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Abstract

In this article we establish the effective Shafarevich conjecture for abelian varieties over Q of GL2-type. The proof
combines Faltings’ method with Serre’s modularity conjecture, isogeny estimates and results from Arakelov theory.
Our result opens the way for the effective study of integral points on certain higher dimensional moduli schemes
such as, for example, Hilbert modular varieties.

1. Introduction

In this article we combine Faltings’ method with Serre’s modularity conjecture to establish the effective
Shafarevich conjecture for abelian varieties over Q of GL2-type.

1.1. Effective Shafarevich conjecture

In 1983, Faltings [21] proved the Shafarevich conjecture for (polarised) abelian varieties over number
fields. It is known that an effective version of the Shafarevich conjecture would have many striking
Diophantine applications. For example, the following effective Shafarevich conjecture (�() implies the
effective Mordell conjecture for curves over number fields (see Section 6). Let ( be a nonempty open
subscheme of Spec(Z), and let 6 ≥ 1 be a rational integer. We denote by ℎ� the usual stable Faltings
height; we recall in Section 2 the definition of this height introduced by Faltings.

Conjecture (�(). There exists an effective constant 2, depending only on ( and 6, such that any abelian
scheme � over ( of relative dimension 6 satisfies ℎ� (�) ≤ 2.

Coates [11] established (up to a height comparison) the case 6 = 1 of this conjecture. He combined a
classical reduction of Shafarevich with the theory of logarithmic forms [1]. However, without introducing
substantial new ideas, the current state of the art in the theory of logarithmic forms does not allow
proving Conjecture (�() for higher dimensional abelian varieties. In fact, Conjecture (�() is widely
open when 6 ≥ 2. We refer to Section 6 for further discussions of this conjecture and related problems.

Abelian schemes of GL2-type.

Let � be an abelian scheme over ( of relative dimension 6. We say1 that � is of GL2-type if End(�) ⊗ZQ
contains a number field of degree 6, where End(�) denotes the ring of (-group scheme morphisms

1Here we follow Ribet [59]; some authors use a more restrictive definition (see Section 5).
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�→ �. For example, any Hilbert-Blumenthal abelian scheme over ( is of GL2-type and there is a vast
literature on abelian schemes of GL2-type (see Section 5). More generally, we say that � is of product
GL2-type if End(�) ⊗Z Q has a commutative semisimple Q-subalgebra of degree 6. We shall motivate
our terminology in (5.1) by showing that � is of product GL2-type if and only if � is isogenous to a
product

∏

�8 of abelian schemes �8 over ( of GL2-type.
Write #( =

∏

? with the product taken over all rational primes ? not in (; we put here #( = 1 if
( = Spec(Z). Now we can state our main result (Theorem 6.2).

Theorem A. If � is of product GL2-type, then ℎ� (�) ≤ (36)1446#24
(
.

This fully explicit Diophantine inequality establishes Conjecture (�() for abelian schemes of product
GL2-type and it proves new cases of the effective Shafarevich conjecture for curves (see Corollary 6.4).
In addition, Theorem A leads to Corollary 6.5, giving new isogeny estimates for abelian schemes over
( of product GL2-type: Our isogeny estimates are uniform in the sense that they only depend on (
and 6, which is crucial for Theorem B and for the Diophantine applications in [40]. In Theorem A it
is important that we do not make any semistable assumption or assume that � is simple, because these
assumptions would be too restrictive for many Diophantine applications of interest.

We next consider the problem of effectively bounding, in terms of ( and 6, the number of isomorphism
classes of abelian schemes over ( of relative dimension 6. This problem is still widely open2 in the
case when 6 ≥ 2. However, Theorem A now allows solving the case of abelian schemes of product
GL2-type: In Theorem 6.6 we obtain the following quantitative finiteness result for the set "GL2 ,6 (()

of isomorphism classes of abelian schemes over ( of relative dimension 6 that are of product GL2-type.

Theorem B. The cardinality of "GL2 ,6 (() is at most (146) (96)
6
#

(186)4

(
.

We made some effort to obtain an upper bound in Theorem B that is polynomial in terms of #( for each
6 ≥ 1. In the important special case 6 = 1, Brumer-Silverman [9], Poulakis [53] and Ellenberg, Helfgott
and Venkatesh [18, 30] already established such polynomial upper bounds: They obtained significantly
better exponents of #( by using completely different methods, based on Diophantine approximation
or the theory of logarithmic forms; for an overview see the discussions surrounding [38, Prop 6.4].
However, their methods do not allow dealing with abelian varieties of dimension 6 ≥ 2, because they
all crucially exploit Weierstrass equations for elliptic curves.

Explicit Diophantine applications.

Theorem A is an effective Diophantine approximation result for (-integral points on certain ‘spaces’
"GL2 ,6 of arbitrarily large dimension. We now discuss some explicit Diophantine applications. Without
introducing new ideas it seems difficult to find applications for rational points on curves of genus at least
two, because Paršin’s construction [51] (see also Jorgenson-Kramer [34]) usually does not have image in
"GL2 ,6. However, in [38, 42] we showed that there are many other Diophantine problems of interest that
can be reduced to the study of "GL2 ,6 (() via ‘Paršin constructions’ given by forgetful maps of moduli
schemes. For example, on combining such Paršin constructions with Conjecture (�() for "GL2 ,6 (()

with 6 = 1, we proved in [38] explicit finiteness results for Diophantine equations inducing integral
points on moduli schemes of elliptic curves. Moreover, in the joint work with Matschke [42], we refined
the strategy for certain moduli schemes. This led to the construction of new algorithms that allows solving
various fundamental Diophantine problems, including (-unit, Mordell, cubic Thue, cubic Thue-Mahler
and generalised Ramanujan-Nagell equations. To demonstrate the efficiency and utility of the method,
we solved large classes of classical equations and we used the resulting data to formulate and motivate
new conjectures.

2Deligne [14] solved the analogous (but substantially easier) problem for isogeny classes by using and refining certain parts of
Faltings’ proof of the Shafarevich conjecture for abelian varieties [21].
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Now, our proof of Conjecture (�() for "GL2 ,6 (() with 6 ≥ 2 opens the way for the effective study
of some classes of Diophantine equations that appear to be beyond the reach of the known effective
methods. For instance, Theorems A and B are the main tools of the joint project with Kret [40, 41]:
Therein we combine the results of the present article with suitable Paršin constructions in order to prove
explicit upper bounds for the height and the number of (-integral points on Hilbert modular varieties.
To this end, if 6 is not too large, say 6 ≤ 100, then our explicit height bounds in Theorem A are in fact
already sufficiently strong for practical computations when combined with efficient sieves (see [42])
that in practice can deal with huge initial bounds.

1.2. Principal ideas of the proofs

We continue our notation. Suppose that � is an abelian scheme over ( of relative dimension 6 ≥ 1 that
is of product GL2-type, with generic fibre �Q. To prove Conjecture (�() for �, we combine Faltings’
method [21] with the following tools:

(i) If �Q is Q-simple, then it is a quotient �1(#) → �Q of the usual modular Jacobian �1 (#) of some
level # . Ribet [59] deduced this statement from Serre’s modularity conjecture [43] by using among
other things the Tate conjecture for abelian varieties [21].

(ii) Isogeny estimates for abelian varieties over number fields. These estimates were proven by the
method of Faltings [21] or by the method of Masser-Wüstholz [46, 47] via the theory of logarithmic
forms; see Section 3 for more details.

(iii) Bost’s [5] lower bound for ℎ� in terms of the dimension and Javanpeykar’s [31] upper bound for
the stable Faltings height of Belyi curves in terms of the Belyi degree and the genus. These results
are based on Arakelov theory.

Let #� be the conductor of �, defined in Subsection 2.2. In the proof we first consider the case when �Q
is Q-simple. A result of Carayol [10] allows controlling the number # in (i). This together with (i)–(iii)
leads to an effective bound for ℎ� (�) in terms of #� and 6 and then in terms of #( and 6 because � is
an abelian scheme over (. To reduce the general case to the case when �Q is Q-simple, we use inter alia
Poincaré’s reducibility theorem and again the isogeny estimates in (ii). For the proof of Conjecture (�()

for �, each of the two methods in (ii) is sufficient. However, to obtain the bound in Theorem A we used
in (ii) the isogeny estimates based on the method of Masser-Wüstholz, see Remark 1.

We now describe the principal ideas of our proof of Theorem B. Following Faltings [21] we divide
our quantitative finiteness proof for "GL2 ,6 (() into the following two parts: (a) finiteness of "GL2 ,6 (()

up to isogenies and (b) finiteness of each isogeny class of "GL2 ,6 ((). To prove part (a) we use (i) and
we show that any Q-simple ‘factor’ �8 of �Q is a quotient

�1(a) → �8 ,

where a is a rational integer depending only on ( and 6. To show part (b) we combine Theorem A with
an estimate of Masser-Wüstholz [46, 47] for the minimal degree of isogenies of abelian varieties that is
based on the theory of logarithmic forms. In fact, we use here the recent version of the Masser-Wüstholz
estimate, due to Gaudron-Rémond [25].

Moreover, the just described strategy for Theorems A and B gives effective versions of the Shafarevich
conjecture for the class of abelian varieties that are quotients of Jacobians Pic0 (-) of Belyi curves - with
suitably controlled Belyi degree. However, substantially new ideas are required to generalise Theorems
A and B to arbitrary number fields  because (i) is not available for a general  . Also, we cannot apply
here our reduction to  = Q used in the proof of Proposition 6.1 because the notion of (product) GL2-
type is not stable under Weil restriction. Nevertheless, for certain abelian varieties of interest that are
defined over an arbitrary  , one can reduce via Weil restriction to Theorems A and B; see, for example,
[36, Prop 9.9], which is crucial for explicitly bounding in [41] the height and the number of integral
points on coarse Hilbert moduli schemes.
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Remarks.

1) The theory of logarithmic forms [1] is a powerful tool that is often indispensable for proving
effective Diophantine finiteness results. Right at the beginning of Subsection 6.2.2, we give a proof
of Conjecture (�() for abelian schemes � over ( of product GL2-type that does not rely on the
theory of logarithmic forms. This proof uses in (ii) the isogeny estimates [54] based on Faltings’
method. However, using in (ii) the isogeny estimates [25, 46] based on the theory of logarithmic
forms leads to the bounds in Theorems A and B, which are at least exponentially better in terms of #(
and the relative dimension 6 of the abelian scheme � over (.

2) The present article is the second part of [36]. In the first part, published in [38], we used the Shimura-
Taniyama conjecture [7, 66, 68] to prove Theorems A and B for 6 = 1. In particular, in [36, Cor 6.3]
we established the effective bound ℎ� (�) ≪n #

2+n
(

. To obtain this bound, we first reduced to an
explicit height-conductor inequality and then we proved such an inequality (proven independently
by Murty-Pasten [50]) by using Frey’s approach [23] via the modular degree and congruences. This
approach gives better bounds for 6 = 1, but it is not available for � ∈ "GL2 ,6 (() with 6 ≥ 2. In
[36], the proof of Theorem B for 6 = 1 uses Mazur’s uniform isogeny results. Because such uniform
results are not available for 6 ≥ 2 and because � ∈ "GL2 ,6 (() is not necessarily simple, we had to
find other arguments (described above): For each 6 they lead to a bound in Theorem B that is still
polynomial in terms of #( but with a quite large exponent. In general we tried to simplify the form
of the explicit bounds appearing in our results. Hence, it would be possible to state our results with
explicit bounds that are slightly better. However, bounds of the form ℎ� (�) ≪6 log #( are currently
out of reach for any of the above discussed methods, even for 6 = 1.

1.3. Organisation of the article

Outline.

In Section 2 we discuss properties of Faltings heights and of the conductor of abelian varieties over
number fields. Then in Section 3 we collect results that control the variation of Faltings heights in an
isogeny class. In Section 4 we work out explicit estimates for the stable Faltings heights of Jacobian
varieties of certain classical modular curves. Then we prove in Section 5 a height-conductor inequality for
abelian varieties overQ of product GL2-type. Finally, in Section 6 we establish the effective Shafarevich
conjecture (�() for abelian schemes of product GL2-type and we deduce some applications. We also
added two appendices: First we apply our arguments to prove an asymptotic height-conductor inequality
for semistable abelian varieties overQwith real multiplications, and in the second appendix we simplify
the shape of Raynaud’s bound [54, Thm 4.4.9].

Notation, conventions and terminology.

Let  be a number field with ring of integers O . We identify a nonzero prime ideal of O with the
corresponding finite place E of  and vice versa. We write #E for the number of elements in the residue
field of E, we denote by E(a) the order of E in a fractional ideal a of  and we write E | a (respectively
E ∤ a) if E(a) ≠ 0 (respectively E(a) = 0). Let � be an abelian variety over  . We say that � is semistable
if it has semistable reduction at all finite places of  .

Let ( be an arbitrary scheme. We often identify an affine scheme ( = Spec(') with the ring '. If )
and . are (-schemes, then we denote by . ()) = Hom( (),. ) the set of (-scheme morphisms from )

to . and we write .) = . ×( ) for the base change of . from ( to ) . Further, if � and � are abelian
schemes over (, then we denote by Hom(�, �) the abelian group of (-group scheme morphisms from
� to � and we write End(�) = Hom(�, �) for the endomorphism ring of �. Following [4], we say that
( is a Dedekind scheme if ( is a normal noetherian scheme of dimension 0 or 1.

By log we mean the principal value of the natural logarithm and we define the maximum of the
empty set and the product taken over the empty set as 1. For any set " , we denote by |" | the (possibly
infinite) number of distinct elements of " .
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2. Height and conductor of abelian varieties

Let  be a number field and let � be an abelian variety over  . In the first part of this section, we recall
the definition of the relative and the stable Faltings height of �, and we review fundamental properties of
these heights. In the second part, we define the conductor #� of � and we recall useful properties of #�.

2.1. Faltings heights

We begin to define the relative and stable Faltings height of � following [21, p. 354]. If � = 0, then we
set ℎ(�) = 0. We now assume that � has positive dimension 6 ≥ 1. Let � be the spectrum of the ring
of integers O of  . We denote by A the Néron model of � over �, with zero section 4 : � → A. Let
Ω6 be the sheaf of relative differential 6-forms of A/�. We now metrise the line bundle l = 4∗Ω6 on
�. For any embedding f :  ↩→ C, we denote by �f the base change of � to C with respect to f. We
choose a nonzero global section U of l. Let ‖Uf ‖f be the positive real number that satisfies

‖Uf ‖
2
f =

(

8

2

)6 ∫

�f (C)

Uf ∧ Uf ,

where Uf denotes the holomorphic differential form on �f that is induced by U. Then the relative
Faltings height ℎ(�) of � is the real number defined by

[ : Q]ℎ(�) = log |l/UO | −
∑

log‖Uf ‖f

with the sum taken over all embeddings f :  ↩→ C. The product formula assures that this definition
does not depend on the choice of U. The relative Faltings height is compatible with products of abelian
varieties: If �′ is an abelian variety over  , then ℎ(� × �′) = ℎ(�) + ℎ(�′). To see the behaviour of
ℎ under base change we take a finite field extension ! of  . The universal property of Néron models
implies

ℎ(�!) ≤ ℎ(�). (2.1)

This inequality can be strict and thus the height ℎ is in general not stable under base change. To obtain
a stable height we may (see [29]) and do take a finite extension ! ′ of  such that �!′ is semistable. The
stable Faltings height ℎ� (�) of � is defined as

ℎ� (�) = ℎ(�!′).

This definition does not depend on the choice of ! ′, because the formation of the identity components
of the corresponding semistable Néron models commutes with the induced base change. In particular,
inequality (2.1) becomes an equality when ℎ is replaced by ℎ� . Further, we define ℎ� (0) = 0. We shall
need an effective lower bound for ℎ� (�) in terms of the dimension 6 of �. An explicit result of Bost
[5] gives

−
6

2
log(2c2) ≤ ℎ� (�). (2.2)

See, for example, [26, Corollaire 8.4] and notice that ℎ� (�) = ℎ� (�) −
6

2 log c where ℎ� denotes the
height, which appears in the statement of [26, Corollaire 8.4].

We shall state several of our results in terms of ℎ� or ℎ and therefore we now briefly discuss
important differences between these heights. From (2.1) we deduce that ℎ� (�) ≤ ℎ(�). Further, as
already observed, the height ℎ� has the advantage over ℎ that it is stable under base change. On the
other hand, ℎ� has in general weaker finiteness properties. For instance, there are only finitely many
 -isomorphism classes of elliptic curves over  of bounded ℎ, and ℎ� is bounded on the infinite set
given by the  -isomorphism classes of elliptic curves of any fixed 9-invariant in  .
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More generally, let ( be a connected Dedekind scheme with field of fractions  . If � is an abelian
scheme over (, then we define the stable and relative Faltings height of � by ℎ� (�) = ℎ� (� ) and
ℎ(�) = ℎ(� ), respectively.

2.2. Conductor

We first define the conductor #� of an arbitrary abelian variety � over any number field  . Let E be
a finite place of  . We denote by 5E the usual conductor exponent of � at E; see, for example, [61,
Subsection 2.1] for a definition. The conductor #� of � is defined by

#� =
∏

#
5E
E (2.3)

with the product taken over all finite places E of  . In particular, 5E (0) = 0 and #0 = 1. We now recall
some useful properties of 5E and #�. It holds that 5E = 0 if and only if � has good reduction at E.
Furthermore, if �′ is an abelian variety over  that is  -isogenous to �, then 5E (�) = 5E (�

′) and thus
#� = #�′ . Finally, if �′ is an abelian variety over  and if � = � × �

′, then 5E (�) = 5E (�) + 5E (�
′)

and hence #� = #�#�′ .
We shall need an explicit upper bound for 5E in terms of 6 = dim(�) and  . Brumer-Kramer [8]

obtained such a bound by refining earlier work of Serre [62, Subsection 4.9] and of Lockhart-Rosen-
Silverman [45]. To state the main result of [8] we have to introduce some notation. Let ? be the residue
characteristic of E, let 4E = E(?) be the ramification index of E and let = be the largest integer that
satisfies = ≤ 26/(? − 1). We define _? (=) =

∑

8A8 ?
8 for

∑

A8 ?
8 the ?-adic expansion of = =

∑

A8 ?
8 with

integers 0 ≤ A8 ≤ ? − 1. Then [8, Theorem 6.2] gives

5E ≤ 26 + 4E
(

?= + (? − 1)_? (=)
)

. (2.4)

Furthermore, the examples in [8] show that (2.4) is best possible in a strong sense. In what follows, we
shall always combine (2.4) with the upper bound _? (=) ≤ =⌊

log =
log ? ⌋ where for any real number G we

write ⌊G⌋ for the largest integer at most G.
More generally, if ( is a connected Dedekind scheme with field of fractions  and if � is an abelian

scheme over (, then we define the conductor #� of � by #� = #� .

3. Variation of Faltings heights under isogenies

In this section, we collect results that control the variation of Faltings heights under isogenies. These
results are rather direct consequences of theorems in the literature.

Let  be a number field and let � be an abelian variety over  of dimension 6 ≥ 1. We denote by
ℎ� (�) the stable Faltings height of � and by ℎ(�) the relative Faltings height of �; see Section 2 for
the definitions. The results of Faltings [21, Lemma 5] and Raynaud [54, Corollaire 2.1.4] provide that
any  -isogeny i : �→ �′ of abelian varieties over  satisfies

|ℎ(�) − ℎ(�′) | ≤
1

2
log deg(i). (3.1)

Let #� be the conductor of � defined in Subsection 2.2, let � be the absolute value of the discriminant
of  over Q and let 3 = [ : Q] be the degree of  over Q.

Lemma 3.1. Suppose �′ is an abelian variety defined over  that is  -isogenous to �. Then the
following statements hold:

(i) There exists an effective constant `, depending only on 6, #�, 3 and � , such that

|ℎ� (�) − ℎ� (�
′) | ≤ `.
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(ii) Suppose that  = Q and � is semistable. Then any abelian subvariety � of � satisfies

ℎ(�) ≤ ℎ(�) +
6

2
log(8c2).

The very recent work of Rémond [56] removes in (ii) the following two assumptions:  = Q and
� is semistable. The main ingredients for the proof of this lemma are as follows. Raynaud [54] proved
Lemma 3.1 (i) for semistable abelian varieties. His proof relies on refinements of certain arguments in
Faltings [21]; these refinements are due to Paršin and Zarhin. To prove (i) we reduce the problem to the
semistable case established in [54]. For this reduction we use the semistability criterion of Grothendieck-
Raynaud [29], the criterion of Néron-Ogg-Shafarevich [63] and Dedekind’s discriminant theorem. On
the other hand, we deduce Lemma 3.1 (ii) from Bost’s explicit lower bound for ℎ� in (2.2) and a result
of Ullmo-Raynaud given in [67, Proposition 3.3].

Proof of Lemma 3.1. To prove (i) we let ! =  (�[12]) be the field of definition of the 12-torsion points
of �. The semistable reduction criterion [29, Proposition 4.7] shows that �! is semistable. Let �! be
the absolute value of the discriminant of ! overQ and let ; be the relative degree of ! over  . We denote
by T the set of finite places of ! where �! has bad reduction. Let ℓ and ℓ′ be the smallest rational
primes such that any place in T has residue characteristic different from ℓ and ℓ′. An application of [54,
Théorème 4.4.9] (see (6.11) for a simplified bound) with the !-isogenous abelian varieties �! and �′

!

implies

|ℎ� (�!) − ℎ� (�
′
!) | ≤ `′ (3.2)

for `′ an effective constant depending only on �! , ;, 3, |T |, ℓ, ℓ′ and 6. We now estimate these quantities
effectively in terms of 6, #�, 3 and � . The criterion of Néron-Ogg-Shafarevich [63, Theorem 1]
implies that ! =  (�[12]) is unramified over all finite places E of  such that E ∤ 12 and such that �
has good reduction at E. Thus [39, Lemma 6.2], which is based on Dedekind’s discriminant theorem,
gives

�! ≤ (� #�)
; (6;C+23);3

for C the number of finite places of  where � has bad reduction. It holds that |T | ≤ ;C, and it is known
that ; can be explicitly controlled in terms of 6 (for example, one can use the embedding Gal(!/ ) ↩→
Aut((Z/12Z)26) induced by the action of Gal( ̄/ ) on the 12-torsion points �[12] ( ̄) � (Z/12Z)26

where  ̄ is an algebraic closure of  ). Further, the explicit prime number theorem in [60] gives effective
upper bounds for C, ℓ and ℓ′ in terms of #�. We conclude that `′ is bounded from above by an effective
constant ` that depends only on 6, #�, 3 and � . Then (3.2) and the stability of ℎ� prove (i).

To show (ii) we assume that  = Q and that � is semistable. Let � be an abelian subvariety of �.
Then there exists a short exact sequence

0 → � → �→ � → 0

of abelian varieties over Q. The semistability of � provides that � and � are semistable as well; see,
for example, [4, p. 182]. Therefore [67, Proposition 3.3] implies that ℎ(�) ≤ ℎ(�) − ℎ(�) + 6 log 2
and then the lower bound for ℎ(�) given in (2.2) leads to statement (ii). This completes the proof of
Lemma 3.1. �

We point out that Faltings’ proof of the Tate conjecture, and its refinement due to Paršin-Zarhin-
Raynaud [54], which is applied in Lemma 3.1 (i), both do not use Diophantine approximation or tran-
scendence techniques. On the other hand, Masser-Wüstholz [46] gave a new proof of the Tate conjecture
on using their isogeny estimates that rely on the theory of logarithmic forms from transcendence theory.
Bost-David (see, for example, [6, p. 121]) showed that these isogeny estimates are fully effective, and
completely explicit constants are given by Gaudron-Rémond [25]. For example, [25, Théorème 1.4]
combined with (3.1) gives the following result.
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Lemma 3.2. If �′ is an abelian variety over  that is  -isogenous to �, then

|ℎ(�) − ℎ(�′) | ≤ 21063 log
(

(146)6462
3max(ℎ� (�), log 3, 1)2) . (3.3)

A very recent update of (3.3) can be found in the work [27], which is discussed in Remark 5.2 (ii).
On calculating the constant ` in Lemma 3.1 (i) explicitly, it turns out that Lemma 3.1 (i) improves (3.3)
in some cases and vice versa in other cases; see, for example, (6.11). As already pointed out by Masser-
Wüstholz, it is quite difficult to rigorously compare bounds coming from the two different approaches;
their comparison in [46, p. 471] contains in particular an interesting discussion of certain features of the
two bounds. In addition, we point out that the minimal isogeny degree estimates underlying (3.3), based
on the theory of logarithmic forms, have many important Diophantine applications that are completely
out of reach for (the methods underlying) Lemma 3.1.

4. Faltings heights of Jacobians of modular curves

In this section, we give explicit upper bounds for the stable Faltings heights of the Jacobians of certain
classical modular curves in terms of their level. These upper bounds are based on a result of Javanpeykar
given in [31].

We begin to state the result of Javanpeykar. Let - be a smooth, projective and connected curve over
Q̄ of genus 6, where Q̄ is an algebraic closure of Q. We denote by P1 the projective line over Q̄ and
we let D be the set of degrees of finite morphisms - → P1 that are unramified outside 0, 1,∞. Belyi’s
theorem [2] shows that D is nonempty. The Belyi degree deg� (-) of - is defined by deg� (-) = minD.
Let Pic0 (-) be the Jacobian of - , and let ℎ� be the stable Faltings height defined in Section 2. We
recall that ℎ� (0) = 0 and then Javanpeykar’s inequality [31, Theorem 1.1.1] gives

ℎ� (Pic0(-)) ≤ 13 · 106deg� (-)
56.

We point out that ℎ� (Pic0(-)) is well defined, because the height ℎ� is stable. Next, we introduce
some notation and we recall some basic results from the theory of modular curves that can be found, for
example, in the books of Shimura [64] or Diamond-Shurman [16]. Let Γ ⊂ SL2(Z) be a congruence
subgroup. The associated modular curve has a smooth, projective and connected model - (Γ) over Q̄.
Let 6Γ be the genus of - (Γ), and let n∞ be the number of cusps of - (Γ). The inclusion Γ ⊂ SL2(Z)

induces a natural projection - (Γ) → - (1) = - (SL2 (Z)) whose degree 3Γ satisfies

6Γ ≤ 1 +
3Γ

12
−
n∞

2
, 3Γ =

{

[SL2(Z) : Γ] if -id ∈ Γ,

[SL2(Z) : Γ]/2 if -id ∉ Γ,
(4.1)

where [SL2 (Z) : Γ] denotes the index of the subgroup Γ ⊂ SL2(Z) and id ∈ SL2 (Z) denotes the
identity. Furthermore, the projection - (Γ) → - (1) ramifies at most over the two elliptic points of - (1)
or over the cusp of - (1), and it holds that - (1) � P1. Therefore, it follows that deg� (- (Γ)) ≤ 3Γ and
then the displayed estimate for ℎ� (Pic0(-)) implies

ℎ� (� (Γ)) ≤ 13 · 10635
Γ6Γ (4.2)

for � (Γ) = Pic0 (- (Γ)) the Jacobian of - (Γ). For any integer # ≥ 1, we consider the classical
congruence subgroups Γ0(#), Γ1(#) and Γ(#) of the group SL2(Z) defined in [16, p. 13], and to ease
notation we write �0 (#) = � (Γ0(#)), �1(#) = � (Γ1 (#)) and � (#) = � (Γ(#)). On combining the
above results, we obtain the following lemma.

Lemma 4.1. If # ≥ 1 is an integer, then

ℎ� (�0 (#)) ≤ 7 · 107 (# log #)6, ℎ� (�1 (#)) ≤ 17 · 103#12, ℎ� (� (#)) ≤ 17 · 103#18.
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Proof. We recall that ℎ� (0) = 0. Hence, to prove the claimed inequalities, we may and do assume that
the Jacobians are nontrivial. Thus, the genus formulas in [16, p. 108] show that we may and do assume
that # ≥ 11 in the case �1 (#) and that # ≥ 3 in the cases �0 (#) and � (#). On combining (4.2) with
[38, (5.1)] and

∏

? |# (1 + 1
?
) ≤ 1 + log # , we obtain an upper bound for ℎ� (�0(#)) as stated. For

Γ = Γ1 (#) or Γ = Γ(#) there exist standard formulas that express 3Γ, [SL2(Z) : Γ] and n∞ in terms
of #; see, for example, [16, §3.9]. These formulas together with (4.1) and (4.2) imply upper bounds for
ℎ� (�1 (#)) and ℎ� (� (#)) as claimed in Lemma 4.1.

We now include some additional details of our computations that we used here. Write rad(<) for the
radical of < ∈ Z≥1. In the case when Γ = Γ(#) and # ≥ 3, one can use, for instance, the following
formulas, which are given in [16, p.106 and p.107]:

3Γ = 1
2#

3
∏

(1 − ?−2) and n∞ =
3Γ
#

= 1
2

# 2

rad(# )2

∏

(?2 − 1)

with the products taken over all rational primes ? dividing # . In our situation where # ≥ 3, these
formulas imply that 3Γ ≤ 1

2#
3 and n∞ ≥ 2. In the case Γ = Γ1(#) and # ≥ 5, one can use, for example,

the following formulas in [16, p. 107]:

3Γ =
3Γ(# )

#
and n∞ = 1

2

∑

Φ(3)Φ(#/3)

with the sum taken over all 3 ∈ Z≥1 dividing # . Here Φ is the multiplicative (Euler totient) function
given by Φ(?: ) = ?:−1 (? − 1) for ? a prime and : ∈ Z≥1. In our situation where # ≥ 11, the first
formula together with the above formula for 3Γ(# ) implies that 3Γ ≤ 1

2#
2 and the second formula shows

that n∞ ≥ 2 because Φ(#) ≥ 4. Indeed, Φ(#) ≥ 4 if # has a prime factor ? ≥ 5, and if # = 2031 with
0, 1 ∈ Z≥0, then we compute that Φ(#) ≥ 4 when 1 = 0 (thus 0 ≥ 4), when 1 = 1 (thus 0 ≥ 2) and
when 1 ≥ 2. �

To conclude this section we discuss results in the literature that are related to Lemma 4.1. We begin
with a theorem of Ullmo and we put 6 = 6Γ0 (# ) . If # ≥ 1 is a square-free integer, then [67, Théorème
1.2] gives the asymptotic upper bound

ℎ� (�0 (#)) ≤
6

2
log # + >(6 log #). (4.3)

Further, if # ≥ 1 is a square-free integer, with 2 ∤ # and 3 ∤ # , then Jorgenson-Kramer provide in [33,
Theorem 6.2] the asymptotic formula

ℎ� (�0 (#)) =
6

3
log # + >(6 log #). (4.4)

On combining (4.1) with the above displayed results, one can asymptotically improve the bounds for
ℎ� (�0 (#)) given in Lemma 4.1 for a special class of integers # ≥ 1. However, our proofs of the
Diophantine results in the following sections require bounds for all integers # ≥ 1 and thus the above
discussed results of Ullmo and Jorgenson-Kramer are not sufficiently general for our purpose.

5. Abelian varieties of product GL2-type

In the first part, we define and discuss abelian schemes of product GL2-type. Then we state inequalities
relating the stable Faltings height and the conductor of abelian varieties over Q of product GL2-type. In
the second part, we prove the height-conductor inequalities.

Let ( be a connected Dedekind scheme, with field of fractions  a number field. Let � be an abelian
scheme over ( of relative dimension 6 ≥ 1. We say that � is of GL2-type if there exists a number field
� of degree [� : Q] = 6 together with an embedding

� ↩→ End(�) ⊗Z Q.
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The terminology GL2-type comes from the following property: If � is of GL2-type and if +ℓ (�) =

)ℓ (�) ⊗Zℓ Qℓ denotes the rational ℓ-adic Tate module associated to the generic fibre of �, then +ℓ (�)
is a free � ⊗Q Qℓ-module of rank 2 and thus the action on +ℓ (�) of the absolute Galois group of  
defines a representation with values in

GL2 (� ⊗Q Qℓ).

Abelian varieties of GL2-type were studied by several authors.3 For example, we mention the funda-
mental contributions of Ribet [57, 59]. Further, we remark that elliptic curves and rational points on
Hilbert modular varieties provide natural examples of abelian varieties of GL2-type, and there exists a
vast literature on special classes (e.g., Hilbert-Blumenthal type) of abelian varieties of GL2-type; see,
for instance, van der Geer [28].

More generally, we say that � is of product GL2-type if � is isogenous to a product
∏

�8 of nonzero
abelian schemes �8 over ( such that each �8 is of GL2-type. If � is isogenous to

∏

�8 and each
End(�8) ⊗Z Q contains a number field �8 of degree equal to the relative dimension 68 of �8 over (, then
� =

∏

�8 is a commutative semisimple Q-subalgebra of End(�) ⊗Z Q with [� : Q] = 6. In the case
when  = Q, we obtain in addition the following: The abelian scheme � is of product GL2-type if and
only if there exists a commutative semisimple Q-subalgebra

� ↩→ End(�) ⊗Z Q (5.1)

with [� : Q] = 6. To prove this statement, we suppose that End(�) ⊗ZQ has a commutative semisimple
Q-subalgebra � with [� : Q] = 6. Wedderburn’s theorem gives an isomorphism ofQ-algebras � �

∏

�8
where each �8 is a number field. Then, on using the idempotents of � , we obtain that � is isogenous to
a product

∏

�8 of nonzero abelian schemes �8 over ( such that �8 embeds into End(�8) ⊗Z Q. We now
use that  = Q. By functoriality, �8 acts on the Q-vector space Lie(�8 ×( Q), which has dimension 68 .
It follows that [�8 : Q] ≤ 68 . This together with the equalities

∑

68 = 6 =
∑

[�8 : Q] implies that the
strict inequality [�8 : Q] < 68 is impossible. We deduce that [�8 : Q] = 68 , which means that each �8
is of GL2-type. Thus, � is of product GL2-type as desired.

5.1. Height and conductor

Let � be an abelian variety over Q of dimension 6 ≥ 1. We denote by ℎ� (�) the stable Faltings height
of �, and we denote by #� the conductor of �. See Section 2 for the definitions of ℎ� (�) and #�. We
obtain the following result.

Theorem 5.1. If � is of product GL2-type, then the following statements hold:

(i) There is an effective constant : , depending only on 6, #�, such that ℎ� (�) ≤ :.

(ii) It holds ℎ� (�) ≤ (3#�)12.

Here (i) is a direct consequence of (ii). An advantage of first stating (i) separately is that our proof
of (i) is different and this will allow us in Subsection 6.2.2 to give via (i) an interesting proof of
Conjecture (�() for � of product GL2-type. However, the proofs of Theorem 5.1 (i) and (ii) are in
principle the same. The main difference is that in (i) we use the isogeny result in Lemma 3.1 (i) based
on ‘essentially algebraic’ methods, and in (ii) we apply the isogeny result (3.3) based on the theory
of logarithmic forms. On calculating explicitly the constant : in our proof of (i), it turns out (see
Remark 5.2) that the resulting bound for ℎ� (�) is at least exponential in terms of #� and 6. The idea
underlying the proof of (i), to apply isogeny results based on essentially algebraic methods for proving
height-conductor inequalities, can be useful in certain situations for improving bounds; see, for example,

3Some authors use a more restrictive definition. For example, they assume in addition simplicity or they make extra assumptions
on the Lie algebra. Assuming simplicity would be too restrictive for our purpose (e.g., it would significantly weaken our results,
ruling out interesting Diophantine applications). On the other hand, we do not make extra assumptions on the Lie algebra because
either we do not need them or these assumptions are automatically satisfied in the situations under consideration.
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Proposition 6.9 and the discussion before its proof. Further, we show in Appendix A that one can refine
the proof of (i) or the proof of (ii) to asymptotically improve the bound in (ii) for semistable abelian
varieties with real multiplications.

5.2. Proof of Theorem 5.1

We first collect useful properties of abelian varieties over Q of GL2-type. Then we combine these
properties with results obtained in Sections 2, 3 and 4.

5.2.1. Preliminaries

To prove Theorem 5.1 we use Serre’s modularity conjecture [62, (3.2.4)?]. Building on the work of many
mathematicians, Khare-Wintenberger [43] recently proved Serre’s modularity conjecture. Furthermore,
Ribet generalised the arguments of Serre [62, Théorème 5] and he showed in [59, Theorem 4.4] that
Serre’s modularity conjecure has the following consequence. Suppose that � is an abelian variety over
Q of GL2-type. If � is Q-simple, then there exists an integer # ≥ 1 together with a surjective morphism

�1 (#) → � (5.2)

of abelian varieties over Q. Here �1 (#) denotes the usual modular Jacobian, defined, for example, in
Section 4. We note that Serre and Ribet used the Tate conjecture [21] to prove the implication ‘Serre’s
modularity conjecture ⇒ (5.2)’.

We now collect additional results that will be used in the proof of Theorem 5.1. Assume that � is an
abelian variety over Q of GL2-type. Then there exists a Q-simple abelian variety � over Q of GL2-type,
an integer = ≥ 1 and a Q-isogeny

�→ �= (5.3)

for �= the =-fold product of �. This result was established by Ribet in the course of his proof of [59,
Theorem 2.1]. Further, we shall use the following important property of abelian varieties of GL2-type.
Suppose that � and �′ areQ-isogenous abelian varieties overQ. Then � is of GL2-type if and only if �′

is of GL2-type. Indeed, this follows directly from dim(�) = dim(�′) and End(�) ⊗ZQ � End(�′) ⊗ZQ.
For any abelian variety � over Q, we denote by #� the conductor of �. Let # ≥ 1 be an integer

and consider the classical congruence subgroup Γ1 (#) ⊂ SL2(Z). For any normalised newform 5 ∈

(2 (Γ1 (#)), we let � 5 = �1(#)/� 5 �1 (#) be the abelian variety over Q associated to 5 by Shimura’s
construction; see, for example, [16] for the definitions. The abelian variety � 5 is Q-simple and the
Q-simple ‘factors’ of �1 (#) are unique up to Q-isogenies. Thus, [58, Proposition 2.3] implies that any
Q-simple quotient of �1(#) isQ-isogenous to � 5 for some normalised newform 5 ∈ (2(Γ1 (")) of level
" with " | # . Further, a result of Carayol in [10] gives for each " ≥ 1 that any normalised newform
5 ∈ (2(Γ1 (")) satisfies #� 5 = "dim(� 5 ) . Suppose now that � is the Q-simple abelian variety over Q
of GL2-type, which appears in (5.2). Then on combining the above observations, we see that one can
choose the number # in (5.2) such that

#� = #dim(�) . (5.4)

We are now ready to prove the height-conductor inequalities.

5.2.2. Proofs

We continue our notation. For any abelian variety � over Q, we denote by ℎ� (�) its stable Faltings
height. In our proofs we shall obtain a result that is more technical than Theorem 5.1 and that we now
state because it will be used again in Section 6.

Theorem 5.1∗. Let � be an abelian variety over Q of dimension 6 ≥ 1. Suppose that � is of product
GL2-type. Then there exist positive integers #8 and 48 , together with Q-simple abelian subvarieties �8
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of �1 (#8) of dimension 68 , such that � is Q-isogenous to
∏

�
48
8

and such that #68
8

= #�8 . Furthermore,
it holds that #� =

∏

#
4868
8

and

ℎ� (�) ≤
∑

48
(

18 · 103#12
8 + (86)6 log #8

)

, #8 ≥ 11.

As already mentioned, our proofs of Theorem 5.1 (i) and (ii) are essentially the same. We now
describe the proof of (ii), which is divided into the following two parts. In the first part, we use (5.2)
and (5.4) to show that any abelian variety � as in Theorem 5.1 is Q-isogenous to a product

∏

�
48
8

,
where 48 ≥ 1 is an integer and �8 is an abelian subvariety of �1 (#8) for #8 ≥ 1 an integer dividing
#�8 . In the second part, we then combine results from Sections 2 and 3 to deduce an upper bound
for ℎ� (�) in terms of ℎ� (�1 (#8)), dim(�1 (#8)) and 6 = dim(�), then in terms of #8 and 6 by
invoking results from Section 4 and finally in terms of #� and 6, because each #8 | #�8 divides #� by
Subsection 2.2.

Proof of Theorems 5.1 and 5.1∗. We take an abelian variety � over Q of dimension 6 ≥ 1 and we
assume that � is of product GL2-type.

1. Poincaré’s reducibility theorem gives positive integers 48 together with Q-simple abelian varieties
�8 over Q such that � is Q-isogenous to the product

∏

�
48
8

. We write 68 for the dimension of �8 . The
Q-simple ‘factors’ �8 of � are unique up toQ-isogeny, and by assumption � isQ-isogenous to a product
of abelian varieties over Q of GL2-type. Therefore, (5.3) implies that �8 is Q-isogenous to an abelian
variety over Q of GL2-type and thus �8 is of GL2-type as well. Then the results collected in (5.2) and
(5.4) provide a positive integer #8 with #68

8
= #�8 together with a surjective morphism

�8 = �1(#8) → �8 (5.5)

of abelian varieties over Q. Let �8 be the identity component of the kernel of �8 → �8 . It is an abelian
subvariety of �8 . Then Poincaré’s reducibility theorem gives a complementary abelian subvariety �′

8 of
�8 together with a Q-isogeny �′

8 ×Q �8 → �8 induced by addition. We next verify that �8 and �′
8 are

Q-isogenous. The kernel of the surjective morphism �8 → �8 is a Q-subgroup scheme of �8 whose
dimension coincides with dim(�8). Hence, the dimension formula implies that the dimensions of �8 and
�′
8 coincide. Let �′

8 → �8 be the morphism obtained by composing the natural inclusion �′
8 ↩→ �′

8×Q �8
with the Q-isogeny �′

8 ×Q �8 → �8 and then with the morphism �8 → �8 . We recall that the surjective
morphism �′

8 ×Q �8 → �8 is induced by addition, and �8 is the identity component of the kernel of
�8 → �8 . Therefore, we see that the morphism �′

8 → �8 is surjective, and thus it is a Q-isogeny because
dim(�′

8) = dim(�8). Hence, after replacing �8 by �′
8 , we may and do assume that �8 is an abelian

subvariety of �8 and that there exists a Q-isogeny

�8 ×Q �8 → �8 . (5.6)

2. We now begin to estimate the heights. For any abelian variety � over Q, we denote by E�
the maximal variation of the stable Faltings height ℎ� in the Q-isogeny class of �; that is, E� =

sup|ℎ� (�) − ℎ� (�′) | with the supremum taken over all abelian varieties �′ overQ that areQ-isogenous
to �. The abelian variety �′ =

∏

�
48
8

satisfies

ℎ� (�
′) =

∑

48ℎ� (�8), and ℎ� (�) ≤ E�′ + ℎ� (�
′) (5.7)

because � is an abelian variety over Q that is Q-isogenous to �′. Write =8 = dim(�8) and define
� ′8 = �8 ×Q �8 . It holds that ℎ� (�8) = ℎ� (� ′8 ) − ℎ� (�8), and it follows from (5.6) that ℎ� (� ′8 ) is at most
E�8 + ℎ� (�8). Therefore, the lower bound for ℎ� (�8) in (2.2) implies

ℎ� (�8) ≤ E�8 + ℎ� (�8) +
=8
2 log(2c2). (5.8)
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Here we used that the dimension of �8 is at most dim(� ′8 ) = =8 and that the lower bound for ℎ� (�8)
in (2.2) holds in addition for �8 = 0 because ℎ� (0) = 0. To control =8 in terms of #8 , we consider
the modular curve -1 (#8) = - (Γ1 (#8)) over Q defined in Section 4. We recall that �8 = �1 (#8) is the
Jacobian of -1(#8) and hence the genus of -1(#8) coincides with the dimension =8 of �8 . Therefore,
(4.1) together with [16, p. 107] implies

=8 ≤
1
24#

2
8 . (5.9)

To bound #�8 in terms of #8 , we use the classical result of Igusa, which says that -1 (#8) has good
reduction at all primes ? ∤ #8 . In particular, the Jacobian �8 = Pic0(-1 (#8)) has good reduction at all
primes ? ∤ #8 . It follows that all prime factors of #�8 divide #8 . Then (2.4) gives an effective bound
for #�8 in terms of =8 and #8 , which together with (5.9) shows that there exists an effective constant 28 ,
depending only on #8 , such that

#�8 ≤ 28 . (5.10)

We recall that �′ =
∏

�
48
8

is an abelian variety over Q that is Q-isogenous to �. Hence, we get that
#� = #�′ and then the equality #�8 = #

68
8

in statement (5.5) gives

#� =
∏

#
48
�8

=
∏

#
4868
8

. (5.11)

In addition, the dimension formula gives that 6 =
∑

4868 . In particular, we obtain 48 ≤ 6.
We now prove (i). Lemma 3.1 (i) gives an effective upper bound for E�′ in terms of dim(�′) = 6 and

#�′ = #� and for E�8 in terms of =8 and #�8 . On combining these upper bounds with (5.7) and (5.8),
we obtain an effective estimate for ℎ� (�) in terms of 6, #�, =8 , ℎ� (�8) and #�8 ; then in terms of 6, #�
and #8 by (5.9), Lemma 4.1 and (5.10) and finally in terms of 6 and #� by (5.11). This completes the
proof of (i).

To show (ii) we use the inequality (3.3), which holds with ℎ� in place of ℎ because the degree of an
isogeny is stable. This inequality gives an upper bound for E�′ in terms of dim(�′) = 6 and ℎ� (�′) and
for E�8 in terms of =8 and ℎ� (�8). On combining these upper bounds with (5.7) and (5.8), we obtain an
estimate for ℎ� (�) in terms of 6, 48 , =8 and ℎ� (�8). Then (5.9) together with the upper bound for ℎ� (�8)
in Lemma 4.1 leads to an estimate for ℎ� (�) in terms of 6, 48 and #8 . More precisely, on computing the
bounds explicitly (see below for some possible intermediate steps), one obtains, for example, the bound
in Theorem 5.1∗ and then

ℎ� (�) ≤
1
2 (3#

∗
�)

12 + (86)6 log #∗
�, #∗

� =
∏

#
48
8
. (5.12)

To simplify the bound we used here that #8 > 10. Indeed, in the cases #8 ≤ 10, the modular curve
-1 (#8) has genus zero and �8 = Pic0(-1 (#8)) = 0, which is not possible because �8 is a nonzero abelian
subvariety of �8 . Finally, it follows from (5.11) that #∗

�
divides #� and that 6 ≤

log #�
log 11 , and then (5.12)

implies (ii).
We now include some details of our computations described above in which we may and do assume

that #8 ≥ 11: For example, one can use the inequalities

0) E�8 ≤ #12
8 , 1) ℎ� (�8) ≤ 18 · 103#12

8 , 2)
∑

48#
12
8 ≤ (#∗

�)
12, 3) E�′ ≤ (86)6 log(#∗

�)

as intermediate steps in order to compute the bound in Theorem 5.1∗, which follows from (5.7), b) and
d). Here 0) follows by combining (3.3), (5.9) and Lemma 4.1. Then b) follows by combining (5.8), (5.9),
a) and Lemma 4.1, and c) holds because G + H ≤ GH for G, H ∈ R≥2. Finally, d) follows by combining
(3.3), (5.7), b) and c). �

Remark 5.2. (i) Without introducing new ideas, the proof of (i) gives a bound for ℎ� (�) that is at least
exponential in terms of #� and 6. Indeed, this follows from (6.11), which shows that Lemma 3.1 (i)
gives a bound for E�8 and E�′ that is at least exponential in terms of =8 = dim(�8) and 6 = dim(�),
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respectively. The bound in (6.11) was obtained by simplifying the main result of [54]. However, any
bound for E�8 and E�′ coming from [54] has to be at least exponential in terms of =8 and 6, respectively,
because the crucial result [54, 4.3.7] involves a certain quantity " ≥

(2=
=

)

≥ 2= for = ∈ {=8 , 6}.
(ii) The above proof shows that the (main) terms #12

�
and #12

8 in our bounds in Theorems 5.1 and
5.1∗ come from the inequality ℎ� (�1 (#)) ≤ 17 · 103#4 in Lemma 4.1 for 4 = 12. This inequality
relies on [31], which can be refined in our special situation where Pic0 (-) = �1 (#). In case one can
reduce here the exponent 4 = 12 to 4 < 10, one obtains further improvements of our bounds by using in
addition two very recent results: A generalisation of Lemma 3.1 (ii) to arbitrary abelian varieties, which
is contained in Rémond’s work [56], and a refinement of (3.3) due to Gaudron-Rémond [27]. We would
like to thank the referee for informing us about these recent works.

6. Effective Shafarevich conjecture

In the first part of this section, we discuss several aspects of the effective Shafarevich conjecture. In the
second part, we give our explicit version of the effective Shafarevich conjecture for abelian varieties of
product GL2-type and we deduce some applications. In the third part, we prove the results of Section 6.

Let ( be a nonempty open subscheme of Spec(Z) and let 6 ≥ 1 be an integer. We denote by ℎ� (�)
the stable Faltings height of an abelian scheme � over (. See Section 2 for the definition. We now recall
the effective Shafarevich conjecture.

Conjecture (�(). There exists an effective constant 2, depending only on ( and 6, such that any abelian
scheme � over ( of relative dimension 6 satisfies ℎ� (�) ≤ 2.

As already mentioned, Conjecture (�() would have striking applications to classical Diophantine
problems. For example, the following proposition gives that Conjecture (�() implies the effective
Mordell conjecture for curves over number fields.

Proposition 6.1. Suppose that Conjecture (�() holds. If - is a smooth, projective and geometrically
connected curve of genus at least 2, defined over an arbitrary number field, then one can determine in
principle all rational points of - .

Let  be a number field. In what follows, by a curve over  we always mean a smooth, projective and
geometrically connected curve over  . For any curve - over  , we denote by ℎ� (-) the stable Faltings
height of the Jacobian Pic0(-) of - . In the first part of the proof of Proposition 6.1, we will show that
Conjecture (�() implies in particular the following ‘classical’ effective Shafarevich conjecture (�()∗

for curves over  .

Conjecture (�()∗. Let ) be a finite set of places of  . There exists an effective constant 2, depending
only on  , ) and 6, such that any curve - over  of genus 6, with good reduction outside ) , satisfies

ℎ� (-) ≤ 2

.
In the second part of the proof of Proposition 6.1, we apply Rémond’s effective Kodaira construction

in [55], which gives that (�()∗ implies the effective Mordell conjecture.
We now discuss several aspects of Conjectures (�() and (�()∗. First, we mention that Conjecture

(�(), which implies (�()∗, is a priori considerably stronger than (�()∗. For example, if - is a curve
over  , then Conjecture (�() would also allow controlling the finite places of  where the reductions
of - and Pic0(-) are different; see the discussion at the end of Section 6 for more details. Furthermore,
it is shown in [40] that already special cases of Conjecture (�(), such as, for example, Theorem 6.2,
have direct applications to the effective study of Diophantine equations. On the other hand, one needs
to prove Conjecture (�()∗ in quite general situations to get effective Diophantine applications. For
example, de Jong-Rémond [32] established Conjecture (�()∗ for curves over  that are geometrically
cyclic covers of prime degree of the projective line P1

 
: They combined the method introduced by Paršin

[52] with the theory of logarithmic forms; see also the proof of [39, Thm 3.2] for some refinements and
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[19, 24, 35, 37] for stronger results for (hyper)elliptic curves via different methods. However, the case
of cyclic covers is not general enough to directly deduce applications for rational points via the known
constructions of Kodaira or Paršin [51].

The proof of Proposition 6.1 shows moreover that Conjecture (�() is in fact equivalent to the
following (a priori more general) conjecture: For any nonempty open subscheme ( of the spectrum of
the ring of integers of  , there exists an effective constant 2, depending only on  , ( and 6, such that any
abelian scheme � over ( of relative dimension 6 satisfies ℎ� (�) ≤ 2. To prove the equivalence one uses
inter alia the Weil restriction. We refer to the proof of Proposition 6.1 for details. Further, we mention
that one can, of course, formulate Conjecture (�() more classically in terms of Q-isomorphism classes
of abelian varieties over Q of dimension 6, with good reduction outside a finite set of rational prime
numbers. However, our formulation of Conjecture (�() in terms of abelian schemes is more convenient
for the effective study of integral points on moduli schemes.

Finally, we remark that a geometric analogue of Conjecture (�() was established by Faltings [20];
see also Deligne [15, p. 14] for some refinements.

6.1. Abelian schemes of product GL2-type

We continue the notation of the previous section. Let ( be a nonempty open subscheme of Spec(Z) and
let 6 ≥ 1 be an integer. We write #( =

∏

? with the product taken over all rational prime numbers ?
that are not in (. The following theorem establishes the effective Shafarevich conjecture (�() for all
abelian schemes of product GL2-type.

Theorem 6.2. Let � be an abelian scheme over ( of relative dimension 6. If � is of product GL2-type,
then

ℎ� (�) ≤ (36)1446#24
( .

We point out that the bound in Theorem 6.2 is polynomial in terms of #( . In course of the proof
of Theorem 6.2 we shall obtain the more precise inequality (6.7), which improves in particular the
estimate of Theorem 6.2 and which is polynomial in terms of the relative dimension 6 of �. Moreover,
it is possible to refine (6.7) in special cases. For example, we obtain the following result for semistable
abelian varieties of product GL2-type.

Proposition 6.3. Let � be an abelian scheme over ( of relative dimension 6. If � is of product GL2-type
and if the generic fibre of � is semistable, then

ℎ� (�) ≤ 6(3#()
12 + (66)7 log #( .

Next, we deduce from Theorem 6.2 new cases of the ‘classical’ effective Shafarevich conjecture
(�()∗. We say that a curve - over Q is of product GL2-type if the Jacobian Pic0 (-) of - is of product
GL2-type. There exist many curves over Q of genus ≥ 2 that are of product GL2-type; see, for example,
the articles in [13]. Let ) be a finite set of rational prime numbers and write #) =

∏

? with the product
taken over all ? ∈ ) .

Corollary 6.4. Let - be a curve over Q of genus 6 that is of product GL2-type. If Pic0(-) has good
reduction outside ) , then

ℎ� (-) ≤ (36)1446#24
) .

Proof. The Néron model of Pic0(-) over ( = Spec(Z) − ) is an abelian scheme, because Pic0(-) has
good reduction outside ) . Therefore, Theorem 6.2 implies Corollary 6.4. �

If - is a curve over Q with good reduction at a rational prime ?, then Pic0 (-) has good reduction
at ?. This shows that Corollary 6.4 establishes in particular the classical effective Shafarevich conjecture
(�()∗ for all curves over Q of product GL2-type.
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We now derive new isogeny estimates for abelian varieties over Q of product GL2-type. Masser-
Wüstholz bounded in [46, 47] the minimal degree of isogenies of abelian varieties. On combining
Theorem 6.2 with the recent version of the Masser-Wüstholz results due to Gaudron-Rémond [25], we
obtain the following corollary.

Corollary 6.5. Suppose that � and � are isogenous abelian schemes over ( of relative dimension 6. If
� or � is of product GL2-type, then the following statements hold:

(i) There exist isogenies �→ � and � → � of degree at most (146) (126)5
#

(376)3

(
.

(ii) In particular, it holds that |ℎ� (�) − ℎ� (�) | ≤ (306)3 log #( + (96)6.

The proof of this result shows, moreover, that Corollary 6.5 (ii) holds with ℎ� replaced by the relative
Faltings height ℎ. Further, we point out that the above isogeny estimates are independent of � and �. As
already mentioned, this is absolutely crucial for Theorem 6.6 and for certain Diophantine applications
such as, for example, [40, 41]. On calculating the constant of Lemma 3.1 (i) explicitly, we see that
the bound in Corollary 6.5 (ii) is better in terms of #( and 6 than Lemma 3.1 (i). On the other hand,
Lemma 3.1 (i) is considerably more general than Corollary 6.5 (ii).

Recall that "GL2 ,6 (() denotes the set of isomorphism classes of abelian schemes over ( of relative
dimension 6 that are of product GL2-type. Corollary 6.5 (i) is one of the main ingredients for the proof
of the following quantitative finiteness result for "GL2 ,6 (().

Theorem 6.6. The cardinality of "GL2 ,6 (() is at most (146) (96)
6
#

(186)4

(
.

To state some consequences of (the proof of) Theorem 6.6 for Q-isomorphism classes of abelian
varieties over Q, we recall that ) denotes an arbitrary finite set of rational prime numbers and we let
#) =

∏

?∈) ? be as above. We obtain the following corollary.

Corollary 6.7. Let � be an abelian variety over Q of dimension 6. We assume that � has the following
properties: (0) � is of product GL2-type and (1) � has good reduction outside ) . Then the following
statements hold:

(i) Up to Q-isomorphisms, there exist at most (146) (96)
6
#

(186)4

)
abelian varieties over Q that are Q-

isogenous to our given �.
(ii) Up to Q-isogenies, there exist at most (36)3262

#
46
)

abelian varieties over Q of dimension 6 that
have properties (0) and (1).

We remark that it is possible to prove a considerably more general version of Corollary 6.7 (ii) by
refining Faltings’ proof of [21, Satz 5] with an effective Čebotarev density theorem; see, for example,
Deligne [14]. However, the resulting unconditional bound for the number of isogeny classes would be
worse than the estimate in Corollary 6.7 (ii).

6.2. Proof of the results of Section 6

In the first part of this section, we collect some useful results for abelian schemes. In the second part, we
first show Theorem 6.2, Proposition 6.3 and Corollary 6.5; then we prove Theorem 6.6 and Corollary
6.7 and finally we give the proof of Proposition 6.1.

6.2.1. Preliminaries

Let ( be a connected Dedekind scheme, with field of fractions  . We begin to prove some properties
of morphisms of abelian schemes over ( that we shall use later on. Suppose that � and � are abelian
schemes over ( with generic fibres � and � , respectively. Then base change from ( to  induces an
isomorphism of abelian groups

Hom(�, �) � Hom(� , � ). (6.1)
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We now verify (6.1). Any abelian scheme over ( is the Néron model of its generic fibre; see, for example,
[4, p. 15]. Thus, the Néron mapping property gives that any  -scheme morphism i : � → � 
extends to a unique (-scheme morphism i : �→ �. In addition, if i is a  -group scheme morphism,
then i is a (-group scheme morphism. Therefore, we see that base change from ( to induces a bijection
of sets Hom(�, �) � Hom(� , � ). Finally, base change properties of group schemes show that this
bijection is in fact a homomorphism of abelian groups and hence we conclude (6.1). Furthermore, base
change from ( to  induces an isomorphism of rings

End(�) � End(� ). (6.2)

Indeed, if � = � then the isomorphism of abelian groups in (6.1) is an isomorphism of rings, because
base change from ( to  is a covariant functor from (-schemes to  -schemes.

We shall use the following property of semistable abelian varieties. Let � and � be abelian varieties
over  and let E be a closed point of (. If there is a surjective morphism

�→ � (6.3)

of abelian varieties over  and if � has semistable reduction at E, then � has semistable reduction at E.
We now verify this statement. Let � be the reduced underlying scheme of the identity component of the
kernel of � → �. There exists an abelian variety �′ over  that is  -isogenous to � and that fits into
an exact sequence 0 → � → � → �′ → 0 of abelian varieties over  . Therefore, the semistability of
� at E together with [4, p. 182] gives that �′ has semistable reduction at E, and then [4, p. 180] shows
that � is semistable at E because � and �′ are  -isogenous. This proves the assertion in (6.3).

Next, we give Lemma 6.8, which will allow us later on to control the conductor of certain abelian
varieties. In this lemma, we assume that  is a number field with ring of integers O and we assume
that ( is a nonempty open subscheme of Spec(O ). We write 3 = [ : Q] for the degree of  over Q
and we define #( =

∏

#E with the product taken over all E ∈ Spec(O ) − (. Let 6 ≥ 1 be an integer
and let d = d((, 6) be the number of rational primes ? such that ? ≤ 26 + 1 and such that there exists
E ∈ Spec(O ) − ( with E | ?. If � is an abelian scheme over (, then we denote by #� the conductor
of � defined in Subsection 2.2. The following global result in Lemma 6.8 (i) uses inter alia the local
conductor estimates of Brumer-Kramer [8] stated in (2.4).

Lemma 6.8. Suppose that � is an abelian scheme over ( of relative dimension 6. Then the following
statements hold:

(i) There exists a positive integer a, depending only on  , ( and 6, such that #� | a and such that

a ≤ (26 + 1)663d#
26
(
.

(ii) If the generic fibre of � is semistable, then #� | #
6

(
.

Proof. The generic fibre � of � has good reduction at all closed points of (, because � is an abelian
scheme over (. Therefore, #� takes the form

#� =
∏

#
5E
E

with the product taken over all E ∈ Spec(O ) − (, where 5E = YE + XE for YE and XE the tame and the
wild conductor of � at E, respectively; see, for example, [61, Subsection 2.1].

We now prove (i). Let E be a closed point of Spec(O ). We see that YE ≤ dim+ℓ (�) = 26 for +ℓ (�)
the rational ℓ-adic Tate module of � . If the residue characteristic ? of E satisfies ? > 26 + 1, then
XE = 0 and hence 5E = YE ≤ 26. We denote by 1E the right-hand side of the inequality of Brumer-
Kramer stated in (2.4). This 1E is an integer that depends only on  , (, 6 and that satisfies 5E ≤ 1E .
Then we observe that #� divides

a = #
26
(

∏

#
(1E−26)
E
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with the product taken over all E ∈ Spec(O ) − ( of residue characteristic at most 26 + 1. On using
the definition of 1E via (2.4), we deduce an upper bound for 1E that then leads to an estimate for a
as claimed in (i). Before we include the details of the computation that we used here, we mention that
one can in fact compute the precise value of a for any explicitly given  , ( and 6. Let ? = ?E be the
residue characteristic of E, write eE = E(?) for the ramification index of E and put = = ⌊

26
?−1 ⌋. In our

computation, we used

1
eE
(1E − 26) = ?= + (? − 1)_? (=) ≤ 46 + 26⌊ log(26)

log ? ⌋,

which follows from _? (=) ≤ =⌊
log =
log ? ⌋ and ?

?−1 ≤ 2. Further, any E ∈ Spec(O ) − ( with ?E ≤ 26 + 1
lies in the set ) of all E ∈ Spec(O ) with ?E | #( and ?E ≤ 26 + 1, and it holds that

∑

E ∈) eE fE = 3d

and #E = ?fE where fE denotes the residue degree of E. Therefore, the above displayed results show
that log(a/#26

(
) ≤ 26

∑

E ∈) eE fE log(?2
E26) is at most 663d log(26 + 1), because any E ∈ ) satisfies

?E ≤ 26 + 1.
To show (ii) we take again a closed point E of Spec(O ). Let AE be the fibre at E of the Néron model

of � over Spec(O ). The identity component A0
E of AE is an extension of an abelian variety �E by

the product of a torus part )E with a unipotent part *E . Let CE , DE and 0E be the dimensions of )E ,
*E and �E , respectively. It holds that dim(A0

E ) = dim(AE ) = 6 and then the dimension formula gives
6 = (CE + DE ) + 0E . Further, it is known that YE = CE + 2DE ; see, for example, [29, p. 364]. Our additional
assumption in (ii), that � is semistable, implies that DE = 0 and XE = 0. Therefore, we deduce that
5E = YE = CE , and this together with CE ≤ CE + DE + 0E = 6 leads to 5E ≤ 6. Then the displayed formula
for #� shows that #� | #

6

(
, which proves (ii). This completes the proof of Lemma 6.8. �

We are now ready to prove the results of Section 6.

6.2.2. Proofs

Theorem 5.1 (i) and Lemma 6.8 directly imply Conjecture (�() for abelian schemes of product GL2-
type. This proof via Theorem 5.1 (i) and Lemma 6.8 has an interesting feature discussed in the first
remark after Subsection 1.2. To prove our other results, we continue the notation of the previous section.
In addition, we assume that  = Q and that ( is a nonempty open subscheme of Spec(Z). Let #( and
6 ≥ 1 be as above. Further, we assume that � is an abelian scheme over ( of relative dimension 6 that
is of product GL2-type and we denote by ℎ� (�) its stable Faltings height.

The principal ideas of the proof of Theorem 6.2 are as follows. Theorem 5.1 (ii) together with Lemma
6.8 implies directly Conjecture (�() for �, with an inequality of the form ℎ� (�) ≤ 2(6)#

246
(

for 2(6)
a constant depending only on 6. However, to obtain the better bound ℎ� (�) ≤ 2(6)#24

(
and to improve

the dependence on 6 of 2(6), we go into the proof of Theorem 5.1 and we apply therein Lemma 6.8
with the ‘simple factors’ of �.

Proof of Theorem 6.2. 1. By assumption, � is isogenous to a product of abelian schemes over ( that are
all of GL2-type. Then (6.2) gives that the generic fibres of these abelian schemes are all of GL2-type as
well. It follows that the generic fibre �Q of � is Q-isogenous to a product of abelian varieties over Q
of GL2-type. In other words, the abelian variety �Q is of product GL2-type and thus satisfies all of the
assumptions of Theorem 5.1.

2. We now go into the proof of Theorem 5.1. Therein we showed Theorem 5.1∗, which provides
positive integers #8 and 48 , together with Q-simple abelian varieties �8 over Q of dimension 68 , such
that �Q is Q-isogenous to

∏

�
48
8

and such that

#
68
8

= #�8 . (6.4)

Here #�8 denotes the conductor of �8 . Furthermore, Theorem 5.1∗ gives

ℎ� (�) ≤
∑

48
(

18 · 103#12
8 + (86)6 log #8

)

. (6.5)
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3. Next, we estimate the numbers #8 in terms of 6 and (. There exists a surjective morphism �Q → �8
of abelian varieties over Q, and the abelian variety �Q has good reduction at all closed points of (
because it extends to an abelian scheme over (. Therefore, [63, Corollary 2] provides that �8 has good
reduction at all closed points of (, and this shows that the Néron model A8 of �8 over ( is an abelian
scheme over (. Then an application of Lemma 6.8 with the abelian scheme A8 over ( of conductor #�8
gives that #�8 ≤ (268 + 1)668d8#

268
(
, where d8 = d((, 68) denotes the number of rational primes ? ∉ (

with ? ≤ 268 + 1. Further, because �Q is Q-isogenous to
∏

�
48
8

, we obtain

6 =
∑

4868 . (6.6)

It follows that 68 ≤ 6, and this leads to d8 ≤ d = d((, 6). Then the above upper bound for #�8 together
with (6.4) proves that #8 ≤ (26 + 1)6d#2

(
.

4. We observe that d ≤ 26 and (6.6) implies that
∑

48 ≤ 6. Thus, on combining (6.5) with the above
estimate for #8 , we deduce an inequality as claimed by Theorem 6.2. To simplify the form of the final
result, we may and do assume here that 6 ≥ 2. Indeed, in the case 6 = 1, the above arguments simplify
and they give a bound that is even better than Theorem 6.2 for 6 = 1; the reason is that any elliptic curve
over Q of conductor # is a quotient of the modular Jacobian �0(#) by [7] and Lemma 4.1 is better for
ℎ� (�0 (#)) than for ℎ� (�1 (#)). This completes the proof of Theorem 6.2. �

We recall that d = d((, 6) denotes the number of rational primes ? ∉ ( with ? ≤ 26 + 1. The proof
of Theorem 6.2 also gives the following more precise result: If � is an abelian scheme over ( of relative
dimension 6 and if � is of product GL2-type, then

ℎ� (�) ≤ 6
(

18 · 103a12
0 + (86)6 log a0

)

, a0 = (26 + 1)6d#2
( . (6.7)

Let B be the number of rational primes that are not in (. It follows that d ≤ B < ∞ and then we see that
(6.7) is polynomial in terms of 6, because B depends only on (. Furthermore, on looking, for example,
at products of elliptic curves over (, we see that any upper bound for ℎ� (�) has to be at least linear
in terms of 6. This shows that the polynomial dependence on 6 of (6.7) is not too far from the optimal
dependence on 6. On the other hand, Lemma 6.8 implies that Frey’s height conjecture [22, p. 39] would
give an upper bound for ℎ� (�) that is linear in terms of log #( , whereas (6.7) depends polynomially
on #( . We remark that an (effective) estimate for ℎ� (�) that is linear in terms of log #( would imply
some (effective) version of the 012-conjecture.

In the following proof of Proposition 6.3, we use the arguments of Theorem 6.2 and we replace
therein Lemma 6.8 (i) by Lemma 6.8 (ii).

Proof of Proposition 6.3. We freely use the notations and definitions of the proof of Theorem 6.2. In
addition, we assume that �Q is semistable. Therefore, (6.3) implies that �8 is semistable, because there
exists a surjective morphism �Q → �8 of abelian varieties over Q. We showed that �8 extends to an
abelian scheme A8 over (. Thus, an application of Lemma 6.8 (ii) with the abelian scheme A8 over (
of conductor #�8 and relative dimension 68 gives that #�8 | #

68
(

. Hence, the equality #68
8

= #�8 in
(6.4) implies that #8 ≤ #( and then (6.6) together with the upper bound for ℎ� (�) in (6.5) leads to an
inequality as claimed. This completes the proof of Proposition 6.3. �

To prove Corollary 6.5 we combine Theorem 6.2 with the recent version of the Masser-Wüstholz
results [46, 47] due to Gaudron-Rémond [25].

Proof of Corollary 6.5. We suppose that � and � are isogenous abelian schemes over ( of relative
dimension 6. Let �Q and �Q be the generic fibres of � and �, respectively. By assumption, � or � is of
product GL2-type. Thus, both are of product GL2-type.

To show (i) we observe that the constant ^(�Q) in [25] depends only on 6 and ℎ� (�). Let ^ be the
constant that one obtains by replacing the number ℎ� (�) with (36)1446#24

(
in the definition of ^(�Q);

notice that ^ depends only on #( and 6. An application of Theorem 6.2 with � shows that ^(�Q) ≤ ^.
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The abelian varieties �Q and �Q are Q-isogenous. Therefore, [25, Théorème 1.4] gives Q-isogenies
iQ : �Q → �Q and kQ : �Q → �Q of degree at most ^(�Q) ≤ ^. As in the proof of (6.1) we see that iQ
and kQ extend to (-group scheme morphisms i : � → � and k : � → �, respectively. Furthermore,
it follows from [4] that i and k are isogenies because � and � are abelian (and thus semi-abelian)
schemes over (. Hence, we conclude (i).

It remains to prove (ii). We showed in (i) that there is aQ-isogeny iQ : �Q → �Q with deg(iQ) ≤ ^,
and (3.1) gives that |ℎ(�Q) − ℎ(�Q) | ≤

1
2 log deg(iQ) for ℎ the relative Faltings height. Hence, we

deduce a version of (ii) involving ℎ. To prove the version involving ℎ� we use [29]. It provides a
number field ! such that �! and �! are semistable, and thus ℎ� (�) = ℎ(�!) and ℎ� (�) = ℎ(�!).
If i! : �! → �! is the base change of iQ, then (3.1) gives that |ℎ(�!) − ℎ(�!) | ≤

1
2 log deg(i!).

Therefore, deg(i!) = deg(iQ) ≤ ^ leads to (ii). This completes the proof of Corollary 6.5. �

We refer to the introduction for an outline of the strategy used in the following proof.

Proof of Theorem 6.6. We recall that "GL2 ,6 (() denotes the set of isomorphism classes of abelian
schemes over ( of relative dimension 6 that are of product GL2-type. To bound |"GL2 ,6 (() | we may
and do assume that the set "GL2 ,6 (() is not empty.

1. We denote by"GL2 ,6 (()Q the set ofQ-isomorphism classes of abelian varieties overQ of dimension
6 that extend to an abelian scheme over ( and that are of product GL2-type. Base change from ( to Q
induces a canonical bijection

"GL2 ,6 (() � "GL2 ,6 (()Q.

To verify this statement we observe that "GL2 ,6 (() coincides with the set of (-scheme isomorphism
classes generated by abelian schemes over ( of relative dimension 6 that are of product GL2-type.
Further, it follows from (6.2) that the generic fibre �Q of any [�] ∈ "GL2 ,6 (() is of product GL2-type.
Thus, base change from ( to Q induces a map "GL2 ,6 (() → "GL2 ,6 (()Q, which is surjective by (6.2)
and [4, p. 180]. The abelian scheme � is the Néron model of �Q over ( and then the Néron mapping
property shows that "GL2 ,6 (() → "GL2 ,6 (()Q is injective. We conclude that "GL2 ,6 (() � "GL2 ,6 (()Q.

2. Next, we estimate the number of distinct Q-isogeny classes of abelian varieties over Q generated
by "GL2 ,6 (()Q. Let [�] ∈ "GL2 ,6 (()Q. Theorem 5.1∗ gives positive integers #8 and 48 , together with
Q-simple abelian varieties �8 over Q of dimension 68 and of conductor #�8 = #

68
8

, such that � is Q-
isogenous to

∏

�
48
8

and such that �8 is an abelian subvariety of �1 (#8). Here �1(#) denotes the usual
modular Jacobian of level # ∈ Z≥1 defined in Section 4. The abelian variety � extends to an abelian
scheme over (, because [�] ∈ "GL2 ,6 (()Q. Thus, each �8 extends to an abelian scheme over ( and then
the arguments of the proof of Lemma 6.8 together with 68 ≤ 6 lead to #�8 | a

68 for

a = #2
(

∏

?2? , 2? = 4 + 2⌊log(26)/log ?⌋ .

Here the product is taken over all rational primes ? ∉ ( with ? ≤ 26 + 1, and for any real number G we
recall that ⌊G⌋ denotes the largest integer at most G. We warn the reader that the displayed number a is
related to the number appearing in Lemma 6.8 (i), but these numbers are not necessarily the same. It
follows that #8 | a because #68

8
= #�8 , and this implies that �1 (#8) is a Q-quotient of �1(a). On using

that �8 is an abelian subvariety of �1 (#8), we then see that there exists a surjective morphism of abelian
varieties over Q

�1(a) → �8 .

Hence, Poincare’s reducibility theorem shows that each �8 isQ-isogenous to aQ-simple ‘factor’ of �1(a).
Furthermore, the dimension of �1 (a) coincides with the genus 6a of the modular curve -1 (a) = - (Γ1 (a))

defined in Section 4, and the abelian variety �1 (a) (respectively �) has at most 6a (respectively 6) Q-
simple factors up to Q-isogenies. Therefore, there exists a set of at most 6 · 66a distinct abelian varieties
over Q such that any [�] ∈ "GL2 ,6 (()Q is Q-isogenous to some abelian variety in this set. In other
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words, the abelian varieties in "GL2 ,6 (()Q generate at most 6 · 66a distinct Q-isogeny classes of abelian
varieties over Q.

As pointed out by the referee, one can remove here the factor 6 by using in addition the following
combinatorial counting result: For any given integers ;, <, 21, . . . , 2< in Z≥1 and = = ; + < − 1, there
exist at most

(=
;

)

≤ <; distinct 4 ∈ Z<
≥0 with

∑

4828 = ;. This is then applied with ; = 6, < the number
of Q-simple factors �8 of �1 (a) up to Q-isogenies and 28 = dim(�8). The combinatorial counting result
can be verified as follows. We denote by Σ the set of all 4 ∈ Z<

≥0 with
∑

4828 = ;. For any 4 ∈ Σ, we
define ](4) ∈ {0, 1}= as follows: The first 4121-entries of ](4) are 0 followed by an entry that is 1; then
the next 4222-entries are again 0 followed by an entry that is 1 and so on until all = entries of ](4) are
defined. Then 4 ↦→ ](4) defines an injective map from Σ into the set , of all F ∈ {0, 1}= such that F
has precisely ; distinct entries that are 0. Therefore, we conclude that |Σ | ≤ |, | =

(=
;

)

as desired.
3. To bound the size of each Q-isogeny class we take an arbitrary [�] ∈ "GL2 ,6 (()Q. We denote by

C the set of Q-isomorphism classes of abelian varieties over Q that are Q-isogenous to �. Let ^ be the
constant that appears in the proof of Corollary 6.5. If [�] ∈ C, then the proof of Corollary 6.5 provides
a Q-isogeny i : � → � of degree at most ^. Furthermore, the quotient of � by the kernel of i is an
abelian variety over Q that is Q-isomorphic to �. On combining the above observations, we see that |C|
is bounded from above by the number of subgroups of �C of order at most ^, where �C is the group of
geometric torsion points of �. It holds that �C � (Q/Z)26, and [46, Lemma 6.1] gives that (Q/Z)26 has
at most ^26 subgroups of order at most ^. This implies that |C| ≤ ^26.

4. The results obtained in 1–3 imply that |"GL2 ,6 (() | ≤ 6(6a^
2)6, and (4.1) together with [16, p. 107]

proves that 6a ≤ 1
24 a

2. Therefore, the definitions of ^ and a lead to an upper bound for |"GL2 ,6 (() | as
claimed in Theorem 6.6. �

The arguments used in the proof of Theorem 6.6 also give Corollary 6.7.

Proof of Corollary 6.7. We observe that part 3 of the proof of Theorem 6.6 implies (i), and we notice
that (ii) follows from part 2 of the proof of Theorem 6.6. �

It remains to prove Proposition 6.1. In the first part of the proof we show that Conjecture (�() implies
Conjecture (�()∗, and in the second part we use the effective version of the Kodaira construction due
to Rémond [55].

Proof of Proposition 6.1. We recall some notation. Let  be a number field of degree 3 = [ : Q],
with ring of integers O . We denote by � the absolute value of the discriminant of  over Q. Let
ℎ� be the stable Faltings height and let ) be a finite set of places of  . We write #) =

∏

#E with the
product taken over all finite places E ∈ ) . Let - be a smooth, projective and geometrically connected
curve over  of genus 6 ≥ 1.

1. To prove that Conjecture (�() implies (�()∗ we assume that Conjecture (�() holds. In addition,
we suppose that the Jacobian � = Pic0(-) of - has good reduction outside ) . The Weil restriction
�Q = Res /Q(� ) of � is an abelian variety over Q of dimension = = 36, which is geometrically
isomorphic to

∏

�f
 

. Here the product is taken over all embeddings f from  into an algebraic closure
of  , and �f

 
is the base change of � with respect to f. The Galois invariance ℎ� (� ) = ℎ� (�

f
 
)

implies that ℎ� (�Q) = 3ℎ� (� ). Let ( be the open subscheme of Spec(Z) formed by the generic point
together with the closed points where �Q has good reduction. The Néron model � of �Q over ( is
an abelian scheme. Therefore, an application of Conjecture (�() with �, ( and = gives an effective
constant 2, depending only on ( and =, such that

3ℎ� (� ) = ℎ� (�Q) ≤ 2. (6.8)

We write D = {� , 3, 6, #) } and we now construct an effective constant 2′, depending only on D,
such that 2 ≤ 2′. The finite places in ) form a closed subset of Spec(O ), whose complement (′

has the structure of an open subscheme of Spec(O ). The Néron model � of � over (′ is an abelian
scheme, because � has good reduction outside ) . We denote by #� and #� the conductors of � and
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�Q, respectively. A result of Milne [49, Proposition 1] gives that #� = #��
26
 

, and an application of

Lemma 6.8 (i) with the abelian scheme � over (′ of relative dimension 6 implies that #� ≤ Ω�
−26
 

for

Ω = (36)12623 (#) � )
26 . We deduce that #� ≤ Ω, and this leads to

#( ≤ Ω,

because #( divides #� by the construction of (. Here for any open subscheme * of Spec(Z) we write
#* =

∏

? with the product taken over all rational primes ? ∉ *. It follows that ( ∈ U for U the set
of open subschemes * of Spec(Z) with #* ≤ Ω. An application of Conjecture (�() with * ∈ U and
= gives an effective constant 2* ≥ 1, depending only on * and =. We define 2′ = max 2* with the
maximum taken over all * ∈ U. If D is given, then the set U can be determined effectively. Thus, we
see that 2′ is an effective constant, depending only on D. On using that ( ∈ U, we obtain that 2 ≤ 2′

and then (6.8) gives

ℎ� (� ) ≤ 2
′.

In other words, we proved that Conjecture (�() would give an effective constant 2′, depending only on
D, with the following property: If � has good reduction outside ) , then ℎ� (� ) ≤ 2′. Further, if -
has good reduction at a finite place E of  , then � has good reduction at E. Therefore, we conclude
that Conjecture (�() implies (�()∗.

2. It follows from part 1 that Conjecture (�() implies (�()∗. Furthermore, [55] gives that Conjecture
(�()∗ implies that the set of rational points of - can be determined effectively if 6 ≥ 2. This completes
the proof of Proposition 6.1. �

We remark that the above proof of Proposition 6.1 assumes the validity of Conjecture (�() in quite
general situations. In particular, it is a priori not possible to use the above arguments in order to deduce
special cases of the effective Mordell conjecture from special cases of Conjecture (�() such as, for
example, Theorem 6.2. To ‘transfer’ special cases between these conjectures, an effective version of
Paršin’s construction [51] would be more useful than Kodaira’s construction, which is used in the proof
of Proposition 6.1.

We mention that the implication (�()∗ ⇒ (�() remains an interesting open problem, which is
nontrivial because (�() is a priori considerably stronger than (�()∗. To discuss parts of the additional
information contained in Conjecture (�(), we consider an arbitrary hyperelliptic curve - of genus
6 ≥ 2 over a number field  . Let ) be the set of finite places of  where Pic0 (-) has bad reduction.
Suppose that E is a finite place of  where - has bad reduction but Pic0(-) has good reduction; the
minimal regular model of - over Spec(OE ) is then automatically semistable for OE the local ring at E.
Then on combining the arguments of [39, Proposition 5.1 (i)] with part 1 of the proof of Proposition
6.1, we see that already very special cases of Conjecture (�() would give an effective estimate for #E in
terms of  , 6 and ) . We note that Levin [44] proved that such an effective estimate for #E would solve
the following classical problem: Give an effective version of Siegel’s theorem for arbitrary hyperelliptic
curves of genus 6 ≥ 2 defined over a number field  . In fact, the latter problem is already open for
6 = 2 and  = Q.

Appendix A: A height-conductor inequality for semistable abelian varieties over Q with real

multiplications

This appendix generalises the asymptotic bound [36, Prop 8.2] for semistable elliptic curves to semistable
abelian varieties with real multiplications. In particular, for such abelian varieties we show that one can
refine the proof of Theorem 5.1 (i) or (ii) in order to asymptotically improve the bound in Theorem 5.1 (ii).

Continue the notation of Sections 4 and 5. Let � be an abelian variety over Q of dimension 6 ≥ 1.
We say that � is with real multiplications if End(�) ⊗Z Q has a Q-subalgebra of dimension 6 that is the
product of totally real number fields. This generalises the definition of Ribet [57] and Serre [62], who
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studied the case when � isQ-simple. If � is with real multiplications, then (5.1) gives that � is of product
GL2-type. Write rad(<) for the radical of < ∈ Z≥1 and define 5 (G) = G log(G) log log G for G ∈ R>1.

Proposition 6.9. Suppose that � is of product GL2-type. Assume, moreover, that � is with real multi-
plications and that � is semistable. Then the following statements hold:

(i) Let W = 0.5772 . . . be Euler’s constant and put = = rad(#�). If =→ ∞, then

ℎ� (�) ≤
4W

Dc2
6 5 (=) + >6 ( 5 (=)). (6.9)

Here D = 6 if gcd(=, 6) = 1 and D = 4 otherwise. Further, >6 ( 5 (=)) = 2(6)>( 5 (=)) where 2(6) is
a constant depending only 6.

(ii) It holds that ℎ� (�) ≪n #
1+n
�

.

The bound in (ii) and the estimate (6.9), which we obtained in a more precise form in (6.10), both
asymptotically improve the bound in Theorem 5.1 (ii). On the other hand, Theorem 5.1 (ii) makes
no additional semistable or real multiplication assumptions, and this is crucial for many Diophantine
applications (e.g., [40]). In view of this, it would be interesting to remove in Proposition 6.9 the
semistable and real multiplication assumptions. Unfortunately, in the proof we use both assumptions in
order to work with -0 (#) = - (Γ0 (#)) with # square-free: This allows us to apply results of Ullmo [67]
and Jorgenson-Kramer [33], whose proofs crucially exploit that the modular curve is -0 (#) with #
square-free. To remove any of these two assumptions, one has to overcome various technical (and also
conceptual) difficulties; see, for example, the discussions in Coleman-Edixhoven [12, Sect 5], the proof
of Edixhoven-de Jong [17] dealing with the case � = �1 (?@) for ?, @ distinct rational primes or Mayer’s
result [48] on ℎ� (�1 (#)) for some square-free # .

To prove Proposition 6.9 (i), we refine the proof of Theorem 5.1 (i) for semistable abelian varieties
with real multiplications by applying Lemma 3.1 (ii) and the bounds for ℎ� (�0 (#)) in (4.3) and (4.4)
obtained by Ullmo [67] and Jorgenson-Kramer [33], respectively. Here one can replace Lemma 3.1 (i)
by (3.3). This has the advantage that one obtains a constant 2(6) in >6 ( 5 (=)) that is polynomial in terms
of 6 and thus allows deducing Proposition 6.9 (ii). We shall see below that Lemma 3.1 (ii) based on
‘essentially algegraic’ methods is crucial for obtaining the bounds in Proposition 6.9 (i) and (ii), and
in view of (6.11) the result (3.3) based on the theory of logarithmic forms is crucial for obtaining the
bound in Proposition 6.9 (ii).

Proof of Proposition 6.9. As in the statement of the proposition, we assume that � is with real multipli-
cations and that � is semistable. In [36, Prop 8.2] we proved Proposition 6.9 in the case 6 = 1. However,
we now show that the proof works for any 6 ≥ 2 when combined with our arguments of Theorem 5.1.
The details are as follows.

We first prove (i). Our assumption that � is with real multiplications assures that End(�) ⊗Z Q
contains a Q-subalgebra � =

∏

�8 with [� : Q] = 6, where each �8 is a totally real number field.
On using the idempotents of � , we obtain abelian varieties �8 over Q such that �8 is contained in
End(�8) ⊗ZQ and such that � isQ-isogenous to the product

∏

�8 . Then, as in the proof of (5.1), we see
that a Lie algebra argument together with [� : Q] = 6 implies that [�8 : Q] = dim(�8) and hence each
�8 is of GL2-type. Then (5.3) gives an integer 48 together with a Q-simple abelian variety �8 over Q of
GL2-type such that �8 isQ-isogenous to �48

8
. Moreover, Ribet’s arguments in the proof of [59, Thm 2.1]

show that End(�8) ⊗Z Q is a number field of degree dim(�8) that is a subfield of �8 and hence is totally
real. We conclude that each abelian variety �8 is with real multiplications in the sense of Serre [62,
Subsect 4.7]. Hence, Serre’s modularity conjecture [43] combined with [62, Thm 5] provides a positive
integer #8 with #68

8
= #�8 together with a surjective morphism �0 (#8) → �8 of abelian varieties over

Q, where 68 = dim(�8). On repeating word by word the (general) arguments given below (5.5), we
deduce the following: After possibly replacing �8 by a Q-isogenous abelian variety over Q, we may and
do assume that �8 is an abelian subvariety of �8 = �0 (#8). To estimate the heights, we recall that E�′
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denotes the maximal variation of the stable Faltings height ℎ� in the isogeny class of the abelian variety
�′ =

∏

�
48
8

over Q. It holds that

ℎ� (�
′) =

∑

48ℎ� (�8) and ℎ� (�) ≤ E�′ + ℎ� (�
′)

because � is an abelian variety overQ that isQ-isogenous to �′. Our assumption that � is semistable im-
plies that theQ-isogenous �′ is semistable as well. In particular, the factors �8 of �′ are all semistable and
thus the level #8 is square-free. Indeed, the square-free claim follows, for example, from Lemma 6.8 (ii),
which gives that the conductor #�8 = #

68
8

of the semistable abelian variety �8 divides (
∏

?)68 with the
product taken over all bad reduction primes of �8 . Now, because #8 is square-free, we obtain that �8 is
semistable and then an application of Lemma 3.1 (ii) with the abelian subvariety �8 of �8 gives

ℎ� (�8) ≤ ℎ� (�8) +
=8
2 log(8c2),

where =8 = dim(�8). To control the variation E�′ , we use again our assumption that � is semistable and
we exploit that the Q-isogenous �′ has good reduction outside the set ) of rational primes dividing
#� = #�′ . Then, on applying the explicit bound (3.2) for |ℎ� (�) − ℎ� (�′) | of Raynaud [54, Thm 4.4.9]
with �′, ) and on using the prime number theorem, we deduce that

E�′ ≤ ^=,

where ^ is a constant depending only on 6. The genus of the modular curve -0 (#8) coincides with the
dimension =8 of its Jacobian �8 = �0(#8). Therefore, we obtain that =8 ≤

4W

2c2 #8 log log(#8) + >(#8);
see, for example, the proof of [36, Prop 8.2]. Then, on applying Ullmo’s asymptotic bound (4.3) or the
asymptotic formula (4.4) of Jorgenson-Kramer when 6 is coprime to =, we see that the above displayed
results lead to

ℎ� (�) ≤ ^= + 4W

Dc2

∑

48 5 (#8) + >( 5 (#8)) ≤
4W

Dc2

∑

48 5 (#
1/68
�8

) + >6 ( 5 (=)). (6.10)

Here we used that #� = #�′ =
∏

#
48
�8

and #�8 = #
68
8

, which imply #� =
∏

#
4868
8

and the square-free
number #8 divides = = rad(#�). Then (6.10) proves (i).

We now show (ii). At the end of the proof of Theorem 5.1 (ii), we obtained in particular that
6 ≤ log #�. Thus, the bound (ii) follows by replacing in the proof of (i) the estimate E�′ ≤ ^= by
the estimate E�′ ≤ (86)6 log #�, which is a consequence of d) obtained in course of the proof of
Theorem 5.1 (ii). This completes the proof of Proposition 6.9. �

Let � be as in Proposition 6.9. Depending on the decomposition (in the Q-isogeny category) of �
into Q-simple abelian varieties � ∼

∏

�
48
8

, one can remove the factor 6 in the main term of (6.9). For
example, if all 48 = 1 and if the Q-simple factors �8 of � have pairwise coprime conductor, then (6.10)
implies that (6.9) holds with 6 5 (=) replaced by 5 (=). In general, one can always replace in (6.9) the
quantity 6 5 (=) by = log(#�) log log =. Indeed, this follows directly from (6.10), because

∏

#
48
8

divides
#� =

∏

#
4868
8

.

Appendix B: A simplified version of Raynaud’s bound for the variation of the Faltings height

under isogenies

In this appendix we simplify the shape of Raynaud’s bound [54, Thm 4.4.9], which is based on Faltings’
method [21] and refinements of Paršin and Zarhin.

We continue the notation of Section 3 and we denote by ℎ� the stable Faltings height. Let  be a
number field of degree 3 and discriminant � . Further, let � be an abelian variety defined over  of
dimension 6 ≥ 1, and let ℓ, ℓ′ be two distinct rational primes that both do not divide the conductor #�.
Now, we can state the following.
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Proposition 6.10 ([54]). Suppose that � is semistable. Then any abelian variety �′ defined over  ,
which is  -isogenous to �, satisfies

|ℎ� (�) − ℎ� (�
′) | ≤ 863C (ℓ2< + < log ℓ′ + 4632 log� ), < = 36

(26
6

)3
. (6.11)

Here C = max(1, |) |) for ) the set of finite places of  where � has bad reduction.

We point out that one cannot replace C by |) | in (6.11), because |ℎ� (�) − ℎ� (�
′) | = 0 is wrong

for certain �/ with |) | = 0 as explained in (6.12). In particular, this shows that there is a minor
inaccuracy in the explicit shape of Raynaud’s original bound in [54, Thm 4.4.9], which we shall correct
in Lemma 6.12.

B.1 Proof of Proposition 6.10

We continue our notation and we take �, �′ as in Proposition 6.10. To prove the bound (6.11), we go
into Raynaud’s work [54] using his terminology. In particular, in what follows the numbering G.H.I
refers to G.H.I in [54], isogeny means  -isogeny, O denotes the ring of integers of  and �̄ denotes an
algebraic closure of a field �. Further, ) denotes the set of finite places of  where � has bad reduction
and 6 = dim(�).

Let ? be a rational prime. We recall that the notion of a belle ?-isogeny was introduced in Définition
4.1.1 and that the nonnegative rational integers Δ ? are defined in 4.4.7. The following more precise
version of Corollaire 4.4.8 will be used below.

Lemma 6.11 ([54]). Any ?-isogeny �→ �′ factors into a product

i1 · · · i: , : ≤

{

26 if |) | = 0,

462 |) | if |) | ≥ 1

of isogenies i8 such that deg(i8) ≤ ?46Δ ? or such that i8 factors into the product of a belle ?-isogeny
and two isogenies that both have degree at most ?26Δ ? .

Proof. Lemme 4.4.3 factors any ?-isogeny into a product i1 · · · iA of isogenies i8 whose extensions
i0
8

satisfy condition 1) "8 ( ̄) � (Z/?=8Z)ℎ8 of 4.4.7, where A ≤ 26 and "8 is the kernel of the
extension i0

8
of i8 to the open subschemes of the Néron models with connected fibres. In the case

|) | ≥ 1, Lemme 4.4.4 shows that after possibly further factoring each i8 into a product of at most
2ℎ8 |) | ≤ 26 |) | isogenies, we may and do assume that each i0

8
satisfies not only condition 1) but also

condition 2) of 4.4.7: If E ∈ ) , then ("̂8)E ( ̄E ) is a direct factor of "8 ( ̄E ) where  E is the completion
of  at E with ring of integers OE and ("̂8)E is the finite part [54, (1.2)] of "8 ⊗O OE . In the case
|) | = 0, condition 2) of 4.4.7 is automatically satisfied because ) is empty.

We now show that each isogeny i8 has the desired properties. In the case when =8 < 2Δ ? , we obtain
that deg(i8) < ?46Δ ? because ℎ8 ≤ 26. Suppose now that =8 ≥ 2Δ ? . Then we may apply the arguments
of 4.4.7 because i0

8
satisfies conditions 1) and 2). These arguments factor i8 into three isogenies: The

middle isogeny is a belle ?-isogeny and the extensions of the other two isogenies both satisfy condition 1)
" ( ̄) � (Z/?=Z)ℎ8 of 4.4.7 with = = Δ ? = =8 − (=8 −Δ ?). Therefore, each of these other two isogenies
has degree at most ?26Δ ? and then we conclude Lemma 6.11. �

We take two distinct rational primes ℓ and ℓ′ that both do not divide the conductor #�. Then � has
good reduction at each finite place of  dividing ℓ or ℓ′. Recall that for each rational prime ? ≠ ℓ the
nonnegative integer =? = =? (ℓ) is defined in [54, p. 227] with respect to ℓ and put =ℓ,ℓ′ = =ℓ (ℓ′). Now,
we define

0 =
∑

2Δ ? log ?, 1 =
∑

=? log ?, 2 = (2Δℓ + =ℓ,ℓ′) log ℓ

with both sums taken over all ? ≠ ℓ in (∪'∪{2}, where ( is the set of rational primes ? ≠ ℓwith =? ≥ 1
and ' is the set of rational primes that ramify in  . The following result, involving C = max(1, |) |),
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gives a more precise version (and corrects minor inaccuracies in the explicit shape) of the bound for the
variation in Théorème 4.4.9.

Lemma 6.12 ([54]). Define U = 463C (0 + 1 + 2). Then it holds that

|ℎ� (�) − ℎ� (�
′) | ≤

{

U/26 if |) | = 0,

U if |) | ≥ 1.

Proof. We begin by noting that Raynaud works in [54] with a different normalisation of the metric
involved in the definition of the stable Faltings height ℎ� . However, the logarithm of the normalisation
factor cancels out in the difference ℎ� (�) − ℎ� (�′).

In the case |) | = 0, the explicit shape of the bound in Théorème 4.4.9 is not correct; the mistake is
not serious and lies in the application of Corollaire 4.4.8, which is done in the paragraph of the proof
of Théorème 4.4.9 starting with ‘D’après 4.4.7’. However, on replacing this paragraph by the version of
Corollaire 4.4.8 given in Lemma 6.11, Raynaud’s arguments give the bound U/26 for |) | = 0 as claimed
in Lemma 6.12.

In the case |) | ≥ 1, the arguments of Théorème 4.4.9 give the bound U with the following two
caveats. Firstly, as far as we can see, a factor 2 was forgotten in the last step of the proof where one
puts everything together; this factor 2 is now taken into account in our U. Secondly, we were not able to
verify the proof of Corollaire 4.4.8 nor how 4.4.7 is applied in the proof of Théorème 4.4.9; the problem
is that the arguments in 4.4.7 can only be applied to ?-isogenies whose extensions (to the connected
Néron models) satisfy conditions 1) and 2) such that the integer = in 1) is at least 2Δ ? . However, on
using instead the version of Corollaire 4.4.8 given in Lemma 6.11, the arguments of Théorème 4.4.9 go
through and give the bound U for |) | ≥ 1 as claimed in Lemma 6.12. �

We are now ready to prove the simplified bound in Proposition 6.10.

Proof of Proposition 6.10. Lemma 6.12 gives that |ℎ� (�) − ℎ� (�′) | ≤ 463C (0 + 1 + 2) and we now
explicitly estimate from above the three quantities 0, 1 and 2.

We first bound 0. Let ? be a rational prime and let E be a finite place of with residue characteristic ?.
We denote by 4E the ramification index of E. It holds that E(=) = 4Eord? (=) for each = ∈ Z and
the different ideal DO/Z satisfies E(DO/Z) < 4E + E(4E ) by Dedekind’s different theorem [3, B.2.11].
Therefore, the number XE appearing in the definition ofΔ ? in 4.4.7 is bounded by XE ≤ 1

?−1+1+ord? (4E ),
and hence we obtain that XE ≤ 1 + 4E ≤ 23 because ord? (4E ) ≤ 4E − 1 and 4E ≤ 3 where 3 = [ : Q].
This leads to

Δ ? ≤

{

4632 if ? ∈ ' ∪ {2},

0 otherwise.

Then, on using that the set ' is the set of rational prime divisors of the discriminant � of  by
Dedekind’s discriminant theorem [3, B.2.12], we obtain

0 + 2Δℓ log ℓ =
∑

?∈'∪{2}

2Δ ? log ? ≤ 8632 log� + 1
2ℓ

2<, < = 36
(26
6

)3
.

Here we used that 8632 log 2 ≤ 1
2ℓ

2<, which follows from 16632 = 2A ≤ ℓA ≤ ℓ2<, where A =

4 + log(632)/log 2 is bounded by A ≤ 263 (26)3 ≤ 2<.
Next, we bound 1 and 2 − 2Δℓ log ℓ. We take again a rational prime ?. An application of Corollaire

4.3.5 with =? for ? ∈ ( and =ℓ,ℓ′ = =ℓ (ℓ′) shows for ? ≠ ℓ that

=? log ? ≤

{

2< log ℓ if ? ∈ (,

0 otherwise,
and 2 − 2Δℓ log ℓ = =ℓ,ℓ′ log ℓ ≤ 2< log ℓ′.
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Here </63 =
(26
6

)3
≥

(26
6

)=
for = = max(#, # ′) with # and # ′ the number of finite places of  of

residue characteristic ℓ and ℓ′, respectively, and =? = 0 for ? ∉ ( ∪ {ℓ} because ( is by definition the
set of all primes ? ≠ ℓ with =? ≥ 1. Now, we deduce

1 =
∑

?∈(

=? log ? ≤ |( |2< log ℓ ≤ 3
2ℓ

2<

because |( | ≤ 3
2ℓ

2</(2< log ℓ). This bound for |( | can be obtained as follows: Corollaire 4.3.5 gives
that any ? ∈ ( satisfies ? ≤ ?=? ≤ ℓ2< because =? ≥ 1 for ? ∈ (, and therefore |( | is bounded by the
number c(G) of rational primes at most G = ℓ2< that satisfies c(G) ≤ 3

2G/log G by the explicit prime
number theorem in [60, Cor 1].

Finally, on combining the above displayed bounds, we deduce that 0 + 1 + 2 is at most 2ℓ2< +

2< log ℓ′ + 8632 log� and this implies Proposition 6.10. �

B.2 Comments about |ℎ� (�) − ℎ� (�
′) | = 0

We continue our notation and we take �, �′ as in Proposition 6.10. There are results in [54, §4.3]
proving |ℎ� (�) − ℎ� (�

′) | = 0 if � and �′ satisfy certain (strong) extra assumptions. However,
|ℎ� (�) − ℎ� (�

′) | = 0 is wrong for certain �/ with |) | = 0. To give an example, let � be an elliptic
curve over a number field : such that End(� :̄ ) = Z and such that � has everywhere good reduction. In
particular, � is semistable. Then for each rational prime ?, an application of Ullmo-Szpiro [65, Thm
1.1. (3)] with � and = = ?2 gives

ℎ� (�
′) − ℎ� (�) = log ?(1 − 1

?
) +$ (1)

where � ′ = �: (%)/� for � the group (viewed as a constant group scheme over : (%)) generated by a
point % ∈ � ( :̄) of order ?2 and where $ (1) only depends on �/: . Thus, after choosing the rational
prime ? large enough, we obtain

|ℎ� (�) − ℎ� (�
′) | > 0 (6.12)

for � = �: (%) , �′ = � ′ and  = : (%), because the stable Faltings height ℎ� is invariant under any
finite field extension. Notice that the abelian variety �′ is  -isogenous to � and it holds that |) | = 0
because � = �: (%) has everywhere good reduction.
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