner and outer jet with
the excitation, resulting in uniform compound droplets with a single core inside. By adding
a pulse every certain excitation period, they also realized the controllable number of cores
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inside the droplets. However, a systematic study on the dynamics of coaxial jet breakup
under external actuation is still desired, especially on the effect of perturbation frequency,
amplitude and liquid flow rates on the response of jet breakup and the morphology of
compound droplets. As the coaxial liquid cone upstream of the focusing orifice has a
significant impact on the establishment and evolution of the coaxial jet, the dynamic
behaviours of the coaxial cone under actuation also need to be studied in detail.

In this study we aim to study the dynamics of a coaxial liquid jet under periodic flow rate
perturbation through numerical simulations. The paper is organized as follows. Section 2
introduces the numerical methods of CFF. Section 3 studies the response dynamics of the
coaxial liquid cone under external actuation. In § 4 we investigate the response modes of
jet breakup under different interface coupling situations, where the effects of perturbation
frequency, amplitude and liquid flow rates are studied systematically. Theoretical analyses
are provided in § 5. The controllable production of multi-core droplets is examined in § 6.
Finally, main conclusions are given in § 7.

2. Numerical methods

We consider the CFF process with periodic modulated liquid flow rates at the inlet,
as sketched in figure 1(a). The geometry mainly comprises a coaxial capillary tube
(with length L) and a focusing orifice downstream, with distance H between them. In
CFF the core liquid (with density ρ1, dynamic viscosity μ1, flow rate Q1 and inlet
velocity U1) flows through the inner tube (with inner radius 0.5D1 and wall thickness T1),
coflowing with the shell liquid (with density ρ2, dynamic viscosity μ2, flow rate Q2 and
inlet velocity U2) that flows through the outer tube (with inner radius 0.5D2 and wall
thickness T2). Then, the core and shell liquids get focused at the orifice (with radius
0.5d and thickness T) by a third phase of focusing liquid (with density ρ3, dynamic
viscosity μ3, flow rate Q3 and inlet velocity U3). As a result, a coaxial liquid cone is
established between the capillary tube and the orifice. Under certain conditions, the cone
maintains stable and an axisymmetric coaxial liquid jet emits from the tip of the cone,
evolves downstream of the orifice and ultimately breaks up into compound droplets due to
interfacial instabilities. The geometric parameters are shown clearly in the amplified graph
of the cone region in figure 1(b). It has been proved that in a wide range of geometric
parameters, the coaxial liquid cone can maintain stable, and the geometric parameters
only have an insignificant effect on the breakup of the coaxial liquid jet downstream of the
orifice (Mu et al. 2022). Therefore, the geometric parameters are chosen moderately and
kept constant in our work. The liquids are chosen as a water-in-oil-in-water system, which
is the same as considered in our previous studies (Mu et al. 2020a, 2021b). Therefore, the
coaxial cone-jet flow corresponds to a two-phase liquid system (i.e. ρ1 = ρ3, μ1 = μ3).
The interfacial tension coefficient between the water and oil phase is denoted by σ . It
is notable that the two-phase system has been widely applied in real experiments for
producing double emulsions (Evangelio et al. 2016; Liu et al. 2020).

In numerical simulations, the actuation can be imposed on the inlet of the supplied
liquids through prescribing the time-dependent flow rates. We mainly focus on the
situation where synchronous actuations with a sinusoidal waveform are imposed on the
core and shell liquid, as shown in figure 1(c). Meanwhile, the flow rate of the focusing
liquid keeps constant. Under these conditions, the inlet velocity U3 maintains a constant
value, while U1(t) and U2(t) fluctuate sinusoidally with identical amplitude and frequency,
i.e.

U1(t) = U1(1 + A sin(2πft)) and U2(t) = U2(1 + A sin(2πft)), (2.1a,b)
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Figure 1. (a) Axisymmetric computational domain for numerical simulations, where U1(t), U2(t) and U3
stand for the inlet velocities of the core, shell and focusing liquids, respectively. (b) Sketch of the geometrical
parameters. (c) Temporal evolution of dimensionless inlet velocities, where k = 1, 2 for Uk(t) and Uk.

where A and f stand for the dimensionless amplitude and frequency of perturbations,
respectively. It is notable that, for producing compound droplets with controllable cores,
we consider the situation of applying a strong pulse on the liquid flow rate every certain
number of periods, which will be shown in a later section.

In numerical simulations a diffuse interface method is applied to differentiate the
two-phase liquids. In this method, the liquid interface is represented by a volume fraction
C, which varies continuously from the value 1 to 0 across the interface. The finite thickness
characteristic of the liquid interface can avoid the stress singularity, resulting in a more
accurate calculation on the interfacial tension force compared with the sharp interface
method such as level set or volume of fluid (Ding, Spelt & Shu 2007). This point is
very vital for the numerical simulation of CFF as the generation of compound droplets
is dominated by the interfacial tension. The evolution of the interface is governed by the
convective Cahn–Hillard equation (Jacqmin 1999),

∂C
∂t

+ ∇ · (uC) = 1
Pe

∇2Ψ, (2.2)

where Pe is the Péclet number, and the chemical potential Ψ is defined as

Ψ = C3 − 1.5C2 + 0.5C − Cn2∇2C, (2.3)

in which the Cahn number Cn measures the thickness of the diffuse interface. Generally,
Cn is selected to be Cn ∼ �x in order to better resolve the diffusion interface and ensure
an accurate surface tension calculation, where �x is the mesh size. A larger value of
Cn results in a thicker diffuse interface but a more accurate calculation of the surface
tension force, due to the fact that more meshes resolve the interface. Based on our previous
experience (Mu et al. 2018b; Mu, Si & Ding 2019; Mu et al. 2021a), we set Cn = 0.5�x.
The Péclet number Pe represents the relative significance of convective fluxes to the
diffusive fluxes. As suggested in Magaletti et al. (2013), the diffuse interface approaches
the sharp interface limit with the vanishing of Cn for Pe ∼ Cn−1. Therefore, we adopt
Pe = 1/Cn in the present study.
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The motion of fluids is governed by the dimensionless Navier–Stokes equations, i.e.

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + 1
Re

∇ · [μ(∇u + ∇uT)] + f s

We
, (2.4)

∇ · u = 0, (2.5)

where f s = 6
√

2Ψ ∇C/Cn denotes the surface tension force, ρ = C + (1 − C)rρ and μ =
C + (1 − C)rμ are the dimensionless averaged density and viscosity, rρ = ρ2/ρ1 and rμ =
μ2/μ1 are the density and viscosity ratios between different phases of liquids, respectively.
Choosing the core and focusing liquids as the characteristic phase, D2 as the characteristic
length and U3 as the characteristic velocity, the Reynolds and Weber numbers in (2.4)
can be defined as Re = ρ1U3D2/μ1 and We = ρ1U2

3D2/σ . The characteristic time and
frequency correspond to D2/U3 and U3/D2, respectively. As the variation of U3 will
change the values of Re and We simultaneously, we also define the Ohnesorge number
as Oh = μ1/

√
ρ1σD2 for the convenience of analysis. In addition, we define the flow rate

ratios rQ1 = Q1/Q3 and rQ2 = Q2/Q3 to quantify the relative flow rates of the core and
shell liquids with respect to the focusing liquid, respectively.

The numerical simulations are performed in the r − z cylindrical coordinate on a
uniform Cartesian mesh, where r and z denote the radial and axial directions, respectively.
The computational domain is set as 2D2 × 10D2, which is long enough to resolve the
liquid jet evolution until its breakup. The mesh size is �x = 0.002D2, which is fine
enough to resolve the coaxial liquid jet and the compound droplets (e.g. the smallest
diameter of the inner jet or droplets is about 0.07D2). The interface is represented by the
C = 0.5 contour. The boundary conditions for the flow velocities are given as follows: v =
0, ∂u/∂r = 0 at the axis of symmetry r = 0, where u and v are the flow velocities at r and
z directions, respectively; no-slip condition at the solid wall (u = v = 0); ∂u/∂z = 0 and
∂v/∂t + v · (∂v/∂z) = 0 at the rightside outlet; ∂v/∂r = 0 and ∂u/∂t + u · (∂u/∂r) = 0
at the upperside outlet; U = Uk (k = 1, 2, 3) and v = 0 at the inlet, where Uk is a
prescribed value according to the flow rate.

The parameters chosen for numerical simulations correspond to our previous
experimental set-up without flow rate actuation (Mu et al. 2020a, 2021b, 2022), where
the core and focusing liquids are chosen as the distilled water (ρ1 = ρ3 = 996 kg m−3 and
μ1 = μ3 = 0.001 Pa s), and the shell liquid is chosen as silicone oil with constant dynamic
viscosity (ρ2 = 965 kg m−3 and μ2 = 0.04 Pa s). The interfacial tension coefficient
between water and silicone oil is σ = 32.8 mN m−1. The geometrical parameters are
D2 = 1050 μm, D1 = 420 μm, d = 840 μm, H = 630 μm and T = 420 μm, respectively.
Therefore, the density and viscosity ratios are constant at rρ = 0.97 and rμ = 40, and the
Ohnesorge number keeps constant at Oh = 0.005. The geometrical parameters are set at
D1 = 0.4D2, d = 0.8D2, H = 0.6D2, T = 0.4D2, T1 = 0.02D2, T2 = 0.1D2 and L = D2,
respectively. It is pointed out that the tube length L is demonstrated to be sufficiently
long in simulations, ensuring that the liquid velocity profiles in the capillary tube can
develop into the steady pipe flow ones quickly. The Reynolds number Re varies with
the flow rate Q3 of the focusing liquid. In this work, the values of Q3 vary within 1150
and 2100 ml h−1, corresponding to the change of Re from 27.9 to 49.1. The experimental
results within this parameter range have shown that the coaxial liquid jets maintain the
axisymmetric evolution without occurrence of non-axisymmetric perturbation (Mu et al.
2020a, 2021b). The numerical code has been carefully validated by experiments reported
in previous studies (Mu et al. 2020a, 2021b, 2022), where good agreements of the coaxial
cone-jet interface profiles and the generation of compound droplets can be reached.
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3. Dynamics of coaxial liquid cone

We firstly consider the response dynamics of the coaxial liquid cone upon external
actuation as it is closely related to the behaviours of jet breakup and droplet generation
downstream of the orifice. In this section we examine the evolution of the coaxial
cone under different perturbation amplitudes A and frequencies f and also elucidate the
mechanism of unstable cone-jet flow at specific parameter regions. It has been observed in
our previous work that the flow field inside the coaxial liquid cone can be totally different
as the flow rate of core liquid varies (Mu et al. 2022). Specifically, the recirculation flow
occurs under a relatively low flow rate of core liquid. For the coaxial jet establishing at
the coaxial cone tip, it has been found that the flow rate between the inner jet and the
coaxial jets (defined as rQ (= rQ1/(rQ1 + rQ2))) decides the jet diameter ratio κ and,
thus, the coupling manner of the inner and outer interfaces, which further determines the
final geometrical configuration of compound droplets (Mu et al. 2020a). The relationship
between the jet diameter ratio and the flow rate ratio can be approximated as κ ≈ r1/2

Q .
Without loss of generality, we mainly focus on the coaxial cone-jet flow at rQ = 0.5 and
rQ = 0.1, under fixed values of Re = 32.7 and rQ1 + rQ2 = 0.0714, corresponding to the
dimensional situation of Q3 = 1400 ml h−1 and Q1 + Q2 = 100 ml h−1, respectively. In
these conditions, the characteristic velocity is U3 = 0.03 m s−1, which corresponds to a
characteristic frequency of 28.5 Hz.

Figure 2(a) shows the dynamic evolution of the coaxial liquid cone at rQ = 0.5 at two
instants during the pulsation period, where the vorticity and pressure fields are presented
in the upper and lower parts of each graph, respectively. The perturbation amplitude
and frequency are given moderately as A = 0.4 and f = 20, and the coaxial cone is
established upstream of the orifice, with its tip emitting the liquid jet downstream. For
the axisymmetric flow in the r–z plane, the vorticity exists in the circumferential direction
(denoted by θ ) and has a magnitude equal to ∂v/∂r − ∂u/∂z, where u and v denote the
velocity component at z and r coordinates, respectively. Compared with the situation of
pure CFF where the liquid flow rates maintain constant values (Mu et al. 2022), the
addition of external perturbations lead to a temporal pulsating pressure and vorticity field.
For the core, shell and focusing liquids, the values of pressure gradually decrease as the
flow evolves downstream due to the acceleration of the liquids. The presence of interfacial
tension leads to a discontinuity of the pressure values across the interfaces. Perpendicular
to the interfaces, the pressure value decreases from the core liquid to the shell liquid and to
the focusing liquid. As for the vorticity field, the extreme values occur either close to the
outer cone interface at the focusing orifice or close to the solid wall of the orifice, where
the magnitude and direction of flow velocity change abruptly. This indicates that the quick
stretching and deformation of the liquid interfaces at the orifice will cause a large gradient
of the local velocity.

Figure 2(b,c) shows the temporal evolutions of the liquid flow rate and volume of the
cone for the core and shell liquids, respectively. In these figures, Qk(t) and Qkj(t) represent
the supplied flow rate at the capillary tube and the instant jet flow rate measured at the exit
of the orifice, respectively. The average flow rate is denoted as Q̄k, and Vkc represents the
cone volume measured from the capillary tube to the orifice exit, where k = 1, 2 represents
the core liquid and the shell liquid, respectively. The two instants in figure 2(a) are also
indicated in figure 2(b,c), corresponding to the moments with the minimum and maximum
cone volumes. It is observed that the liquid cone acts as a reservoir for the downstream jet.
Therefore, the perturbation amplitude of the jet is smaller than the flow rate amplitude
applied from the capillary tube, whether for the inner or the outer cone. Furthermore,
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Figure 2. Evolutions of a coaxial liquid cone at A = 0.4, f = 20 and rQ = 0.5, where Re = 32.7 and rQ1 +
rQ2 = 0.0714. (a) Interface profiles and streamlines of a coaxial cone at two instants (denoted by t1 and t2)
during the pulsation period, the contour at the upper and the lower half of each graph shows the vorticity and
pressure field, respectively. (b) Temporal evolutions on the flow rate of core liquid measured at the capillary
tube (Q1(t)) and the inner jet at the orifice exit (Q1j(t)) and the volume of the inner cone (V1c). (c) Temporal
evolutions on the flow rate of shell liquid measured at the capillary tube (Q2(t)) and outer jet at the orifice exit
(Q2j(t)) and the volume of the outer cone (V2c). The time instants t1 and t2 are also marked in (b) and (c).

the volume of the cone vibrates periodically. When Qk(t) is larger than Qkj(t), the cone
volume increases to absorb the extra liquid. Conversely, as Qk(t) becomes smaller than
Qkj(t), the cone volume decreases to release the liquid stored inside. Thus, the variation of
cone volumes serves as a reservoir and enables the buffering of liquid flow rates.

The buffering effect of the liquid cone is significantly influenced by the amplitude
A and frequency f of perturbations, as shown in figure 3(a,b), respectively. We have
measured the amplitude of perturbation on jet flow rate, denoted as Akj (k = 1, 2), by
computing the difference between the maximum value of Qkj(t) and the average value Q̄k,
i.e. Akj = (max[Qkj(t)] − �Qk)/ �Qk. In figure 3(a) both A1j and A2j show an approximately
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Figure 3. Perturbation amplitude of the pulsating flow rate of the inner and outer jet (denoted by A1j and A2j,
respectively) as (a) A varies at f = 20 and (b) f varies at A = 0.4, under rQ = 0.5. The dashed line denotes
Aj = A.

linear increase with A. Notably, for a constant value of A, A1j is observed to be larger than
A2j. This can be qualitatively explained by considering that the average volume of the inner
cone is smaller than that of the outer cone (see figure 2b,c), leading to weaker damping
of external oscillations in the inner cone and, thus, a larger perturbation amplitude of the
inner jet. Figure 3(b) reveals that as f decreases, both A1j and A2j increase. The underlying
reason is that a smaller f leads to a larger perturbation period, which brings in more extra
liquid during the half-cycle of one perturbation period. Particularly, at relatively low f , A1j
can even exceed the amplitude of the supplied flow rate A, suggesting that the cone can
promote the flow rate perturbation at the downstream jet.

Figure 4 presents the dynamic evolution of the coaxial cone at rQ = 0.1, where the
upper and lower parts of the graph show the vorticity and pressure fields, respectively.
The perturbation amplitude and frequency are chosen to be moderate (A = 0.4 and f =
20) to ensure the formation of the coaxial cone-jet structure. Similar to the case of rQ =
0.5, the addition of external perturbation causes a pulsating pressure and vorticity field in
one period. The overall tendency for the evolutions of pressure and vorticity is also very
similar to the case rQ = 0.5. However, in contrast to the case rQ = 0.5, a recirculation cell
(RC) exists inside the inner liquid cone when rQ = 0.1, and the evolution of streamlines
is totally different. The occurrence of RC results in the backflow characteristic where the
flow direction at the symmetry axis is opposite to that in the capillary tube. The mechanism
for the occurrence of RC under relatively low flow rate of the inner core has been analysed
in our previous work, which can be attributed to the balance of shear force at both sides of
the interface (Mu et al. 2022). At a relatively low flow rate of the core liquid, the tangential
velocity inside the interface of the inner cone decreases rapidly along the vertical direction
and reverses some distance away from the interface, thus causing the occurrence of RC.
However, at a large flow rate of the core liquid, the tangential velocity inside the interface
of the inner cone maintains downstream consistently, and no RC occurs. Different from
the situation of constant flow rate where the RC maintains a constant size, the addition of
external perturbation to liquid flow rate leads to periodic changes in the length of RC (Lr),
as shown in figure 4(b). The temporal variation on the RC length suggests the exchange of
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Figure 4. Evolutions of a coaxial liquid cone at A = 0.4, f = 20 and rQ = 0.1, where Re = 32.7 and rQ1 +
rQ2 = 0.0714. (a) Interface profiles and streamlines of a coaxial cone at two time instants (denoted by t1 and
t2), the contour at the upper and the lower half of each graph shows the vorticity and pressure field, respectively.
(b) Temporal variation of recirculation length Lr. (c) Temporal evolutions on the flow rate of core liquid
measured at the capillary tube (Q1(t)) and the inner jet at the orifice exit (Q1j(t)) and the volume of the inner
cone (V1c). (d) Temporal evolutions on the flow rate of shell liquid measured at the capillary tube (Q2(t)) and
the outer jet at the orifice exit (Q2j(t)) and the volume of the outer cone (V2c). The time instants t1 and t2 are
also marked in (c) and (d).

substance between the RC and the external liquid. The temporal evolutions of the liquid
flow rate and volume of the cone are presented in figure 4(c,d) for the core and shell liquids,
respectively. Similar to figure 2, Qk(t) and Qkj(t) represent the flow rates at the capillary
tube and the jet flow rate at the exit of the orifice, Q̄k represents the average flow rate and
Vkc represents the cone volume, respectively. In the figures, k = 1, 2 represent the core and
shell liquids, respectively. The two instants in figure 4(a) are indicated in figure 4(c,d),
showing that the size of RC is directly related to the volume of the cone. Similarly, the
reservoir effect of the liquid cone decreases the perturbation amplitude of the jet (Qkj(t))
significantly compared with that of the capillary tube (Qk(t)), and the volume of the cone
varies periodically.

Figure 5 illustrates the degree of buffering effect provided by the liquid cone. The
magnitudes of the perturbation amplitudes A1j and A2j are found to be significantly
influenced by the perturbation amplitude A and frequency f . Specifically, both A1j and
A2j present an approximately linear increase with A, as depicted in figure 5(a). For a given
value of A, the value of A1j is greater than that of A2j due to the larger volume of the
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Figure 5. Perturbation amplitude of the pulsating flow rate of the inner and outer jet (denoted by A1j and A2j,
respectively) as (a) A varies at f = 20 and (b) f varies at A = 0.4, under rQ = 0.1. The dashed line denotes
Aj = A.

outer cone and its superior ability to damp the external perturbation. Moreover, figure 5(b)
reveals that both A1j and A2j increase as f decreases. At relatively low values of f , the
perturbation amplitude of the local liquid jet can even exceed that of the capillary tube.

As a larger A and a smaller f can lead to larger values of A1j and A2j, the external
perturbation is supposed to have significant influence on the instability of the coaxial cone
and jet at the parameter region of large A and small f . Figure 6 shows the dynamical
behaviours of an unstable cone-jet structure at A = 1 and f = 5, with rQ = 0.5 in figure
(a) and rQ = 0.1 in figure (b), respectively. As we have learned from figures 3(b) and
5(b), a smaller f (e.g. f ≤ 10) can result in a larger pulsation amplitude of the jet than the
amplitude of the flow rate at the capillary tube, especially for the inner jet. Therefore, the
flow rate of the inner jet is able to evolve to zero for the perturbation amplitude A = 1,
causing the stagnation of downstream flow at the local jet and the destabilization of the
liquid jet. We also give the temporal evolutions of the inner jet flow rate Q1j(t) with the
flow rate Q1(t) from the capillary tube in figure 6(c,d), respectively. Compared with the
situation where the jet establishes downstream of the orifice (see figures 2 and 4), the
flow dynamics is modulated significantly under relatively large A and small f . As the
jet emits from the cone and evolves downstream, Q1(t) first reaches the maximum value
and then decreases rapidly due to the continuous thinning of the jet (e.g. t = 0.8). As
the jet pinches off at the cone tip, the inner cone recoils to the orifice upstream (e.g. t =
0.86). The unsteady flow characteristics of the cone also leads to intermittent occurrence
of the RC inside the cone, as shown by the streamlines in figure 6(a,b), respectively. The
dynamics of the outer jet is a bit different as rQ changes. For the case rQ = 0.5, the breakup
of the inner liquid will cause a synchronous breakup of the outer interface due to the
strong coupling effect of double interfaces; therefore, the outer interface also presents the
intermittent jet behaviour and recoils upstream of the orifice after breakup. For the case
rQ = 0.1, as the interplay between the inner and outer interface is relatively weak due to
the large distance between them, the breakup of the inner interface of droplets can cause
some bulges for the outer jet.
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Figure 6. Dynamics of an unstable jet with a vibrating liquid cone at A = 1 and f = 5, where (a) rQ = 0.5
and (b) rQ = 0.1. Temporal evolutions on the flow rate of core liquid measured at the capillary tube (denoted
by Q1(t)) and the orifice exit (denoted by Q1j(t)), where (c) rQ = 0.5 and (d) rQ = 0.1.

4. Response modes of coaxial liquid jet

In this section we focus on the response dynamics of coaxial liquid jets under different
interface coupling situations. Our previous work (Mu et al. 2020a,b) indicated that for
a weak-coupled jet at relatively low rQ (or κ), the inner and outer liquid jets breakup
almost independently, similar to two single liquid jets. As the coaxial liquid jets evolve
and breakup, the compound droplets with multiple cores inside a shell can be formed.
While for a strong-coupled jet at relatively high rQ (or κ), the inner and outer liquid jets
almost breakup synchronously, forming compound droplets with a single core inside. The
typical parameter regions for weak-coupled and strong-coupled jets have been identified
as rQ ≤ 0.15 and rQ ≥ 0.4, respectively. In this work, external actuations are brought in
and the response dynamics of a strong-coupled jet at rQ = 0.5 and a weak-coupled jet at
rQ = 0.1 are considered, respectively.

4.1. Phase diagram
When external actuation is applied to the flow, the behaviour of coaxial jet breakup
is closely related to the frequency f and amplitude A of the perturbations. Figure 7(a)
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Figure 7. (a) Four typical response modes of jet breakup for a strong-coupled jet at rQ = 0.5, where Re = 32.7
and rQ1 + rQ2 = 0.0714. The letter symbols I, M, S and IJ stand for the irregular breakup mode, the multiple
breakup mode, the synchronized breakup mode and the intermittent jet mode, respectively. The dashed box
contains the droplets generated in one period of 1/f . (b) Phase diagram of the response modes as the values of
f and A vary. The dashed lines denote the boundaries of different modes roughly.

shows the typical response modes of jet breakup for a strong-coupled jet at rQ = 0.5. The
corresponding phase diagram for different response modes as f and A vary is presented
in figure 7(b). For the first type of response modes, the coaxial jet breakup is random
without obvious periodicity, resulting in compound droplets within a certain size range.
This mode is defined as the irregular breakup mode (‘I’ mode). It is notable that for the
coaxial jet without actuation, the breakup exhibits the same as the I mode due to the
random growth of perturbation. The second type of response modes corresponds to droplet
generation with multiple sizes in a periodic manner, with the working period for the droplet
series equal to 1/f , which is defined as the multiple breakup mode (‘M’ mode). For the
third type of jet breakup, the droplet generation is entirely synchronized with the imposed
excitation, resulting in droplets with uniform size, which is defined as the ‘S’ mode. For
the fourth type of response modes, the coaxial cone is unstable and vibrates periodically
as the intermittent jet breaks at the cone tip, and the cone recoils to the orifice upstream
accompanying with the droplet formation. This mode is defined as the intermittent jet
(‘IJ’) mode. The phase diagram of different response modes for the strong-coupled jet is
shown in figure 7(b). It is observed that there exists a critical value of A below which
the jet breakup presents an I mode. Below the critical amplitude, the external actuation
is too weak to affect the jet breakup. For moderate values of A (e.g. A ≥ 0.05), there is a
frequency range in which the S mode occurs, and the lower boundary of this frequency
range decreases with A increasing while the upper boundary remains relatively constant.
The wide frequency range of the S mode leads to a well adjustability of droplet generation
with uniform size, which is favourable in real applications. Below this frequency range,
the jet presents the M mode; while beyond this frequency range, the jet presents the I
mode. The IJ mode region exists at large values of A and small values of f (e.g. A ≥ 0.8
and f ≤ 10).

The response modes of coaxial jet breakup under different f and A are much more
complex for a weak-coupled jet than for a strong-coupled jet, since the inner and outer
jets breakup asynchronously. Figure 8(a) shows the typical response modes of jet breakup
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for a weak-coupled jet at rQ = 0.1, and the corresponding phase diagram for different
response modes is given in figure 8(b). The first response mode is the ‘I-I’ mode, where
both the inner and outer jets breakup in a rather irregular manner, resulting in multiple
core droplets inside a shell. It is notable that the core droplets tend to merge together due
to the interplay of the diffuse interface in numerical simulations. However, this merging
behaviour does not prevent us from counting the number of cores inside a compound
droplet. The second response mode is the ‘M-M’ mode, where both the inner and outer
jets breakup with multiple droplets in a working period 1/f , resulting in droplets with
non-uniform size. The third response mode corresponds to the ‘M-S’ mode, where the
inner jet presents the M mode while the outer jet breaks synchronously with actuation (S
mode). In this mode, compound droplets with uniform size and multi-cores inside can be
generated. The fourth response mode is the ‘S-S’ mode, in which both the inner and outer
jets breakup synchronously with the actuation. Consequently, compound droplets with
single core inside a shell can be generated periodically. The fifth response mode is the
‘S-I’ mode. In this mode, the formation of inner droplets is synchronized with actuation,
resulting in droplets of uniform size. Meanwhile, the outer jet breaks in a rather random
manner, producing non-uniform size compound droplets. The last response mode is the
intermittent jet (‘IJ’) mode, in which the dynamic behaviours of the coaxial cone and jet
are similar to the strong-coupled case. The phase diagram of different response modes
for the weak-coupled jet is shown in figure 8(b). There exists a critical value of A below
which the jet breakup presents the I-I mode, indicating that the external actuation cannot
modulate the jet breakup at very low amplitude. At a large value of A and small value
of f (e.g. A ≥ 0.8 and f ≤ 10), the coaxial jet presents the IJ mode. The response for the
coaxial jet breakup is much more complicated at moderate A. As f increases from very
low values, the jet breakup presents the M-M mode and gradually transitions to the M-S,
S-S, S-I and I-I modes. Specifically, the upper boundary for the synchronized frequency
region is almost unaffected by A, while the lower boundary decreases with A increasing,
both for the inner and outer jets.

4.2. Effect of actuation frequency
Figure 9(a) depicts the effect of actuation frequency f on the breakup of the strong-coupled
jet (rQ = 0.5) under constant perturbation amplitude A = 0.1. The variation of the
corresponding diameter of compound droplets Do changing with f is shown in figure 9(b).
As the inner and outer jets evolve synchronously and eventually breakup into single core
droplets, the diameters of core droplets can be predicted approximately through volume
conservation, i.e. Di ≈ r1/3

Q Do. For an unexcited jet with f = 0, the breakup of the coaxial
jet is rather random without periodicity, presenting the I mode, with the compound
droplet sizes falling within a certain range. The average breakup frequency (also known
as natural frequency, fn) can be obtained by counting the number of droplets (denoted
by N) in a long time sequence (denoted by T), which is fn = N/T and approximately
equal to 23.5 in numerical simulations. The corresponding average droplets diameter
is about 0.393. When the frequency increases to a relatively low value ( f = 6), the
coaxial jet breakup shifts to the M mode, where droplets with multiple discrete values
of diameters are generated during a working period of 1/f . A continuous increase of
f leads to the S mode of jet breakup, which results in a droplet size. In this mode,
the size and frequency of droplet generation can be effectively adjusted by varying f .
Notably, the natural frequency fn falls within the frequency range of the S mode. If f
exceeds a critical value, the periodicity disappears, and the droplet generation becomes
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Figure 8. (a) Six typical response modes of jet breakup for a weak-coupled jet at rQ = 0.1, where Re = 32.7
and rQ1 + rQ2 = 0.0714. The letter symbols I-I, M-M, M-S, S-S, S-I and IJ stand for the inner and outer
irregular breakup mode, the inner and outer multiple breakup mode, the inner multiple and outer synchronized
breakup mode, the inner and outer synchronized breakup mode, the inner synchronized and outer irregular
breakup mode, and the intermittent jet mode, respectively. The dashed box contains the droplets generated in
one period of 1/f . (b) Phase diagram of the response modes as the values of f and A vary. The dashed and
dash-dotted lines denote the boundaries of different modes roughly.

random again, leading to the I mode. The breakup characteristics are similar to those of an
unexcited jet. Figure 9(b) also shows the variation tendency of droplet diameter Do with
f . In the frequency range of the S mode, the generation of compound droplets is totally
synchronized with actuation; thus, the conservation law of flow rate can be obtained as
(Q1 + Q2) = 4/3π(Do/2)3(1/f ). Therefore, the size of uniform droplets is related to the
perturbation frequency f and the dimensionless average flow rate of core and shell liquids,
as given by f = (Q1 + Q2)/(πD3

o/6). This suggests the scaling law of Do ∼ f −1/3, which
is confirmed by the numerical results in figure 9(b).

In order to better illustrate the dynamic characteristics of coaxial jet breakup, figure 10
presents the temporal evolution of the position of the outer jet interface tip (sketched in
figure 9b). As the interface breaks up into droplets, the tip position goes through a sudden
jump, and the new tip position indicates the jet breakup length. For the I mode at f = 0 and
50, as shown in figure 10(a,d), the pinch-off positions of the interface are random and the
jet breakup length varies within a certain range. At the M mode at f = 6 (see figure 10b),
multiple pinch-off positions exist in one working period of 1/f . In the S mode at f = 35, as
demonstrated in figure 10(c), the pinch-off positions remain the same, and the jet breakup
is periodic.

Figure 11(a) demonstrates the effect of actuation frequency f on the breakup of
a weak-coupled jet (rQ = 0.1) under constant perturbation amplitude A = 0.1. The
corresponding diameters of compound droplets Do and core droplets Di are presented
in figure 11(b), respectively. When the coaxial jet is unexcited at f = 0, the inner
jet experiences a much higher breakup frequency than the outer jet, resulting in the
formation of multi-core compound droplets. Numerical results indicate that the natural
breakup frequencies of the inner and outer jets are fni = 50.2 and fno = 17.5 and the
average diameters of the core and compound droplets are approximately 0.143 and 0.43,
respectively. When the perturbation frequency is low ( f = 8), the breakup of the coaxial
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Figure 9. (a) Interface profiles of the coaxial jet as the perturbation frequency f varies at A = 0.1 and rQ =
0.5. (b) Diameters of compound droplets (Do) under different f , where fn denotes the natural breakup frequency.
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Figure 10. Temporal evolution of the outer jet tip position at (a) f = 0, (b) f = 6, (c) f = 35 and (d) f = 50,
respectively. The pinch-off positions are also indicated.

jet presents the M-M mode, where both the inner and outer jets form multiple droplets with
different sizes during one working period of 1/f (see figure 11b). As f gradually increases
( f = 15), the outer jet enters the S mode first, while the inner jet maintains the M mode
(i.e. M-S mode). This occurs because the natural frequency of the outer jet is much lower
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Figure 11. (a) Interface profiles of the coaxial jet as the perturbation frequency f varies at A = 0.1 and rQ =
0.1. (b) Diameters of inner droplets (Di, hollow symbols) and compound droplets (Do, filled symbols) under
different f , where fni and fno denote the natural breakup frequencies of the inner and outer jet, respectively.

than that of the inner jet. When the frequency increases to f = 25, both the inner and outer
jets break at the S mode with single-core droplet formation. In this S-S mode, the size
of compound droplets can be adjusted by the actuation frequency. As f increases further
( f = 50), the jet breakup transitions to the S-I mode. In this mode, the breakup of the outer
jet loses its periodicity and returns to the I mode again, where the droplet size is located
within some ranges. However, the size of the inner droplets remains uniform. At very high
frequency ( f = 100), both the inner and outer jets break at the I mode (i.e. I-I), which is
similar to the unexcited jet. Notably, in the synchronized region of the inner and outer jets,
the droplet size follows the relationship Do ∼ f 1/3 and Di ∼ f 1/3, respectively, as shown
clearly in figure 11(b).

Figure 12 presents the temporal evolution of the interface tip positions of both the inner
and outer jets. The results show that the pinch-off positions and the periodicity of the
jet breakup are significantly affected by the actuation frequency f . For the I-I mode at
f = 0 and 100, as shown in figure 12(a, f ), the pinch-off positions of the inner and outer
interfaces are rather random, suggesting that the jet breakup length varies with time and
there is no periodicity for jet breakup. For the M-M mode at f = 8 (see figure 12b),
multiple pinch-off positions exist for both the inner and outer jets in one working period
of 1/f . For the M-S mode at f = 15, the outer jet has a constant pinch-off position while
multiple pinch-off positions exist for the inner jet, as shown in figure 12(c). In the S-S
mode at f = 35, both the inner and outer jets have constant pinch-off positions, and the
interface evolution is periodic (see figure 12d). In the S-I mode at f = 50, the inner jet has
a constant pinch-off position while random pinch-off positions exist for the outer jet, as
shown in figure 12(e).
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Figure 12. Temporal evolution of inner and outer jet tip positions at (a) f = 0, (b) f = 8, (c) f = 15,
(d) f = 35, (e) f = 50 and ( f ) f = 100, respectively. The pinch-off positions are also indicated.

4.3. Effect of actuation amplitude
We also investigate the effect of actuation amplitude A on the breakup of the coaxial liquid
jet. An increase of A can enhance the initial perturbations on the coaxial liquid cone and
the jet downstream. As illustrated in figures 7(b) and 8(b), the variation of A can lead to the
transition between different response modes, and the jet even becomes unstable at a high
value of A and low value of f . In this section we focus on the effect of A under moderate
values of f , where the coaxial cone-jet structure can be maintained consistently.

Figure 13(a) shows the breakup profiles of the coaxial jet at rQ = 0.5, under a fixed
f = 40 with A varying. When A is at relatively low value (e.g. A = 0.03), the external
perturbation is too weak to influence the jet breakup, and the coaxial jet exhibits a
non-uniform size distribution of droplets in the I mode. At moderate values of A, as the
perturbation frequency f falls within the synchronized breakup range, the coaxial jet can
exhibit the S mode, displaying periodic behaviour and a consistent breakup length with no
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Figure 13. (a) Interface profiles and (b) breakup length of the coaxial jet under different A at f = 40 and
rQ = 0.5. The triangle denotes the theoretical variation slope of −4.55 that is predicted in § 5.3.

variation on droplet size. However, the variation of A can significantly affect the breakup
length of the jet. The relationship between jet breakup length L and perturbation amplitude
A is given in figure 13(b), in which L is measured as the distance between the pinch-off
position to the orifice exit (see the sketch in figure 13a) and rescaled by the radius rj of the
coaxial jet. This operation is for the convenience of comparing the numerical results with
linear instability analysis, in which rj is chosen as the characteristic length. It is notable
that the jet breakup length falls within certain ranges with its average value in the I mode,
whereas it remains constant in the S mode. The jet breakup length appears to follow the
law L ∼ − ln A, and we provide theoretical analysis on the jet breakup length in § 5.3.

Figure 14(a) shows the breakup profiles of the coaxial jet at rQ = 0.1, under a varying
A for a fixed f = 15. Similarly, when A is relatively small (e.g. A = 0.03), the external
perturbation is too weak to have any significant effect on the coaxial jet breakup, and the
jet presents the I-I mode. However, as A gradually increases, the external perturbation can
affect the coaxial jet breakup significantly. Specifically, the coaxial jet breakup exhibits
the M-S mode for A = 0.1 and 0.4, while the mode changes to the S-S mode as A = 1.
The breakup lengths of the inner and outer jets (denoted by Li and Lo, respectively) are
defined as the distance between the pinch-off positions of the inner and outer jet to the
orifice exit (see figure 14a), respectively, and the jet breakup lengths rescaled by rj are
shown in figure 14(b). In the I-I mode, the values of Li and Lo locate within a certain range
due to the non-periodic breakup characteristics. Therefore, both the average length and the
error bars are presented simultaneously. In the M-S mode the value of Li falls within a
certain range while that of Lo remains constant. In the S-S mode, both the inner and outer
jet breakup lengths maintain the same value. Our analysis indicates that the relationship
Li ∼ − ln A is a suitable model for the inner jet, whereas this model does not apply to the
outer jet. Theoretical analysis on the jet breakup length will be given in § 5.3.

4.4. Effect of liquid flow rates
The diameter and velocity of a coaxial liquid jet can be significantly affected by the
flow rates of the core, shell and focusing liquids. Therefore, the liquid flow rates are
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Figure 14. (a) Interface profiles and (b) breakup length of the coaxial jet under different A at f = 15 and rQ =
0.1. The triangles denote the theoretical variation slope of the inner and outer jet (−5 and −10.42, respectively)
that are predicted in § 5.3.

supposed to affect the natural frequency and the synchronized region of the coaxial liquid
jet. According to the definition of the dimensionless parameter in numerical simulations,
Re ∼ U3 ∼ Q3, rQ1 = Q1/Q3 and rQ2 = Q2/Q3. Therefore, the change of focusing flow
rate Q3 corresponds to the variation of Re under a constant value of Re · (rQ1 + rQ2), and
the change of coaxial jet flow rates Q1 + Q2 corresponds to the variation of rQ1 + rQ2
under a constant value Re, respectively. Figure 15(a) shows the effect of focusing flow
rate (non-dimensionalized by Re) for a strong-coupled jet at rQ = 0.5 and a constant
perturbation amplitude of A = 0.1, where fn, fc and fl are the natural frequency, upper
critical frequency and lower critical frequency of the synchronized region, respectively.
It is worth noting that fn falls within a certain range due to the random breakup of the
undisturbed jet, and its average value is given along with the error bars. As for the critical
frequencies fc and fl, error bars also exist due to the uncertainty on the determination of
mode boundaries. It is clear that fn, fc and fl all increase with Re increasing, indicating
that increasing the focusing flow rate can increase both the natural frequency and critical
frequencies of the synchronized region. Figure 15(b) shows the effect of the sum flow rate
of the inner and outer jet (non-dimensionalized by rQ1 + rQ2) at rQ = 0.5 and A = 0.1,
which demonstrates that fn, fc and fl all decrease as rQ1 + rQ2 gradually increases. This
finding suggests that increasing the coaxial jet flow rates can decrease both the natural
frequency and critical frequencies of the synchronized region.

The breakup behaviours of the weak-coupled jet are more complex due to the
independent breakup of the inner and outer jets. Figure 15(c,d) shows that the natural
frequency of the inner jet ( fni) is significantly greater than that of the outer jet ( fno). In
addition, the upper and lower critical frequencies of the inner jet ( fci and fli, respectively)
are also much larger than those of the outer jet ( fco and flo, respectively). It is also observed
that the synchronized frequency range of the inner jet is much wider than that of the outer
jet. Similar to the situation of the strong-coupled jet, an increase of Re or a decrease of
rQ1 + rQ2 can lead to the increase of natural frequency and critical frequency of both the
inner and outer jets, as shown in figure 15(c,d), respectively. In § 5 we further provide
theoretical predictions for the natural breakup frequency and the upper critical frequency
based on the instability analysis of simplified single jet models for coaxial jets under strong
and weak coupling conditions.
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Figure 15. The natural frequency ( fn), lower critical frequency ( fl) and upper critical frequency ( fc) for a
strong-coupled coaxial jet at rQ = 0.5 under constant perturbation amplitude of A = 0.1 as the values of
(a) Re varies at fixed Re · (rQ1 + rQ2) = 2.336 and (b) rQ1 + rQ2 varies at fixed Re = 32.7. The natural
frequency ( fno), lower critical frequency ( flo) and upper critical frequency ( fco) of the outer jet and those
of the inner jet (denoted by fni, fli and fci, respectively) for a weak-coupled coaxial jet at rQ = 0.1 under
constant perturbation amplitude of A = 0.1 as the values of (c) Re varies at fixed Re · (rQ1 + rQ2) = 2.336
and (d) rQ1 + rQ2 varies at fixed Re = 32.7. The symbols denote the numerical results and the lines denote the
theoretical predictions of scaling analysis in § 5.2.

The effect of relative flow rate between the inner and outer jets on coaxial jet breakup
is also investigated. Figure 16(a) shows the breakup profiles of the coaxial liquid jet as
rQ varies under constant values of f = 30 and A = 0.1, where the liquid flow rates are
constant at Re = 32.7 and rQ1 + rQ2 = 0.0714. It is observed that in a wide range of rQ
(rQ = 0.1, 0.35 and 0.6), the inner and outer jets breakup synchronously with external
perturbations under the S-S mode, resulting in uniform compound droplets with a single
core inside. By varying rQ, the relative size between the core and shell droplets can be
well controlled, which has practical significance in real applications. However, at a very
low value of rQ (rQ = 0.05), the inner jet loses its periodicity and the breakup of the
coaxial jet presents the M-S mode, showing that the generation of core droplets cannot
be controlled precisely. The reason for the aperiodicity on inner droplet formation can
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Figure 16. (a) Profiles of a coaxial jet at different rQ under constant values of f = 30 and A = 0.1.
(b) Diameters of inner and outer droplets as rQ changes.

be explained qualitatively as: the inner jet diameter is very small at a low value of rQ;
therefore, the natural frequency and the frequency range of the synchronized region differs
significantly between the inner and outer jets. As the value of rQ gradually decreases,
the natural frequency of the inner jet ( fni) increases, and the lower critical frequency of
the inner jet ( fli) increases correspondingly. As fli becomes larger than the upper critical
frequency of the outer jet ( fco), the frequency range for the S-S mode vanishes, thus, the
inner jet presents the M mode while the outer jet maintains the S mode. Figure 16(b)
presents the diameters of both the inner and outer droplets as rQ varies, showing that the
outer droplets diameter Do keeps almost unchanged while the inner droplet diameter Di
decreases with the decrease of rQ. Specifically, inner droplets with multiple diameters
are formed at the M-S mode when rQ = 0.05. In the synchronized region the outer and
inner droplet diameters can be predicted theoretically by the dimensionless flow rates and
frequency, i.e. Do = (6(Q1 + Q2)/πf )1/3 and Di = r1/3

Q Do, respectively. Therefore, the
outer droplet diameter Do keeps unchanged at fixed f , which is calculated as Do = 0.36
for the cases considered in figure 16(a). The theoretical prediction agrees well with the
numerical results.

5. Theoretical analysis

5.1. Linear instability
In order to give the theoretical analysis on the breakup characteristics of coaxial liquid
jets, we carry out a temporal instability analysis considering the perturbation growth on
the jet interface. We mainly focus on the locally convective instability of the liquid jets,
where the perturbation only propagates downstream the jet that induces the generation
of droplets (Lin 2003; Eggers & Villermaux 2008). Such an assumption is appropriate
for the coaxial liquid jets with parallel flow characteristics downstream of the orifice. For
convenience, we can simplify the coaxial jet to a single jet model at different interface
coupling situations, as illustrated in figure 17. On one hand, at relatively large rQ that
corresponds to the jet diameter ratio κ → 1, the coupling of interfaces is strong and the
coaxial jet can be simplified as a single liquid jet where the shell phase is neglected, and
the equivalent interfacial tension equals the sum of the inner and outer jets, as shown in
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Figure 17. (a) Theoretical model for the coaxial liquid jet, where the diameter ratio between the inner and
outer jet is denoted by κ . (b) Simplified single jet model as κ → 1, corresponding to the situation of large rQ.
(c) Simplified single jet model as κ → 0, corresponding to the situation of small rQ.

figure 17(b). Therefore, the diameter and the surface tension coefficient of the simplified jet
is κdj and 2σ , respectively, where dj is the diameter of the coaxial jet. On the other hand, at
relatively low rQ (κ → 0), the coupling effect between the double interfaces is very weak,
thus, the coaxial jet can be decoupled as two single jets, as illustrated in figure 17(c). The
diameters of the inner and outer jets are κdj and dj, respectively. In our theoretical model
we assume equal velocities of the inner jet, the outer jet and the surrounding flow, which
has been proved reasonable for the all-liquid system in previous studies (Gañán-Calvo
& Riesco-Chueca 2006; Gañán-Calvo et al. 2007). The simplified single jet models for
weak- and strong-coupled coaxial jets enable us to study behaviours of coaxial jet breakup
at extreme conditions.

For the linear instability analysis, we choose the jet radius dj/2 and the average velocity
Uj as the characteristic length and velocity, respectively. The dimensionless parameters for
the single jet models in theoretical analysis are the Weber number Wet = ρjU2

j dj/2σ , the
Reynolds number Ret = ρjUjdj/2μj, the density ratio S = ρe/ρj and the viscosity ratio
N = μe/μj, where ρj and μj are the density and viscosity of the liquid jet while ρe and
μe are those of the surrounding environment, respectively. The theoretical model is solved
through the normal mode method, in which the terms such as flow velocity, pressure and
interface position in Navier–Stokes equations are decomposed to basic quantities and small
axisymmetric perturbations with the Fourier form ∼ ei(kz−ωt). It is notable that k is the
dimensionless wavenumber, ω = ωr + iωi is the dimensionless complex frequency, where
ωi and −ωr denote the growth rate and temporal frequency of perturbations, respectively.
The perturbations with ωi > 0 are temporally unstable while those with ωi < 0 are stable
invariably. In our work, the perturbation frequency −ωr will be utilized to predict the
natural and critical frequencies of coaxial jet breakup under different coupling situations
(see § 5.2), and the growth rate ωi will be used to analyse the jet breakup length, as shown
in § 5.3. The governing equations and boundary conditions for the single jet model are
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similar to those in Si et al. (2009) and are simply shown in Appendix A. Specifically, for
the model at κ → 1 shown in figure 17(b), we have ρj = ρe = ρ1 and μj = μe = μ1. For
the models at κ → 0 shown in figure 17(c), the inner jet model corresponds to ρj = ρ1,
ρe = ρ2, μj = μ1 and μe = μ2, while the outer jet model corresponds to ρj = ρ2, ρe =
ρ1, μj = μ2 and μe = μ1.

5.2. Prediction of natural and critical frequencies
Based on the results obtained from the linear instability analysis, we can give the scaling
analysis on the natural frequency and the upper critical frequency of the synchronized
breakup region. For a single liquid jet with average velocity Uj and diameter dj, the
natural breakup frequency fn is directly related to the jet oscillation frequency −ωrm that
corresponds to the maximum growth rate of the perturbation wave (whose wavenumber is
denoted as km), with the quantitative estimation of

fn = −ωrmUj

πdj
. (5.1)

In the flow focusing process, dj and Uj can be estimated by the simple scaling law of
dj = d · [Qj/(Qj + Qe)]1/2 and Uj = 4Qj/πd2

j , respectively. Here, Qj and Qe denote the
flow rates of the liquid jet and co-flowing liquid and d is the orifice diameter. Therefore,
the natural frequency can be expressed as

fn = 4
π2d3 · (−ωrm)(Qj + Qe)

3/2

Q1/2
j

. (5.2)

Similarly, the upper critical frequency below which the external perturbation can
modulate the jet breakup can be expressed as

fc = 4
π2d3 · (−ωrc)(Qj + Qe)

3/2

Q1/2
j

, (5.3)

where −ωrc is critical frequency that corresponds to the cutoff wavenumber (kc) of the
perturbation growth rate. When the wavenumber is larger than kc, the perturbation growth
rate becomes smaller than zero, and the liquid jet is invariably stable.

In this study, as we have simplified the coaxial jet to single jet models under different
coupling situations, the natural and upper critical frequencies can be predicted similarly.
For a strong-coupled jet, the coaxial liquid can be reduced to the single jet model in
figure 17(b), and the natural and upper critical frequencies are expressed as

fn = 4
π2d3 · (−ω′

rm)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

fc = 4
π2d3 · (−ω′

rc)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.4)

where −ω′
rm is the frequency of the perturbation wave with the maximum growth rate,

and −ω′
rc is the frequency that corresponds to the cutoff wavenumber, as sketched in

figure 18(a,b).
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Figure 18. Perturbation growth rate ωi and frequency −ωr versus wavenumber k for different single jet models
given in figure 17. (a) Variation of Re under fixed Re · (rQ1 + rQ2) for the strong-coupled jet at rQ = 0.5,
corresponding to κ = 0.71. (b) Variation of rQ1 + rQ2 under fixed Re for the strong-coupled jet at rQ = 0.5.
(c) Variation of Re under fixed Re · (rQ1 + rQ2) for the outer jet of the weak-coupled jet at rQ = 0.1,
corresponding to κ = 0.33. (d) Variation of rQ1 + rQ2 under fixed Re for the outer jet of the weak-coupled
jet at rQ = 0.1. (e) Variation of Re under fixed Re · (rQ1 + rQ2) for the inner jet of the weak-coupled jet at
rQ = 0.1. ( f ) Variation of rQ1 + rQ2 under fixed Re for the inner jet of the weak-coupled jet at rQ = 0.1.
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As for a weak-coupled coaxial liquid jet that can be viewed as two single jets, as shown
in figure 17(c), the natural and upper critical frequencies of the outer jet and inner jet can
be expressed as

fno = 4
π2d3 · (−ω′′

rm)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

fco = 4
π2d3 · (−ω′′

rc)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.5)

fni = 4
π2d3 · (−ω′′′

rm)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

fci = 4
π2d3 · (−ω′′′

rc)(Q1 + Q2 + Q3)
3/2

(Q1 + Q2)1/2 ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.6)

where −ω′′
rm and −ω′′

rc are the oscillation frequencies that correspond to the perturbation
wave with the maximum growth rate and the cutoff wavenumber of the outer jet model
(see figure 18c,d), while −ω′′′

rm and −ω′′′
rc are the oscillation frequencies of the perturbation

waves with the maximum growth rate and the cutoff wavenumber of the inner jet model,
respectively (see figure 18e, f ).

According to our definition of parameters, the dimensionless frequency can be written
in the form of Re, rQ1 and rQ2, i.e.

fn = C · (−ω′
rm)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 , fc = C · (−ω′
rc)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 , (5.7a,b)

for the strong-coupled jet, and

fno = C · (−ω′′
rm)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 , fco = C · (−ω′′
rc)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 ,

(5.8a,b)

fni = C · (−ω′′′
rm)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 , fci = C · (−ω′′′
rc)(rQ1 + rQ2 + 1)3/2

(rQ1 + rQ2)1/2 , (5.9a,b)

for the outer and inner jet of the weak-coupled jet, respectively. In these equations, C is a
constant with its value decided by the geometrical parameters D2 and d, which equals a
specific value of 8.5 in our simulations.

It is notable that (5.7), (5.8) and (5.9) do not contain Re explicitly. However, the variation
of Re in figure 15(a,c) also leads to the corresponding change of rQ1 + rQ2, indicating that
the single variation of focusing flow rate can change the natural breakup frequency and
upper critical frequency of the synchronized region.

The oscillation frequencies that correspond to the maximum perturbation growth rate
and the cutoff wavenumber in (5.7), (5.8) and (5.9) can be determined by linear instability
analysis on the simplified single jet models. Figure 18(a,b) shows the perturbation growth
rate curves and the oscillation frequency curves of the simplified single jet for the
strong-coupled jet at rQ = 0.5 (corresponding to κ = 0.71), considering (a) the variation
of Re under fixed Re · (rQ1 + rQ2) and (b) the variation of rQ1 + rQ2 under fixed Re,
respectively. It is notable that the variation of Re or rQ1 + rQ2 affects the growth rate curves
significantly but hardly changes the oscillation frequency curves. For each curve, we can
determine the values of the most unstable wavenumber k′

m and the cutoff wavenumber
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k′
c and then obtain the values of −ω′

rm and −ω′
rc, respectively. It is notable that for the

cases considered here, the value of the dimensionless frequency is equal to that of the
wavenumber invariably (i.e. −ω′

rm = k′
m and −ω′

rc = k′
c), indicating that the perturbation

propagates with a dimensionless phase velocity of −ω′
r/k = 1. Therefore, if one stands

on the axial local framework along with the liquid jet, the interface disturbance only
grows temporally and hardly propagates upstream or downstream of the jet, which is
similar to the standard temporal stability analysis of the capillary jet (Lin 2003; Eggers
& Villermaux 2008). The results indicate that the variation of Re or rQ1 + rQ2 mainly
affects the perturbation growth rate ωi but only has a tiny effect on the wavenumber
corresponding to the maximum growth rate and the cutoff wavenumber. In all cases
examined in figure 18(a,b), k′

c is at a constant value of 1.41 and k′
m only varies slightly

within 0.82 ± 0.01. As for the weak-coupled jet at rQ = 0.1 (corresponding to κ = 0.33),
the outer and inner jets are analysed independently. For the outer jet, the perturbation
growth rate curves and the oscillation frequency curves as Re varies under fixed Re ·
(rQ1 + rQ2) and those as rQ1 + rQ2 varies under fixed Re are given in figure 18(c,d),
respectively. Similarly, the variation of Re or rQ1 + rQ2 only has a tiny effect on the
wavenumber corresponding to the maximum growth rate and the cutoff wavenumber.
Within the parameter range we consider, −ω′′

rm = k′′
m and −ω′′

rc = k′′
c , with k′′

c = 1 and
k′′

m = 0.49 ± 0.01. For the inner jet, the perturbation growth rate curves and the oscillation
frequency curves as Re varies under fixed Re · (rQ1 + rQ2) and those as rQ1 + rQ2 varies
under fixed Re are given in figure 18(e, f ), respectively. Similarly, the cutoff wavenumber
and the wavenumber corresponding to the maximum growth rate hardly change, in which
−ω′′′

rm = k′′′
m = 1.58 ± 0.01 and −ω′′

rc = k′′′
c = 3. With the wavenumber being determined,

the theoretical predictions of fn and fc for the strong-coupled jet and fno, fco, fni and fci for
the weak-coupled jet can be obtained according to (5.7)–(5.9). The theoretical results are
depicted as lines in figure 15, showing a good agreement with the numerical results.

5.3. Predictions of jet breakup length
For a liquid jet with radius rj, the perturbation on the interface develops with growth rate
ωi and initial magnitude η0. Under the linear instability frame, they follow the relationship

rj = η0 eωitb, (5.10)

where tb is the jet breakup time, and it can be expressed as

tb = 1
ωi

ln
rj

η0
. (5.11)

The jet breakup length Lj can be calculated through multiplying the jet velocity Uj with
tb, i.e.

Lj = Uj

ωi
ln

rj

η0
. (5.12)

Previous research by Moallemi et al. (2016) has established that the initial interface
perturbation of a single jet is related to the flow rate perturbation Aj of the liquid jet through
a linear relationship, i.e. η0 ∼ Aj. Moreover, the flow rate perturbation Aj has been found
to be almost in direct proportion to that of the capillary tube A, i.e. Aj ∼ A, as shown in
figures 3(a) and 5(a), respectively. Therefore, the relationship between Lj and A can be
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expressed as

Lj ∼ Uj

ωi
ln

rj

A
. (5.13)

It is notable that in linear instability analysis, rj and Uj are chosen as the characteristic
length and velocity, respectively. Therefore, (5.13) gives the relationship Lj ∼ − ln A, and
the slope can be decided by the value of −1/ωi.

For the coaxial liquid jet, as we have simplified the coaxial jet to a single jet at
different coupling situations, the jet breakup length can be predicted similarly. For the
strong-coupled jet (rQ = 0.5) in figure 13, the jet breakup length L rescaled by rj obeys
the law of L/rj ∼ − ln A. To estimate the slope of the curve, the growth rate ωi at
the corresponding actuation frequency ( f = 40) can be obtained from the growth rate
curve, which corresponds to the curve Re = 32.7 in figure 18(a). The frequency f = 40
corresponds to a wavenumber k = 1.19 at which the growth rate ωi ≈ 0.22. Therefore, the
estimated slope is about −4.55. Figure 13(b) also gives the slope predicted by the theory,
as shown by the triangle, which agrees well with the numerical results.

The breakup length of the inner and outer jets for the weak-coupled coaxial jet at rQ =
0.1 can be analysed independently. Based on the simplified single jet models, the breakup
length of the inner and outer jets can be expressed as

Li ∼ Uj

ωi
ln

rj

A
(5.14)

and

Lo ∼ Uj

ωi
ln

rj

A
. (5.15)

Choosing rj and Uj as the characteristic scales, (5.14) and (5.15) are simplified as
Li ∼ − ln A and Lo ∼ − ln A. For the numerical results in figure 14, the slopes on the
variation of Li/rj and Lo/rj with A are decided by the growth rates of the inner and outer jet,
respectively. According to figure 18(c,e), the growth rate ωi at f = 15 can be obtained from
the curve that corresponds to the situation Re = 32.7. The frequency f = 15 corresponds
to a wavenumber k = 0.45, and the growth rates of the inner and outer jets are ωi ≈ 0.2
and 0.096, respectively. Therefore, the slope −1/ωi of the inner and outer jets can be
estimated as −5 and −10.42, respectively. Figure 14(b) also gives the theoretical slope
for the inner and outer jets, respectively, as shown by the triangles. It is clear that the
theoretical prediction of the inner jet agrees well with the numerical results, while that
of the outer jet diverges significantly from the numerical results. The results suggest that
the breakup of the inner droplet brings in additional perturbation and, thus, has a huge
influence on the breakup length of the outer jet, even in the weak-coupled situation.

6. Controllable formation of multi-core droplets

As we have found in figure 11, compound droplets with a single core inside a shell can
be produced precisely within the frequency range in which the inner and outer jets both
exhibit synchronized breakup with external actuation. In this section we extend our study
to investigate the formation of compound droplets with a controlled number of cores. In
previous experiments of Bocanegra et al. (2005), they successfully controlled the core
numbers to seven through adding a pulse with a large amplitude every seven periods.
Following their strategy, we bring in the pulse on the flow rate actuation and examine
the production of a compound droplet with controllable cores. Figure 19(a) shows the
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t

U
k(

t)/
U

k

0

2

1

A

N/f

Ap

N = 4 f/N

N = 6 f/N N = 8 f/N

f/N

t1

Merge 2 dropletsN = 10

N = 2 f/N

N = 10

t2

(b)

(a)

Figure 19. (a) Sketch of the perturbation wave with pulse every N periods. (b) Breakup of the weak-coupled
coaxial jet (rQ = 0.1) under different N at f = 70, A = 0.1 and Ap = 4A.

sketch of the perturbation wave with a pulse every N period, and the amplitude of the
pulse is denoted by Ap. The jet breakup profiles under f = 70, A = 0.1, Ap = 4A = 0.4
but different N are given in figure 19(b), respectively. Our results indicate that at a
relatively small N (e.g. N = 2, 4, 6 and 8), uniform compound droplets with N cores inside
can be successfully produced, which is similar to the approach adopted by Bocanegra
et al. (2005). The generation of compound droplets obeys a working frequency of f /N.
Therefore, the size of compound droplets increases as N increases. However, at relatively
large N (e.g. N = 10), the compound droplets cannot maintain uniformity in size. Instead,
the production of compound droplets follows the multiple breakup (M) mode, where two
droplets are generated in a working frequency f /N. The mechanism for the occurrence of
the M mode as N gradually increases can be explained through comparing the working
frequency f /N with the synchronized frequency region of the outer jet. For the liquid
flow rates we consider here (Re = 32.7, rQ1 + rQ2 = 0.0714 and rQ = 0.1), figure 15(c,d)
indicates the synchronized frequency region of the outer jet, which is f = 9–37 under
constant perturbation amplitude A = 0.1. When the pulse is added on the flow, the working
frequency corresponds to f /N = 35, 17.5, 11.7 and 8.8 as N = 2, 4, 6 and 8, respectively.
As the values of working frequency are almost completely located within the synchronized
frequency range of the outer jet, the outer jet is able to present a synchronized breakup
manner with uniform compound droplets generated. However, as N increases to 10, the
working frequency corresponds to f /N = 7, which is obviously lower than the critical
frequency for the synchronized breakup of the outer jet; thus, the outer jet presents the M
mode with multiple droplets generated in one period. Overall, we can conclude that the
method of adding pulse is most suitable for the situation when the frequency f /N locates
within the synchronized frequency region of the outer jet.
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7. Conclusions

We study the interfacial flow and instability of a coaxial liquid jet in CFF upon actuation
through direct numerical simulations by solving the Navier–Stokes equations coupled
with a diffuse interface method. Synchronized actuations on the flow rates of core
and shell liquids are applied to modulate the flow, and the effects of perturbation
frequency, amplitude and liquid flow rates on the evolution of coaxial liquid cones
and jets are investigated. The coaxial cone can serve as a reservoir that modulates the
external perturbation of the jet. An increase of perturbation amplitude and a decrease
of perturbation frequency can increase the local perturbation amplitude of the jet. The
coaxial cone can also destabilize at a large perturbation amplitude and small frequency,
recoiling upstream of the orifice with intermittent jet behaviour. The relative flow rate
between the inner jet and the coaxial jet (denoted by rQ) plays a significant role on the
coupling manner of double interfaces, which has a huge impact on the response modes
of jet breakup under external actuation. The effects of perturbation frequency, amplitude
and flow rates of core, shell and focusing liquid on the jet breakup modes are studied.
It is found that the breakup modes of a weak-coupled jet at small rQ are much more
complicated than those of a strong-coupled jet at large rQ. Within some frequency range,
the breakup of inner and outer jets can be synchronized with external actuation, producing
single-encapsulated compound droplets with uniform size. The size of compound droplets
can be adjusted by the variation of frequency. The natural frequency of jet breakup locates
within the frequency range of the synchronized breakup region. The coaxial jets under
weak and strong coupling behaviours are simplified to single jet models, respectively.
The scaling analysis and linear instability analysis on these single jet models are carried
out, which predict the variation tendency of jet breakup length with actuation amplitude
and the natural frequency and the critical frequency for the synchronized breakup region.
Furthermore, a strong pulse is added on the perturbation waveform, and the number of
cores inside the compound droplets can be precisely controlled through changing the
period of the pulse. The critical condition for the feasibility of this strategy is also
indicated through comparing the working frequency with the lower critical frequency
of the synchronized region. Overall, this numerical investigation can provide guidance
for experimental study on active CFF, which is supposed to contribute to the on-demand
compound droplets generation in many practical applications.
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Appendix A. Equations for linear instability analysis

The motion of the liquid jet is governed by the dimensionless Navier–Stokes equations,

∇ · ui = 0, (A1)

ρi

(
∂ui

∂t
+ ui · ∇ui

)
= −∇pi + 1

Rei
∇2ui, (A2)
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where ui, ρi and pi stand for the velocity, density and pressure and the subscripts i = 1
and 2 denote the liquid jet and the surrounding liquid, respectively; and the Reynolds
number Re1 = Ret, Re2 = Ret · S/N. It is notable that in numerical simulations, the
surface tension force is treated as a body force that is contained in the Navier–Stokes
equation (see (2.4)); while in linear instability analysis, the influence of surface tension
is considered in the boundary condition at the interface. The boundary conditions will be
given later.

The normal mode method is utilized for the instability analysis, in which all the variables
such as velocity ui(r, t), pressure pi(r, t) and interface position rj(r, t) are split into a basic
quantity and a perturbation part,

ui = U i + ũi, pi = Pi + p̃i, rj = 1 + η̃, (A3a–c)

in which the perturbation part (ũi, p̃i, η̃) can be expressed in the Fourier form of ei(kz−ωt)

in the cylindrical coordinates (r, z), i.e.

ũi = (ûi(r), v̂i(r)) ei(kz−ωt), p̃i = p̂i(r) ei(kz−ωt), η̃ = η ei(kz−ωt), (A4a–c)

where ûi(r) and v̂i(r) are the amplitude of velocity perturbation in the z and r directions,
respectively. Here p̂i(r) is the amplitude of pressure perturbations and η is the perturbation
amplitudes on the jet interface, respectively; k is the dimensionless wavenumber, which is
the reciprocal of the axial perturbation wavelength λ, ω = ωr + iωi is the dimensionless
complex frequency, where ωi denotes the growth rate of perturbations.

The perturbations of all quantities are assumed to be very small, which allows us to
expand the Navier–Stokes equations and only keep the first-order perturbation terms.
Therefore, substituting these perturbations into the governing equations and neglecting
the high-order terms, we can get the linearized governing equations,

dv̂i

dr
+ v̂i

r
+ ikûi = 0, (A5)

1
Rei

[
d2v̂i

dr2 + 1
r

dv̂i

dr
−

(
k2 + 1

r2 + ikReiUi

)
v̂i

]
−

(
1
S

)δi2 dp̂i

dr
+ iωv̂i = 0, (A6)

1
Rei

[
d2ûi

dr2 + 1
r

dûi

dr
− (k2 + ikReiUi)ûi

]
− dUi

dr
v̂i −

(
1
S

)δi2

ikp̂i + iωûi = 0. (A7)

The velocity and the pressure at the symmetry axis should satisfy the consistency
conditions

v̂1 = dû1

dr
= dp̂1

dr
= 0. (A8)

At the interface rj = 1 + η ei(kz−ωt), the continuity of velocity, the kinematic boundary
condition and the force balance on the tangential and normal directions should be satisfied,
i.e.

v̂1 = v̂2, û1 + dU1

dr
η = û2 + dU2

dr
η, (A9)

−iωη = v̂j − ikU1η, (A10)

p̂2 − 2N
Re

dv̂2

dr
− p̂1 − 2

Re
dv̂1

dr
= 1

We
(1 − k2)η, (A11)

ikv̂1 + dû1

dr
+ d2U1

dr2 η = N
(

ikv̂2 + dû2

dr
+ d2U2

dr2 η

)
. (A12)
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The infinity boundary condition at r → ∞ is

v̂2 = dû2

dr
= dp̂2

dr
= 0. (A13)

In the calculation, this condition can be satisfied by employing a finite and sufficiently
large distance.

The governing equations and the boundary conditions form an eigenvalue problem. The
Chebyshev spectral collocation method has been utilized to solve the problem, in which a
Matlab code was successfully developed (Si et al. 2009).
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