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Abstract We investigate the geometry of codimension one foliations on smooth projective varieties
defined over fields of positive characteristic with an eye toward applications to the structure of
codimension one holomorphic foliations on projective manifolds.
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1. Introduction

The study of foliations (subsheaves of the tangent sheaf closed under Lie brackets)

on algebraic varieties defined over fields of characteristic p > 0 traditionally focuses on

foliations that are closed under p-th powers. For instance, Miyaoka studied these objects
in order to establish the existence of rational curves on complex projective varieties in

the presence of subsheaves of the tangent sheaf with positivity properties; see [35], [2,

Chapter 9], and [36, Part I, Lecture III].
In the first part of this work, we focus instead on codimension one foliations which are

not closed under p-th powers. We exploit the 20-year-old observation [38], [13, Theorem

6.2] that these foliations admit non-trivial infinitesimal transverse symmetries and, as
such, can be defined by closed rational 1-forms, uniquely defined up to multiplication by

constants of derivations (i.e., p-th powers of rational functions). The action of the Cartier

operator on these 1-forms defines a companion distribution (not necessarily involutive

subsheaf of the tangent sheaf), the Cartier transform of the foliation. The intersection of
this distribution with the original foliation is a canonically defined subdistribution that

we begin to study in this work.

Although we believe that the study of the geometry of foliations in positive character-
istics is worth pursuing per se, our primary motivation is the potential for applications

toward the study of holomorphic foliations in the spirit of earlier joint work of Loray,

Touzet and the second author, [31, Section 7]. In the second part of this work, we
use the results established in the first part to give new information about the space

of codimension one foliations on projective spaces; see, for instance, Theorem 11.9,

which exhibits previously unknown irreducible components, and Theorem 12.4, which

characterizes the so-called logarithmic components.

2. Distributions and foliations

In this section, we present the definitions of distributions and foliations on arbitrary
smooth varieties defined over an algebraically closed field k.

2.1. Distributions

A distribution D on a smooth algebraic variety consists of a pair (TD,N
∗
D) of coherent

subsheaves of TX and Ω1
X such that TD is the annihilator of N∗

D and N∗
D is the annihilator

of TD. Explicitly,
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Codimension one foliations in positive characteristic 1707

TD = {v ∈ TX |ω(v) = 0 for every ω ∈N∗
D} and

N∗
D = {ω ∈ Ω1

X |ω(v) = 0 for every v ∈ TD} .

The sheaf TD is the tangent sheaf of the distribution, and the sheaf N∗
D is the conormal

sheaf of the distribution. It follows from the definition that both sheaves TD and N∗
D are

reflexive (i.e., canonically isomorphic to their bi-duals). The dimension of D is the generic
rank of TD, and the codimension of D is the generic rank of N∗

D.
The dual of TD is the cotangent sheaf of D and will be denoted by Ω1

D. Similarly, the

dual of N∗
D is the normal sheaf of D and will be denoted by ND. These sheaves fit into

the following exact sequences.

0 TD TX ND

0 N∗
D Ω1

X Ω1
D

For every i between 1 and dimD, we will define Ωi
D as the dual of ∧iTD; that is,

Ωi
D =Hom

(
i∧
TD,OX

)
.

Since the sheaves Ωi
D are defined as duals, they are reflexive sheaves. It is convenient to

set Ω0
D =OD and Ωj

D = 0 if j /∈ {0, . . .dimD}.
We will denote the determinant of Ω1

D by ωD; that is,

ωD =

(
dimD∧

Ω1
D

)∗∗

.

Since TD is reflexive, [26, Proposition 1.10] implies that

Ω1
D �

(
dimD−1∧

TD

)∗∗

⊗ωD .

The singular set of D is the locus where TX/TD is not locally free and is denoted

by sing(D). Since TX/TD is torsion-free, the codimension of sing(D) is at least two.

Outside sing(D), the rightmost arrows of both exact sequences above are surjective; see,

for instance, [22, Section 2]. Taking determinants one gets an isomorphism of line-bundles

ωX � det(Ω1
D)⊗det(N∗

D), (2.1)

where ωX denotes the canonical sheaf of X.

Remark 2.1. Any coherent torsion-free sheaf injects into its double dual; see, for

instance, [43, Tag 0AVT, Lemma 31.12.4]. Therefore, we can see TX/TD as a subsheaf

of ND.

If D is a distribution of codimension q, then there exists ω ∈ H0(X,Ωq
X ⊗ det(ND)),

without codimension one zeros, such that TD is the kernel of the morphism
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1708 W. Mendson and J. V. Pereira

TX → Ωq−1
X ⊗det(ND)

defined by contraction with ω.

2.2. Foliations

A foliation F on a smooth algebraic variety X is a distribution with tangent sheaf TF
closed under Lie brackets. Explicitly, the OX -morphism (also called the O’Neill tensor)

2∧
TF −→NF

v∧w �→ [v,w] mod TF

is identically zero. Here, we used Remark 2.1 to replace TX/TF by NF . Coherent
subsheaves of TX which are closed under Lie brackets are called involutive subsheaves.

Lemma 2.2. Let F be a foliation of dimension r on a smooth algebraic variety X. If

x /∈ sing(F), then there exist v1, . . . ,vr generators of TF ⊗OX,x such that [vi,vj ] = 0 for

every i,j ∈ {1, . . . ,r}.

Proof. See [13, Lemma 6.1].

If X is a complex algebraic variety, then the vector fields given by Lemma 2.2 can be
integrated, in an analytic or formal neighborhood of x, to a germ of action of an abelian

Lie group of dimension r. The situation in positive characteristic is utterly different as

will be discussed at length in Section 4.
A coherent subsheaf L of Ω1

X is called integrable if dL is contained in the saturation

of L∧Ω1
X in Ω2

X . Cartan’s formula for the exterior derivative (see [10, Lemma 3] for its

validity in positive characteristic) implies that the involutiveness of TF is equivalent to

the integrability of N∗
F .

Example 2.3. The foliation F on A2 with conormal sheaf generated by ω = xdy−λydx,
λ different from 0 and −1, is such that dN∗

F is not contained in N∗
F ∧Ω1

X .

Proof. Notice that dω = (1+λ)dx∧dy. If λ �= 0,1, then ω vanishes only at 0 (λ �= 0) and

dω vanishes nowhere (λ �= −1). Therefore, it does not exist in a regular 1-form η such

that dω = η∧ω.

The integrability of N∗
F and the reflexiveness of Ω•

F imply that the exterior derivative

of differential forms on X descends to a k-linear morphism

dF : Ω•
F → Ω•+1

F

which, like the exterior derivative, satisfies Leibniz’s rule. Indeed, if U ⊂X is a sufficiently

small open subset contained in X− sing(F) and ω belongs to Ωi
F (U), then we consider

any lift ω̂ of ω to Ωi
X(U) and define dFω as the restriction of dω̂ to ∧i+1TF . If ω̂

′ is any
other lift, then ω̂− ω̂′ belongs to Ωi−1

X (U)∧N∗
F (U) and the integrability condition implies

that d(ω̂− ω̂′) vanishes on ∧i+1TF . If j :X− sing(F)→X denotes the inclusion, then we

have just shown how to define a k-linear morphism dF on j∗Ω•
F . The reflexiveness of Ω•

F
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Codimension one foliations in positive characteristic 1709

implies that dF extends to a k-linear morphism defined on the whole X which inherits
the Leibniz’ property from d.

Every smooth variety X has two trivial foliations: one foliation of dimension zero

given by the pair (0,Ω1
X) ⊂ (TX,Ω1

X), called the foliation by points, and one foliation
of dimension dimX given by the pair (TX,0), called the foliation with just one leaf.

Part 1. Geometry of foliations in positive characteristic

3. Differential geometry in positive characteristic

In this section, for later use, we briefly review the most fundamental properties of

vector fields in positive characteristic (Subsection 3.2), and the Cartier correspondence
(Subsection 3.3) for coherent sheaves endowed with flat connections with vanishing

p-curvature.

3.1. Absolute Frobenius

Let X be a scheme over an algebraically closed field k of characteristic p> 0. The absolute

Frobenius morphism of X is the endomorphism Frob = FrobX :X →X of the scheme X,
which acts as the identity on the topological space X and which acts on the structural

sheaf of X by raising elements to their p-th powers.

Definition 3.1. Let E1 and E2 be coherent sheaves of OX -modules. A morphism

ϕ : E1 →E2 of sheaves of abelian groups is called

(1) p-linear if ϕ(fe) = fpe; and

(2) p−1-linear if ϕ(fpe) = fe

for every f ∈ OX(U), e ∈ E1(U) and every open subset U ⊂X.

A p−1-linear morphism ϕ : E1 → E2 is equivalent to an OX -linear morphism ϕ :

Frob∗ E1 →E2; see [5, Sections 2 and 3]. If E is a coherent OX -module, then E and Frob∗ E
are isomorphic, but the OX -module structure on Frob∗ E is different. If we denote the
action of OX on Frob∗ E by �, then

f �σ = fpσ

for any f ∈ OX and any σ ∈ Frob∗ E .
If E still denotes a coherent sheaf of OX -modules, then

Frob∗ E =OX ⊗Frob−1OX
Frob−1 E (Definition of pull-back)

=OX ⊗Frob−1OX
E (Frob is the identity on |X|).

Consequently, in Frob∗ E we have that

1⊗fσ = fp⊗σ (3.1)

for any f ∈OX and any σ ∈ E . It follows that a p-linear morphism ϕ : E1 →E2 is equivalent
to an OX -linear morphism ϕ : Frob∗ E1 →E2.
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The OX -module Frob∗ E comes endowed with a canonical connection

∇can : Frob∗ E → Ω1
X ⊗Frob∗ E

f ⊗σ �→ df ⊗ (1⊗σ) .

It follows from Equation (3.1) that the kernel of ∇can can be identified, as sheaves of
abelian groups, with 1⊗E ⊂ Frob∗ E .

3.2. Vector fields and the p-curvature of connections

Given a vector field/derivation v ∈ TX(U) on an open subset U ⊂X of a variety defined
over a field k of characteristic p > 0, the p-th iteration of v is also a derivation since

Leibniz’s rule implies

vp(f ·g) =
p∑

i=0

(
p

i

)
vi(f) ·vp−i(g) = fvp(g)+vp(f)g

for every f,g ∈ OX(U).
Thus, one can define a morphism of sheaves of sets ×p : TX → TX which takes a vector

field and raises it to its p-th power. This is not a morphism of sheaves of abelian groups,

but a result of Jacobson ([28, Equation (5.2.4)]) says that

(v+w)p = vp+wp+Qp(v,w), (3.2)

where Qp is a Lie polynomial (i.e., a polynomial on (iterated Lie) brackets of v and w).

Moreover, if f ∈ OX and v ∈ TX , then

(fv)p = fpvp−fvp−1(fp−1)v, (3.3)

according to [28, Equation (5.4.0)] modulo a sign misprint.

Recall from [28, Section 5] that the p-curvature of a connection ∇ : E → Ω1
X ⊗E is the

morphism of OX -modules

ψ : Frob∗TX −→ EndOX
(E)

v �→ (∇v)
p−∇vp ,

where ∇• is the k-endomorphisms of E that send defined by

E −→ E
σ �→ (i•⊗ id)∇σ,

where i• denotes the contraction of 1-forms with the vector field •.

Example 3.2. The canonical connection ∇can defined on Frob∗ E is a flat connection

with zero p-curvature.

3.3. Relative Frobenius, p-closed flat connections and the Cartier

correspondence

The absolute Frobenius is not a morphism of k-schemes. Nevertheless, if we set S =Speck
and consider the fiber product X(p) =X×S S of the structure morphism of X with the
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absolute Frobenius of S, then the absolute Frobenius Frob factors as in the following
commutative diagram:

X X(p) X

S S .

FrobX/S

Frob=FrobX

WX/S

FrobS

The morphism FrobX/S :X →X(p) is a morphism of k-schemes and is called the relative

Frobenius morphism of X over S ; see [1, Éxpose XV]. Notice that WX/S :X(p) →X is
an isomorphism of schemes (but not of k-schemes) defined through the twisting of the

coefficients by means of the field automorphism x �→ xp.

Given any coherent sheaf E of OX -modules on X, we set E(p) = W ∗
X/SE . In other

words, E(p) is the base change of E to X(p). As such, E(p) is an OX(p) -module such
that Frob∗ E =Frob∗X/S E(p). If we consider OX(p) as a subsheaf of OX , then the kernel of

the canonical connection ∇can on Frob∗X/S E(p) is an OX(p) -module that can be identified

with E(p). Reciprocally, if E is a coherent sheaf on X endowed with a flat connection

∇ of p-curvature zero, then the kernel of ∇ is, in a natural way, an OX(p) -module such
that

Frob∗X/S(ker∇)� E .

This is essentially the content of the Cartier correspondence: there exists an equivalence

of categories between the category of quasi-coherent sheaves on X(p) and the category of

quasi-coherent OX -modules with flat connections of p-curvature zero given by

E �→ (Frob∗X/S E,∇can) and (E,∇) �→ ker∇;

see, for instance, [28, Theorem 5.1].

Lemma 3.3. Let E be a coherent sheaf of OX-modules. Let K ⊂ Frob∗ E be a coherent
subsheaf. If the morphism of OX-modules

ϕ :K −→ Ω1
X ⊗ Frob∗ E

K
induced by ∇can is identically zero, then there exists a coherent subsheaf L⊂ E such that

K = Frob∗L

Proof. If ϕ vanishes, then the sheaf K is preserved by the canonical connection of

Frob∗ E . By Cartier correspondence, there exists a subsheaf L(p) ⊂ E(p) on X(p) such

that K = Frob∗X/SL(p). Since WX/S is an isomorphism, and E(p) =W ∗
X/SE , there exists a

subsheaf L⊂ E on X such that L(p) =W ∗
X/SL. The sheaf L is such that K=Frob∗L.
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1712 W. Mendson and J. V. Pereira

4. Particular features of foliations in positive characteristic

In this section, we introduce the key concepts for the first part of the paper: the
p-curvature of the foliation (Subsection 4.1), p-dense foliations (Subsection 4.2), the

degeneracy divisor of the p-curvature, the kernel of the p-curvature of a foliation

(Subsection 4.3) and the Cartier transform of a foliation (Subsection 4.5).

4.1. The p-curvature of foliations

Let F be a foliation on X. It follows from Equations (3.2) and (3.3) that the map which
sends v ∈ TF to the class of vp in TX/TF ⊂ NF is p-linear and additive. We can thus

define the morphism of OX -modules

ψF : Frob∗TF −→NF∑
fi⊗vi �→

∑
fiv

p
i mod TF .

The morphism ψF is called the p-curvature of F . If ψF = 0, then we say that the foliation

is p-closed.
The foliation F determines a subsheaf OX/F ⊂ OX consisting of functions that are

annihilated by any section of TF ; that is,

OX/F = {a ∈ OX ; v(a) = 0 for any v ∈ TF} .

Theorem 4.1. If F is a p-closed foliation of dimension r on a smooth algebraic

variety X, then Y = SpecO
X(p)

OX/F is a normal algebraic variety and the inclusion

OX/F ⊂ OX determines a morphism f : X → Y which factors the relative Frobenius

FrobX/Speck : X → X(p) and satisfies [k(X) : f∗k(Y )] = pr. Reciprocally, if O ⊂ OX is
a sheaf of OX(p)-algebras integrally closed in OX , then there exists a p-closed foliation F
such that O =OX/F .

Proof. See [36, Proposition 1.9, Lecture II, Part I] or [40, Theorem 2].

Corollary 4.2. Let F be a foliation of codimension q on a smooth algebraic variety X.

The foliation F is p-closed if and only if there exists q rational first integrals for F , say

f1, . . . ,fq ∈ k(X), such that df1∧·· ·∧dfq �= 0.

Proof. See [31, Section 7].

4.2. p-dense foliations

Some authors use the term foliation only to refer to p-closed foliations. In this work, we

will also consider foliations which are not p-closed.

Definition 4.3. Let F be a foliation on a smooth variety X. The p-closure of F is

the (unique) p-closed foliation Fp
such that OX/F = OX/Fp . When the p-closure of F

coincides with the foliation with only one leaf (i.e., OX/F =OX(p)), we will say that F is

p-dense.

Notice that a foliation is p-dense if and only if any rational first integral f ∈ k(X) of F
is such that df = 0.
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Proposition 4.4. If F is a p-dense codimension one foliation on a smooth algebraic
variety X defined by ω ∈ H0(X,Ω1

X ⊗NF ) and v is a rational vector field tangent to F
such that ω(vp) �= 0, then the rational 1-form

ω

ω(vp)

is closed.

The result above first appeared in [11, Theorem 6.2]. Its proof can be generalized to

p-dense foliations of arbitrary codimension as shown by the next proposition.

Proposition 4.5. If F is a p-dense foliation of codimension q on a smooth algebraic

variety X, then there exists closed rational 1-forms ω1, . . . ,ωq which vanish on TF and

satisfy ω1∧·· ·∧ωq �= 0.

Proof. Let r = dimF . If x /∈ sing(F), then there exist generators v1, . . . ,vr of TF ⊗OX,x

such that [vi,vj ] = 0 for every i,j ∈ {1, . . . ,r}; see Lemma 2.2. Notice that the iterated

p-th powers of the vector fields vi commute with v1, . . . ,vr and also among themselves.

Since F is p-dense, we can choose among the iterated p-powers of v1, . . . ,vr, vector fields
vr+1, . . . ,vr+q, r+ q = dimX, such that

v1∧·· ·∧vr ∧vr+1∧·· ·∧vr+q

does not vanish identically. Therefore, we can interpret v1, . . . ,vr+q as k(X)-linearly

independent commuting rational vector fields on X.

Let α1, . . . ,αr+q be rational 1-forms on X dual to v1, . . . ,vr+q. In other words, the 1-

forms αi are characterized by αi(vj) = δij . We claim that the 1-forms αi are closed. As
v1, . . . ,vr+q are k(X)-linearly independent rational vector fields, it suffices to check that

dαi(vj,vk) = 0 for i,j,k ∈ {1, . . . ,r+ q}. Since v1, . . . ,vr+q commute, Cartan’s formula for

the exterior derivative implies that

dαi(vj,vk) = vj(αi(vk))−vk(αi(vj))−αi([vj,vk]) = 0,

establishing our claim. By construction, ω1 =αr+1, . . . ,ωq =αr+q vanish on TF and satisfy
ω1∧·· ·∧ωq �= 0 as wanted.

The following example shows that without p-denseness of F , Proposition 4.5 does not

hold.

Example 4.6. If the k has characteristic two, X = A3
k and F is the foliation on X

generated by v = x ∂
∂x + zy ∂

∂y , then every closed rational 1-form containing TF in its

kernel is a rational multiple of dz.

A simple adaptation of the arguments used in the proof of Proposition 4.5 gives the

following generalization.

Proposition 4.7. If F is a not necessarily p-dense foliation on a smooth algebraic variety

X, G = Fp
, and q = codim(F)− codim(G), then there exist rational sections ω1, . . . ,ωq of

Ω1
G which vanish on TF such that ω1∧·· ·∧ωq �= 0 and dGω1 = · · ·= dGωq = 0.
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A F-partial connection on a coherent sheaf E is a k-linear morphism ∇ : E → Ω1
F ⊗E

which, like usual connections, satisfies Leibniz’s rule ∇(fs) = f∇(s) + dFf ⊗ s. Bott’s
partial connection is the F-partial connection on the normal sheaf of F which sends the

class of v mod TF to the 1-form (defined only along TF ) that maps a local section w of

TF to [v,w] mod TF .
Our next result provides an interpretation of Propositions 4.5 and 4.7 in terms of Bott’s

partial connection and the canonical connection on Frob∗TF .

Proposition 4.8. The morphism ψF is such that

(r⊗ψF )◦∇can =∇F ◦ψF,

where r : Ω1
X →Ω1

F is the natural restriction morphism, ∇can is the canonical connection
on Frob∗TF and ∇F is Bott’s connection on NF . In other words, ψF is a morphism of

F-partial connections between (Frob∗TF,∇can
∣∣
TF

) and (NF,∇F ).

Proof. It suffices to show that for every local section v ∈ TF , the image of 1⊗v ∈Frob∗TF
under ψF is a flat section of Bott’s partial connection on NF . To do this, we proceed as

in the proof of Proposition 4.5. We fix x ∈ X sufficiently general and use Lemma 2.2

to guarantee the existence of commuting generators v1, . . . ,vr of TF ⊗OX,x. Since ψF is
OX -linear, it suffices to show that vp1, . . . ,v

p
r are flat sections of Bott’s partial connection.

But this is clear since each of vpi commutes with generators of TF ⊗OX,x.

4.3. The degeneracy divisor and the kernel of the p-curvature

Proposition 4.8 implies that the kernel of ψF is invariant by the partial connection
∇can

∣∣
TF

. Therefore, the morphism

kerψF −→ Ω1
F ⊗ Frob∗TF

kerψF

induced by ∇can
∣∣
TF

is zero. This is not sufficient to apply Lemma 3.3 as it may happen

that kerψF is not invariant by the connection ∇can; that is, the morphism of OX -modules

kerψF −→ Ω1
X ⊗ Frob∗TF

kerψF
(4.1)

induced by ∇can is not necessarily zero.

Lemma 4.9. If F is p-dense, then the morphism (4.1) is zero. In particular, there exists

a distribution V (F) contained in F such that

kerψF = Frob∗TV (F) .

In this case, the distribution V (F) will be called the kernel of the p-curvature of F .

Proof. The vanishing of the morphism (4.1) is assured by [39, Proposition 6.1]. The

existence of the distribution V (F) follows from Lemma 3.3.
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Definition 4.10. If F is a p-dense codimension one foliation, then the image of the
p-curvature morphism ψF is of the form NF ⊗IZ for some ideal sheaf IZ . The divisorial

part of IZ will be called the degeneracy divisor of the p-curvature and will be denoted

by ΔF .

Example 4.11. Let F be a codimension one foliation on X =An
k with N∗

F generated by

1-form

ω =

(
r∏

i=1

xi

)(
r∑

i=1

λi
dxi

xi

)
,

where 1< r ≤ n and λ1, . . . ,λr ∈ k∗. The tangent sheaf of F is locally free and generated

by the vector fields vj = λjx1
∂

∂x1
−λixj

∂
∂xj

for 1< j ≤ r and ∂
∂xr+1

, . . . , ∂
∂xn

. Observe that
∂p

∂xr+1
= . . . = ∂p

∂xn
= 0 and that

ω(vpj ) =

(
r∏

i=1

xi

)
(λp

jλ1−λp
1λj)

for any 1< j ≤ r. Hence, F is p-closed if and only if (λ1 : . . . : λr)∈ Pr−1
k (Fp). Furthermore,

if F is not p-closed, then ΔF is the simple normal crossing divisor given by {x1 · · ·xr =0},

Proposition 4.12. Let F be a p-dense codimension one foliation on a smooth algebraic
variety X of characteristic p > 0. If V (F) denotes the kernel of the p-curvature of F ,

then the identity

OX(ΔF ) = (ωF ⊗ω∗
V (F))

⊗p⊗detNF

holds in the Picard group of X.

Proof. The definition of ΔF implies that the sequence

0−→ Frob∗TV (F) −→ Frob∗TF −→NF (−ΔF )−→ 0 (4.2)

is exact on the complement of a codimension two subset of X. The result follows by taking
determinants.

Proposition 4.13. Let X be a smooth algebraic variety of characteristic p > 0 and let
F be a p-dense codimension one foliation on X. Then every F-invariant hypersurface is

contained in the support of ΔF . Reciprocally, if p does not divide the coefficient of an

irreducible component H in ΔF , then H is F-invariant.

Proof. Suppose first that H is F-invariant. Let U ⊂X be a sufficiently small open subset
intersecting H and let h∈OX(U) be a reduced equation forH∩U . Since H is F-invariant,

for any local section v ∈ TF (U), we have that v(h) is a multiple of h. Therefore, the same

holds true for vp(h). In other words, for any v ∈ TF (U), the restriction of v and vp to

H ∩U is contained in the kernel of dh
∣∣
H∩U

. Hence, the support of ΔF contains H.
Suppose now that ordH(ΔF ) = α �≡ 0 mod p. In the notation above, after restricting U

if necessary, we can chose commuting generators v1, . . . ,vr of TF (U) such that

v1∧·· ·∧vr ∧vp1 = hαθ,
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where r = dimF , and θ ∈
∧r+1

TX(U) does not vanish along H ; see Lemma 2.2. Observe

that

[v1,h
αθ] = 0 =⇒ αv1(h)h

α−1θ =−hα[v1,θ] .

Since α �≡ 0 mod p, it follows that h divides v1(h). This is sufficient to show that
H = {h= 0} is F-invariant.

Proposition 4.14. Let X be a smooth algebraic variety of characteristic p > 0 and let F
be a p-dense codimension one foliation on X. If η is a closed rational 1-form defining F ,

then the coefficients of the divisors ΔF and ((η)∞− (η)0) coincide modulo p.

Proof. Let η′ be another closed rational 1-form defining F . As both η and η′ define the
same codimension one foliation, there exists h∈ k(X) such that η= hη′. The closedness of
η and η′ implies that dh∧η′ = 0. Since F is p-dense, dh= 0 and we can write η = gpη′ for
some g ∈ k(X). In particular, the coefficients of the divisors (η)∞− (η)0 and (η′)∞− (η′)0
agree modulo p.

Let U be a sufficiently small open subset of X − (sing(F)∪ sing(V (F))). Choose a

nowhere vanishing section ω of N∗
F (U) and a vector field v ∈ TF (U)⊂ TX(U) everywhere

transverse to TV (F )

∣∣
U
. Therefore, f = ω(vp) generates OU (−ΔF ) and the rational 1-form

ω/f is closed according to Proposition 4.4. Thus, the coefficients of (η)∞− (η)0 and ΔF
along hypersurfaces intersecting U agree modulo p. Since we can choose U intersecting

any given hypersurface of X, the result follows.

4.4. The Cartier operator

Let X be a smooth algebraic variety defined over an algebraically closed field of

characteristic p > 0.
The de Rham complex (Ω•

X,d) of X is a complex of sheaves of abelian groups but is not

a complex of OX -modules. Nevertheless, for any f ∈ OX and any ω ∈ Ωi
X , we have that

d(fp ·ω) = fp ·ω .

It follows that (Frob∗Ω
•
X,d) is a complex of OX -modules. If we denote by ZΩ•

X the

sheaf of closed differential, and by BΩ•
X the sheaf of locally exact differentials, then both

Frob∗ZΩ•
X and Frob∗BΩ•

X are coherent OX -modules. The sheaf cohomology groups of

the complex (Frob∗Ω
•
X,d) are the OX -modules

H iFrob∗Ω
•
X =

Frob∗ZΩi
X

Frob∗BΩi
X

.

Cartier proved in [9] the existence of a unique morphismC : Frob∗ZΩ•
X →Ω•

X of sheaves

of graded-commutative OX -algebras such that

(1) kerC= Frob∗BΩ•
X ; and

(2) C(fp−1df) = df for every f ∈ OX ; and

(3) C is surjective and, consequently, induces an isomorphism of graded-commutative

OX -algebras between H •Frob∗Ω
•
X and Ω•

X .

https://doi.org/10.1017/S1474748023000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000361


Codimension one foliations in positive characteristic 1717

The morphism C is the (absolute) Cartier operator on X. If ω is a closed q-form, we will

say that C(ω) is the Cartier transform of ω

Remark 4.15. In the literature, one also finds the relative Cartier operator

Frob∗ZΩ•
X → Ω•

X(p) . As we are working over S = Spec(k) where k is an algebraically
closed field, the two operators are essentially equivalent, cf. [27, pages 122-123]. For

details on the construction of the Cartier operator, see, for instance, [28, Section 7], [7,

Chapter 1, Section 1.3], or [27, Section 3].

Lemma 4.16. Let X be a smooth variety defined over a field k of characteristic p > 0. If

ω ∈ Ω1
X and v ∈ TX , then

(ivC(ω))p = ivpω−vp−1(ivω) .

More generally, if ω ∈ Ωj
X and v ∈ TX , then

ivC(ω) =C
(
ivpω− (Lv)

p−1(ivω)
)
.

Proof. The first formula is due to Cartier and appears (without proof) in [9]. A proof

can be found in [40, Proposition 3]. The second formula is the content of [4, Proposition

2.6].

4.5. The Cartier transform of a p-dense foliation

Let F be a p-dense foliation of codimension q on a smooth algebraic variety X.
Let ω1, . . . ,ωq be closed rational 1-forms defining F . The existence of such 1-forms is

guaranteed by Proposition 4.5. If ω is any closed 1-form vanishing on TF , we can write

ω =

q∑
i=1

fiωi

for some rational functions fi ∈ k(X). If we differentiate the expression above and take the

wedge product of the result with ω1∧ ·· ·∧ ω̂i∧ ·· ·∧ωq, we see that dfi∧ω1∧ ·· ·∧ωq = 0

for any i. Since F is p-dense, it follows that dfi = 0 for every i (i.e., there exists gi ∈ k(X)
such that fi = gpi ). Therefore, the identity

C(ω) =

q∑
i=1

giC(ωi)

holds. It follows that the distribution defined by the Cartier transform of all closed rational

1-forms vanishing on TF can be defined by the Cartier transform of only q = codimF
closed rational 1-forms.

Definition 4.17. Let F be a p-dense foliation of codimension q on a smooth algebraic

variety X. The Cartier transform of F is the distribution C (F) on X defined by the
intersection of the kernels of the Cartier transform of all closed rational 1-forms vanishing

on TF .

Example 4.18. The Cartier transform of a p-dense foliation is not necessarily a

foliation. For instance, the codimension one foliation on A3
k defined by the closed 1-form
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ω = yp−1dy + zpxp−1dx has Cartier transform defined by the non-integrable 1-form

C(ω) = dy+ zdx.

4.6. The Cartier transform and the kernel of the p-curvature

The proposition below gives an alternative description of the kernel of the p-curvature of

a p-dense foliation F .

Proposition 4.19. Let F be a p-dense foliation on a smooth algebraic variety X. The

kernel of the p-curvature of F coincides with the saturation of TF ∩TC (F) inside TX .

Proof. Lemma 4.9 implies the existence of a distribution V (F) on X such that

kerψF = Frob∗TV (F).
Let v ∈ TF . For any closed rational 1-form vanishing on TF , Lemma 4.16 implies that

(ivC(ω))p = ivpω−vp−1(ivω) = ivpω .

If v ∈ TV (F), then, by the definition of V (F), ivpω= 0 for any ω ∈N∗
F . Therefore, when ω

is closed, ivC(ω) = 0. This shows that TV (F) is contained in the saturation of TF ∩TC (F).

Reciprocally, if v ∈ TF ∩TC (F), then, by definition, ivC(ω) = 0 for any closed rational
rational 1-form ω vanishing on TF . Consequently, ivpω = 0 for any closed rational

section of N∗
F . Since N∗

F is generically generated by closed rational 1-forms, as proved in

Proposition 4.5, this is sufficient to show that TF ∩TC (F) is contained in TV (F).

4.7. Global expression for the kernel of the p-curvature

Assume that F is a p-dense foliation of codimension one on a smooth algebraic variety

X. For later use, we will present a twisted section of Ω1
F defining the distribution V (F).

Let U be the open set X− (sing(F)∪ sing(V (F))) and consider a sufficiently fine open

covering Ui of U. Choose for each Ui a nowhere vanishing section ωi ofN
∗
F (Ui) and a vector

field vi ∈ TF (Ui) ⊂ TX(Ui) everywhere transverse to TV (F )

∣∣
Ui
. Therefore, fi = ωi(v

p
i )

generates OUi
(−ΔF ), and the rational 1-form ωi/fi is closed.

Let ηi be the restriction of the rational 1-form C(ωi/fi) to TF
∣∣
Ui
. We claim that ηi is

a regular section of Ω1
F
∣∣
Ui

without codimension one zeros. Indeed, if v ∈ TF (Ui), then,

using Lemma 4.16, we can write

ωi(v
p) = fi

(
ωi

fi

)
(vp) = fi

(
C

(
ωi

fi

)
(v)

)p

.

Since ωi(v
p) ∈ OX(−ΔF )(Ui) = fiOX(Ui), we deduce that ηi(v) =C

(
ωi

fi

)
(v) ∈ OX(Ui)

for no matter which v ∈ TF (Ui). Moreover, ηi has no zeros since ηi(vi) = 1.

Taking into account Proposition 4.12, we deduce that the collection {ηi} defines a
regular section η of the sheaf (Ω1

F ⊗ωV (F)⊗ω∗
F )

∣∣
U
= (Ω1

F ⊗detNV (F)⊗N∗
F )

∣∣
U
. Since

Ω1
F ⊗ωV (F)⊗ω∗

F is reflexive, η extends to an element of

H0(X,Ω1
F ⊗ωV (F)⊗ω∗

F ) =H0(X,Ω1
F ⊗detNV (F)⊗N∗

F ),

without codimension one zeros, defining the distribution V (F)⊂F .
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5. Degeneracy divisor of the p-curvature

This section investigates the degeneracy divisor of the p-curvature of codimension one
foliations. It starts by describing how the degeneracy divisor behaves under two natural

operations: pull-back by dominant rational maps (Subsection 5.3) and restriction to

non-invariant subvarieties (Subsection 5.6). It then moves, in Subsection 5.7, to review
work by the first author on the reducibility of the degeneracy divisor of the p-curvature

of sufficiently general foliations on the projective plane and Hirzebruch surfaces. The

results on the reducibility and on the behavior under pull-backs will be essential for the
applications developed in the second part of the paper.

5.1. Equidimensional and dominant rational maps

Let X and Y be smooth varieties of dimensions n and m, respectively, defined over an

algebraically closed field k and let ϕ :X ��� Y be a dominant rational map. Throughout
this section, we will make use of the following assumption on ϕ.

Assumption 5.1. There exist open subsets X◦ ⊂X and Y ◦ ⊂ Y such that ϕ restricts

to a morphism ϕ◦ :X◦ → Y ◦ satisfying

(1) the set X−X◦ has codimension at least two;

(2) ϕ◦ is equidimensional and, consequently, the Zariski closure in Y ◦ of the image of

any irreducible hypersurface of X◦ is either a hypersurface of Y ◦ or the whole Y ◦;

(3) the differential of ϕ◦ has generic rank equal to m = dimY , and the differential of

the restriction of ϕ◦ to any irreducible hypersurface H ⊂X◦ has generic rank equal

to m = dimY ◦ when H dominates Y ◦ or equal to m− 1 when the image of H is
contained in a hypersurface.

When k has characterisitic zero, Item (3) follows from Item (2), but this is no longer

true when k has positive characteristic.

Define the ramification divisor Ram(ϕ◦) ∈Div(X◦) of ϕ◦ as

Ram(ϕ◦) =
∑
H

(ϕ◦)∗H− ((ϕ◦)∗H)red , (5.1)

where the sum runs over all irreducible hypersurfaces of Y ◦. Assumption 5.1, Item (3),

guarantees that this is a finite sum. Moreover, each irreducible component of the support
of Ram(ϕ◦) is mapped (dominantly) to an irreducible hypersurface of Y ◦. Define the

branch divisor of ϕ◦, Branch(ϕ◦), as the reduced divisor with support equal to the image

of Ram(ϕ◦). Set Ram(ϕ) as the divisor on X given by the closure of Ram(ϕ◦).
If L is a line-bundle on Y, then we will abuse the notation and write ϕ∗L for the unique

line-bundle on X such that ϕ∗L
∣∣
X◦ = (ϕ◦)∗

(
L
∣∣
Y ◦

)
. Since X is smooth and codimX −

X◦ ≥ 2, such a line-bundle always exists.
The next proposition, as well as Proposition 5.2 below, are well-known for equidimen-

sional morphisms between normal complex varieties; see, for instance, [20, Subsection

2.9].
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Proposition 5.1. Let ϕ :X ��� Y be a rational map satisfying Assumption 5.1. If V(ϕ)
is the foliation on X defined by ϕ, then

ωV(ϕ) = ωX ⊗ϕ∗ω∗
Y ⊗OX(−Ram(ϕ)) .

Proof. Further restricting X◦ and Y ◦ (keeping the assumption codimX −X◦ ≥ 2), we
can, and will, assume that all irreducible components of Ram(ϕ◦) and Branch(ϕ◦) are

smooth, pairwise disjoint and that the rank of the differential of ϕ◦ is equal to m−1 =

dimY −1 on the support of Ram(ϕ◦) and equal to m everywhere else.
Set B = Branch(ϕ◦) and R = ((ϕ◦)∗(B))red. Notice that Ram(ϕ◦) = (ϕ◦)∗B−R. As

usual, we will write TX◦(− logR) for the subsheaf of TX◦ formed by vector fields tangent

to R and similarly for TY ◦(− logB).
Let V(ϕ) be the foliation defined by ϕ. Assumption 5.1, Item (3), (or rather the stronger

version of it made on the first paragraph of this proof) implies that the tangent sheaf of

V(ϕ)
∣∣
X◦ fits into the exact sequence

0−→ TV(ϕ)

∣∣
X0 −→ TX◦(− logR)−→ (ϕ◦)∗(TY ◦(− logB))→ 0,

where the morphism TX◦(− logR)−→ (ϕ◦)∗(TY ◦(− logB)) is induced the differential dϕ◦

of ϕ◦. It suffices to take the determinant of this exact sequence to conclude.

5.2. Pull-backs of foliations under dominant rational maps

Before continuing the discussion, we introduce two notations:

(1) If D is an arbitrary divisor on smooth variety carrying a foliation F , we will write

D =DF +DF⊥ for the unique decomposition of D as the sum of divisors where all

the irreducible components of the support of DF are F-invariant and all irreducible
components of the support of DF⊥ are not F-invariant.

(2) We will write TF (− logD) for the subsheaf of TF formed by vector fields tangent

to F and D. This definition implies that TF (− logD) = TF (− logDF⊥) and

TF (− logDF ) = TF . Note that detTF (− logD) = detTF ⊗OX(−DF⊥).

Proposition 5.2. Let ϕ :X ��� Y be a rational map satisfying Assumption 5.1 and let
G be a foliation on Y. If F is the pull-back of G under ϕ, then

det(N∗
F ) = ϕ∗det(N∗

G)⊗OX (Ram(ϕ)F ), and

ωF = ϕ∗ωG ⊗ωV(ϕ)⊗OX (Ram(ϕ)F⊥) .

Proof. The restriction of the tangent sheaf of F to X◦ is defined by the exact sequence

0−→ TF
∣∣
X◦ −→ TX◦ −→ ϕ∗ (NG

∣∣
Y ◦

)
,

where the rightmost arrow is given by the composition of the differential of ϕ◦ with the

natural projection TY 0 →NG
∣∣
Y ◦ .

As in the proof of Proposition 5.1, set B = Branch(ϕ◦) and R = ((ϕ◦)∗(B))red.
Assumption 5.1, Item (3), gives an exact sequence

0−→ TV(ϕ)

∣∣
X0 −→ TF

∣∣
X◦(− logRF⊥)−→ (ϕ◦)∗

(
TG

∣∣
Y ◦(− logBG⊥)

)
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with the rightmost morphism surjective in codimension one. Taking determinants, we
obtain that

ωF = ϕ∗ωG ⊗ωV(ϕ)⊗OX (Ram(ϕ)F⊥) ,

as claimed. The formula for the conormal bundle of F follows from Equation (2.1)

(adjunction for foliations) combined with Proposition 5.1.

5.3. Degeneracy divisor of the pull-back under a dominant rational map

Throughout this subsection, k is an algebraically closed field of characteristic p > 0. We

will determine a formula comparing the degeneracy divisor of the p-curvature of a p-dense

codimension one foliation G on a smooth projective variety with the degeneracy divisor
of its pull-back under a dominant rational map ϕ :X ��� Y satisfying Assumption 5.1.

Proposition 5.3. Let ϕ :X ��� Y be a rational map and let G be a p-dense codimension

one foliation on Y. If ϕ satisfies Assumption 5.1 and F = ϕ∗G, then ΔF is linearly

equivalent to

ϕ∗ΔG −Ram(ϕ)F +p
(
Ram(ϕ)F⊥ −Ram(ϕ)V (F)⊥

)
.

Proof. The proof builds on a combination of Proposition 4.12 with Proposition 5.2.

First, observe that V (F), the kernel of p-curvature of F =ϕ∗G, coincides with ϕ∗V (G).
Therefore, Proposition 5.2 implies that

NF = ϕ∗NG ⊗OX (−Ram(ϕ)F )

ωF = ϕ∗ωG ⊗ωV(ϕ)⊗OX (Ram(ϕ)F⊥)

ωV (F) = ϕ∗ωV (G)⊗ωV(ϕ)⊗OX

(
Ram(ϕ)V (F)⊥

)
.

Hence, we deduce from Proposition 4.12 that OX(ΔF ) is isomorphic to

ϕ∗OY (ΔG)⊗OX

(
−Ram(ϕ)F +p

(
Ram(ϕ)V (F)⊥ −Ram(ϕ)F⊥

))
in the Picard group of X.

Corollary 5.4. Assumptions as in Proposition 5.3. Assume also that X has no non-zero
effective divisor linearly equivalent to zero. If Ram(ϕ)V (F)⊥ =Ram(ϕ)F⊥ = 0 and all the

coefficients of ΔF are strictly smaller than the characteristic of k, then

ΔF = ϕ∗ΔG −Ram(ϕ)F .

Proof. According to Proposition 4.4, G is defined by a closed rational 1-form η. Since

ϕ∗η is a closed 1-form defining F , Proposition 4.14 implies that

ΔG = (η)∞− (η)0 mod p,

ΔF = (ϕ∗η)∞− (ϕ∗η)0 mod p.
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A local computation gives that (ϕ∗η)∞ − (ϕ∗η)0 = ϕ∗ ((η)∞− (η)0) − Ram(ϕ)F in

accordance with Proposition 5.2. Consequently, we can write

ΔF = ϕ∗ΔG −Ram(ϕ)F mod p.

Our assumption Ram(ϕ)V (F)⊥ = Ram(ϕ)F⊥ = 0 combined with Proposition 5.3 implies
that ΔF and ϕ∗ΔG −Ram(ϕ)F are linearly equivalent. Since G-invariant hypersurfaces

are contained ΔG according to Proposition 4.13, the divisor ϕ∗ΔG−Ram(ϕ)F is effective.

Therefore, ΔF and ϕ∗ΔG −Ram(ϕ)F are effective divisors, with the same reduction
modulo p, and the coefficients of ΔF are smaller than p; it follows from our assumptions

on X that they must be same divisor.

Example 5.5. Let n≥ 2 and � > 0 be integers such that p does not divide �. The table

below, where H = {xn = 0}, describes the behaviour of the degeneracy divisor of the

p-curvature of the pull-back F = ϕ∗G of a foliation G on An
k under the tame morphism

ϕ : An
k → An

k

(x1, . . . ,xn−1,xn) �→ (x1, . . . ,xn−1,x
�
n) .

H is F-invariant H is V (F)-invariant Degeneracy divisor

No No ϕ∗ΔG

No Yes ϕ∗ΔG + p(� − 1)H

Yes Yes ϕ∗ΔG − (� − 1)H

5.4. Non-invariant hypersurfaces and differents

Let F be a distribution on a smooth algebraic variety X and let H ⊂ X be a smooth

hypersurface. Let δ be the natural composition

TF
∣∣
H
→ TX

∣∣
H
→NH .

If H is not F-invariant, then the image of δ is equal to NH ⊗I for some ideal sheaf
I ⊂OH . The effective divisor defined by the codimension one part of I will be called the

different of F and H and will be denoted by diffH(F). Notice that the kernel of δ is the

tangent sheaf of the distribution H= F
∣∣
H
.

Note that when X is a surface and H is a curve, diffH(F) is nothing but the tangency

divisor of F and H as defined by Brunella [8, Chapter 3]. The terminology adopted here

is in accordance with [42, Section 3] and is justified by the analogy with the homonymous

concept from birational geometry (see, for instance, [29, Section 4.1]) suggested by the
following observation.

Lemma 5.6. Let F be a distribution of arbitrary dimension on a smooth algebraic variety

X and let H ⊂X be a smooth hypersurface. If H is not F-invariant and H = F
∣∣
H

is the

restriction of F to H, then
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(ωF ⊗OX(H))
∣∣
H
� ωH⊗OH(diffH(F)),

(detNF )
∣∣
H
� detNH⊗OH(diffH(F)),

where we adopt the convention that when H is the foliation/distribution by points, then
ωH =OH and NH = TH .

Proof. The first formula follows from the fact that the kernel of δ equals TH. The second
formula is deduced from the first by adjunction.

Lemma 5.7. Let F be a codimension q distribution on a smooth algebraic variety X

defined by ω ∈H0(X,Ωq
X ⊗detNF ). Let G ⊂ F be a subdistribution of codimension r in

F defined by η ∈ H0(X,Ωr
F ⊗detNG ⊗detN∗

F ). If H ⊂ X is a smooth hypersurface not

invariant by F and G, i :H →X is the natural inclusion, and H is the restriction of F
to H, then

(1) the zero divisor of i∗ω ∈H0(H,Ωq
H ⊗detNF

∣∣
H
) is equal to diffH(F); and

(2) the zero divisor of i∗η ∈H0(H,Ωr
H⊗ (detNG ⊗detN∗

F )
∣∣
H
) is equal to the difference

of differents diffH(G)−diffH(F).

Proof. Item (1) is a reinterpretation of the proof of Lemma 5.6. To verify Item (2), first

observe that we can define unambiguously the product β = ω∧η ∈H0(X,Ωq+r
X ⊗detNG)

by considering an arbitrary rational lift η̂ of η to Ωr
X ⊗detNG ⊗detN∗

F ) and wedging it
with ω. The resulting twisted (q+ r)-form does not depend on the lift and is a regular

twisted (q+r)-form without codimension one zeros defining the distribution G. According
to Item (1), the zero divisor of i∗β is equal to diffH(G). It follows that the zero divisor of
i∗η is equal to the difference diffH(G)−diffH(F) as claimed.

5.5. Differents and non-invariant subvarieties of higher codimension

A variant of the discussion about differents carried out in Subsection 5.4 can be made for

the restriction of a distribution F to a smooth subvariety Y of codimension greater than

one. One extra difficulty comes from the fact that the natural morphism

δ : TF
∣∣
Y
→NY

can have any rank between 0 and codimY . When it has rank zero, the subvariety Y is
F-invariant. If the rank of δ is equal to q = codimY , then we will say that Y is strongly

transverse to F . In this case, the image of ∧qδ is of the form detNY ⊗I for some ideal

sheaf I ⊂ OY , and we define the different diffY (F) as the effective divisor on Y defined
by the codimension one part of I.
The definition implies that

(ωF ⊗detNY )
∣∣
Y
� ωY ⊗OY (diffY (F))

(detNF )
∣∣
Y
� detNY ⊗OY (diffY (F))

for any smooth subvariety Y ⊂ X strongly transverse to F . Likewise, we also have a

natural analogue of Lemma 5.7.
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Lemma 5.8. Let F be a codimension q distribution on a smooth algebraic variety X
defined by ω ∈H0(X,Ωq

X ⊗detNF ). Let G ⊂ F be a subdistribution of codimension r in

F defined by η ∈H0(X,Ωr
F ⊗detNG ⊗detN∗

F ). If Y ⊂X is a smooth subvariety strongly

transverse to F and G, i : Y →X is the natural inclusion, and Y is the restriction of F
to Y, then

(1) the zero divisor of i∗ω ∈H0(Y ,Ωq
Y ⊗detNF

∣∣
Y
) is equal to diffY (F); and

(2) the zero divisor of i∗η ∈H0(Y ,Ωr
Y ⊗ (detNG ⊗detN∗

F )
∣∣
Y
) is equal to the difference

of differents diffY (G)−diffY (F).

Proof. Analogous to the proof of Lemma 5.7.

5.6. The degeneracy divisor of the p-curvature for the restriction to strongly

transverse subvarieties

We are now ready to state and prove a result that offers a comparison between the
degeneracy divisor of the p-curvature of a foliation and its restriction to a smooth

subvariety.

Proposition 5.9. Let F be a codimension one foliation on a smooth algebraic variety

X defined over a field k of characteristic p > 0. If Y ⊂X is a smooth subvariety strongly

transverse to by V (F) (consequently, strongly transverse to F) and Y is the restriction
of F to Y, then ΔY , the degeneracy divisor of the p-curvature of Y, is equal to

(ΔF )
∣∣
Y
+p ·

(
diffY (V (F))−diffY (F)

)
−diffY (F) .

Proof. Let ω ∈H0(X,Ω1
X ⊗NF ) be a twisted 1-form defining F . According to Lemma

5.7 the zero divisor i∗ω is diffY (F). We can thus write i∗ω = δ ·α, where δ belongs to
H0(Y ,OY (diffY (F)) and α ∈H0(Y ,Ω1

Y ⊗NY) is a twisted 1-form defining Y = F
∣∣
Y
.

If f ∈ H0(X,OX(ΔF )) defines the degeneracy divisor of the p-curvature of F and

η ∈H0(X,Ω1
F ⊗detNV (F)⊗N∗

F ) is the element exhibited in Subsection 4.7 that defines
V (F), then, using Lemma 4.16, we can write

α(vp) =
i∗ω(vp)

δ
=

i∗f

δ
(i∗η(v))p

for every v ∈ TY . Since the degeneracy divisor of the p-curvature of Y is the largest

effective divisor ΔY such that ΔY ≤ (α(vp))0 for every v ∈ TY , we deduce that

ΔY = i∗(f)0− (δ)0+p · (i∗η)0 =ΔF
∣∣
Y
−diffY (F)+p · (i∗η)0 .

The result follows from Item (2) of Lemma 5.8 .

5.7. The degeneracy divisor of the p-curvature on P2
k and P1

k ×P1
k

In this subsection, we review a result on the structure of the degeneracy divisor of the
p-curvature of sufficiently general foliations on P2

k and on Hirzebruch surfaces, and sketch

its proof, obtained by the first author in [34]; see also [33]. We refer the reader to these

works for details.
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Theorem 5.10. Let k be an algebraically closed field of characteristic p > 0. Let X be
equal to P2

k or a Hirzebruch surface. If F is a general foliation on X with canonical bundle

ωF , then at least one of the following assertions holds true.

(1) The line-bundle ωF is not pseudo-effective and F is a p-closed foliation.

(2) The surface is a Hirzebruch surface different from P1
k ×P1

k, the line-bundle ωF is

pseudo-effective but not nef, the foliation F is p-dense but the unique curve of
negative self-intersection appears as with multiplicity p in the degeneracy divisor of

the p-curvature of F .

(3) The image of ωF under the group morphism Pic(X)→ Pic(X)⊗Z Fp is zero.

(4) The degeneracy divisor of the p-curvature of F is reduced.

Sketch of the proof. Let us first consider the case of X = P2
k . If F is a foliation of P2

k ,

then the degree of F , deg(F), is defined by the number of tangencies between of F a
non-invariant line �, counted with multiplicities. By definition, deg(F) ≥ 0 and a simple

computation shows that NF =OP2(deg(F)+2) and ωF =OP2
k
(deg(F)−1)).

If deg(F) = 0, then F is always p-closed. Indeed, if F is p-dense, then the degeneracy

divisor of the p-curvature would be a section of NF ⊗ ω⊗p
F = OP2

k
(2− p) containing

the singular set of F . A clear absurdity for p > 2. In the case p = 2, we also reach a

contradiction since sing(F) is non-empty because c2(Ω
1
P2
k
(2)) = 1.

If deg(F) = 1, then F is defined by a regular vector field v (since ωF =OP2
k
). In suitable

affine coordinates, where 0 is a singularity of v and the line at infinity is invariant, a
general v takes the form

v = αx
∂

∂x
+βy

∂

∂y
.

If α/β /∈ Fp, then F is p-dense with ΔF equal to the sum of the lines {x = 0}, {y = 0}
and the line at infinity.
If deg(F) = 2, then we consider the foliation on P2

k defined, in affine coordinates, by

ω = (xdy−ydx)+ω2,

where ω2 is a general homogeneous 1-form with polynomial coefficients of degree two. The

foliation defined by ω leaves the line at infinity invariant and three lines through 0 ∈ A2
k

defined by the vanishing of ω(R) = ω2(R), where R = x ∂
∂x +y ∂

∂y is the radial (or Euler)

vector field. It follows that the degeneracy divisor is supported on the union of four lines
above and a curve C of degree at most p, since the degeneracy divisor of the p-curvature

of F has degree p+4. Blowing up the origin, one sees that the strict transform of C must

intersect the strict transform of a line through 0 in exactly one point, and this implies,
after some work, that for ω2 generic, C is an irreducible and reduced curve of degree p

invariant by F .

For deg(F) > 2, we start with a foliation of G on P2
k of degree two, with reduced

ΔG and leaving invariant three lines in general position, say {xyz = 0}. We consider

the endomorphism for every positive integer � ≥ 2 not divisible by p; one considers the

endomorphism of P2
k defined by ϕ�(x : y : z)= (x� : y� : z�). The pull-back foliation F� =ϕ∗

�G
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is a foliation with ωF�
=OP2

k
(�), hence of degree �+1. Moreover, since ϕ� is étale on the

complement of the invariant divisor {xyz = 0}, Proposition 5.3 implies that ΔF�
is a

reduced divisor. This shows that when Assertions (1), (2) and (3) are not valid, then
Assertion (4) holds true.

To prove the result on Hirzebruch surfaces, one constructs examples of p-dense foliations

with p-curvature having reduced degeneracy divisor by applying a series of birational
transformations and ramifications as above starting from examples on P2

k . We refer to

[34] for details.

Remark 5.11. We point out, for later use, that the proofs presented in [34] show that
whenever there exists a foliation on P2

k or on a Hirzebruch surface with reduced degeneracy

divisor for its p-curvature, there exists a foliation with the same property and same normal

bundle that leaves invariant the boundary of X, seen as a toric surface.

6. Families of foliations

This section studies the behavior of the kernel of the p-curvature and the degeneracy

divisor of the p-curvature under deformations.

6.1. Families of foliations

Let T be an irreducible algebraic variety. For us, a family of codimension q foliations

parametrized by T consists of an algebraic variety X , a smooth and projective morphism

π : X → T , a line bundle NF on X , and a foliation F on X of codimension q+dimT
defined by a relative q-form ω ∈H0(X ,Ωq

X /T ⊗NF ) with codimension two singular set

over any point t ∈ T such that the kernel of

TX /T −→ Ωq−1
X /T ⊗NF

v �→ ivω

is an involutive subsheaf of TX of rank dimX −dimT − q.

When X =X×T , we will say that F is a family of foliations on X.

Remark 6.1. There are other possibilities for defining a family of foliations parame-

terized by T. One can, for instance, impose that a family of foliations is defined by an

involutive subsheaf of TX /T which is flat over T. This would lead to a more stringent

concept for a family of foliations, which many authors have already studied. Our definition
above aims to study the irreducible components of the space of foliations on projective

spaces as considered by Cerveau, Lins Neto and others; see [11, 17] and references therein.

6.2. Behavior of the kernel of the p-curvature under deformations

If X is a polarized smooth and connected projective variety of dimension n, with

polarization given by an ample divisor H, and E is a reflexive sheaf on X, we set the

degree of E with respect to the polarization H equal to det(E) ·Hn−1.
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Recall from the statement of Lemma 4.9 that V (F) is the distribution with tangent

sheaf determined by the kernel of the p-curvature of a p-dense foliation F ; that is,

Frob∗TV (F) = kerψF .

Naturally, ωV (F) = det(TV (F))
∗ is the canonical bundle of V (F).

Lemma 6.2. Let F be a family of codimension one foliations on a smooth projective

variety X parameterized by an algebraic variety T. If 0 ∈ T is a closed point such that F0

is p-dense, then there exists an open neighborhood U ⊂ T of 0 such that for every closed

point t ∈ U , the foliation Ft is p-dense and the inequality

degH ωV (Ft) ≤ degH ωV (F0)

holds true for any polarization H.

Proof. Consider the relative p-curvature morphism

ψF/T : Frob∗TF/T −→NF

v �→ ω(vp),

where Frob : X → X is the absolute Frobenius.

Let C be the support of cokerψF/T and fix an embedding of X in some PN . According
to [25, Chapter III, Theorem 9.9], for every m � 1, the Hilbert function hC(m,t) =

χ(X,OCt
(m)) is lower semi-continuous, where OCt

(m) = OCt
⊗OPN (m) as usual. Let Z

be the subset of T such that for every z ∈ Z, corresponding to the p-closed foliations in

the family. For every t in the complement U = T −Z, the subscheme Ct of X is different
from X and has divisorial part equal to ΔFt

. There exists a positive constant c such that

c ·deg(ΔFt
) is the leading coefficient of the Hilbert function hC(m,t).

Since det(kerψFt
)∗, the Frobenius pull-back of the canonical bundle of the kernel of

the p-curvature of Ft, is isomorphic to det(Frob∗TXt
)∗ ⊗ det(NFt

⊗ICt
), we deduce

from the lower semi-continuity of hC , the upper-semicontinuity of the function t �→
deg(det(kerψFt

)) on U as wanted.

If one further assumes that the degeneracy divisor of a p-dense codimension one foliation
is free from p-th powers, then one gets the reverse inequality for the degree of the kernel

of the p-curvature.

Lemma 6.3. Let F be a family of codimension one foliations on a smooth projective
variety X parameterized by an algebraic variety T. If 0 ∈ T is a closed point such that

F0 is p-dense and the degeneracy divisor of its p-curvature is free from p-th powers, then

there exists a non-empty open subset V ⊂ T such that for every closed point t ∈ U , the
foliation Ft is p-dense and the equality

degH ωV (Ft) = degH ωV (F0)

holds true for any polarization H.
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Proof. Thanks to Lemma 6.2, it suffices to show the existence of an open neighborhood
U of 0 ∈ T such that

degH ωV (Ft) ≥ degH ωV (F0)

for any t∈U . For that, let L be a very-ample line bundle on X =X×T such that TF ⊗L
is generated by global sections. Choose v ∈H0(X ,TF ⊗L) such that v0, the restriction of

v to X×{0}, is generically transverse to V (F0). If ω ∈H0(X ,Ω1
X /T ⊗NF ) is a twisted

1-form defining the family of foliations F , then the section σ=ω(vp)∈H0(X ,NF ⊗L⊗p)
defines a divisor D on X . The choice of v guarantees that the support of D does not

contain X0. Consequently, there exists an open neighborhood of 0 ∈ T such that the

support of D does not contain Xt. For any t ∈ U , Dt := D
∣∣
Xt

is, by construction, equal

to ΔFt
+ pRt for some effective divisor Rt. Let R ∈ Div(X ) be the maximal effective

divisor such that pR ≤ D . Semi-continuity implies that Rt := R
∣∣
Xt

is equal to Rt for

every t in an non-empty open subset V of T (not necessarily containing 0).

Since we are assuming that ΔF0
= D0 − pR0 is free from p-th powers, we have that

R0 ≤ R0. Using that the degrees degH Dt and degH Rt do not depend on t, we obtain
that

degH ΔF0
≤ degH (ΔF0

+p(R0−R0))

= degH (D0)−degH (pR0)

= degH (Dt)−degH (pRt) = degH ΔFt

for every t ∈ V . Proposition 4.12 implies the result.

7. Integrability of the Cartier transform

So far, we have studied foliations in positive characteristic without reference to foliations

in characteristic zero. In this section, we show that foliations in positive characteristic

obtained through reduction of foliations in characteristic zero are far from being arbitrary

as the Cartier transform of them are integrable/involutive, a property that does not hold
for arbitrary foliations.

7.1. Lifts of foliations modulo p2

Let k be an algebraically closed field of characteristic p > 0, let W2(k) be the ring of Witt

vectors of length 2 with values in k, and set S =Spec(W2(k)). A lift of a smooth algebraic

variety X module p2 is a flat smooth S -scheme X ′ such that X = X ′ ⊗ k. Likewise, a
lift modulo p2 of a foliation on X consists of a lift X ′ of X modulo p2 and subsheaf

TF ′ ⊂ TX′/S , flat over S, such that

(1) the sheaf TF ′ is a lift of TF , i.e.,, TF = TF ′ ⊗k; and

(2) the sheaf TF ′ is involutive; that is, the morphism

2∧
TF ′ →

TX′/S

TF ′

induced by Lie brackets is identically zero.
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As already noted by Miyaoka in [35, Example 4.2], not every foliation admits a lift

modulo p2. As it will be essential in what follows, we present below a variant of Miyaoka’s

example.

Example 7.1. Let p be an odd prime, let k be the algebraic closure of Fp and let ω be
the 1-form xp−1dx+zpyp−1dy on A3

Z
. The reduction modulo p of ω defines a foliation F

on A3
k that does not admit a lift modulo p2.

Proof. First, observe that

ω∧dω = p(xyz)p−1dx∧dy∧dz,

and, therefore, the reduction modulo p of ω defines an involutive subsheaf of TA3
k
. Let F

be the corresponding foliation on A3
k . If F admits a lift modulo p2 and we denote by ω

the reduction of ω modulo p2, then such lift is defined by the 1-form ω+pη for a suitable

1-form η ∈ Ω1
A3

k
which satisfies

(ω+pη)∧d(ω+pη) = 0 in Ω1
A3

W2(k)
. (7.1)

Expanding the left-hand side of Equation (7.1), we get

p
(
zpyp−1dy∧dη+(xyz)p−1dx∧dy∧dz+xp−1dx∧dη

)
= 0.

Since dη has no terms that are scalar multiples of (xy)p−1, this expression is always
non-zero. It follows that F does not admit a lift modulo p2.

Remark 7.2. Observe that the arguments presented in Example 7.1 not only show that
F does not admit a lift modulo p2 but also show that the restriction of F to any open

subset U ⊂ A3
k containing the origin does not admit a lift modulo p2.

7.2. Integrability of the Cartier transform of liftable foliations

Our next result is an amplification of Miyaoka’s Example 7.1.

Theorem 7.3. Let F be a codimension one foliation on a smooth projective variety X

defined over a field k of characteristic p > 2. If F is p-dense and lifts to a foliation over
the ring of Witt vectors W2(k), then the Cartier transform of F is a foliation.

Proof. We will prove the contrapositive, (i.e., if the Cartier transform of a p-dense

codimension one foliation F is not a foliation, then F does not lift modulo p2).

Proposition 4.5 guarantees the existence of a closed rational 1-form ω defining F . The
Cartier transform of F is defined by the rational 1-form θ =C(ω). By assumption, the

3-form θ∧dθ does not vanish identically. In particular, dimX ≥ 3.

Assume first that dimX = 3. Let a ∈ X be a closed point such that θ is regular (no

poles) at x and θ∧dθ(x) �= 0. Denote by m⊂OX,a the corresponding maximal ideal. Let
x,y ∈ m be such that dθ = dx∧dy modmΩ2

X,a. We can integrate the 2-form dθ modulo

m2 and write

θ = xdy+dz+wp−1dw modm2Ω1
X,a
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for some z,w ∈m. If p > 2, then we can assume that w is equal to zero as wp−1 ∈m2. The

non-vanishing of θ∧dθ at a implies that x,y,z generate m.
Since θ =C(ω), we can write

ω = xpyp−1dy+ zp−1dz+df modm2Ω1
X,a

for some f ∈m.

Let X ′ be a lift of X, let a′ be a lift of a and let ω′ be a 1-form in Ω1
X′,a′ that defines

a lift F ′ of F to X ′ and with reduction modulo p equal to ω. We can write

ω′ = (xpyp−1dy+ zp−1dz+df ′)+pη mod
〈
p2,m2pΩ1

X′,a′
〉

for any lift f ′ of f and a certain η ∈ Ω1
X,a. Expanding ω′∧dω′, we get

p
(
(xpyp−1dy+ zp−1dz+df ′)∧dη+(xyz)p−1dx∧dy∧dz

)
+

+p
(
(xy)p−1df ′∧dx∧dy

)
modulo

〈
p2,m3p−2Ω1

X′,a′
〉
. As in Example 7.1, for no matter which choice of f ′ and η,

the term (xyz)p−1dx∧dy∧dz will not be cancelled. This shows that no lift of ω defines

a foliation when dimX = 3.
When dimX > 3, we reduce to the previous case by restricting to the intersection of

dimX−3 sufficiently general hyperplane sections.

As pointed out by the referee, thanks to Chow’s Lemma [43, Tag 0200], the result above
also holds for proper smooth varieties.

8. Lifting the kernel of the p-curvature

This section defines integral models for holomorphic foliations and discusses the lifting,

back to characteristic zero, of properties of the reduction to positive characteristic of a
holomorphic foliation.

8.1. Reduction modulo p of holomorphic foliations on projective manifolds

Let F be a singular holomorphic foliation defined on a complex projective manifold X.

The variety X and the subsheaf TF ⊂ TX can be viewed as objects defined over a finitely

generated Z-algebra R⊂ C. More precisely, there exists a projective scheme X flat over
Spec(R) and subsheaf TF ⊂ TX /R flat over Spec(R) such that X is isomorphic to the

base change X ⊗RC and F is isomorphic to F ⊗RC.

The pair (X ,F ) is called an integral model for (X,F) and is not uniquely determined
by (X,F). Roughly speaking, it depends on the choice of generators for the ideal of X,

on a finite presentation of TF , as well as on the choice of an open subset of the affine

scheme determined by the coefficients used to define the ideal and the presentation.
If p ⊂ R is a maximal ideal, then the residue field k(p) = R/p is a finite field of

characteristic p > 0 with algebraic closure k = k(p) � Fp. The reduction of F modulo

p is the foliation Fp of Xp = X ⊗R k determined by TFp
= TF ⊗R k.
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Example 8.1. Let F be the codimension one foliation on A3
C
defined by the 1-form

ω =
√
−1 · dx

x
+

dy

y
+

dz

z
.

We can take the Z-algebra R = Z[
√
−1] � Z[α]/(α2 +1) as the ring of definition of F .

The ring R has the following (maximal) prime ideals:

(1) only one prime ideal over 2, namely (1+
√
−1)R= (1−

√
−1)R;

(2) for each rational prime p = a2 + b2 congruous to 1 modulo 4, two distinct prime
ideals, namely (a±

√
−1b)R; and

(3) for each rational prime p congruous to 3 modulo 4, the prime ideal pR.

If we reduce F modulo (1+
√
−1)R, we get a p-closed foliation over F2 defined by

d log(xyz). Likewise, if we reduce F modulo (a± b
√
−1)R, p = a2 + b2 being a prime

congruous to 1 modulo 4, we get a p-closed foliation over Fp defined by d log(xyx). In
contrast, if we reduce F modulo p = pR, where p is a rational prime congruous to 3

modulo 4, we get a p-dense foliation with V (Fp) defined by the kernel of the 2-form

ωp∧C(ωp) = (αp ·
dx

x
+

dy

y
+

dz

z
)∧ (α

1/p
p · dx

x
+

dy

y
+

dz

z
),

where αp stands for the class of α in the algebraic closure of R/p� Fp2 .

Example 8.2. Now let F be the codimension one foliation on A3
C
defined by the 1-form

ω = α · dx
x

+
dy

y
+

dz

z
,

with α equal to an arbitrary transcendental number. We can take the Z-algebra R= Z[α]
as the ring of definition of F . The maximal ideals of the ring R are of the form (p,f(α))R,

where p is a rational prime and f ∈Z[α] is a monic polynomial with irreducible reduction

modulo p. The reduction of F modulo p= (p,f(α))R is p-closed if the degree of f is one;
otherwise, Fp is p-dense.

8.2. A conjecture by Ekedahl, Shepherd-Barron and Taylor

In general, it is not easy to draw conclusions about the geometry of the holomorphic

foliation F from the behavior of the reduction modulo p for different primes p.

Conjecture 8.3 (Ekedahl, Shepherd-Barron and Taylor). Let F be a holomorphic

foliation on a complex projective manifold X with an integral model (X ,F ) defined over

a finitely generated Z-algebra R. The foliation F is algebraically integrable (i.e., all its
leaves are algebraic) if and only if Fp is p-closed for every maximal prime (i.e., closed

point) p in a non-empty Zariski open subset of Spec(R).

Despite the important particular cases settled by Bost in [6], Conjecture 8.3 is wide

open. It must be mentioned that Conjecture 8.3 generalizes a conjecture by Grothendieck

and Katz, which is also wide open despite recent advances [41, 37].
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Under the assumptions of Conjecture 8.3, Theorem 4.1 implies the existence of algebraic
subvarieties invariant by Fp that cover Xp for a Zariski open and dense set of maximal

primes p⊂ Spec(R). This is not enough to guarantee the existence of algebraic subvarieties

invariant by F covering X as the degrees of the subvarieties of Xp invariant by Fp may
be unbounded as a function of p.

8.3. Lifting subvarieties/subdistributions of bounded degree

If one can guarantee the existence of subvarieties/subdistributions for the reduction of a
foliation modulo a Zariski dense set of maximal primes with degree uniformly bounded,

then the lemma below implies the existence of the same type of objects in characteristic

zero respecting the same bounds.

Lemma 8.4. Let F be a holomorphic foliation on a polarized projective manifold (X,H)

and let (X ,H ,F ) be an integral model for (X,H,F) with ring of definition R. If there

are integers M,m, and a Zariski dense set of maximal primes P ⊂ Spec(R), such Fp

has, for every p ∈ P,

(1) an invariant subvariety of dimension m and degree at most M; or

(2) a subdistribution Gp of dimension m with degHp
ωGp

≤M.

Then F has, respectively,

(i) an invariant subvariety of dimension m and degree at most M; or

(ii) a subdistribution G of dimension m with degH ωG ≤M.

Proof. The implication (1) =⇒ (i) is the content of [31, Proposition 7.1]. The proof of
the implication (2) =⇒ (ii) follows the same principles and is very similar to the proof

of [39, Proposition 6.2]. We proceed to give details of this later implication.

Observe that subdistributions of F , resp. Fp, are in one-to-one correspondence with
torsion-free quotients of TF , resp. TFp

. Once the degree of the quotient is bounded

from above, [24, Corollary 2.3] guarantees that the possible Hilbert polynomials for the

quotients belong to a finite set. Moreover, bounds for the degree of the quotient are
equivalent, through adjunction, to bounds for the degree of the canonical bundle of the

subdistribution.

The formation of Quot schemes commute with base change, [24]. Therefore, for a fixed

Hilbert polynomial χ, the scheme Quotχ(X,TF ) is non-empty if and only if its reduction
modulo p, Quotχ(Xp,TFp

), is non-empty for a Zariski dense set of primes p. This is

sufficient to prove that (2) =⇒ (ii).

To obtain a priori upper bounds for the degree of invariant subvarieties of the reduction
to positive characteristic does not seem more manageable than obtaining the same upper

bounds in characteristic zero. In contrast, if F is a holomorphic foliation such that the

reduction modulo p is not p-closed for a Zariski dense set of primes p ⊂ Spec(R), then
the degree of the canonical bundle of V (Fp) is uniformly bounded as a function of p.

Therefore, one gets from the lemma above the existence of certain subdistributions in

characteristic zero. In Section 9, we will explore this fact to obtain new results about
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the irreducible components of the space of holomorphic codimension one foliations on
projective spaces.

8.4. A cautionary remark

For foliations of codimension one, Conjecture 8.3 can be rephrased as follows:

the general leaf of a codimension one holomorphic foliation F is Zariski dense if and only if Fp is p-dense
for a non-empty Zariski open set of maximal primes p ∈ Spec(R).

By dropping the codimension one assumption, one obtains a strengthening of Conjec-
ture 8.3, which turns out to be false as we now proceed to show.

Proposition 8.5. Let X be a complex projective manifold of dimension 2n+1. Assume

that H0(X,Ω2
X) is generated by a 2-form ω satisfying ωn �= 0 and let F be the foliation on

X of dimension one defined by the kernel of ω. If (X ,F ) is an integral model for (X,F)

defined over a finitely generated Z-algebra R, then Fp is not p-dense for any maximal
prime p in an open and dense subset of Spec(R).

Proof. By semi-continuity, there exists an open and dense subset U ⊂ Spec(R) such that

h0(Xp,Ω
2
Xp

) = 1 for every maximal prime p ∈ U . For p ∈ U , let ωp be the generator of

H0(Xp,Ω
2
Xp

) or, equivalently, the reduction modulo p of a generator of H0(X ,Ω2
X ).

Replacing U by an open subset, we can assume that ωn
p �= 0 for every p ∈ U .

Fix an arbitray maximal prime p ∈ U . Since ωn
p �= 0, the kernel of the morphism from

TXp
to Ω1

Xp
defined by contraction with ωp is the tangent sheaf of a foliation Fp of

dimension one. Let v be any rational section of TFp
. Since h0(X,Ω2

Xp
) = 1, C(ωp) is a

multiple of ωp. Consequently, ivC(ωp) = 0. According to Lemma 4.16,

0 = ivC(ωp) =C(ivpωp− (Lv)
p−1(ivωp)) =C(ivpωp).

The vanishing of C(ivpω) implies the existence of a rational function f on Xp such that

ivpωp = df (i.e., ivpωp is exact). If df =0, then Fp is p-closed; if not, then f is a non-trivial

rational first integral for Fp. In both cases, Fp is not p-dense as claimed.

If X is a complex projective symplectic manifold of dimension 2n with symplectic form

ω and Y ⊂X is a smooth hypersurface with big normal bundle, then the characteristic
foliation of Y (i.e., the one-dimensional foliation on Y induced by the pull-back of ωn−1

to Y ) has Zariski dense general leaf [3, Theorem 1.7]. In contrast, Proposition 8.5 above

implies that any integral model for F is not p-dense for almost every prime p.

Part 2. The space of holomorphic foliations on projective spaces

9. Foliations on complex projective spaces

In the second part of the paper, we will focus on codimension one foliations on complex
projective spaces. We will use the results presented in the first part to obtain new

information about the irreducible components of the scheme Fold(P
n
C
) parameterizing

degree d codimension one foliations on Pn
C
.
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In this section, we settle the notation, recall the definition of the space of foliations
on projective spaces and establish the conventions concerning the reduction to positive

characteristic used throughout the second part of the paper.

9.1. Foliations on projective spaces

Let k be an arbitrary algebraically closed field and let F be a codimension q ≥ 1 foliation
on the projective space Pn

k , n≥ q+1. Let ω ∈H0(Pn
k ,Ω

q
Pn
k
⊗detNF ) be a twisted q-form

with coefficients in the line-bundle detNF such that TF ⊂ TPn
k
equals to the kernel of

morphism

TPn
k
−→ Ωq−1

Pn
k

⊗detNF

defined by contraction with ω. The degree of F is, by definition, the degree of the zero

locus of i∗ω ∈H0(Pq
k,Ω

q
P
q
k
⊗ i∗NF ), where i : Pq

k → Pn
k is a general linear embedding of Pq

k

into Pn
k . In other words, the degree of F is the degree of the tangency divisor of F with

a general Pq
k linearly embedded in Pn

k . Since Ωq
P
q
k
=OP

q
k
(−(q+1)), it follows that

detNF =OPn
k
(deg(F)+ q+1)

for any codimension q foliation F of degree deg(F). Adjunction formula implies that any
such foliation F has canonical sheaf satisfying

ωF =OPn
k
(deg(F)−dim(F)).

It follows from Euler’s sequence that we can identify H0(Pn
k ,Ω

q
Pn
k
(d+ q+1)) with the

vector space of homogenous polynomial q-forms

n∑
0≤i1≤...≤iq≤n

ai1,...,iq (x0, . . . ,xn)dxi1 ∧·· ·∧dxiq

with coefficients ai1,...,iq ∈ k[x0, . . . ,xn] of degree d+ 1, which are annihilated by the

radial/Euler vector field R =
∑n

i=0xi
∂

∂xi
. We will say that a homogeneous polynomial

q-form on An+1
k representing an element of H0(Pn

k ,Ω
q
Pn
k
(d+ q+1)) is a projective q-form

of degree d+ q+1.

9.2. The space of codimension one foliations on projective spaces

The space/scheme of codimension one foliations of degree d on the projective space Pn
k

is, by definition, the locally closed subscheme Fold(P
n
k ) of PH

0(Pn
k ,Ω

1
Pn
k
(d+2)) defined by

the conditions

[ω] ∈ Fold(P
n
k ) if, and only if, codimsing(ω)≥ 2 and ω∧dω = 0 .

The space/scheme of codimension q foliations of degree d foliations of Pn
k can be

defined similarly; we refer to [15] for details. Here we will only mention that besides

the integrability/Frobenius condition, one also has to add the decomposability/Plücker

conditions to consider only q-forms with kernels having corank q.
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9.3. Conventions about the reduction to positive characteristic

Let F be a codimension one foliation on Pn
C
(i.e., F is a codimension one holomorphic

foliation of a complex projective space of dimension n). Throughout this part of

the paper, we will need to consider an integral model (X ,F ) for F as defined in

Section 8. Concretely, if ω is a projective 1-form defining F and R0 ⊂ C is any
finitely generated Z-algebra containing the coefficients of ω, then we take R equal to

a finitely generated extension of R0 obtained by inverting finitely many elements of R0,

X = Pn
R = ProjR[x0, . . . ,xn], and F as the foliation defined by ω. Notice that one needs

to pass to the open subset Spec(R)⊂ Spec(R0) to obtain the flatness properties required

by the definition.

We will say that a property P for a foliation F holds for almost every prime if and only
if there exists an integral model of F defined over a finitely generated Z-algebra R and

there exists a non-empty open subset U ⊂ Spec(R) such that for every maximal prime

p ∈ U , the property P holds for the reduction of F modulo p.

Likewise, we will say a property P holds for a Zariski dense set of primes if and only
if there exists an integral model of F defined over a finitely generated Z-algebra R and

there exists a Zariski dense subset Z ⊂ Spec(R) formed only by maximal primes such that

for every p ∈ Z, the property P holds for the reduction modulo p of F .
These two notational shortcuts will allow us to shorten the statements quite a bit.

10. Subdistributions of minimal degree

If F is a codimension one foliation on Pn
k and i is an integer between 1 and n−1, then

we define

δi(F) = min
D⊂F

deg(D),

where D ranges over all codimension i distributions everywhere tangent to in F . By

definition, δ1(F) = deg(F).

If Σ⊂ Fold(P
n
k ) is an irreducible component, then we will set δi(Σ) equal to δi(F), where

F is a generic foliation F ∈ Σ. Semi-continuity implies that

δi(Σ)≥ δi(F)

for every F ∈ Σ.

10.1. Intersections and spans of pairs of distributions

Let X be a projective manifold defined over an algebraically closed field k. Let D1 and
D2 be two distributions on X. We define D1∩D2 as the distribution on X with tangent

sheaf equal to the intersection TD1
∩TD2

⊂ TX . If we consider the natural morphism

ϕ : TD1
⊕TD2

−→ TX

v1⊕v2 �→ v1+v2,

then TD1∩D2
is isomorphic to the kernel of ϕ.
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Likewise, we define the span of D1 and D2, denoted by D1+D2, as the distribution on
X with tangent sheaf equal to the saturation of the image of ϕ in TX .

Our definitions imply that TD1∩D2
and TD1+D2

fit into the exact sequence

0→ TD1∩D2
→ TD1

⊕TD2

ϕ−→ TD1+D2
.

Observe that the rightmost arrow has torsion cokernel. Taking determinant, we get the
existence of an effective divisor defect(D1,D2) ∈ Div(X) with support contained in the

support of the cokernel of the rightmost arrow such that

ωD1
⊗ωD2

= ωD1∩D2
⊗ωD1+D2

⊗OX(defect(D1,D2)) .

When codimD1 ∩D2 = codimD1+codimD2, then the divisor defect(D1,D2) is equal to

the zero divisor of ω1 ∧ω2, where ω1 and ω2 are, respectively, differential forms with
coefficients in detND1

and detND2
defining D1 and D2.

Specializing to distributions on projective spaces (i.e., X = Pn
k ), we obtain the identity

deg(D1∩D2) = deg(D1)+deg(D2)−deg(D1+D2)−deg(defect(D1,D2)), (10.1)

where we adopt the conventions that the foliation with only one leaf has degree −1 and

that the foliation by points has degree zero. These conventions are made in order to
ensure that ωF is isomorphic to OPn

k
(deg(F)−dim(F)).

10.2. Bounds for the minimal degrees of subdistributions

In this subsection, we establish bounds for the integers δi(F). We will make repeated use

of the following observation.

Lemma 10.1. Let k be an algebraically closed field and let F be a codimension one

foliation on Pn
k . Then the vector space

H0(Pn
k ,Ω

i−1
F (δi(F)−deg(F)+(i−1)))

is non-zero for any i between 1 and n−1.

Proof. Let ω ∈ H0(Pn
k ,Ω

1
Pn
k
(deg(F) + 2)) be a twisted 1-form defining F . Let D be a

distribution on Pn
k of degree δ and codimension q. As such, D is defined by a twisted

q-form η ∈ H0(Pn
k ,Ω

q
Pn
k
(δ+ q+1)). If D is everywhere tangent to F , then locally, away

from sing(F), we can decompose η as the wedge product of ω with a (q− 1)-form α.

The (q−1)-form is not uniquely defined since ω∧α= ω∧ (α+ω∧β) for any (q−2)-form
β, but this is the only ambiguity in the definition of α. Hence, α

∣∣
TF

is unique and we

have a global non-zero section of Ωq−1
F (δ+ q+1− (deg(F)+2)) on Pn

k − sing(F). Since

codimsing(F) ≥ 2, we obtain a non-zero element of H0(Pn
k ,Ω

q−1
F (δ−deg(F)+ q−1)) as

claimed.

Lemma 10.2. Let k be an algebraically closed field and let F be a codimension one

foliation on Pn
k . For any i between 1 and n−1, we have an injective morphism
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Ωi
F ↪→ Ωi+1

Pn
k
(deg(F)+2) (10.2)

with image in N∗
F ⊗Ωi

Pn
k
(deg(F)+2).

Proof. Let ω ∈H0(Pn
k ,Ω

1
Pn
k
(deg(F)+2)) be a twisted 1-form defining F . Since both Ωi

F
and Ωi+1

Pn
k
(deg(F) + 2) are reflexive sheaves, it suffices to define the morphism on the

complement of sing(F). If η is a germ of section of Ωi
F
∣∣
X−sing(F)

, then we can consider

an arbitrary lift of η to Ωi
X and take the wedge product with ω. Since different lifts differ

by 1-forms proportional to ω, this defines unambiguously the sought morphism.

Proposition 10.3. Let F be a codimension one foliation on Pn
k , n ≥ 3. If the charac-

teristic of k does not divide deg(F) + 2 = deg(NF ), then δi+1(F) ≤ δi(F). Otherwise,
δi+1(F)≤ δi(F)+1.

Proof. Let us first verify that δi+1(F)≤ δi(F)+1. Let D be a codimension i distribution
of degree δi(F). To prove the claim, it suffices to construct a distribution of codimension

i+1 and degree δi(F)+1. For that, Equation (10.1) implies that it suffices to consider

the intersection of D with general codimension one foliation G of degree zero.

Assume from now on that the characteristic of k does not divide deg(NF ) = deg(F)+2.
Let H be a hyperplane of Pn which is not invariant by F . If h is a linear form on An+1

k

cutting out H, then the logarithmic differential −deg(NF )
dh
h defines a flat logarithmic

connection ∇ on NF . Therefore, there exists η ∈H0(Pn
k ,Ω

1
F (logH)) such that

∇B−∇= η,

where ∇B : NF → NF ⊗Ω1
F is Bott’s partial connection. Since both ∇B and ∇ are flat

F-connections, dFη=0. The non-invariance of H and the hypothesis on the characteristic
of the base field imply that η �= 0.

Let D be a foliation of codimension i and degree δi(F). As such, D is defined by α ∈
H0(Pn

k ,Ω
i
Pn
k
(δi(F)+ i+1). If D is everywhere tangent to F , then we can, unambiguously,

define the wedge product

α∧η ∈H0(Pn
k ,Ω

i+1
Pn
k
(logH)(δi(F)+ i+1))) ;

see Lemma 10.2. Clearing out the denominator (i.e., multiplying ω ∧ η by a defining

equation of H ), we can interpret α ∧ η as a regular section of Ωi+1
Pn
k
(δi(F) + i+ 2).

Moreover, if H is sufficiently general, then α∧ η is non-zero and defines a codimension

i+1 distribution contained in F and of degree at most δi(F), as wanted.

Remark 10.4. The proof of the Proposition 10.3 can be phrased in more elementary

terms. Choose an affine subspace An
k ⊂ Pn

k such that H becomes the hyperplane at

infinity. Since H is not invariant, the restriction of F to An
k is defined by a 1-form ω

with coefficients of degree at most d+1 = deg(F) + 1. If we expand ω as the sum of

its homogeneous components ω0+. . .+ωd+1, then ωd+1 �= 0 and its contraction with the

Euler vector field R is identically zero. Euler’s formula implies that

iRdωd+1 = (d+2)ωd+1 = (deg(NF ))ωd+1 .
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Thus, if the characteristic of k does not divide deg(NF ), then dω is a non-zero two-

form defining a codimension two foliation G tangent to F . The foliation G coincides

with the foliation defined by the section η ∈ H0(Pn
k ,Ω

1
F (logH)) figuring in the proof

presented above. To conclude, Equation 10.1 implies that it suffices to take a codimension

i distribution realizing δi(F) and consider the intersection of it with the foliation G.

Example 10.5. The assumption on the characteristic of the base field in Proposition
10.3 is necessary. If F is a general codimension one foliation of degree zero on Pn

k , n≥ 3,

and the characteristic of k is two, then δ2(F) = 1 = deg(F)+1.

10.3. Subdistributions of foliations defined by logarithmic 1-forms

In this subsection, we will compute the integers δ2(F) for a codimension one holomorphic

foliation defined by a logarithmic 1-form with simple normal crossing divisors. In
particular, we will show that the bound provided by Proposition 10.3 is sharp.

Proposition 10.6. Let D be a simple normal crossing divisor on Pn
C
. Let ω ∈

H0(Pn
C
,Ω1

Pn
C

(logD)) be a logarithmic 1-form with polar divisor equal to D. If F is the

foliation defined by ω and η ∈ H0(Pn
C
,Ωi

F ), then dFη = 0. Moreover, if j > 0, then

H0(Pn
C
,Ωi

F (−j)) = 0 for every i between 1 and dimF −1 = n−2.

Proof. If η ∈H0(Pn
C
,Ωi

F ) is non-zero, then we can define the wedge product of η with ω, as

in Lemma 10.2, and obtain a non-zero section of H0(Pn
k ,Ω

i+1
Pn
C

(logD)). Since logarithmic

forms with poles on simple normal crossing divisors are closed according to Deligne’s

result [18, Corollary 3.2.14], we deduce that d(ω∧η) = 0. It follows that dFη= 0, showing
the first claim of the statement.

Let now j be a strictly positive integer, let i be a positive integer between 1 and n−2,

and let η be a non-zero element of H0(Pn
C
,Ωi

F (−j)). If f1,f2 are two arbitrary sections
of OPn

C
(j), then f1η and f2η belong to H0(Pn

C
,Ωi

F ). Therefore, dF (f1η) = dF (f2η) = 0 as

shown above. It follows that

dF

(
f1
f2

)
∧η

is identically zero. If i < dimF , then f1/f2 is a first integral for the subdistribution of F
defined by η. Since f1 and f2 are arbitrary sections of OPn

C
(j), we obtain a contradiction

proving the second claim.

Corollary 10.7. Let n ≥ 3 be a positive integer and let D be a simple normal crossing

divisor on Pn
C

with � ≥ 2 distinct irreducible components. Let ω ∈ H0(Pn
C
,Ω1

Pn
C

(logD))

be a logarithmic 1-form with polar divisor equal to D, and let F be the codimension
one foliation defined by ω. Then δ2(F) = deg(F) when � = 2, and δ2(F) = deg(F)− 1

otherwise.

Proof. Since D is normal crossing and (ω)∞ = D, the 1-form ω, seen as a section of

Ω1
Pn
C

(logD), has no zeros at a neighborhood of the support of D. The ampleness of D

implies that the zero set of ω consists of finitely many points, as otherwise positive

https://doi.org/10.1017/S1474748023000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000361


Codimension one foliations in positive characteristic 1739

dimensional components of the zero set of ω would necessarily intersect D. Therefore,
NF =OPn

C
(D) and deg(F) = δ1(F) = degD−2.

If δ2(F) < deg(F)− 1, then h0(Pn
C
,Ω1

F (−j)) �= 0 for some j > 0. But this contradicts

Proposition 10.6 and, consequently, implies that δ2(F)≥ deg(F)−1.
If �≥ 3, then the restriction of a general logarithmic 1-form with poles on D shows that

h0(Pn
C
,Ω1

F ) �= 0. Hence, when �≥ 3, δ2(F) = deg(F)−1, as claimed.

It remains to analyze the case � = 2. We will first show that δ2(F) ≥ deg(F). Aiming

at a contradiction, assume δ2(F) = deg(F)−1. Lemma 10.1 gives a non-zero section η of
Ω1

F . The wedge product of η with ω, well-defined as explained by Lemma 10.2, gives a

non-zero element of H0(Pn
C
,Ω2

Pn
C

(logD)). Since D has only � = 2 irreducible components

by assumption, the group H0(Pn
C
,Ω2

Pn
C

(logD)) = 0 is zero; see, for instance, [21, Corollary

2.9]. This gives the sought contradiction showing that δ2(F)≥ deg(F) when �=2. Finally,

we apply Proposition 10.3 to obtain the reverse inequality δ2(F)≤ deg(F).

11. Codimension two subdistributions of small degree

11.1. Integrability and uniqueness

The proof of Corollary 10.7 shows that, in general, for a given foliation on a projective

space, we do not have uniqueness for the subdistributions realizing δi(F). Our next

result shows that if δ2(F) is small enough, then we have not only uniqueness but also
integrability of the subdistribution realizing δ2(F).

Proposition 11.1. Let F be a codimension one foliation on Pn, n ≥ 3, and let D be a

distribution of codimension two contained in F . If D is non-integrable, then

deg(D)≥ deg(F)+1

2
.

Moreover, if there exists another codimension subdistribution D′ of the same degree of D
but different from it, then

deg(D)≥ deg(F)

2
.

Proof. Since D is contained in F , the proof of Lemma 10.1 shows that D is defined by a

section η of Ω1
F (deg(D)−deg(F)+1). If η is non-integrable, then

0 �= θ = η∧dFη ∈H0
(
Pn,Ω3

F (2(deg(D)−deg(F)+1))
)
.

The F-differential 3-form θ determines a non-zero section of

Ω4
Pn (deg(F)+2+(2(deg(D)−deg(F)+1))) ,

according to Lemma 10.2. Since h0(Ω4
Pn(k)) = 0 for any k ≤ 4, we deduce that deg(F)+

2+(2(deg(D)−deg(F)+1))≥ 5. Therefore, the non-integrability of D implies

deg(D)≥ deg(F)+1

2
,

proving the first claim.
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To prove the second claim, let D′ be another codimension two distribution contained

in F . If D and D′ do not coincide, then D+D′ = F . Equation (10.1) implies that

deg(D)+deg(D′) = deg(D∩D′)+deg(F)+deg(defect(D,D′)) .

Hence, if deg(D) = deg(D′), then 2deg(D)≥ deg(F), implying the result.

11.2. Comparison with the kernel of the p-curvature

We start by settling the notation used throughout this subsection.

Let F be a codimension one foliation on Pn
C
. Let D be a codimension q ≥ 2 distribution,

contained in F and with degree equal to δq(F). Let us fix an integral model (F ,D,Pn
R)

for (F,D,Pn
C
) defined over a finitely generated Z-algebra R. We want to compare Dp with

V (Fp) for maximal primes p of R.

Lemma 11.2. If Fp is not p-closed, then the following assertions hold true.

(1) The degree of V (Fp) is at most deg(F)−1.

(2) If Dp is p-closed, then Dp is contained in V (Fp).

(3) If Dp is not contained in V (Fp), then

deg(V (Fp))≥ deg(Fp)−deg(Dp)+ δq+1(Fp) .

Moreover, for almost every prime of R, deg(Dp) = δq(Fp).

Proof. The first assertion follows from Proposition 4.12, whereas the second assertion

follows from the definition of V (Fp).

Consider the restriction of the p-curvature morphism ψF to Frob∗TDp
. The kernel

coincides with Frob∗TDp∩V (Fp). Comparing the cokernels of ψF and of ψF
∣∣
Frob∗TDp

, we

deduce that

deg(Dp)−deg(Dp∩V (Fp))≥ deg(Fp)−deg(V (Fp)) .

Since Dp ∩V (Fp) has codimension q+1, the inequality deg(Dp ∩V (Fp)) ≥ δq+1(Fp)
holds by definition. The third assertion follows.

Finally, the fact that deg(Dp) = δq(Fp) for almost every prime follows from semi-

continuity.

11.3. Foliations with codimension two subdistributions of degree zero.

Foliations on Pn
C

of degree zero and codimension q (0 < q < n arbitrary) are easy to
describe: they are all defined by the fibers of a linear projection Pn

C
��� P

q
C
; see, for

instance, [19, Theorem 3.8].

Proposition 11.3. Let F be a codimension one foliation on Pn
C
, n≥ 3, of degree d≥ 1.

If δ2(F) = 0, then F is a linear pull-back of a foliation on P2
C
.

Proof. According to Proposition 11.1, there exists a subfoliation G ⊂F realizing δ2(F) =

0. If π : Pn
C
��� P2

C
is the linear projection defining G, then [13, Lemma 3.1] implies that

F = π∗H for a foliation H of degree d on P2
C
.
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Let Lind(P
n
k ) ⊂ Fold(P

n
k ) be the reduced subscheme whose closed points correspond to

foliations on Pn
k that are pull-backs of degree d foliations on P2

k under a linear projection

π : Pn
k ��� P2

k . It is well-known that Lind(P
n
C
) is an irreducible component of Fold(P

n
C
)

(considered with its reduced structure) for every d≥ 0 and every n≥ 3; see, for instance,

[15, Subsection 5.1].

Corollary 11.4. Let Σ ⊂ Fold(P
n
C
) be an irreducible component. If δ2(Σ) = 0, then Σ =

Lind(P
n
C
).

11.4. Foliations with codimension two subdistributions of degree one

If F is a degree one foliation of codimension q on Pn
C
, then [30, Theorem 6.2] gives the

following precise description of F .

(1) The foliation F is defined by a dominant rational map Pn
C
��� PC(1

q,2) with

irreducible general fiber determined by q linear forms and one quadratic form;

or

(2) The foliation F is the linear pull-back of a foliation induced by a global holomorphic

vector field on P
q+1
C

and has tangent sheaf isomorphic to OPn
C
(−1)⊕n−q−1⊕OPn

C
.

Building on this description, we can prove the following characterization of algebraically
integrable foliations of degree one and arbitrary codimension.

Lemma 11.5. Let F be a foliation of degree one and codimension q on Pn
C
. The foliation

F is algebraically integrable if and only if F is p-closed for almost every prime.

Proof. Let F be a foliation of degree one. If the fibers of a rational map Pn
C
��� PC(1

q,2)
define F , then there is nothing to prove. Assume from now on that this is not the case. The

classification of degree one foliations recalled above implies that F is the linear pull-back

of foliation on P
q+1
C

defined by a global vector field v ∈H0(Pq+1
C

,T
P
q+1
C

). The foliation F is

algebraically integrable if and only if the foliation defined by v is algebraically integrable.

Represent v by a degree one homogeneous vector field on A
q+2
C

with divergent zero and

let v= vS+vN be its Jordan decomposition into semi-simple and nilpotent parts. Explicit
integration of v implies that the algebraicity of its orbits is equivalent to the following:

(1) the nilpotent part vN is zero and the quotient of any two eigenvalues of the semi-
simple part of v is a rational number; or

(2) the semi-simple part vS is zero.

In the first case, the vector field is tangent to an algebraic action of the multiplicative
group C∗, whereas in the second case, the vector field is tangent to an algebraic action of

the additive group C given by the exponential of v = vN .

Let vR be an integral model for v defined over a finitely generated Z-algebra R contained
in C. We can assume that both vN and vS have integral models over R. Let p⊂ R be a

maximal ideal and set vp equal to the reduction modulo p of vR. Likewise, set vN,p and

vS,p as the reduction modulo p of the nilpotent and semi-simple parts of v.
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Since [vS,vN ] = 0, and the same holds for the reduction modulo p, Formula (3.2) implies

that

(vS,p+vN,p)
p = vpS,p+vpN,p .

Moreover, if the characteristic of the residue field R/p is sufficiently large (i.e., greater

than q+2), then vpN,p = 0. Thus, assuming that p > q+2, it follows that vp is p-closed if

and only if

(1) the nilpotent part vN,p is zero and the quotient of any eigenvalues of the semi-simple
part of v belongs to Fp; or

(2) the semi-simple part vS,p is zero.

Combining the above observations with a classical result by Kroenecker ([14, Theorem

2.2]) that asserts that an algebraic number is rational if and only if its reduction modulo

p is in Fp for almost every prime p, we obtain that F is algebraically integrable if and

only if the reduction of vR modulo p is p-closed for an open set of maximal primes p of
Spec(R), as wanted.

Proposition 11.6. Let F be a codimension one foliation on Pn
C
, n ≥ 3. If deg(F) ≥ 3

and δ2(F) = 1, then one of the following assertions holds true.

(1) The foliation F is defined by a closed rational 1-form without codimension one

zeros.

(2) The foliation F contains a codimension two algebraically integrable subfoliation G
of degree one.

Proof. Let G ⊂ F be a codimension two subfoliation of degree one. There is no loss
of generality in assuming that G admits a model G over Spec(R). Let p be an arbitrary

maximal prime of R and let Fp be the reduction of Fp of F modulo p. Reduce G modulo

p to obtain a subfoliation Gp of degree one.

If Gp is p-closed for almost every maximal prime p, then Lemma 11.5 implies that G is
algebraically integrable as claimed in Item (2).

If Gp is not p-closed for a Zariski dense set of primes, then according to the classification

of degree one foliations recalled at the beginning of this subsection, we have that TG is
generated by global sections. We distinguish two possibilities. Either Gp coincides with

V (Fp) or not. Assume first that Gp coincides with V (Fp). In this case, there exists a

vector field v ∈H0(Pn
k ,TGp

) such that

vp ∈H0(Pn
k ,TFp

)−H0(Pn
k ,TGp

) .

It follows that we have a morphism

TGp
⊕OPn

k
−→ TFp

w⊕f �→ w+fvp

generically surjective. Therefore, deg(Fp)≤ 2, contrary to our assumptions.
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It remains to treat the case where Gp does not coincide with V (Fp). In this case, there

exists a vector field v ∈H0(Pn
k ,TGp

) such that

vp /∈H0(Pn
k ,TFp

) .

Notice that v must have zero set of codimension at least two, as otherwise vp would
be proportional to v. If ωp ∈H0(Pn

k ,Ω
1
Pn
k
⊗NFp

) is the twisted 1-form defining Fp, then

Proposition 4.4 implies that the rational 1-form ωp/ωp(v
p) is closed. The divisor defined

by the vanishing of ωp(v
p) is of degree d+2 (independent of p) and coincides with ΔFp

.

Proposition 4.13 implies that ΔFp
is Fp-invariant if p > d+2. We can thus apply Lemma

8.4 to lift ωp(v
p) to characteristic zero and deduce that we are in the situation described

by Item (1).

Lemma 11.7. The set in Fold(P
n
C
) corresponding to foliations defined by a closed rational

1-form without codimension one zeros is closed.

Proof. A foliation is defined by a closed rational 1-form without codimension one zeros if
and only if it admits a polynomial integrating factor; see [17, Subsection 3.3], in particular,

[17, Remark 3.4]. The result is a restatement of [17, Lemma 3.6].

Lemma 11.8. Let F be a p-dense foliation F on a projecive surface X defined over a field

of characteristic p > 0. If ωF intersects non-negatively any ample divisor, F is defined by
a closed rational 1-form without codimension one zeroes, and the divisor ΔF is free from

p-th powers then ω⊗p
F =OX .

Proof. If α is any rational 1-form defining F , then the normal bundle of F is isomorphic

to OX((α)∞−(α)0). By assumption, there exists a closed rational 1-form η, with (η)0 =0,
defining F . Therefore, NF =OX((η)∞).

According to Proposition 4.12, the line-bundles OX(ΔF ) and NF ⊗ω⊗p
F are isomorphic.

According to Proposition 4.14, the divisors (η)∞ and ΔF coincide modulo p. Thus, we
can write (η)∞ = ΔF + pD for some divisor D such that OX(pD) = ω⊗p

F . Since both

(η)∞ and ΔF are effective and ΔF is free from p-th powers, we deduce that pD = 0 (i.e.,

ω⊗p
F =OX), as claimed.

11.5. Irreducible components with δ2(Σ) = 1

Proposition 11.6 could be easily proved without using reduction to positive characteristic.

Instead of considering the p-th powers of vector fields tangent to a subfoliation of degree
one, one could consider the Zariski closure of the subgroup generated by the flow of these

vector fields as is done in [17, Subsection 3.4].

Our next result seems to be of a different nature. It generalizes to arbitrary degree an
irreducible component of Fol3(P

n
C
) found in [17]. In degree three, the original proof relies

on the structure theorem for degree three foliations on projective spaces established in

[32] (n= 3) and [17, Theorem A] (n≥ 3). For arbitrary degrees, we are not aware of any
proof that does not rely on the reduction to positive characteristic. We have reasons to

believe that the standard arguments of the subject (stability of local singular type under

deformation as in [12] or infinitesimal methods as in [15, 16, 12]) are not sufficient to prove
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this result. Concerning the stability of singular type, we point out that general foliation
described by Theorem 11.9 below has singularities of arbitrary algebraic multiplicity along

two skew lines, making it hard to believe that local arguments would show the stability

of them. Concerning infinitesimal methods, computer-aided calculations show that the
corresponding irreducible component of Fol3(P

n
C
) is generically non-reduced. We believe

this is also the case for every degree, as predicted by [17, Conjecture 6.1].

Theorem 11.9. For every n ≥ 3 and every positive integer a ≥ 2,b ≥ 3, there exists an

irreducible component of Fola+b−2(P
n
C
) whose general elements correspond to the pull-back

of a foliation G on P1
C
×P1

C
, with normal bundle NG =OP1

C
×P1

C

(a,b) under a rational map

π : Pn
C
��� P1

C
×P1

C
of the form

π(x0 : . . . : xn) = ((�1 : �2),(�3 : �4)),

where �1, . . . ,�4 ∈H0(Pn
C
,OPn

C
(1)) are linear forms in general position.

Proof. Let G be a foliation on P1
C
×P1

C
with normal bundle NG = OP1

C
×P1

C

(a,b). Assume

that the 1-form ω ∈H0(P1
C
×P1

C
,Ω1

P1
C
×P1

C

(a,b)) is not contained in any proper subvariety

of H0(P1
C
× P1

C
,Ω1

P1
C
×P1

C

(a,b)) defined over Q. If we write down ω in bihomogeneous

coordinates, this means that the coefficients of ω generate a purely transcendental

extension of Q with transcendence degree equal to h0(P1
C
×P1

C
,Ω1

P1
C
×P1

C

(a,b)).

Let Σ⊂ Fold(P
n
C
) be an irreducible component containing F = π∗G. Let R be a finitely

generated Z-algebra such that both G and Σ admit integral models defined over R. Our

assumptions on ω imply that the reduction of the integral model G of G modulo p is a

generic foliation for a Zariski dense set of maximal primes Z ⊂ Spec(R) and, Theorem 5.10

implies that the degeneracy divisor of its p-curvature is reduced.
Since we are assuming that a≥ 2 and b≥ 3, the line-bundle ωG =OP1

C
×P1

C

(a−2,b−2) is

not torsion. Therefore, Lemma 11.7 guarantees that the foliation Gp is not defined by a

closed rational 1-form without codimension one zeros for p ∈ Z.
Proposition 5.3 implies that the degeneracy divisor of the p-curvature of Fp = π∗Gp

is also reduced for the Zariski dense set Z of primes. For every maximal prime p in Z,

the kernel of the p-curvature of Fp is the p-closed foliation of degree one defined by the
reduction modulo p of the rational map π. We apply Lemma 6.3 to deduce that the kernel

of the p-curvature for the reduction modulo p of a general foliation in Σ also has degree

one (i.e., δ2(Σ) = 1). Proposition 11.6 shows that a general element of Σ corresponds

to a holomorphic foliation containing a unique algebraically integrable codimension two
subfoliation of degree one. It remains to verify that this codimension two subfoliation is

conjugated to the foliation defined by the fibers of π.

Let us denote by 0 ∈ Σ the point corresponding to F = F0, and by Fε the foliation
corresponding to a point ε ∈ Σ close to 0. Let also Aε be the unique codimension two

foliation of Fε of degree one. If n= 3, then Aε is defined by a global holomorphic vector

field vε such that H0(P3
C
,TFε

) = C · vε. As we did in the proof of Lemma 11.5, we can
represent vε by a homogenous vector field of degree one and divergence zero on A4

C
.

Since h0(P3
C
,TFε

) is constant for ε in a neighborhood of 0, we can choose homogeneous

representatives of vε varying holomorphically with ε. The vector field v0 is semi-simple
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and, after multiplication by a suitable constant, has two eigenvalues equal to 1 and two
other eigenvalues equal to −1. The quotient of any two of them is an integer. Since the

orbits of vε are algebraic, vε must remain semi-simple with rational quotient of eigenvalues.

Since vε varies holomorphically with ε, the quotient of eigenvalues must remain equal to
the ones of v0. This shows that Aε is conjugated to A when n = 3 as claimed. If n > 3,

then the restrictions of Aε and A0 to general P3
C

are conjugated. It follows from the

classification of degree one foliations, recalled at the beginning of Subsection 11.4, that

the same holds true for Aε and A0 before taking the restrictions. To conclude, apply [13,
Lemma 3.1] to guarantee that the general element of Σ is pull-back from P1

C
×P1

C
through

a rational map of the claimed form.

Theorem 11.10. For every n≥ 3 and every d≥ 3, there exists an irreducible component

Σ of Fold(P
n
C
) whose general element corresponds to the pull-back of a general foliation

G on P(1,1,2) with normal sheaf NG = OPC(1,1,2)(d+2) under a rational map π : Pn
C
���

PC(1,1,2) defined by two linear forms and one quadratic form.

Proof. Observe that the blow-up of PC(1,1,2) at its unique singular point is isomorphic
to a Hirzebruch surface having a section with self-intersection −2. From Theorem 5.10,

we deduce the existence of foliations G on PC(1,1,2) with reduced degeneracy divisor

of their p-curvatures for a Zariski dense set of primes whenever ωG = ωPC(1,1,2)⊗NG =
OPC(1,1,2)(−4+d+2) is nef (i.e., whenever d≥ 2). If we set Y equal to the smooth locus of

PC(1,1,2) and X equal to the pre-image of Y under π, then Corollary 5.4 implies that the

p-degeneracy of the pull-back of G under π
∣∣
X

is reduced since Ram(π
∣∣
X
) = 0. This shows

that when d≥ 2, we have the existence of p-dense foliations G such that the degeneracy
divisor of the p-curvature of π∗G is reduced for a Zariski dense set of primes.

Lemma 11.7 implies that a general G on PC(1,1,2) with NG = OPC(1,1,2)(d+2) is not

defined by a closed rational 1-form without codimension one zeros when d≥ 3.
Arguing as in the proof of Theorem 11.9, we deduce that sufficiently small deformations

of π∗G carry an algebraically integrable codimension two subfoliation of degree one defined

by rational maps to PC(1,1,2) given by two linear forms and one quadratic form, and we
conclude using [13, Lemma 3.1].

Minor variations on the arguments used to prove Theorems 11.9 and 11.10 give the
following result.

Proposition 11.11. Let 1 ≤ a ≤ b ≤ c be positive integers without a common factor
and such that (a,b,c) �= (1,1,2), let G be a codimension one foliation on PC(a,b,c), let

�1, . . . ,�4 ∈H0(Pn
C
,OPn

C
(1)) be linear forms in general position and let π : Pn

C
��� PC(a,b,c)

be the rational map defined as

π(x0 : . . . : xn) = (�1 · �a−1
4 : �2 · �b−1

4 : �3 · �c−1
4 ) .

Assume that

(1) the foliation G is p-dense and the degeneracy divisor of the p-curvature of π∗G is

reduced for a Zariski dense set of primes; and
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(2) the foliation π∗G is not defined by a closed rational 1-form without codimension one

zeros.

Then the foliation F = π∗G belongs to a unique irreducible component Σ of Fold(P
n
C
),

where d= deg(F), such that the general element of Σ admits the same description as F .

Corollary 11.12. For every n≥ 3, m≥ 3 and every d≥m+1, there exists an irreducible

component Σ of Fold(P
n
C
) whose general element corresponds to the pull-back of a general

foliation G on P(1,1,m), leaving the rational curve {z = 0} invariant and with normal

sheaf NG =OPC(1,1,m)(d+m−2).

Proof. The existence of G satisfying the assumptions of Proposition 11.11 follows from
Theorem 5.10 and Remark 5.11 combined with Corollary 5.4.

12. Foliations without subdistributions of small degree

12.1. Foliations with δ2(F) = deg(F).

If δ2(F) = degF (i.e., h0(Pn
k ,Ω

1
F ) = 0) and the characteristic of k is positive, then F

is p-closed, as otherwise the kernel of the p-curvature would define a subdistribution

of degree strictly smaller than deg(F), as implied by Proposition 4.12. We conjecture
that over the complex numbers, δ2(F) = deg(F) implies that F ∈ Log(d1,d2)(P

n
C
) for some

positive integers d1 and d2.

Conjecture 12.1. Let Σ⊂ Fold(P
n
C
) be an irreducible component. If δ2(Σ) is equal to d,

then there exists integer d1 and d2 such that Σ= Log(d1,d2)(P
n
C
).

We will say that codimension one foliation is virtually transversely additive if and only if

Bott’s partial connection extends to a flat logarithmic connection with finite monodromy.

Proposition 12.2. Let F be a codimension one foliation on Pn
C
, n ≥ 3. If F leaves

invariant an algebraic hypersurface, then F is virtually transversely additive or δ2(F)≤
deg(F)−1.

Proof. The proof is analogous to the proof of Proposition 10.3. Let H be an invariant

hypersurface and consider the flat logarithmic connection ∇ on OX(H) with residue

divisor −H and trivial monodromy. It induces a flat logarithmic connection on NF with
residue divisor −deg(NF )

degH H, which we still denote by ∇. The F-invariance of H implies

that the restriction of ∇ to TF is a holomorphic partial connection on NF . If it coincides
with Bott’s connection, then F is virtually transversely aditive. If instead it does not

coincide, then the difference of ∇ and ∇B is a non-zero section of Ω1
F . It follows that

δ2(F)≤ deg(F)−1.

Our next result provides some evidence, admittedly weak, toward Conjecture 12.1.

Proposition 12.3. Let F be a codimension one foliation on Pn
C
, n≥ 3. If F admits two

distinct invariant algebraic hypersurfaces and δ2(F) = degF , then there exist integers

d1,d2 such that F ∈ Log(d1,d2)(P
n
C
).
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Proof. Let F and G be two distinct hypersurfaces invariant by F . The proof of
Proposition 12.2 implies the existence of two distinct flat logarithmic connections on the

normal bundle of F . Their difference is a non-zero closed logarithmic 1-form η such that

η
∣∣
TF

is a holomorphic section of Ω1
F . Since δ2(F) = deg(F), we have that h0(Pn

k ,Ω
1
F ) = 0.

It follows that η is a closed logarithmic 1-form defining F . Since the residues η are rational,

it follows that F is algebraically integrable.

Let f : Pn
C
��� P1

C
be a rational first integral for F with irreducible general fiber. A

classical theorem by Halphen (see [30, Theorem 3.3]) says that any rational map with
irreducible general fiber has, at most, two multiple fibers. Moreover, if r(F) is the number

of fibers of f with non-irreducible support, then the proof [30, Theorem 1.2] implies that

r(F) = 0. Hence, f can be written as the quotient of powers of two irreducible polynomials.
Looking at its logarithmic differential, it becomes clear that F ∈ Log(d1,d2)(P

n
C
) for some

d1 and d2 such that deg(F) = d1+d2−2.

12.2. Foliations with δ2(F) = deg(F)−1

Let F be a logarithmic foliation on Pn
k defined by ω ∈ H0(Pn

k ,Ω
1
Pn
k
(logD)), where D =∑R

i=1Hi is a simple normal crossing divisor and Hi is a hypersurface of degree di. Assume
that the zero set of ω has codimension at least two and that the polar divisor of ω is

equal to D. Under these assumptions, F is a foliation of degree d=
∑r

i=1 di−2 belonging

to Log(d1,...,dr)(P
n
k ). The F-invariance of the support of D implies that the restrictions of

sections of Ω1
Pn
k
(logD) to TF have no poles and, therefore, defines a morphism

H0(Pn
k ,Ω

1
Pn
k
(logD))−→H0(Pn

k ,Ω
1
F )

with kernel generated by ω. Consequently, h0(Pn
k ,Ω

1
F )≥ r−2 and, if r≥ 3, we obtain that

δ2(F)≤ deg(F)−1.

Theorem 12.4. Let F be a codimension one foliation on Pn
C
, n ≥ 3. Assume that F is

p-dense for a Zariski dense set of primes. If δ2(F) = deg(F)−1, then F belongs to one

of the logarithmic components Log(d1,d2,...,dr)(P
n
C
), r ≥ 3.

Proof. Let (X ,F ) be an integral model for F defined over a finitely generated Z-algebra
R contained in C (i.e., X = Pn

R and F ⊗ZC= F). Let p ∈ Spec(R) be a maximal prime

such that the reduction Fp of F is not p-closed. By semi-continuity, we may assume

that δ2(Fp) = deg(F)−1. Therefore, the kernel of p-curvature of Fp is a subdistribution

(indeed subfoliation according Theorem 7.3) realizing δ2(Fp). Consequently, the divisor
ΔFp

has degree deg(NF ) according to Proposition 4.12, and Fp is defined by a closed

rational 1-form with polar divisor equal ΔFp
and without zero divisors. We apply Lemma

8.4 to deduce that the same holds true for F . To conclude, we apply [17, Proposition
3.7].

Conjecture 12.5. Let Σ⊂ Fold(P
n
C
) be an irreducible component. If δ2(Σ) = deg(F)−1,

then either every foliation F ∈Σ is algebraically integrable or there exist integers d1, . . . ,dr
such that Σ= Log(d1,...,dr)(P

n
C
).
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Remark 12.6. For any d ∈ {2,3} and any n ≥ 3, there are examples of irreducible

components Σ of Fold(P
n
C
) with δ2(Σ) = d− 1 with Σ not of the form Log(d1,...,dr)(P

n
C
).

For d = 2, there is exactly one irreducible component with this property, the so-
called exceptional component. For d = 3, there are at least two irreducible components

with this property: the special logarithmic components SLog(2,5)(P
n
C
) and SLog(3,4)(P

n
C
)

which parameterize algebraically integrable foliations defined by logarithmic 1-forms with
codimension one zeros. All the known examples with this property satisfy Conjecture 12.5.

A confirmation of Conjecture 8.3 (by Ekedahl, Shepherd-Barron and Taylor) combined
with Proposition 12.2 and Theorem 12.4 would confirm both Conjectures 12.1 and 12.5.
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[8] M. Brunella, Birational Geometry of Foliations (IMPA Monographs) vol. 1 (Springer,
Cham, 2015).

[9] P. Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris
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