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SUMMARY

Chamber sampling is a common method for measuring nitrous oxide (N2O) emissions from agricultural soils.
However, for grazed pastures, the patchy nature of urine deposition results in very high levels of spatial variability
in N2O emissions. In the present study, the behaviour of the sample mean was examined by simulating a large
number (9999) of random N2O chamber samples under different assumptions regarding the underlying N2O dis-
tribution. Using sample sizes of up to 100 chambers, the Central Limit Theorem did not apply. The distribution of
the sample mean was always right-skewed with a standard deviation varying between 12·5 and 135% of the true
mean. However, the arithmetic mean was an unbiased estimator and the mean of the sample mean distribution
was close to the true mean of the simulated N2O distribution. The properties of the sample mean distribution
(variance, skewness) were affected significantly by the assumed distribution of the emission factor, but not by dis-
tribution of the urine patch concentration. The geometric mean was also investigated as a potential alternative
estimator. However, although its distribution had lower variance, it was also biased. Two methods for bias cor-
recting the mean were investigated. These methods reduced the bias, but at the cost of increasing the variance.
Neither of the bias-corrected estimators were consistently better than the arithmetic mean in terms of skewness
and variance. To improve the estimation of N2O emissions from a grazed pasture using chambers, techniques
need to be developed to identify urine patch and non-urine patch areas before sampling.

INTRODUCTION

In New Zealand, nitrous oxide (N2O) emissions from
agricultural soils account for 13·6% of anthropogenic
greenhouse gas emissions on a CO2-equivalent basis
(Ministry for the Environment 2014). Of these,
56·3% are direct emissions from grazing animals’
excreta, 18·4% direct emissions from other sources
of nitrogen (N) to soil (e.g. fertilizer, animal waste
and crop residues) and 25·4% from indirect emissions.
The present study focuses on direct emissions from
urine patches, as the emissions from dung are com-
paratively small (van der Weerden et al. 2011).
Nitrous oxide emissions have a high degree of spatial

and temporal variability due to the complexity of the
various interacting processes and variability of the

driving factors (Mosier et al. 1996). A number of differ-
ent factors, such as topography and soil properties,
have been linked to spatial variability of N2O emissions
(Parkin 1987; Pennock et al. 1992; Velthof et al. 1996,
2000; Ball et al. 1997; Grant & Pattey 2003; Yanai et al.
2003; Turner et al. 2008). In grazed pasture systems
there is additional spatial variability due to the highly
non-uniform nature of urine deposits (i.e. small areas
of high N-concentration) (Bolan et al. 2004). Previous
studies have looked at the distribution of urine
patches both experimentally (Moir et al. 2011) and the-
oretically (Pleasants et al. 2007); however, these studies
did not investigate N2O emissions. Giltrap et al. (2014)
investigated the spatial variability of N2O emissions
within a field and found differences in the emission re-
sponse to applied urine at different locations.

Closed chambers are a relatively inexpensive
method for measuring N2O emissions. In this method
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a number of chambers are inserted into the soil. The
tops are then sealed to form closed chambers and the
air within the headspaces sampled at regular intervals.
The N2O flux is calculated from the change in N2O
concentration over time. Sealing and sampling of the
chambers can be automated or performed manually.
Manual chambers in particular are relatively cheap to
deploy, although the labour requirements increase as
more chambers are used. International researchers
have published guidelines on the use of chambers for
N2O measurements (de Klein & Harvey 2012). These
guidelines do not specify a minimum number of cham-
bers, but do state that chambers should cover the
largest total area practicable while providing informa-
tion at the smallest scale required.

Integrative, micrometeorological methods are an al-
ternative to chamber measurements. These methods
measure emissions over a wider spatial scale and are
therefore less affected by spatial variability; however,
there can be limitations due to weather conditions
and topography. Also atmospheric N2O concentra-
tions tend to be quite low, and may be close to the de-
tection limit of many sensors.

Nitrous oxide emissions are frequently expressed in
terms of an emission factor (EF). That is, the amount of
N lost as N2O (in excess of any background emission
rate) as a fraction of the amount of N input. However,
EF values vary with soil properties, weather conditions
and other factors. Almost 90% of the uncertainty in
New Zealand’s inventory value for N2O emissions
from agricultural soil in 2002 (the relative error of
the 95% confidence interval is –42% to +74%) was
attributed to uncertainty in the value of EF (Ministry
for the Environment 2014).

Studies for determining EF for animal urine in New
Zealand used closed chambers to which known
amounts of urine-N were applied (de Klein et al.
2003). This eliminated the variability due to uneven
urine deposition, although there was still high variabil-
ity in N2O emissions due to variability in soil properties
(CV ranged from 22 to 55% for different sites).
However, these types of experiments may not be com-
pletely representative of what occurs during an actual
grazing event (e.g. effects such as compaction caused
by animal treading and differences in urine concentra-
tion between animals are neglected). Some studies
have been conducted to measure N2O emissions
from actual grazed pastures (Saggar et al. 2004, 2007;
Hoeft et al. 2012; Luo et al. 2013). These studies gener-
ally (although not always) used a larger number of
chambers than the applied urine studies to account

for the additional spatial variability of urine patch distri-
bution. The question is how well can such a sample es-
timate the mean emissions from a field?

Many common statistical techniques assume that the
data come from a normal distribution. This is clearly not
the case for sampling a grazed pasture as there is both
the probability of any given chamber landing on a urine
patch combined with the variability of emissions from a
urine patch. Neither is there an obvious transformation
to normalize the data. However, according to the
Central Limit Theorem (CLT), the arithmetic mean of
a number (n) of independent random variables, each
with a finite mean (μ) and variance (σ2), will be approxi-
mately normally distributed with mean = μ and vari-
ance = σ2/n as n→∞ (Bain & Engelhardt 1992).

In the case of N2O emissions from grazed pastures,
the distribution is highly skewed and it cannot be
taken for granted that the CLT can be applied for prac-
tical sample sizes. To estimate the probability density
function of the sampling distribution, computer simu-
lations were used to generate a large number of
samples from the underlying N2O emission distribu-
tion using a number of different sample sizes and
assumptions about the properties of the underlying
distribution. As the number of samples taken was
large, the distribution of these samples should
closely approximate the probability density function
of the sampling distribution, and this distribution
shall be referred to as the empirical sampling distribu-
tion (ESD). The properties of the ESDs were then
examined to observe how they changed with different
sample sizes and with changes to the underlying emis-
sion distribution. The arithmetic mean of each sample
was initially used as the estimator of the mean of the
underlying N2O emissions; some alternative estima-
tors were then examined for comparison.

While the current research has been framed in terms
of N2O measurements, the results may also be applic-
able to other situations where point measurements are
made on a grazed field and the results are likely to be
influenced by the presence or absence of a urine patch
(e.g. nitrate leaching).

MATERIALS AND METHODS

Nitrous oxide emission model

For the simulations it was assumed that a number of
chambers, n, were used to estimate the N2O emissions
from a field following a grazing event. Each chamber
had a probability, p, of landing on a urine patch,
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where p represents the proportion of the field covered
by urine patches. This assumed that the total area of
chambers was sufficiently small that p could be
considered the same for all chambers. The possibility
of overlapping urine patches or chambers having
only part of their area on a urine patch was not
considered.
As the present study was concerned with spatial

rather than temporal variation, it was assumed that
each chamber measured the total N2O emitted over
time accurately and that the duration of the measure-
ment campaign was long enough to capture all the
additional N2O emissions due to the grazing event.
The following equations describe the N2O emis-

sions measured in a single chamber:

N2O-N¼B,

if the chamber was not on a urine patch
ð1Þ

N2O-N¼BþEF×U,

if the chamber was on a urine patch
ð2Þ

where N2O–N is the total N emitted as N2O (kg N/ha),
B is the background N2O emissions over the measure-
ment period (kg N/ha), EF is the emission factor (which
is specific to a given location and time period, in kg/
kg) and U is the N concentration of the urine patch
(kg N/ha).
This formulation assumed that EF and U were inde-

pendent. Some studies have suggested that EF may in-
crease with increasing N concentration (Kim et al.
2013); however, de Klein et al. (2014) suggested that
this dependency only occurs at low values, while
Kelliher et al. (2014) found no dependency.

Simulations

Empirical sample distributions were generated by
simulating 9999 random samples in R (R Foundation
for Statistical Computing, http://www.r-project.org/)
and were generated for different sample sizes, urine
coverages and assumptions about the distribution of
U and EF. Table 1 shows the parameters investigated

and the range of values considered. The maximum
value of n considered was 100 chambers, which is
higher than generally used in practice but still poten-
tially feasible. Increasing the maximum number of
chambers will eventually result in the sample mean
distribution approaching a normal distribution (by
the CLT). However, in this case it would no longer
be necessary to use the methods described in the
present study.

The background emissions (B) were considered to
have a constant value of 1 kg N/ha. While there is
likely to be some variability in background emissions,
this was not considered likely to be a major contribu-
tor to overall spatial variability.

Different underlying distributions were investigated
for the urine concentration and EF. For urine, only the
constant and normal distributions were considered,
whereas for the EF, gradient and log-normal distribu-
tions were also examined.

In all cases the distributions were parameterized to
have the same expected value (0·01 for EF and 1000
kg N/ha for urine concentration). The expected value
of 0·01 for EF corresponds to the New Zealand specif-
ic value used in the national inventory for calculating
N2O emissions from urine applied to soil (Ministry for
the Environment 2014). However, measured EF values
have a high degree of variability with a positive skew
(de Klein et al. 2003). Therefore, for the normal distri-
bution a standard deviation of 0·005 was selected to
give the largest variability possible while keeping the
EF positive within two standard deviations of the
mean.

Few studies have measured the N loading in urine
patches in terms of g N/ha (Selbie et al. 2015).
Haynes & Williams (1993) give a range of 8–15 g/l
for urine N concentration, with urination volumes in
the range 1·6–2·2 l and patch size 0·16–0·49 m2 for
dairy cattle. The expected value of 1000 kg N/ha for
urine patch N concentration in the present study is
consistent with this and is a value often used in artifi-
cial urine patch experiments (e.g. Luo et al. 2008). The
distributions considered are described briefly below:

Table 1. Parameters varied to investigate the effect on the sample mean distribution

Parameter Values

Chambers per sample (n) 4, 8, 16, 20, 100
Proportion of field covered in urine patches (p) 0·025, 0·05, 0·10, 0·15
Distribution of urine concentration (UDIST) Constant, normal
Distribution of EF (EFDIST) Constant, normal, gradient, log-normal
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Constant distribution (Const) – assumes there is no
variability in the underlying quantity. While this
is unrealistic, it may be a reasonable approxima-
tion when the variability of the quantity is negli-
gible compared with other sources of variability.
For the urine concentration the constant value
was 1000 kg N/ha, while for EF the constant
value was 0·01.

Normal distribution (Norm) – commonly occurs in
nature and many standard statistical methods
assume a normal distribution. For the urine concen-
tration the normal distribution was assumed to have
mean = 1000 kg N/ha and standard deviation =
200 kg N/ha. For the EF distribution the mean was
0·01 and the standard deviation 0·005.

Gradient distribution (Grad) – this distribution simu-
lates the case where the variation in EF is due to cor-
relation with some property (e.g. soil moisture) that
varies linearly across the field. Sampling a random
location is therefore equivalent to drawing a
sample from a uniform distribution. In these simula-
tions, the minimum and maximum EF values were 0
and 0·02, respectively.

Log-normal distribution (LNorm) – the skew in the
chamber samples may not be due solely to the
patchy nature of the urine deposits, but may also
reflect a skewness in the EF distribution. Studies
looking at N2O emissions from known applications
of urine N often find positively skewed results, sug-
gesting this may be the case (e.g. van der Weerden
et al. 2011). Log-normal distributions frequently
occur when several factors act in a multiplicative
fashion. For example, N2O emission rates could
be affected by soil moisture, temperature and avail-
ability of substrates. The expected value of the log-
normal distribution is given by:

EðXÞ ¼ exp μþ σ2

2

� �
ð3Þ

where μ is the log-mean and σ is the log-standard
deviation. For the log-normal EF simulations the
log-mean was set to –5·105 and the log-standard
deviation to 1. There are an infinite number of com-
binations of μ and σ that could be selected that
satisfy E(X) = 0·01. The particular combination
selected here resulted in a 95% confidence interval
for EF of 0·00085–0·043. Note that due to rounding,
the expected value of this distribution was 0·017%
higher than the other distributions.

Properties of the empirical distribution

Nitrous oxide emissions from grazed pastures are highly
skewed and it cannot be taken for granted that the CLT
can be applied for practical sample sizes. Empirical
sample distributions were generated for a number of
estimators (arithmetic mean, geometric mean and two
methods of biased-corrected geometric mean of a
sample) using different sample sizes and assumptions
about the distributions of EF and U (e.g. constant,
normal, gradient and log-normal). The influence of
these changes on the properties of the sampling distri-
bution was then investigated. The properties of the
ESDs investigated were the mean, variance, relative
bias (rBias), probability that given a sample was an
underestimate of the true mean (pUnder) and skewness.

The true mean of the N2O emissions distribution is
the expected value given by:

EðN2OÞ ¼ EðBþ pEF ×UÞ ¼ Bþ pEðEFÞEðUÞ ð4Þ
assuming that the EF is independent of the urine con-
centration. All the distributions examined were para-
meterized, so that E(EF) = 0·01 and E(U) = 1000 kg N/
ha. Therefore, for an unbiased estimator the mean of
the ESD should = 1 + 10p.

When the CLT applies, the arithmetic mean of a
sample should have variance = σ2/n. However, even
when the CLT does not apply it is desirable for an es-
timator to have a low variance.

rBias was defined as:

rBias ¼ ðMeanðESDÞ � EðN2OÞÞ=EðN2OÞ ð5Þ
whereMean(ESD) is themean of the empirical sampling
distribution and E(N2O) = 1 + 10p as shown above.

The pUnder is the proportion of samples that under-
estimate the truemean. In an unbiased, symmetrical dis-
tribution this should be 0·50. A pUnder that is much
higher or lower than 0·50 indicates either asymmetry
(skew) and/or bias. Note that in the absence of any vari-
ability in the urine concentration or EF, pUnder could
be calculated using the binomial distribution.

Finally, skewness is defined as the third standar-
dized moment of a distribution. Skewness should be
0 for a symmetric distribution (such as the Normal),
positive or negative values indicate positive (right) or
negative (left) skew, respectively.

It should be noted that a skewed distribution is not
the same as a biased distribution. A biased distribution
is one in which the expected value (average over a
large number of samples) differs from the true mean.
However, a skewed distribution could still produce
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the correct average over a large number of samples,
even though there is a high probability of any individ-
ual sample being an under- (or over-) estimate.

Modelling the distribution properties

Having generated ESDs, the next step was to model
how the properties of the sample distributions varied
with sample size and with the properties of the under-
lying population distribution. The obvious explana-
tory variables were p and n, as well as the
distributions assumed for the urine patch concentra-
tion (Udist) factors and the emission factor (EFdist).
However, some non-linear terms also suggested them-
selves. The sampling distribution was related to the bi-
nomial distribution as the number of urine patches
sampled would follow a binomial distribution. The
variance of a binomial distribution is npq = np(1−
p) = np–np2. Therefore np and p2 were included.
When the CLT applies the variance of the sample
mean depends on 1/n, so 1/n was added to the list
of explanatory variables. The terms n2, 1/p, n/p and
p/n were also considered.
For each variable the interactions with EFdist, Udist,

and the EFdist : Udist interaction were considered.
Thus the full model was:

Property ∼ EFdist �Udist �ðnþ pþ npþ n2 þ p2

þ 1=nþ 1=pþ p=nþ n=pÞ ð6Þ
where ‘*’ indicates that both main and interaction
effects were considered.
The best model was initially selected using stepwise

selection (with the Akaike Information Criterion [AIC]
as the selection criterion), in both the forward and
backward directions. However, in many cases the
selected model still contained a large number of ex-
planatory variables. These models were replaced
with simplified models when it could be demonstrated
that explanatory variables could be dropped while
retaining satisfactory model performance (i.e. good
explanatory power, lack of structure and constant vari-
ance in the residuals).
A standard linear model was applied for all proper-

ties except pUnder, for which a binomial generalized
linear model was used.

Alternative estimators

Nitrous oxide emissions from grazed pastures are
highly skewed and therefore sample sizes will prob-
ably need to be large before the CLT can be applied.

However, it is sometimes possible to use data transfor-
mations to improve the normality of the data. In par-
ticular, log-transformations are commonly used to
reduce positive skew.

The geometric mean (g) is the mathematical equiva-
lent of back-transforming the mean of the log-trans-
formed data and is given by:

g ¼
Yn
i¼1

xi

 !1=n

¼ exp
Pn

i¼1 logðxiÞ
n

� �
ð7Þ

where xi is the ith observation and n is the number of
observations.

Therefore, g could potentially be used as an alterna-
tive estimator to the arithmetic mean (a). Unfortunate-
ly g is a biased estimator, that is, its expected value is
less than the true mean of the N2O distribution.

Assuming that the underlying N2O distribution was
actually log-normal, then from Eqn (3) a reasonable
correction factor might be exp(σ2/2). Therefore the
second alternative estimator investigated was:

gc1 ¼ g × expðs2=2Þ ð8Þ
where s2 is the sample variance.

Neyman & Scott (1960) gave bias-correction formu-
lae for a number of variable transformations.
However, for the log-transformation this requires
solving a Bessel function of an imaginary argument.
Given that the N2O distribution is not precisely log-
normal a slightly simpler formula was used to calcu-
late the correction factor: exp((1–1/n)s2/2). When the
Taylor expansion is applied to this correction factor
it only differs from that of Neyman & Scott (1960)
for the third and higher terms. However, it does
have the property that it approaches exp(s2/2) as
n→∞. Therefore the final estimator considered was:

gc2 ¼ g × exp 1� 1
n

� �
s2

2

� �
ð9Þ

All simulations and analyses were performed using the
R statistical software package version 3.0.2

RESULTS

Sample mean

Using the arithmetic mean (a) as the estimator for each
simulated N2O sample and then fitting the sample
mean (the mean of the 9999 randomly generated
samples) to the proportion of urine coverage gave
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the following relationship:

MeanðaÞ ¼ 1�01ð±0�001Þ þ 9�9ð±0�01Þp;
R2
adj ¼ 0�997 ð10Þ

where Mean(a) is the sample mean (using the arith-
metic mean as the estimator for each sample).

This agrees fairly well with the true mean as
expressed in Eqn (4), indicating that the arithmetic
mean is largely unbiased irrespective of the number
of chambers used or the underlying distributions of
the urine concentration or EF.

Figure 1 shows the modelled means (values cal-
culated from Eqn (10)) plotted against the observed
values (simulated sample means) as well as the resi-
duals plotted against fitted values, n and p. There
was an obvious decrease in the variability of the
residuals as n increased. It was also apparent that
the largest residuals correspond to the log-normal
EF distribution. However, the largest relative re-
sidual was still quite small at only 3% of the
fitted value.

Variance

Figure 2 shows a plot of Var(a) × n v. n. When the CLT
applies Var(a)→ σ2/n, in which case Var(a) × n should
be constant with respect to n. From Fig. 2(a) this
appears to be the case for all but the log-normal EF dis-
tribution. The log-normal EF distribution shows vari-
ability in Var(a) × n for different n (but not in any
easily to discernible pattern, Fig. 2(b)).

The variance could be quite well explained by a
model involving p/n, EFDIST and their interaction
(Eqn (11)).

VarðaÞ ∼ p=nþ EFDIST þ EFDIST : p=n;

R2
adj ¼ 0�9753 ð11Þ

According to Eqn (11) the variance depends on the
EF distribution and increases with p/n. The model is a
reasonable approximation for the constant, normal
and gradient EF distributions, but there are some
large residuals for the log-normal EF distribution
(Fig. 3). The variance was always highest for the log-
normal EF distribution. For low p/n values the con-
stant, normal, gradient EF distributions have similar
variances. As p/n increases the variances of the differ-
ent EF distributions diverge.

Equation (11) is useful for determining the level of
precision with which the mean can be determined.
For example, suppose P = 0·05, n = 20. The variance
of the sample mean would be 0·24 for a constant EF,
corresponding to a standard deviation of 0·49 kg N/
ha or 33% of the true mean. If the EF was normally dis-
tributed instead, then the standard deviation would be
38% of the true mean.

Relationship between mean and variance

The mean and variance appear to behave in a manner
consistent with the CLT (with the exception of the vari-
ance when using the log-normal EF distribution).
However, another requirement for a normal distribu-
tion is that the variance and mean should be inde-
pendent. This is also an important assumption of
linear regression.

From inspection of models (10) and (11) it can be
seen that both the mean and variance depend on p.
Therefore, it seems likely that the mean and variance
will be correlated. This is confirmed in Fig. 4.
However, the slope of the relationship between vari-
ance and mean decreases as n increases, and for n
= 100 the variance is almost constant with respect to
the mean.

The significance of the slopes of the relationships
between variance and mean were determined by
fitting a linear regression model of the variance of
the ESD. The predictors were the mean of the ESD, a
24-level factor (EF_n) with each level corresponding
to a combination of EF distribution and number of
chambers, and their interactions (Eqn (12)). The fol-
lowing relationship was fitted:

VarðaÞ ∼ EF nþ EF n : MeanðaÞ � 1 ð12Þ
With the exception of the levels corresponding to n =
100, all the coefficients for the EF_n interaction with
the ESD mean were significantly different from 0 (at
a 0·01 confidence level). None of the EF_n:Mean
interaction coefficients were significant for n = 100

Coefficients (±S.E.)

Intercept (2 ± 4·6) × 10−2

EFdist = Norm (1 ± 6·5) × 10−2

EFdist = Grad (6 ± 65·4) × 10−3

EFdist = LNorm (5 ± 6·5) × 10−2

p/n 90 ± 4 (P < 0·001)
p/n : EFdist = Norm 23 ± 5·6 (P < 0·001)
p/n : EFdist = Grad 33 ± 5·6 (P < 0·001)
p/n: EFdist = LNorm 169 ± 5·6 (P < 0·001)
Note ‘:’ indicates an interaction term
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(at a 0·1 confidence level). Therefore the variance of
the sample mean depends on the sample mean for
the chamber numbers used in practice. However, at

100 chambers the variance was independent of the
mean. This relationship held across all EF
distributions.

Fig. 1. Plots comparing values fitted using model (10) with the observed mean of the ESD for a (arithmetic mean of a sample):
(a) Fitted value v. observed mean, (b) residuals v. fitted values, (c) residuals v. number of chambers (n), (d) residuals v. urine
coverage (p).

Fig. 2. The variance of the ESD for a × n (arithmetic mean times the number of chambers) plotted against the number of
chambers (should be constant if CLT applies). (a) All EF distributions and (b) log-normal EF only.
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As a consequence of this dependence of the vari-
ance on the mean (for n < 100) ordinary linear regres-
sion methods (including ANOVA) should not be
performed on samples of this type. However, this
can be corrected using a weighted regression pro-
vided the relationship between the mean and the vari-
ance is known. If the variance can be written as:

VarðYiÞ ¼ σ2f ðμiÞ ð13Þ
then the weighted regression can be performed using
1/f(μi) as weights. There are several options for f(μi).
Using model (12) gives f(μi) = �x. This assumes the
same n and EF for all samples and will be slightly in-
accurate due to neglecting the constant term. If the
EF distribution is known, then the more precise form
of f(μi) = aþ b�x can be used. Alternatively, model
(11) gives f(μi) = p/n. The constant terms in model
(11) are not statistically significant, so can justifiably
be neglected. If the urine coverage can be assumed
to be constant, then it can be incorporated into σ2

leaving f(μi) = 1/n.

Relative bias

Earlier it was found that the mean of the ESDs were
very close to the theoretical population means (Eqn
(10)). Therefore bias should be small. Figure 5 shows
the bias (relative to the mean) plotted against p and n.

It is difficult to discern any patterns from these plots,
although the variability in the rBias reduces with in-
creasing n. However, the most extreme rBias values

are only –2% and +3%, both of which occur for log-
normal distributions.

Bias becomes important when it is high relative to the
variability. One measure of the relative importance of
the bias would be to take the ratio of the bias to the
standard deviation. This is equivalent to the ratio of
the rBias to the CV. Figure 6 shows that the magnitude
of the rBias is at most 2% of the CV. That is, the absolute
bias is at most 2% of the standard deviation of the
sample mean and therefore not a major concern.

Probability that a given sample was an underestimate
of the true mean (pUnder)

With the exception of some constant EF distribution
points, pUnder was > 0·5 (Fig. 7). Both pUnder and
the spread of pUnder decreased with increasing
number of chambers and urine coverage. Even with
100 chambers the probability of underestimating the
mean can be much larger than 0·5. Given that no evi-
dence of bias was found in the sample mean distribu-
tion, these high pUnder values indicate a right-skewed
distribution.

pUnder is a probability and therefore bounded by 0
and 1. Therefore a binomial generalized linear model
with a logit† link function (Eqn (14)) was used for
modelling:

logitðpUnderðaÞÞ ∼ 1=n± p=n

þ EFdistð83% Deviance explainedÞ ð14Þ

Model (14) produced a reasonable fit for all but the
constant EF distribution (Fig. 8). As an example, a
sample from a normal EF distribution with n = 20
and P = 0·05 would have log-odds of 0·42 of being
an underestimate. This corresponds to a pUnder of
60%, indicating a slight right-skew in the sample
mean distribution.

Fig. 3. Var(a) v. p/n. Straight lines indicate model (11)
estimates.

Coefficient (±S.E.)

Intercept −0·087 ± 0·0036 (P < 0·001)
1/n 9·49 ± 0·036 (P < 0·001)
p/n −57·5 ± 0·29 (P < 0·001)
EFdist = Norm 0·177 ± 0·0043 (P < 0·001)
EFdist = Grad 0·219 ± 0·0043 (P < 0·001)
EFdist = LNorm 0·519 ± 0·0044 (P < 0·001)

† Logit(p) = ln(p/(1− p)).
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Skewness

Skewness is the third standardized moment and relates
to the lack of symmetry in a distribution. Skewness

should be 0 for a symmetric distribution (such as the
normal). Figure 9 shows the observed skewness of
the sample mean distribution plotted as a function of

Fig. 4. Var(a) v. mean(a) for (a) constant, (b) normal, (c) gradient and (d) log-normal EF distributions.

Fig. 5. Relative bias v. (a) number of chambers and (b) urine coverage.
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number of chambers and urine coverage.
Unsurprisingly, skewness was largest for the right-
skewed log-normal EF distribution. Skewness
reduced with increasing number of chambers, but
remained positive over the range of conditions
tested. There did not seem to be an obvious pattern
to skewness with increasing urine coverage. Model
(15) below produced a reasonable fit to the data,
except for the log-normal EF distribution (Fig. 10.):

Skewness ðaÞ ∼ EFdist þ 1=nþ p=nþ EFdist
: 1=nþ EFdist : p=n;

R2
adj ¼ 0�8075

ð15Þ

In model (15) only the log-normal EF distribution
terms were significantly different from the constant
EF distribution. The variability of the residuals

increased with increasing skewness (Fig. 10.(b)). As
the highest skewness occurred in the log-normal EF
distribution, this distribution resulted in some large
residuals and indicated that a better model of skew-
ness may be required for log-normal EF distributions.

For the other EF distributions, model (15) indicates
that for low values of p there will always be positive
skewness regardless of the size of n. This threshold
for p ranges from 0·168 to 0·178 depending on the
EF distribution. This is higher than the maximum
urine coverage considered in the present study
(0·15), indicating that skewness cannot be eliminated
for the range of urine coverages likely to be found in
the field. Increasing p decreased skewness, but as n
increases the skewness approaches a non-zero value
(which depends on the EF distribution). By this model
it is not possible to eliminate the skewness by increas-
ing the sample size. While the CLT means the skew-
ness should approach 0 for sufficiently high n, this
must happen at n values well beyond those simulated
in the present study, for which model (15) is valid.

Model (15) can be applied to constant, normal or
uniform EF distributions, but is not recommended for
log-normal EF-distributions. It also requires knowl-
edge of the number of chambers and urine coverage.
For 20 chambers and P = 0·05, a 20% increase in p
resulted in a ∼4% reduction in skewness, while a
20% increase in n resulted in a 7–8% decrease in
skewness for the constant, normal and gradient EF
distributions.

ALTERNATIVE ESTIMATORS

Mean

Fitting a linear regression of the alternative estimators
on p gave the following relationships:

MeanðgÞ¼0�984ð±0�0051Þþ3�02ð±0�054Þp;
R2
adj¼0�94

ð16aÞ

Meanðgc1Þ¼0�94ð±0�031Þþ9�0ð±0�33Þp;
R2
adj¼0�80

ð16bÞ

Meanðgc2Þ¼0�95ð±0�016Þþ8�0ð±0�16Þp;
R2
adj¼0�92 ð16cÞ

The geometric mean seriously underestimates the
N2O emissions, with the coefficient of p being less

Fig. 6. Ratio of relative bias to CV plotted against CV.

Coefficients (±S.E.)

Intercept 0·5 ± 0·25 (P < 0·05)
1/n 12 ± 3·0 (P < 0·001)
p/n −76 ± 26·4 (P < 0·01)
EFdist = Norm 0·2 ± 0·36
EFdist = Grad 0·2 ± 0·36
EFdist = LNorm 2·1 ± 0·36 (P < 0·001)
1/n: EFdist = Norm 3 ± 4·2
1/n: EFdist = Grad 3 ± 4·2
1/n: EFdist =LNorm 36 ± 4·2 (P < 0·001)
p/n: EFdist = Norm −20 ± 37
p/n: EFdist = Grad −20 ± 37
p/n : EFdist = LNorm −190 ± 37 (P < 0·001)
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than one-third of what it should be. The first corrected
geometric mean gc1 gets much closer to the true mean,
but not quite as close as the arithmetic mean (Eqn
(10)). The second corrected mean (gc2) also performs
much better than the uncorrected g but still underesti-
mates by more than gc1.
For all estimators the variability increased as the

mean increased (Fig. 11.).

rBias

Figure 12 shows rBias plotted against n and p for each
of the three alternative estimators. The three estimators
generally had negative bias, although gc1 actually had
a strong positive bias for n = 4. The bias was strongest
in the uncorrected geometric mean. The rBias for gc2
was always more negative than gc1 but the difference

approached 0 as the number of chambers increased.
However, in terms of the magnitude of the bias, gc2
was actually less biased than gc1 for n = 4, but more
biased at higher n. rBias decreased slightly (became
more negative) then stabilized with increasing n for
all three estimators. g showed a strong negative trend
(i.e. became more biased) with increasing p, whereas
the two bias-corrected geometric means had increas-
ing variability in rBias as urine coverage increased.
The range of rBias was from –13 to –46% for g, –26
to +29% for gc1, and –26 to +1·3% for gc2. These are
large compared with the relative biases of a.

Variance

The uncorrected geometric mean consistently had a
lower variance than the arithmetic mean (variance

Fig. 7. Probability of a sample mean being less than the true mean by (a) number of chambers and (b) urine coverage.

Fig. 8. (a) Modelled v. observed pUnder and (b) deviance residuals v. fitted values for model (14).
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ratio < 1, Fig. 13.). Given that low variance is a desir-
able property, the relative advantage (from a variance
perspective) of g relative to a increases as n increases
but decreases with increasing p. In Fig. 2, it was seen
that for most cases Var(a) was inversely proportional n.
Therefore the variance of g must decrease even more
rapidly with n.

The bias corrections for the geometric mean use the
sample standard deviation of the log-transformed data
to estimate the population log-standard deviation.
Unfortunately, this increases the variance relative to
the uncorrected geometric mean. For low sample
sizes the corrected geometric means can sometimes
have larger variances than the arithmetic mean. Both
the corrected geometric means show similar trends
in variance relative to Var(a) with increasing n and

p. The second bias correction method always pro-
duced a lower variance than the first, although the
difference decreased as the number of chambers
increased.

For all three alternative estimators the relative im-
provement in variance over the arithmetic mean was
greatest when the EF distribution was log-normal.

Skewness

None of the estimators consistently reduced (or
increased) the skew relative to the arithmetic mean
(Fig. 14.). In general, for log-normal EF the geometric
mean (and the corrected versions) tended to have
lower skew than the arithmetic mean. For the other

Fig. 9. ESD Skewness as a function of (a) number of chambers and (b) urine coverage.

Fig. 10. (a) Modelled v. observed skewness and (b) residuals v. fitted values for model (15).
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EF distributions the skew tended to be higher than the
arithmetic mean.

DISCUSSION

The arithmetic mean of chamber measurements was
an unbiased estimator of the N2O emissions from a
grazed pasture. However, the CLT did not apply
over the range of conditions examined (even with
100 chambers) and the sample mean distribution
was right-skewed. The variance was relatively high
(with standard deviation ranging from 12 to 135% of
the actual mean) but did appear to be proportional
to 1/n except when the EF distribution was log-
normal. For n < 100 the variance was proportional to
the mean, therefore attempts to use regression model-
ling on chamber data should include weights to
account for the non-constant variance. The lack of
normality means that statistical tests that assume

normality of the sample mean (e.g. t-test and F-test)
should not be used for this type of data. With knowl-
edge of the urine coverage and EF distribution, equiva-
lent tests could be created by generating empirical
sampling distributions as we have done here.
However these tests would probably have lower
power due to the high probability of not sampling
any urine patches.

Formulae were derived that gave reasonable esti-
mates for variance, pUnder and skewness of the
sample distribution of the arithmetic mean. These for-
mulae required knowledge of the number of cham-
bers, the urine coverage and the EF distribution.
Whether the urine concentration was constant or nor-
mally distributed had little impact on the sample mean
distribution. An experimenter will know the number of
chambers being used, but will not know the urine
coverage or the EF distribution. However, there are
methods for estimating the urine coverage if the

Fig. 11. Mean of the ESD plotted against the true mean for (a) geometric mean (g), (b) first corrected geometric mean gc1 and
(c) second corrected geometric mean gc2. The 1–1 line is also indicated.
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number of animals grazed and the duration of the
grazing event are known (e.g. Pleasants et al. 2007)
and there have recently been some studies looking
at measuring urine patch concentration experimental-
ly (Moir et al. 2011). The EF distribution is trickier. In
particular, the formulae for variance and skewness

are poor predictors when the EF distribution is log-
normal. Therefore determining the nature of the EF dis-
tribution should be a priority.

Somealternative estimatorswere also examined. Log-
transformations are commonly used to make right-
skewed data more symmetrical. The geometric mean

Fig. 12. rBias plotted against number of chambers (a, c, e) and urine coverage (b, d, f) for geometric mean (a, b), first corrected
geometric mean (c, d), second corrected geometric mean (e, f ).
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is themathematical equivalent of back-transforming the
mean of the log-transformed data. Unfortunately, the
geometricmeanwas a biased estimator that consistently
underestimated the true mean, and although the geo-
metric mean did have a lower variance than the arith-
metic mean, it did not necessarily have less skew. Still,

the lower variance of the geometric mean could make
it a useful estimator for situations where the aim is to
compare N2O emissions from different treatments,
rather than to estimate the actual emissions.

Two methods for bias-correcting the geometric
mean were also investigated. These methods both

Fig. 13. Ratio of the variance of g, gc1 and gc2 to the variance of a plotted against the number of chambers (a, c, e) and urine
coverage (b, d, f ). Note log scale on the y-axis for the corrected geometric means.
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used the sample standard deviation of the log-trans-
formed data to calculate the bias correction. While
these methods did reduce the bias they also had the
unfortunate side effect of increasing the variance.
None of the alternative estimators universally outper-
formed the arithmetic mean. However, in some
circumstances (e.g. when the EF distribution is log-
normal) a bias-corrected geometric mean might

make a better estimator, but this would need to be
determined on a case-by-case basis.

A number of simplifying assumptions were made for
the current simulations, which included that the urine
patches did not overlap and that the EF was independ-
ent of the urine concentration. The first assumption is
more likely to be satisfied when stocking rates are low
and grazing durations short. According to the method

Fig. 14. Ratio of the skewness of g, gc1 and gc2 to the skewness of a plotted against number of chambers (a, c, e) and urine
coverage (b, d, f ). Note log scale on the y-axis for the corrected geometric means.
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of Pleasants et al. (2007) with the mean patch area
(0·37 m2) and urination rate (0·53 events/cow/hour)
measured by Moir et al. (2011), one day grazing at a
stocking density of 180 cows/ha would result in
0·081 of the area being covered by urine patches,
but 0·96 of the urine patch area would be single
urine patches. So overlapping urine patches would
account for only 0·003 of the total area. However,
this assumes that the distribution of urine patches is
completely random. In reality, animal behaviour is
likely to result in non-random urine patch distribution.
For example, urine patches are likely to be more fre-
quent in areas where animals congregate (e.g. near
water troughs or shelter), but there could also be a ten-
dency to avoid grazing near existing urine patches.
The measurements of Moir et al. (2011) found urine
patch coverage in a season ranged from 0·035 to
0·076 with cow-days/ha/season ranging from 120 to
450. This lower coverage indicates a higher rate of
overlap than estimated using the Pleasants method.
The second assumption requires that the relation-

ship between N2O emissions and urine N concentra-
tion be linear. Kim et al. (2013) hypothesized that the
relationship between N2O emissions and applied N
could have linear and non-linear phases depending
on the limiting process. Kelliher et al. (2014) found a
strong linear relationship between N2O emissions
and applied N, but no significant quadratic term for
urea applied at rates of 25 to 1500 kg N/ha.
However, in a field study, de Klein et al. (2014)
found an increasing trend of EF with urine N concen-
tration in a free-draining soil, but not on a poorly
draining soil. In addition to a direct relationship
between urine concentration and EF, there could
also be an indirect effect if the spatial variability of
EF was driven by some factor (such as soil moisture
or slope) that also affects the amount of time the
animals spend in a given part of the field.
The present study also did not consider the effect of

using different means and standard deviations for the
EF and U concentrations. This is an area that could
be further investigated if more data regarding these
distributions were available. However, completely
random sampling on a grazed pasture is always
going to be problematic due to the large difference
between the emissions from urine and non-urine
patches and the lack of knowledge of the number of
urine patches included in a given sample. If non-de-
structive methods for determining the urine patch
locations shortly after a grazing event can be devel-
oped then a stratified sampling scheme could be

used to give more robust estimates of emissions.
Alternatively, if the presence or absence of a urine
patch in each chamber could be conclusively deter-
mined after the fact (e.g. from soil properties or grass
growth), then the relative contribution from the urine
and non-urine containing chambers could be scaled
according to the overall urine coverage. The method
of applying a known amount of urine-N to each
chamber avoids the errors introduced by not
knowing the location of the urine patches, but requires
the total amount of urine-N excreted during grazing to
be estimated, which may miss effects caused by
animal behaviour (e.g. treading).

CONCLUSIONS

In the present study formulae were derived that can be
used to calculate the mean, bias, variance and skew-
ness of the sample distribution when measuring N2O
emissions using chambers on a grazed pasture.
These formulae require knowledge of the fractional
area covered by urine patches, number of chambers,
and the nature of the EF distribution.

The arithmetic mean was an unbiased estimator,
and over a large number of trials the mean of all the
samples will approach the true value. Unfortunately,
the sample mean distribution had a high variance
and skew. This meant for any particular trial the
sample mean could be a long way from the true
value and there was a >50% chance that any given
sample would be an underestimate. The CLT did not
apply for realistic numbers of chambers, therefore
many common statistical techniques requiring
normal data (e.g. t-tests and F-tests) should not be
applied to data of this type. The behaviour of the
sample mean distribution did not depend on
whether the urine concentration was constant or nor-
mally distributed, but did depend on the distribution of
the EF.

The geometric mean had lower variance, but high
bias compared with the arithmetic mean. Two bias
corrections for the geometric mean were tried. These
methods did reduce the bias of the geometric mean,
but as the corrections used estimates of the standard
deviation, the variances were high. The corrected geo-
metric means were not a universal improvement on
the arithmetic mean, although in some circumstances
they had lower variances and skewness (e.g. when the
EF was log-normally distributed and n > 4). However,
all these alternative estimators still suffered from non-
normality.
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The best way to improve the estimation of N2O
emissions from a grazed pasture would be to sample
separately from known urine and non-urine patch
areas. This, however, requires the development of a
non-disruptive method for identifying urine patches
shortly after a grazing event. In the absence of such
a method there will always be some inherent pro-
blems (e.g. skewness) in the sample mean distribution.
The distribution of the EF was also an important factor
in the properties of the sample mean distribution.
Knowledge of how the EF varies spatially is therefore
useful for determining the properties of the sample
mean distribution.
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