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Abstract

The exact process(es) that generate(s) dense filaments which then form prestellar cores within them is unclear. Here we
study the formation of a dense filament using a relatively simple set-up of a pressure-confined, uniform-density cylinder.
We examine if its propensity to form a dense filament and further, to the formation of prestellar cores along this filament,
bears on the gravitational state of the initial volume of gas. We report a radial collapse leading to the formation of a dense
filamentary cloud is likely when the initial volume of gas is at least critically stable (characterised by the approximate
equality between the mass line-density for this volume and its maximum value). Though self-gravitating, this volume of
gas, however, is not seen to be in free-fall. This post-collapse filament then fragments along its length due to the growth
of a Jeans-like instability to form prestellar cores. We suggest dense filaments in typical star-forming clouds classified as
gravitationally super-critical under the assumption of: (i) isothermality when in fact, they are not, and (ii) extended radial
profiles as against pressure-truncated, that significantly over-estimates their mass line-density, are unlikely to experience
gravitational free-fall. The radial density and temperature profile derived for this post-collapse filament is consistent with
that deduced for typical filamentary clouds mapped in recent surveys of nearby star-forming regions.
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1 INTRODUCTION

Gas in giant molecular clouds (GMCs) is distributed non-
uniformly and appears to aggregate itself into isolated dense
clumps or more contiguous and elongated, filament-like
structures. Detailed observations of potential star-forming
clouds have demonstrated the ubiquitous nature of filamen-
tary clouds. For example, giant molecular filaments on scales
of a few parsecs have been reported in the inter-arm re-
gions of the Milky-Way (Ragan et al. 2014; Higuchi et al.
2014 and other references therein). On the other hand, rel-
atively small (by about an order of magnitude compared
to the former), dense filaments have also been reported
within star-forming clouds in the local neighbourhood (e.g.
Schneider & Elmegreen 1979; Nutter et al. 2008; Myers
2009; André 2010; Jackson et al. 2010; Arzoumanian et al.
2011; Kainulainen et al. 2011, 2013; and Kirk et al. 2013
are only a few authors among an exhaustive number of
them).

Star-forming sites within GMCs are often found located
within dense filamentary clouds or at the junctions of such

clouds and further, these filamentary clouds usually show
multiplicity, in other words, striations roughly orthogonal
to the main filament, and form hubs (e.g. Palmeirim et al.
2013; Hacar et al. 2013; Schneider et al. 2012, 2010; Myers
2009). In fact, inferences drawn from detailed observations
of star-forming clouds have led some authors to suggest that
turbulence-driven filaments could possibly represent the first
phase in the episode of stellar-birth, followed by gravita-
tional fragmentation of the densest filaments to form prestel-
lar cores. Filamentary clouds therefore form a crucial part of
the star-formation cycle. Consequently, a significant observa-
tional, theoretical and/or numerical effort has been directed
towards understanding these somewhat peculiar clouds. In
the last few years we have significantly improved our un-
derstanding about these clouds as a number of them have
been studied in different wavebands of the infrared regime of
the electromagnetic spectrum using sub-millimetre arrays on
the JCMT and the Herschel (e.g. Nutter & Ward-Thompson
2007; André 2010; Men’shikov et al. 2010; also see review
by André et al. 2014).
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The stability and possible evolution of filamentary clouds
has also been studied analytically in the past and in
more recent times. However, these models were usually
developed under simplifying assumptions. For example, Os-
triker (1964), developed one of the earliest models by ap-
proximating a filamentary cloud as an infinite self-gravitating
cylinder described by a polytropic equation of state and de-
rived its density distribution. In a later contribution, Bastien
(1983), Bastien et al. (1991) and Inutsuka & Miyama (1992)
studied the stability criteria of filamentary clouds under the
assumption of isothermality and suggested that such clouds
were more likely to form via the radial collapse of an initial
cylindrical distribution of molecular gas. These models also
demonstrated formation of prestellar cores along the dense
axial filament via Jeans-fragmentation.

Formation of dense filaments via interaction between tur-
bulent fluid flows has been demonstrated numerically by a
number of authors (e.g. Klessen, Heitsch, & Mac Low 2000;
Bate, Bonnell, & Bromm 2003; Price & Bate 2008, 2009;
Federrath et al. 2010a; Padoan & Nordlund 2011, and Feder-
rath & Klessen 2012). Similarly in other recent contributions
(e.g. Heitsch et al. 2009; Peters et al. 2012; and Heitsch 2013),
respective authors specifically investigated the process that
is likely to assemble a dense filament. The conclusion of
these latter authors supports the idea of filament formation
via radial collapse of gas followed by an accretional phase
during which the filament acquires mass even as it continues
to self-gravitate. In fact, Peters et al. (2012) demonstrated
the formation of filamentary clouds on the cosmic scale and
argued that a filament was more likely to collapse radially
and form stars along its length when confined by pressure of
relatively small magnitude. In another recent contribution,
Smith, Glover, & Klessen (2014), have demonstrated the for-
mation of dense filaments in turbulent gas, however, they
have not addressed the other crucial issue about the temper-
ature profile of these filaments; observations have revealed
that gas in the interiors of dense filaments is cold at a temper-
ature on the order of 10 K (e.g. Arzoumanian et al. 2011).
Heitsch (2013) also address the issue of tidal-forces acting
on the sides of a filamentary cloud having finite length and
suggest that gas accreted at the ends can possibly give rise
to fan-like features often found at the ends of infrared dark
clouds (IRDCs).

In a semi-analytic calculation, Jog (2013) demonstrated
that tidal-forces also tend to raise the canonical Jeans mass,
though compressional force-fields are more likely to raise
the local density and therefore lower the Jeans mass. Fre-
undlich, Jog, & Combes (2014) derived a dispersion relation
for a rotating non-magnetised filamentary cloud idealised as a
polytropic cylinder with localised density perturbations. Un-
der these simplifying assumptions, the authors demonstrated
that the filament indeed developed Jeans-type instability with
propensity to fragment on the scale of the local Jeans length.
These conclusions are in fact, consistent with those drawn
in an earlier work by Pon, Johnstone, & Heitsch (2011), or

even those by Bastien et al. (1991) who arrived at similar
conclusions from their analytical treatment of the problem.

On the other hand, Inutsuka & Miyama (1997), showed
that a cylindrical distribution of gas is unlikely to become
self-gravitating as long as its mass per unit length was less
than a certain critical value. Similar conclusions were also
drawn by Fischera & Martin (2012) when they performed
a stability analysis of clouds idealised as isothermal cylin-
ders. In the present work, we study the dynamical stability
of an initially non-self-gravitating cylindrical distribution of
molecular gas maintained initially in pressure equilibrium.
In particular, we are interested to see how this distribution of
gas behaves as it is allowed to cool in the presence of self-
gravity. We would like to examine if a radial collapse does
indeed ensue and the nature of the new state of equilibrium
attained by the gas. Thus, we would like to investigate the
physical conditions under which radial collapse is likely to
be the favoured mode of evolution. Although the objective
we have set ourselves is similar to that of Peters et al. (2012),
our work differs on three counts: (i) unlike Peters et al. who
assumed a polytropic equation of state to calculate gas tem-
perature, we calculate gas temperature by solving the energy
equation coupled with a cooling function, (ii) we do not use
a filament that already is dynamically evolving instead, we
begin by setting up a cylindrical cloud in pressure equilib-
rium and then examine if it does indeed collapse to form a
thin dense filamentary cloud. This relatively simple set-up
represents the intermediate stage of filament-formation, in
other words, the stage after supersonically moving turbulent
flows in a MC collide to form a filamentary distribution of
warm gas (see e.g. Klessen et al. 2000; Bate et al. 2003;
Price & Bate 2008, 2009; Federrath et al. 2010a; Federrath
& Klessen 2012; Smith et al. 2014), and more importantly,
(iii) we investigate if gravitational super-criticality is a nec-
essary pre-condition for filament-formation and follow the
evolution of the dense filament further to study the formation
of prestellar cores in it.

We observe that when the magnitude of the confining pres-
sure is relatively small such that the initial volume of gas is
at least critically stable, it does indeed collapse radially to
assemble a thin dense filament which then fragments via
a Jeans-like instability on the scale of the fastest growing
unstable mode to form prestellar cores. We also investigate
physical properties such as the distribution of gas density and
temperature within the post-collapse filament. We demon-
strate that the density profile of the post-collapse isothermal
filamentary cloud is indeed similar to the classic profile sug-
gested by Ostriker (1964); the profile is Plummer-like for
a filament that is allowed to cool dynamically. The article
is divided as follows: in Section 2, we discuss the stability
of a pressure-confined isothermal cylinder. Then in Section
3, we present the initial conditions used for this work and
briefly describe the numerical algorithm used for the simula-
tions. The results are presented and discussed in respectively,
Sections 4 and 5 before concluding in Section 6.
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Stability of filaments in star-forming clouds and the formation of prestellar cores in them 3

2 STABILITY OF A PRESSURE CONFINED
NON-MAGNETIC CYLINDER

We consider a cylindrical distribution of isothermal molecu-
lar gas composed of the usual cosmic mixture (approximately
90% hydrogen and 10% helium). The cylinder has initial ra-
dius, R, length, L, and maintained at temperature, Tgas. In a
purely non-magnetic case, gas within this cylinder is sup-
ported by thermal pressure, Ptherm, against self-gravity and
is confined externally by finite pressure exerted by the inter-
cloud medium (ICM), Picm

1. We assume an initial state of
equilibrium so that the external pressure, Picm, balances the
internal pressure, Ptherm. The internal and external pressure
are both thermal by nature since particles representing the
two media are not imparted any initial momentum.

The stability of a spherical gas body against self-gravity
is defined in terms of the thermal Jeans mass. Now, for a
cylindrical distribution of gas its mass line-density, Ml(r),
defined as

Ml (r = R) ≡ M(r = R)

L
=

∫ R

0
dr 2π rρ(r) = πR2ρgas. (1)

This quantity is analogous to the mass of a spherical cloud
and as will be seen below, is useful in describing the stability
of a cylindrical cloud against self-gravity. Here, ρgas, is the
initial density of the cylindrical distribution of gas, assumed
to be uniform. A gas cylinder is stable against gravitational
collapse as long as its mass line-density is smaller than the
maximum value

(Ml )max = 2a2
0

G
, (2)

where a0 is the isothermal sound-speed for the cylinder. We
define the stability factor, S(r), as the ratio of the mass line-
density for a cylinder against its maximum value. Thus,

S(r) = Ml (r)

(Ml (r))max

≡ GMl (r)

2a2
0

; (3)

When S(R) exceeds unity, Ml(R) > (Ml )max, a radial col-
lapse ensues and the cylinder may be described as super-
critical; cylinders with S(R) less than unity are described as
sub-critical (Fischera & Martin 2012). We describe cylinders
with S(R) ∼ 1 as critically stable. As in our earlier work in-
vestigating the stability of starless cores (Anathpindika & di’
Francesco 2013), in the following sections we will calculate
the stability factor, S(r), at different radii within the model
cylindrical cloud over the course of its evolution to describe
its stability against self-gravity. We now calculate the radius
of the initial cylindrical distribution of gas. Keeping in mind
that the pressure exerted by the confining ICM balances the
thermal pressure within the cylinder, we can write

Picm = a2
0Mgas

πR2L

1By inter-cloud medium we mean here the medium that prevails between
isolated clumps and filamentary clouds within a GMC.

so that its radius,

R =
(a2

0Mgas

πLPext

)0.5

. (4)

Finally, following a simple dimensional analysis we define
the free-fall time, tff ≡ (GML−3)−1/2 ∼ (Gρ)−1/2, which
is slightly faster than the free-fall time in Jeans analysis;
ρ ≡ ρ(r), is the density of the post-collapse filament having
radius, r < R, and a0, the sound-speed of gas within it. A free-
fall ensues if tff < tsc, where tsc is the sound-crossing time,
tsc ≡ l

a0
. Using the above inequality, we obtain the condition

for Jeans instability as,

l ≥ LJeans ∼ a0

(Gρ)1/2
. (5)

The corresponding mass of the fragment is Mfrag ∼ MlLJeans,
which, using Equation (3) above, can be re-cast as

Mfrag = 2a0P(r = rflat)S(r = rflat)

(Gρ)3/2
, (6)

rflat, being the radius of the filament over which gas density
remains approximately uniform before turning over in its
wings.

3 PHYSICAL DETAILS

3.1 Initial conditions

In this demonstrative work, we began by placing a non-
self gravitating uniform-density cylindrical distribution of
molecular gas in pressure equilibrium with its surrounding
medium. To this initial distribution of gas, we assigned a fe-
ducial temperature (see Table 1). In this work, the gas pres-
sure and pressure exerted by the external medium are purely
of thermal nature. While ambient physical conditions such
as the turbulent Mach number in a MC could possibly influ-
ence filament properties, we leave this aspect of the problem
for future investigation. Other free parameters in the set-up
were, the length of the cylinder, L= 5 pc, contrast, D = 10,
between the initial gas density within the cylinder and its sur-
rounding medium, the average initial gas density within the
cylinder, n̄gas = 600 cm−3 and the initial mass line-density,
(Ml )init. This choice of gas density is also consistent with
densities found in a typical star-forming cloud (e.g. André
et al. 2014). The temperature of the confining medium is
calculated by using the condition of pressure balance at the
surface of the cylinder. The initial radius of the cylinder was
calculated using Equation (4) above. Though simple, this set
of initial conditions is suitable for the extant purposes of
studying the origin of the density profile and the temperature
profile of a typical filament and the formation of prestellar
cores along the length of this filament. Parameters used in
the realisations performed in this work have been listed in
Table 1. Sinusoidal density perturbations along the length
of the initial distribution of gas were imposed in five sim-
ulations; see Table 1. These perturbations were imposed by
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4 Anathpindika and Freundlich

Table 1. Parameters used for each realisation.

Serial

(
Pext
kB

)a

Mgas Rb (Ml )init
c Tgasd Gas

No. [×104Kcm−3] [M�] [pc] [M�pc−1] [K] (Ml )max
e Dynamics Ntot

f Ngas
g χh Perturbationsi

1 1.5 210 0.589 42 25 41.37 ISOTHERMAL 478 884 339 941 1.6 N
2 1.5 244.7 0.636 48.94 25 41.37 Cooling Func. 478 884 339 941 1.6 N
3 2.4 244.7 0.636 48.94 40 66.19 Cooling Func. 478 884 339 941 1.6 N
4 Same as 2 Y

(Fundamental
mode)

5 Same as 2 Y
(Second

Harmonic)
6 Same as 4 1545 929 765 378 2 Y
7 Same as 5 1545 929 765 378 2 Y
8 Same as 3 1545 929 765 378 2 N

aMagnitude of the external confining pressure that balances the pressure within the cylinder, Ptherm.
bCalculated using Equation (4) in the text.
cInitial mass-per unit length of the filament, i.e. the mass line-density.
dThe initial gas temperature.
eMaximum mass line-density defined by Equation (2).
fTotal number of particles including those representing the ICM.
gNumber of gas particles
hResolution factor
iIf whether perturbations described in Section 3.1 were imposed in a particular realisation.

revising particle positions, xp, to x′
p, such that the following

expression was satisfied,

xp = x′
p + ALJeans

2π
sin(kx′

p)

(Hubber, Goodwin, & Whitworth 2006), where the wave-
number, k = nπ

LJeans
, the integer, n = 1, 2 for respectively, the

fundamental mode and the second harmonic; A = 0.1, is the
amplitude of perturbations.

The number of gas particles in a simulation are calculated
according to -

Ngas = 1

8
· 3

4π
· Nneibs ·

(
Vinit

h3
avg(init)

)
,

where, Vinit, is the volume of the initial distribution of gas,
while the initial average smoothing length, havg(init), was set
equal to 0.25LJeans/χ ; χ being the resolution parameter listed
in column 11 of Table 1 and defined by Equation (10) below;
the Jeans length, LJeans ∼ 0.08 pc, at the density threshold(∼
10−19 g cm−3), adopted for representing prestellar cores in
this work at a temperature of 10 K. Particles representing
the initial distribution of gas were assembled by extracting
a cylinder of unit size and length from a pre-settled glass
like distribution. This unit-cylinder was then stretched to the
desired dimensions and then placed in a confining medium
of external-pressure, modelled using the ICM particles. The
envelope of ICM particles had a thickness, 30havg(init), along
each spatial dimension of the cylinder. The ICM particles are
special SPH particles that exert only hydrodynamic force on
the normal gas particles; gas particles on the other hand, exert
both, gravitational and hydrodynamic forces. The cylinder

and its confining medium were then placed in a box lined with
boundary particles that prevent SPH particles from escaping.
Unlike the gas and the ICM particles, the boundary particles
are dead and do not contribute to SPH forces. The layer of
dead boundary particles was there to simply hold the gas +
ICM particles in the box and prevent them from diffusing
away. Particles within the set-up were initially stationary as
no external velocity field was introduced.

3.2 Numerical method: Smoothed particle
hydrodynamics (SPH)

Simulations were performed using our well tested SPH algo-
rithm, SEREN, in its conservative energy mode (Hubber et al.
2011). The SPH calculations in this work also include contri-
butions due to the artificial conductivity prescribed by Price
(2008), to avoid any spurious numerical artefacts possible
due to the creation of a gap between multi-phase fluids. An
SPH particle, in this work, had a fixed number of neighbours,
Nneibs = 50. Gas cooling was implemented by employing the
cooling function given by the equation below,

�(Tgas)

�CR

= 107exp

(−1.184 × 105

Tgas + 1000

)

+ 1.4 × 10−2
√

Tgas

(−92

Tgas

)
cm3 (7)

(Koyama & Inutsuka 2002). Constant background heat-
ing due to cosmic rays is provided by the heating func-
tion, �CR = 2 × 10−26 erg s−1. The temperature of an SPH
particle is calculated by revising its internal energy. The
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Stability of filaments in star-forming clouds and the formation of prestellar cores in them 5

equilibrium temperature, Teq, attained by a small SPH parti-
cle corresponds to equilibrium energy, ueq, and the timescale,
τ , over which energy is either radiated or acquired by a par-
ticle is,

τ =
∣∣∣∣

up − (up)eq

(n2� − n�CR)

∣∣∣∣. (8)

Then, after a time-step dt, the energy u of a particle is revised
according to,

u = ueq + (u − ueq)exp(−dt/τ ) (9)

(Vázquez-Semadeni et al. 2007). However, a more accurate
calculation of the gas temperature demands solving the ra-
diative transfer equation(e.g. Krumholz et al. 2007; Price &
Bate 2009; Bate 2012), and accounting for the molecular
chemistry in the cloud (Glover et al. 2010). We leave this for
a future work.

3.2.1 The SPH sink particle

We represent a prestellar core by an SPH sink particle in
this work, for it is not our intention to follow the internal
dynamics of a core. An SPH particle is replaced with a sink
only when the particle satisfies the default criteria for sink-
formation which include, negative divergence of velocity and
acceleration of the seed particle (see Bate, Bonnell, & Price
1995; Bate & Burkert 1997 and Federrath et al. 2010b). We
set the density threshold for sink-formation at ρthresh ∼ 10−19

g cm−3 (∼ 105 cm−3), which despite being on the lower side,
is consistent with the average density of a typical prestellar
core. The interested reader is referred to Hubber et al. (2011)
for other technical details related to implementation of this
prescription in our algorithm SEREN. The radius of a sink
particle was set at, rsink ∼ 2.5hp, where hp is the smoothing
length of the SPH particle that seeds a sink. Sink particles in
the simulation therefore have different radii. A sink interacts
with normal gas particles only via gravitational interaction
and accretes gas particles that come within the pre-defined
sink-accretion radius, rsink.

3.3 Resolution

The average initial smoothing length, havg(init), for the en-
semble of calculations discussed in this article is calculated
as -

havg(init) =
⎛
⎝ 3

32π
· Nneibs

Ngas

· Vinit

⎞
⎠

1/3

,

where the number of neighbours, Nneibs = 50. The diameter
of an SPH particle, d = 4havg(init), so that the resolution
criterion becomes,

X = ŁJeans

d
; (10)

X ≥ 1, and LJeans, the typical length-scale of fragmentation
has been defined by Equation (5) above. Evidently, higher

the value of X , better the resolution. Value of the resolu-
tion factor, X , for each simulation has been listed in column
10 of Table 1. The resolution criterion defined by Equation
(10) above is the SPH equivalent of the Truelove criterion
(Truelove et al. 1997), defined originally for the grid-based
adaptive mesh refinement algorithm. It has been shown that
the gravitational instability is reasonably well-resolved for
χ = 1, and need be ∼2, for a good resolution of this insta-
bility. Note that some authors prefer to define the resolution
factor, X , as the inverse of the fraction on the right-hand
side of Equation (10), in which case the criterion for good
resolution becomes, X ≤ 1 (e.g. Hubber et al. 2006). All
our simulations discussed in this work satisfy this resolution
criterion.

However, this choice of resolution is reportedly insufficient
to achieve convergence in calculations of crucial physical pa-
rameters such as the energy and momentum, but sufficient to
prevent artificial fragmentation of collapsing gas (Federrath
et al. 2014). In order to alleviate this latter problem these au-
thors suggest a more stringent resolution criterion, χ � 15.
However, our extant purpose here is limited to studying the
stability of a filamentary cloud and its fragmentation so that
the adopted choice of numerical resolution (χ ∼ 2), should be
sufficient. In fact, in Section 4.1 below, we demonstrate nu-
merical convergence over the observed fragmentation of the
post-collapse filament. Finally, the sink radius, rsink, defined
in Section 3.2 above is ∼0.08 pc in simulations developed
with the least number of particles and ∼0.05 pc in Cases
6 and 7, those developed with the highest resolution in this
work. Although prestellar cores of smaller size are known
to exist in star-forming clouds (see for e.g. Jijina, Myers, &
Adams 1999), the resolution adopted here is sufficient for a
demonstrative calculation of the kind presented in this work.
The typical width of the post-collapse filament, ∼0.1 pc,
is also consistently resolved by a minimum of 80 particles
along its length.

Since this volume of gas is allowed to cool, what fol-
lows, is the fragmentation of cooling gas. The length-scale
of this fragmentation is comparable to the thermal Jeans
length (see for e.g. Vázquez-Semadeni et al. 2007), which
is much larger than the initial width of the cylinder so that
there is no fragmentation in the radial direction, as will be
demonstrated below. Furthermore, we have set our resolu-
tion to the Jeans length, LJeans, evaluated at 10 K, which is
lower than the average gas temperature within interiors of
the filament as will be evident in the following section. Our
simulations therefore have the desired spatial resolution to
represent core-formation in the post-collapse filament.

4 RESULTS

Our interest lies particularly in examining the possibility of
forming a dense filamentary cloud out of a cylindrical vol-
ume of gas confined by thermal pressure. This possibility is
explored for different choices of initial conditions; first, when
the volume of gas is initially critically stable, then marginally

PASA, 32, e007 (2015)
doi:10.1017/pasa.2015.4

https://doi.org/10.1017/pasa.2015.4 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2015.4
https://doi.org/10.1017/pasa.2015.4


6 Anathpindika and Freundlich
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Figure 1. Cross-sectional rendered density-plots of the mid-plane of the collapsing cylinder in realisation 1. Overlaid on these images are velocity vectors
representing local gas-motion; shorter vectors indicate relatively lower velocity as compared with those that are longer. Time in units of Myr has been marked
on the top-right hand corner of each image.

super-critical, and finally, sub-critical. Interestingly though,
the initial cylindrical distribution of gas evolves radically
differently if it is at/above critical stability as compared to
when it is sub-critical. We also vary the spatial resolution
and compare results from simulations developed by using a
cooling function with that from an isothermal calculation.

4.1 Case 1 (serial nos. 1, 2, 4, 5, 6, and 7 in Table 1;
Picm
kB

= 1.5 × 104 K cm−3)

The initial cylindrical distribution of gas, in all these test
cases, has comparable mass and an identical magnitude of
confining pressure, Picm. One of these, test realisation 1, was
developed under the assumption of isothermality while the
cooling function defined by Equation (7) above, was used
in the remaining test cases. The mass line-density, (Ml )max,
defined by Equation (2) is slightly less than that for the ini-
tial distribution of gas, (Ml )init, for all the test realisations,
except for the first where the two are of comparable magni-
tudes. The initial distribution of gas is therefore marginally
super-critical in all realisations; gas in the first realisation
is approximately in equilibrium in the sense, S(R) ∼ 1 (see
Table 1), R being the radius of the cylinder. In all these re-
alisations, the radius of the initial cylindrical distribution of
gas begins to shrink due to the onset of an inwardly prop-
agating compressional wave. This radial contraction of the
initial cylindrical distribution in outside-in fashion is visible
in the rendered density images of the cross-section through
the mid-plane of the collapsing cylinder shown in Figure 1.
Overlaid on these plots are the velocity vectors that denote
the direction of local gas-motion.

This contraction soon assembles a thin dense filament
along the axis of the cylinder and prestellar cores, repre-
sented by SPH sink particles, begin to form along the length
of the filament. At this point, a word of caution would be ap-
propriate. By a compressional wave, we do not imply that the
external pressure compresses the initial cylindrical distribu-
tion of gas in the radial direction. That hydrostatic cylinders

cannot be compressed in this manner has been demonstrated
by Fiege & Pudritz (2000). In this work, density enhancement
along the cylinder-axis is the result of gas being squeezed
during the radial collapse of the initial configuration. We re-
serve the attribute of a compressional wave to describe this
process. Shown on the upper-panel of Figure 2 is a rendered
density plot of the post-collapse filament in realisation 1. The
black blobs on this image represent the location of prestellar
cores that begin to form along the length of this filament.

Evidently, the cores that had formed in this filament at the
time of terminating the calculation are separated by approx-
imately a Jeans length (∼0.2 pc at Tgas = 25 K; avg. density
∼10−19 g cm−3), defined by Equation (5). The image on the
lower-panel of Figure 2 is a plot of the radial distribution
of gas density within the collapsing cylindrical cloud in this
realisation. This plot and all other similar plots in this pa-
per were generated by taking a transverse section through
the mid-plane of the filament. The inwardly propagating
compressional disturbance is evident from the density plots
at early epochs of the collapse. As the gas is steadily accu-
mulated in the central plane of the cylinder, the density of
gas there rises and eventually develops a profile that matches
very well with the one suggested by Ostriker (1964),

ρ(r) = ρc[
1 +

(
r

rflat

)2]p/2 ; (11)

with p = 4. Here, ρc ≡ ρ(r = rflat); rflat being the radius at
which the density profile develops a knee. The density of this
filament falls-off relatively steeply in the outer regions which
is consistent with that reported by Malinen et al. (2012) for
typical filamentary clouds in the Taurus MC. Furthermore,
this figure also shows, rflat ∼ 0.1 pc, which is comparable
to the radius of typical filaments found in eight nearby star-
forming clouds in the Gould-Belt (e.g. Arzoumanian et al.
2011; Andre et al. 2014).

Another interesting conclusion that can be drawn from this
realisation is that about the stability of a filamentary cloud. It
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Figure 2. Upper-panel: A rendered density plot through the mid-plane of the post-collapse filament in
realisation 1. Black blobs on this plot represent the positions of prestellar cores in this filament and those
that have formed at this epoch are separated by approximately a Jeans-length for this calculation (∼0.2
pc). Lower-panel: Plot showing a time-sequence of density profile within the collapsing filament for this
case. The density distribution for the post-collapse filament (t = 0.8 Myr), is very well approximated
by the Ostriker-profile.

can be seen from Figure 2 that the centrally assembled, post-
collapse dense filament at the epoch when calculations for
this realisation were terminated, has a radius on the order of
0.1 pc, the point at which the density-profile develops a knee.
An average density of ∼10−19 g cm−3, the threshold for core-
formation in these calculations, would suggest a mass line-
density, Ml ∼ 50 M� pc−1, for this post-collapse filament
which is significantly higher than, (Ml(Tgas = 25K))max ∼
41 M� pc−1. The filament would therefore be expected to be
in free-fall and should collapse rapidly to form a singular line.
However, such is not to be the case and Figure 3 shows that
the collapsing cylindrical cloud, or indeed the post-collapse
filament, in fact, remains sub-critical at all radii, r < R. We
will discuss later in Section 5.1 the implications of this find-
ing for the classification of observed filamentary clouds in
typical star-forming regions.

In Figure 3, we have shown the radial variation of the sta-
bility factor, S(r), defined by Equation (3), and integrated
over the radius of the collapsing cylindrical cloud. For the
purpose, using the Sturges criterion for optimal bin-size
(Sturges 1926), we divided the cylindrical distribution of
gas into a number of concentric cylinders having incremen-

tal radii in the radially outward direction. Number of these
concentric cylinders is given by, Ncyl = (1 + ln(Ngas)); Ngas
being the number of gas particles in a realisation. The inner-
most cylinder would therefore have the smallest radius and
radii of successive cylinders in the outward direction would
be incremented by a small increment, dr. Thus, if ri is the
radius of the ith cylinder, then the radius of the (i + 1)th
cylinder is simply, ri+1 = ri + dr; dr 	 R. The initial distri-
bution of gas in this case was characterised by S(R) ∼ 1.

Evident from the plot shown in Figure 3 is the fact that the
gravitational state of the collapsing cylinder does not vary
during the process. Within the cylinder gas always remains
gravitationally sub-critical so that, S(r < R) < 1, although it
does rise steadily close to the centre where the density is the
highest in the post-collapse filament. In other words, shells of
gas within the collapsing cylinder though self-gravitating, are
not essentially in free-fall. That this must be the case is also
evident from the density plots shown in Figure 1. From these
plots it can be seen that gas inside the collapsing cylinder
has a relatively small velocity in comparison with that in the
outer regions that is pushed in by the compressional wave.
Also, the observed outside-in type of collapse lends greater

PASA, 32, e007 (2015)
doi:10.1017/pasa.2015.4

https://doi.org/10.1017/pasa.2015.4 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2015.4
https://doi.org/10.1017/pasa.2015.4


8 Anathpindika and Freundlich

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

S(
r)

r/[pc]

t=0.01 Myr
t=0.2 Myr
t=0.4 Myr
t=0.7 Myr

Figure 3. Shown here is the time-variation of the stability factor, S(r), defined by Equation (3) as a
function of the radial coordinate within the collapsing filament in realisation 1. Interestingly, gas in the
collapsing cylinder always remains gravitationally sub-critical; S(r) < 1.

credence to the conclusion that gas within the collapsing
cylinder must be gravitationally sub-critical, for had it been
super-critical, the collapse would have been of the inside-out
type, i.e. the innermost regions of the cylinder would have
collapsed rapidly followed by the outer regions.

We had presented a similar argument in an earlier work
(Anathpindika & di’ Francesco 2013), where hydrodynamic
models developed to explain why some prestellar cores failed
to form stars despite having masses well in excess of their
respective Jeans mass, were discussed. In that work, it was
demonstrated that cores could indeed contract in the radial
direction without becoming singular (i.e. a free-fall collapse
was not seen in these cores), if the mass of in-falling gas
at radii within the core was smaller than the local Jeans
mass, or equivalently, we had suggested that the Jeans con-
dition had to be satisfied at all radii within a collapsing
core for it to become singular (protostellar). In the present
work, we have used the mass line-density instead of the
thermal Jeans mass to discuss the stability of a cylindrical
volume of gas. We observe, the collapsing cylinder appears
to evolve through quasi-equilibrium configurations where
thermal pressure provides support against self-gravity and a
radial free-fall does not ensue. Interestingly, we observe that
prestellar cores can indeed form in a filamentary cloud that is
not in radial free-fall. These cores acquire mass by accreting
gas and shown in Figure 4 is the accretion history of these
cores.

Realisation 2 is a repetition of the previous simulation but
the gas temperature was now calculated by solving the en-
ergy equation and further, the energy of a gas particle was
corrected according to Equation (9) to account for gas cool-
ing/heating. As with the isothermal cylindrical cloud in the

previous realisation, the marginally super-critical initial dis-
tribution of gas in this case also begins to collapse in the
radial direction. And, as in the previous case the inwardly
propagating compressional wave assembles a dense filament
of gas along the axis of the initial cylindrical cloud. Shown
in Figure 5 is the radial distribution of gas density within
the collapsing cylindrical cloud which, though remarkably
similar to that shown in Figure 2 for the isothermal fila-
ment, is relatively shallow (Plummer-like; p = 2 in Equation
(11)). The radial variation of the stability factor, S(r), within
the collapsing cylinder for this realisation has been shown
in Figure 6. This plot is qualitatively similar to the one
produced for simulation 1 and shown earlier in Figure 3. As
with this former plot, gas within the collapsing cylinder in
this case also always remains less than unity, S(r < R) < 1,
suggesting that gas is not in free-fall. Also, the filament in
this case is assembled on a timescale comparable to that in
the isothermal realisation. This is probably because, despite
the gas-cooling, the collapsing gas is still gravitationally sub-
critical. A direct comparison of the mass line-density, Ml(R),
against the threshold for stability, (Ml )max, however, suggests
otherwise. This is because, implicit in a comparison of this
kind is the assumption of isothermality and uniform distri-
bution of gas density within the post-collapse filament.

On the contrary, and as is evident from Figure 7, the gas
temperature within the post-collapse filament is hardly uni-
form. The cold central region of the filament is cocooned by
the relatively warm jacket of gas. The innermost regions of
this filament acquire an average temperature of 10 K which
is consistent with that reported from observations of fila-
mentary clouds in typical star-forming regions (see for e.g.
Palmeirim et al. 2013; Arzoumanian et al. 2011; André 2010).
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Figure 4. A plot showing the accretion history of the cores that form in the post-collapse filament in
the first realisation.
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Figure 5. As in the plot shown in Figure 1, this is the radial distribution of gas density within the
collapsing filament at different epochs in realisation 2.

Finally, shown in Figure 8 is the history of core-formation in
this filament. It is qualitatively similar to that for the isother-
mal filament plotted in Figure 4. To this end, following the
formation of the first core, the next set of cores form relatively
quickly. Also, the filament in the second realisation, where
gas was allowed to cool, begins to form cores earlier than
the isothermal filament and in general, cores in the latter are
somewhat less massive than those in the former. This is the
result of a higher mass line-density of the cooling filament
relative to the isothermal filament in the earlier realisation.

In realisation 1, for instance, where no external perturba-
tions were imposed, we observed that the separation between
cores in the post-collapse filament was on the order of the
corresponding Jeans length. Next, we use the same set of
initial conditions as those for realisation 2 in this next set of
four realisations namely, 4, 5, 6, and 7, but now by imposing
perturbations on the initial distribution of gas as described
in Section 3.1. Perturbations for realisation 4 were imposed
on the scale of the fragmentation length defined by Equation
(5), which at 10 K and average density, ∼ 10−19 g cm−3, the
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Figure 6. As in Figure 2, shown in this plot is the time-variation of the stability factor, S(r), calculated
for different radii at various epochs of the collapsing filament in realisation 2.
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Figure 7. This plot shows the radial variation of density averaged gas temperature at different epochs
within the collapsing filament in realisation 2.

threshold for core-formation, is LJeans ∼ 0.08 pc. We define
this as the fundamental mode of perturbation. In the next
realisation, numbered 5 in Table 1, we imposed the second
harmonic of this perturbation. We repeat this set of two cal-
culations with a higher number of particles, labelled 6 and 7
respectively, in Table 1. As with the gas in realisation 2 that
was subject to cooling, in this case also, we observe that the
initial distribution of gas collapsed radially to form a thin fil-
ament aligned with the central axis of the cylinder. Shown in
Figures 9 and 10 are the rendered images of the post-collapse

filaments that form in realisations 6 and 7, those that have
the best resolution in this set of calculations. For comparison
purposes, we have also shown a plot of the post-collapse fil-
ament from realisation 4 on the lower-panel of Figure 9. The
physical parameters for this realisation are the same as those
for realisation 6, but was developed with a slightly lower,
albeit sufficient resolution to prevent artificial fragmentation
(Truelove criterion satisfied). A comparison of the plots on
the two panels of Figure 9 suggests little qualitative differ-
ence between the outcomes from the respective realisations.
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Figure 8. Same as the plot in Figure 3, but now for the cores that form in the post-collapse filament
in realisation 2.

We must, however, point out that while the satisfaction of
the resolution criterion defined by Equation (10) above is
sufficient to ensure there is no artificial fragmentation, as is
indeed seen in this work, it is unlikely to be sufficient to ob-
tain convergence in calculations of energy and momentum of
the collapsing gas (Federrath et al. 2014). In fact, below we
compare the sink-formation timescales and the magnitude of
gas-velocity in the radial direction within the post-collapse
filament.

Evidently, cores in the post-collapse filament indeed, ap-
pear like beads on a string. However, we note that not all
density perturbations had collapsed to form cores when cal-
culations were terminated. A few more would be expected to
form in this filament, but the extant purpose of demonstrat-
ing a Jeans-type fragmentation of this post-collapse filament
is served with the set of cores that can be seen on either
rendered image. Finally, shown in Figures 11 and 12 are
the accretion histories for cores that form in realisations 6
and 7, respectively. There is not much difference between
the timescale of fragmentation, as reflected by the epoch at
which the first core appears in either realisation. Although,
the formation of cores after the first one, in realisation 7 is
somewhat delayed and form over a timescale of 105 yrs, as
against those in case 6 which form relatively quickly after
the first core appears. However, it is likely that a more sig-
nificant difference between timescales would be visible for
a higher harmonic. Also evident from the comparative plots
shown in Figure 11 is the absence of convergence in the
timescale of sink-formation and the mass of sink-particles in
the two realisations likely due to inadequate numerical reso-
lution as was discussed in Section 3.3. Crucially, the number
of sink particles remains the same irrespective of the choice
of resolution which, it was argued previously is sufficient

to prevent artificial fragmentation even for the realisation
with the lowest realisation in this work. Also, the accretion
histories for sink-particles in either case are qualitatively
similar.

4.2 Case 2 (serial nos. 3 and 8 in Table 1;
Pext
kB

=
2.4× 104 K cm−3)

In this second case, we raised the gas temperature such
that the initial cylindrical distribution of gas was rendered
sub-critical. We performed one realisation for this choice of
Picm and repeated it with a higher resolution, numbered 8
in Table 1. Here we discuss this latter realisation. In con-
trast to the simulations discussed under case 1, the radial
collapse of the cylinder could not be sustained as it became
to be squashed by the confining pressure into a spheroidal
globule that was in approximate equilibrium with the exter-
nal medium. The other notable feature being, this spheroidal
globule was assembled on a relatively longer timescale, t ∼
2.5 Myrs; in comparison to that observed in the simulations
tested under case 1. As with the realisations discussed ear-
lier under Case 1, shown in Figure 13 is the stability fac-
tor, S(r), for this realisation. This is plot is similar to the
ones shown earlier in Figures 3 and 6 in the sense that gas
within the cylindrical cloud always remains sub-critical as
S(r < R) < 1. However, it differs from the former plots in
one respect; the magnitude of S(r), in the outer regions, away
from the central axis of the globule, shows a significant fall
relative to that for the initial configuration. This, as we will
demonstrate later, is because gas in the outer regions is sig-
nificantly warmer than that observed in realisations grouped
under Case 1.
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Figure 9. Upper-panel: Rendered image showing a projection of the mid-plane of the post-collapse
filament (t=1.) in realisation 6 (only a small volume of the medium confining the filament has been
shown on this plot). Fine black blobs on top of the image represent the positions of cores in the
post-collapse filament at the time of termination of calculations. Perturbations, in this realisation,
were imposed on the length-scale LJeans, defined by Equation (5). Not all density perturbations have
condensed at this epoch, but those that are relatively closely spaced are separated on a scale on the
order of LJeans ∼ 0.08 pc. Lower-panel: Same as the picture shown in the upper- panel, but now for the
realisation 4 that was developed with a somewhat lower resolution, though sufficient to avoid artificial
fragmentation along the length of the post-collapse filament.

Figure 10. Similar to the plot shown in Figure 8, but with perturbations now imposed on the length-
scale, LJeans/2 (the second harmonic), in realisation 7. Again, not all density perturbations have
condensed at this epoch, but those that are relatively closely spaced are separated on a scale on the
order of LJeans/2 ∼ 0.04 pc.

Shown in Figure 14 is the density averaged gas tempera-
ture within this globule and was made at the time of termi-
nating the calculations in this case (t ∼ 2.5 Myrs). From this
plot it is clear that though the interiors of this globule are
indeed cold, comparable to the central regions of the dense
filament in case 1, gas away from the central axis is signifi-
cantly warmer. The relatively large gas temperature renders
it gravitationally sub-critical and so, it is unable to collapse
radially to assemble a thin dense filament along the axis of
the initial distribution. Instead, it begins to be squashed from
either side and proceeds to form an elongated spheroidal gas-
body as can be seen in the rendered density image shown in
Figure 15. Overlaid on this image are density contours that
readily reveal evidence of sub-fragmentation to form smaller
cores along the cold central region of the globule; velocity
vectors on this image indicate the direction of local gas-flow
within the elongated globule.

The magnitude of this velocity field has been plotted in
Figure 15. Note that the magnitude of this velocity field is
consistent with that derived for typical cores (e.g. Motte,

André, & Neri 1998; Jijina et al. 1999). However, the lo-
cal direction of the velocity field is unlikely to reveal much
about the boundedness of a core which reinforces our sug-
gestion made in an earlier work related to modelling starless
cores. There it was shown, a core could remain starless de-
spite exhibiting inwardly pointed velocity field which usu-
ally, is indicative of a gravitational collapse (Anathpindika
& di’ Francesco 2013). Formation of sub-structure within
this globule can be identified with the aid of density con-
tours. This indicates the onset of sub-fragmentation. The
fragments, at this epoch though, have not reached the density
threshold for cores adopted in this work.

5 DISCUSSION

Prestellar cores usually appear embedded within dense fil-
amentary clouds. Understanding the morphology of these
clouds is therefore crucial towards unravelling the details of
the star-forming process. In the present work, we explore the
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Figure 11. Same as the plot in Figure 8, but now for the cores that form in the post-collapse filament
in realisation 4 (upper-panel) and 6 (lower-panel). In the former, the realisation with relatively lower-
resolution, the sink-formation begins a little earlier and sinks are a little more massive than those in the
latter realisation, one of those that had the highest resolution in this work.

possibility of formation of prestellar cores along the length
of a filamentary cloud. To this end, we developed hydrody-
namic simulations starting with a cylindrical distribution of
gas and separately studied its evolution when it was gravita-
tionally sub-critical and super-critical. We identify two pos-
sible modes of evolution : one, when the initial cylindrical
distribution of gas is either marginally super-critical(S(R) �
1), or even critically stable(S(R) ∼ 1), a thin dense fila-
ment forms as a result of radial collapse of the initial dis-
tribution of gas. The post-collapse filament continues to
accrete gas during in-fall and prestellar cores form along
the length of this filament via a Jeans-like instability. In

literature this mode has been identified as a tendency to
form a spindle (e.g. Inutsuka & Miyama 1997); and two,
when the initial distribution of gas is gravitationally sub-
critical(S(R) <1), it tends to get squashed and forms a
spheroidal globule that is in approximate pressure equilib-
rium with its confining medium. The relatively cooler re-
gions of this globule show evidence for further fragmenta-
tion into smaller cores. Similar examples of fragmentation
within larger cores to form smaller ones has been identi-
fied in for instance, the Serpens North (Duarte-Cabral et al.
2010), or within a number of IRDCs (e.g. Wilcock et al. 2011,
2012).
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Figure 12. Same as the plot in Figure 10, but now for the cores that form in the post-collapse filament
in realisation 7.
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Figure 13. The radial variation of the stability factor, S(r), calculated at different epochs for the
cylindrical distribution of gas in realisation 8. As was seen in Figures 2 and 5 for realisations grouped
under Case 1, in this realisation as well the magnitude of S(r) remains unchanged and gas always
remains sub-critical even as the initial cylindrical distribution is squashed into a spheroidal globule.

Previous numerical work by a number of authors on the
formation of filamentary clouds, and their stability against
self-gravity, has culminated in at least three possible sce-
narios: (i) Filamentary clouds are often seen in magneto-
/hydrodynamic simulations of turbulent gas. These clouds
are believed to be generated due to interaction between tur-
bulent gas, followed by enhancement of self-gravity once
the gas becomes sufficiently dense (see for e.g. Klessen &

Burkert 2000; Klessen et. al. 2000; Federrath & Klessen
2013). This model favours filament formation via inter-
action between turbulent flows so that there is no global
collapse; dense filamentary clouds instead, appear locally
(e.g. Federrath et al. 2010a; Peters et al. 2012), (ii) Heitsch,
Ballesteros-Paredes, & Hartmann (2009) and Heitsch (2013),
have demonstrated that filamentary clouds could also form
within a self-gravitating MC, and (iii) fragmentation of
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Figure 14. Radial distribution of the density averaged gas temperature within the post-collapse globule
in realisation 8 at the time of termination of calculations (t = 2.5 Myrs).

Figure 15. A rendered density image showing a projection of the mid-plane of the elongated globule in
simulation 8. Time in the top left-hand corner of the image is marked in Myrs (t = 2.5 Myrs).

gas-sheets is also a possible mode of formation for elon-
gated clouds. This has been demonstrated in both, the simple
case of an isothermal sheet (e.g. Schmid-Burgk 1967; My-
ers 2009), as well as in the one confined by shocks (e.g.
Vázquez-Semadeni et al. 2007; Anathpindika 2009; Heitsch
et al. 2008).

Although there is little doubt about the fact that dense
filaments are a result of fragmentation of larger clouds and
that prestellar cores usually form within such filaments like
beads strung on a wire, the process(es) leading to the for-
mation of a thin filament are somewhat unclear and is still a
matter of debate. Heitsch (2013), for instance has suggested
that filaments, during their formation, do exhibit density en-
hancement in their central regions, but this density enhance-
ment is not associated with a corresponding reduction in the
filament-width. Smith et al. (2014), partially agree with this
conclusion but have suggested that dense filaments are likely
to have a static density-profile, one that does not vary with

time. In other words, filament-formation is probably a one
step process and once created, dense filaments remain as
they are. In simulations grouped under case 1 of this work,
we have demonstrated the formation of a thin dense fila-
mentary cloud via radial collapse of the initial cylindrical
distribution of molecular gas. Peters et al. (2012) argue that
the magnitude of the externally confining pressure probably
determines if whether a dense filament could possibly form.
These authors have suggested that a relatively small magni-
tude of the external pressure is likely to support the formation
of a dense filament. On the contrary, a filamentary distribu-
tion of gas is more likely to end up as a spheroidal globule
when the magnitude of confining pressure is relatively large.
However, the possible cause(s) for such occurrence is(are)
not clear from their work. Conclusions drawn from the sim-
ulations presented in this work are broadly consistent with
those of Peters et al. (2012), but with an added qualification
about the gravitational state of the distribution of gas that
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precedes a dense filament. This leads us to the next question,
that about the propensity of a cylindrical cloud to collapse ra-
dially and assemble a dense filament. We observe that when
the initial distribution of gas is gravitationally sub-critical,
apart from a higher magnitude of confining pressure, the gas
does not collapse in the radial direction, instead, it forms a
spheroidal globule. We therefore believe, the gravitational
state of the initial distribution of gas is likely to hold the key
to its future evolution.

We argue, a radial collapse leading to the formation of
a dense filament is possible when the gas is at least criti-
cally stable(S(R) ∼ 1), initially. Interestingly, the mass line-
density for the post-collapse filament in this case exceeds
its maximum value, (Ml )max, for stability under the assump-
tion of a uniform temperature of 10 K, as is indeed seen
in the interior of the filament; though gas in the wings of
the filament is warmer. Under this assumption of isother-
mality and uniform density the filament could be described
as gravitationally super-critical (Fischera & Martin 2012).
Although the two sets of simulations discussed in this work
demonstrate that an initially sub-critical cylindrical volume
of gas cannot be induced to collapse in the radial direction,
plots shown in Figures 2 and 5 suggest that gas in a radially
collapsing cylindrical cloud does not become gravitationally
super-critical (S(r < R) < 1). In other words, the mass line-
density, Ml , within the cylinder never exceeds its maximum
value, (Ml )max, at any radius within the cylinder. Simulations
grouped under this case(Case 1) also demonstrate that a fila-
ment need not be in radial free-fall in order to form prestellar
cores along its length. Interestingly, evidence for global in-
fall has recently been reported in the filamentary cloud DR21
(Schneider et al. 2010), while Palmeirim et al. (2013) and
Andre et al. (2014) also report observations of some filamen-
tary clouds that exhibit radial collapse. Inutsuka & Miyama
(1997), by assuming super-critical initial conditions and an
isothermal gas had demonstrated such a collapse. However,
this latter set of initial conditions would always be predis-
posed to radial collapse leading to the formation of a thin
dense filament. Despite their propensity to collapse radially,
globally super-critical filaments are unlikely to be in free-fall.
The difficulty with the idea of a radially free-falling filament
is that that filament would collapse rapidly to form a thin line
and it would be a challenge to explain the formation of cores
in it. It is therefore difficult to reconcile the suggestion of
free-falling filaments. We will revisit this point in the context
of observations of filaments in the following subsection.

That filamentary clouds are unlikely to experience a free-
fall collapse can simply be shown by deriving an expression
for the radial component of gravitational acceleration, gr,
within a typical filamentary cloud. For the sake of argument,
it would be safe to adopt a Plummer-density distribution for
gas within a filamentary cloud so that the radial distribution
of thermal pressure within this cloud may be written as,

dP(r)

dr
= a2

0(r)
dρ(r)

dr
+ ρ(r)

da2
0(r)

dr
. (12)

From the Plummer-density profile we have,

dρ

dr
= −2ρc

r2
c

· r

(1 + ( r
rc

)2)2
. (13)

Combining Equations (12) and (13), we wind up with an
expression for the gravitational acceleration as,

gr(r) ≡ −1

ρ(r)

(
dP(r)

dr

)
= 2ρca

2
0(r)

ρ(r)r2
c

· r

(1 + ( r
rc

)2)2
− da2

0(r)

dr
.

(14)
Then in the limit of r → rflat, Equation (14) reduces to

gr ∼ a2
0(r = rflat)

4rflat

> 0,

which suggests that filamentary clouds are unlikely to have
a true super-critical state, i.e. filaments are unlikely to be in
free-fall even if they do collapse radially. We have shown that
prestellar cores are likely to form via a Jeans-type fragmen-
tation of the filamentary cloud and have demonstrated this by
developing simulations with and without initial perturbations
to the density field. This scenario is consistent with the argu-
ment presented by Freundlich, Jog, & Combes (2014). We
also note that a Plummer-like profile (p = 2), fits the radial
density distribution of the post-collapse filament very well
when gas temperature is calculated by accounting for gas-
cooling. On the other hand, the steeper Ostriker-profile (p =
4), fits the radial density profile for the isothermal filament.

Furthermore, the typical radius of the post-collapse fila-
ment in our simulations at the epoch when calculations were
terminated, is on the order of ∼0.1 pc. Both these findings are
consistent with corresponding values derived for filamentary
clouds in the Gould-Belt (e.g. Arzoumanian et al. 2011; Ma-
linen et al. 2012; Palmeirim et al. 2013; André et al. 2014).
Although a few handful number of exceptions have been re-
ported with relatively steep density profiles in outer regions
and have slopes in excess of 2, e.g. the B211/3(p = 2.27) fila-
ment in the Taurus MC that also has a relatively small radius
of ∼0.04 pc (Malinen et al. 2012; Palmeirim et al. 2013).
However, it remains to be seen if these post-collapse dense
filaments would continue to self-gravitate and acquire even
smaller radii; investigation into this question is best deferred
for a future work. We also note that purely hydrodynamic
simulations such as the ones discussed in this work suc-
ceed in reproducing the typical Plummer-like radial density
profile for filamentary clouds (also see Smith et al. 2014).
This is contrary to some of the earlier suggestions about
the propensity of formation of such filaments in magneto-
hydrodynamic simulations (e.g. Fiege & Pudritz 2000; Tilley
& Pudritz 2003; Hennebelle 2003). It appears that the slope
of the radial profiles of filamentary clouds is unlikely to be
influenced by the presence/absence of the magnetic field.

Also, unlike much of the earlier work we have also de-
rived the radial distribution of gas density and temperature
for the post-collapse filament and showed that is indeed
consistent with that derived observationally for typical fila-
mentary clouds observed in nearby star-forming regions. An
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interesting point to which attention must be drawn is about
the temporal evolution of the density profile of filamentary
clouds. Radial density profiles shown in Figures 2 and 5
demonstrate that the collapse of the initial cylindrical distri-
bution of gas is accompanied with a rising central density.
This is consistent with the finding of Heitsch (2013). How-
ever, we also observe that the width of the filament shrinks
during the process which is inconsistent with the other find-
ing by the same author and Smith et al. (2014). As can be
seen from these plots, the problem could be circumvented
by adopting a value of the rflat, the point where the density-
profile turns-over, smaller than where it is actually seen to lie.
Recchi, Hacar, & Palestini (2014) have argued that rotation
tends to stabilise a filamentary cloud against self-gravity and
leads to a density-profile shallower than the Ostriker-profile.
On the contrary, we have shown that even a simple prescrip-
tion of gas-cooling can indeed reproduce a Plummer-like
density distribution for the post-collapse filamentary cloud.

On the other hand, upon raising the magnitude of external
pressure, Picm/kB, such that the initial distribution of gas was
rendered sub-critical (because the condition of pressure bal-
ance at the gas-ICM interface demands that gas temperature
be raised), we observed, such a volume of gas was unable to
sustain a collapse in the radial direction. Instead, after ini-
tially shrinking along the radial direction, gas was squashed
laterally and therefore tended to rebound. Confined by exter-
nal pressure, this gas then assembled a pressure-supported
spheroidal globule on a time-scale larger than that for sim-
ulations discussed above. Interestingly, Arzoumanian et al.
(2013) have recently identified filamentary clouds with a
greater internal pressure in the IC5146, Aquila, and the Po-
laris MCs. These filaments have a relatively large velocity
dispersion and therefore, are gravitationally unbound. Some
of these in fact, exhibit signs of lateral expansion with lit-
tle evidence for core-formation along the filament-axis as
is usually envisaged in the beads-on-string analogy. On the
basis of results obtained from our simulations we suggest,
factors controlling the efficiency with which molecular gas
cools would determine the propensity to form dense filamen-
tary clouds which is simply a restatement of the stability
argument presented in Section 2. A larger thermal pressure
could have an impact on the molecular chemistry of a cloud
and therefore, on the efficiency with which it could possibly
cool. However, in the absence of a complete treatment of
the molecular chemistry we cannot address this issue in the
present work.

5.1 Possible implications for observational studies of
filamentary clouds

Irrespective of whether the initial cylindrical distribution of
gas ends up as a dense filament, we observe that gas in the
collapsing cylinder remains gravitationally sub-critical, char-
acterised by the stability factor, S(r < R) < 1, at all epochs
(see Figures 3 and 6). This suggests, the gravitational state
of the gas remains unaltered over the course of its evolution.

Of particular interest is the implication of this finding for
dense filaments. We have seen that the formation of a dense
filament is the result of a radial contraction of the initial
cylindrical distribution of gas. This contraction is associated
with a rise in the central density along the axis of the cylinder
whence a filamentary cloud is assembled. Although this is
our observation in the simulations discussed here, we note
that the radially collapsing gas is not in a free-fall and is
therefore characterised by S(r < R) < 1, at all radii within
the volume of gas. This sequence supports the hypothesis
that filamentary clouds are probably assembled via gravi-
tational contraction during which mass is steadily accreted
by the centrally located filamentary cloud. This scenario is
further reinforced by observational findings of accreting fil-
aments found in Taurus and Cygnus X (Goldsmith, Heyer,
& Narayanan 2008; Nakamura & Li 2008; Schneider et al.
2010).

A comparison of the radial velocity field in the two cases
discussed in this work would be instructive. For Case 1, we
take the sixth realisation, one of the two in this set with the
highest resolution, as a representative calculation. The radial
velocity field in the post-collapse filamentary cloud has been
shown in Figure 17. We note that the magnitude of velocity
is relatively large in the central region and peters-off in the
wings of the filament. In fact, the radial distribution of gas
velocity can be approximated by a power-law of the type,
V (r) ∝ r−0.4, which is very close to that for a bound object
(V (r) ∝ r−0.5). A similar plot for simulation 8 under Case 2
was shown previously in Figure 16. The difference between
these plots is evident; in this latter case, the gas close to the
centre is moving radially outward whereas that in the outer
regions is transonic and moving inwards with approximately
constant velocity (sound-speed ∼0.55 km s−1 in this region),
as a consequence of being squashed. The findings reported
here from simulations in Case 1 are consistent with those for
typical filamentary clouds (see for e.g. Arzoumanian et al.
2013).

Filaments of the type seen in Case 1 are conventionally
described as gravitationally bound. This brings us to the next
question—as to whether gravitationally bound filaments are
also likely to experience a free-fall collapse. For the purpose
of illustration we consider the examples of four filamen-
tary clouds. (i) IC5146 in the Cygnus region. This filament
with a mass line-density, Ml ∼ 152 M� pc−1, which is an
order of magnitude in excess of the maximum mass line-
density, (Ml )max, evaluated at 10 K, and therefore should be
expected to be in a free-fall collapse in the radial direction.
However, it seems, this is not really the case as the filament
does not appear to be in radial free-fall (Arzoumanian et al.
2011; Fischera & Martin 2012). (ii) The filamentary cloud
DR21 is the next example. This is a massive filament that has
two sub-filaments that are gravitationally super-critical and
show signs of in-fall, but no apparent signs of radial free-fall
(Schneider et al. 2010). This filament appears more akin with
the outcome of simulations in Case 2 of this work. (iii) Next,
we consider the example of the Perseus MC. It has a mass
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Figure 16. Gas within the post-collapse globule shown in Figure 14 exhibits a weak velocity field. The
inwardly directed gas in the outer regions of the globule as it is being squashed has negative velocity on
this plot.
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Figure 17. Same as the plot shown in Figure 16 but now for simulations 4 and 6 grouped under Case
1. As usual, a negative velocity indicates inwardly moving gas. Although the plots are qualitatively
similar, the resolution of the simulations developed here is insufficient to achieve convergence in the
magnitude of velocity of the collapsing gas. (See Section 3.3 for a discussion about the resolution).

line-density, Ml ∼ 50 M� pc−1 to 100 M� pc−1, a good factor
of 3–5 larger than the maximum mass line-density, (Ml )max,
for the deduced isothermal temperature of ∼12 K (Hatchell
et al. 2005). Again, a direct comparison of Ml against (Ml )max
for the Perseus MC would suggest that the filament is grav-
itationally bound and must collapse radially. However, there
is no corroborative evidence to suggest that the filament is

in free-fall though several cores have been detected along
its length. In fact, estimates of line-width of the optically
thick C18O emission suggests that that filament is probably
thermally supported. (iv) Finally, we consider the example of
the Serpens MC, recent observations of which, have revealed
evidence of radially in-falling gas onto the dense filaments
in this cloud. Yet, there is no evidence to suggest that these
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filaments are in free-fall, however, prestellar cores have been
detected along their length and appear to have formed on the
scale of the local Jeans length (Friesen et al. 2013). Results
from our simulations grouped under Case 1 corroborate these
observations.

It therefore appears to us that the condition, S(r = R) ≥ 1,
i.e.

Ml (r=R)

(Ml (r=R))max
≥ 1, is probably necessary to induce radial

collapse in a cylindrical volume of gas. Such a volume of
gas could become super-critical by accreting mass from its
surroundings (Heitsch & Hartmann 2014). However, this as-
pect of the problem is beyond the scope of present inves-
tigation and therefore best left for a future work. Signifi-
cantly though, this collapsing gas is unlikely to be in free-fall
and S(r < R) < 1 which is consistent with the suggestion
of McKrea (1957); see also Toci & Galli (2014). In fact, if
indeed this gas is in radial free-fall, filamentary clouds would
rapidly end up in a thin line and formation of cores in such a
collapsing cloud would be difficult to reconcile. On the con-
trary, a steady in-fall, as gas within the collapsing filament
is allowed to cool appears to be a more promising mode of
evolution of filamentary clouds where gas is initially at least
critically stable. As we have seen in the simulations grouped
under Case 1, such filaments can indeed form cores along
their length via a Jeans-like fragmentation. This evolution-
ary scenario also circumvents the uneasy question as to why
filaments with extremely high column densities, on the order
of a few times 1022 cm−2, are not found. The likely solution
perhaps is that filaments are not in radial free-fall. Those that
are gravitationally bound, shrink in the radial direction and
eventually acquire a thermally supported configuration.

If indeed filaments were to become pressure-supported
during their evolutionary sequence, it would also explain
why filaments across star-forming regions tend to have com-
parable widths, on the order of ∼0.1 pc (e.g. Arzoumanian
et al. 2011). At 10 K, the temperature typically found in fil-
amentary clouds and an average density ∼10−19 g cm−3, a
representative density for prestellar cores, the thermal Jeans
length, LJeans ∼ 0.075 pc, which is comparable to the typical
radius of filamentary clouds. We make a similar observation
in simulations grouped under Case 1. For instance, Figures 2
and 5, where the radial density profile for the post-collapse
filament in simulations 1 and 2 have been plotted, demon-
strate that the filament radius, rflat ∼ LJeans, at the epoch when
calculations were terminated in respective simulations. Al-
though, we note that magnetic field could also have a key
role to play in the evolution of filamentary clouds. The point
though, is beyond the scope of this article.

6 CONCLUSIONS

In this work, we have demonstrated that an initial cylindrical
distribution of molecular gas can indeed collapse radially
to assemble a thin dense filament along its axis when the
magnitude of confining pressure is relatively small such that
gas is initially at least critically stable. In this case, a radial

collapse ensues and the gas is able to cool on a relatively short
timescale. Equivalently, it may also be argued that a collapse
of this kind is likely when the line mass exceeds its critical
value required to maintain stability. However, there is a caveat
to this argument. This argument is valid only if gas is assumed
to be isothermal and has uniform density as was the case with
our initial cylindrical distribution of gas. For a typical dense
filament this argument cannot be applied since its density
and temperature distribution is far from uniform. We argue,
a filamentary cloud even if gravitationally bound, is unlikely
to be in radial free-fall, instead it is likely to contract in
the radial direction and consequently, the density along its
central axis steadily rises as gas is accreted on to it. We argue
that this evolutionary sequence of a typical filamentary cloud
could possibly explain - (i) the dearth of filamentary clouds
that have extremely high extinction, and (ii) why the width of
filamentary clouds shows little variation across star-forming
regions. We suggest that filamentary clouds are likely to be
thermally-supported and their radii (width) are likely to be
on the order of the local thermal Jeans length (twice the
local thermal Jeans length). A Plummer-like density profile
appears to fit very well the radial distribution of gas density
in the post-collapse filament so that magnetic field may not
be necessary to generate filaments with a relatively shallow
slope, as has been suggested in the past (e.g. Fiege & Pudritz
2000). We also demonstrate that prestellar cores are likely to
form via a Jeans-like instability while it is accreting gas. It
also appears, cores are likely to form along the length of a
dense filament if it is at least (gravitationally) critically stable.
Processes via which filaments acquire mass from their parent
cloud are therefore likely to hold the key to determining the
efficiency of star-formation (see also Tafalla & Hacar 2014).

On the other hand, when the magnitude of the confin-
ing pressure was increased such that the initial distribu-
tion of gas was rendered gravitationally sub-critical, we ob-
served that a radial collapse was unsustainable. Instead, the
gas distribution was squashed from either side and demon-
strated a propensity to expand laterally. The result was an
elongated spheroidal globule which then showed signs of
sub-fragmentation. Such objects are more likely to form out
of dynamic interactions between gas flows within MCs. The
upshot therefore is that potential star-forming dense filaments
are likely to be found in MCs where ambient conditions con-
trive to render the volume of gas immediately preceding the
dense filament critically stable, at least (i.e. mass line-density
approximately equal to its maximum stable value). The possi-
ble effect of the ambient conditions on the chemistry within a
MC must directly impact the gas thermodynamics and there-
fore, the dynamical stability of that cloud. We will examine
this issue in a future contribution.
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