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Introduction

Classical special functions are a traditional field of mathematics. As particular
solutions of singular boundary eigenvalue problems of linear ordinary differential
equations of second order, they are by definition functions that can be represented
as the product of an asymptotic factor and a (finite or infinite) Taylor series. The
coefficients of these series are by definition solutions of two-term recurrence rela-
tions, from which an algebraic boundary eigenvalue criterion can be formulated. This
method is called the Sommerfeld polynomial method (Rubinowicz, 1972); thus, one
can say that the boundary eigenvalue condition is by definition algebraic in nature.
It is the central message in this book that one can resolve this restriction and it is
shown how to do this methodically, and what the fundamental mathematical principle
underlying this method is.

Now, of course, the method developed for this also applies to problems that can be
solved with classical methods. So, in order to present the newly developed methods
in the light of what is known, and to be able to understand the new perspective more
easily (and also measure the results obtained against what is already known), this
new method is applied in this chapter to the already known solutions. This makes
it possible to classify the new according to the well known. Accordingly, it is a
‘phenomenological’ introduction, where the focus is not on definitions, theorems
and their proofs, but on the ad hoc introduction of the relevant quantities. The
systematic introduction based on definitions follows in the subsequent chapters, this
time with respect to differential equations, which are no longer accessible by classical
methods.

1.1 Historical Remarks

The history of the subject treated here goes back to the middle of the nineteenth
century, to a time when the German mathematician Lazarus Fuchs (1833–1902)
wrote down the local solution of a linear, ordinary differential equation with polyno-
mial coefficients in the vicinity of a singularity. This solution consists of a product
of an (in general) irrational power of the independent variable and an (in general)
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infinite Taylor, thus one-sided, series. Yet, the explicit form of the solution was only
one aspect of the great importance of Fuchs’ approach. It was just as important to
have recognised the significance of the singularity of a differential equation in the
first place. Singularities are something ubiquitous; they cannot be avoided, not in
the equation and certainly not in the solution. And not only that: singularities of
differential equations determine the behaviour of their solutions everywhere, even
where the equations are holomorphic. This is perhaps the most significant peculiarity
of differential equations. Therefore, it is more than justified to bring singularities to
the centre of consideration if one wants to deal with differential equations in depth.
This insight, which is now about 150 years old, is the basis of this work.
It is well known that the basic approach to solving a differential equation is based on

Weierstrass’ approximation theorem for integer powers, according to which powers
can be used to approximate any holomorphic function. Based on this, the French
mathematician Paul Painlevé (1863–1933) developed a basic existence theorem
for local solutions, the so-called ‘calcul des limites’ or majorant method. In turn,
all fundamental questions – such as those concerning analytical continuations or
the uniqueness of solutions – are based on this. One can say that this complex of
fundamental questions was largely settled at the beginning of the twentieth century.
The full significance of Fuchs’ work was revealed in the fact that there are two

types of singularities in differential equations: those that are now called regular and
those that are called irregular. This distinction is triggered by the nature of their
local solutions. For the irregular singularities of differential equations, the Fuchsian
approach did not provide local solutions, only for regular ones. As the German
mathematician Meyer Hamburger (1838–1903) showed a little later, this requires
generalised, two-sided infinite power series, i.e., Laurent series. This makes for a
significant technical complication. So, it remained to search for a one-sided series
approach for the case of irregular singularities. Although the Fuchsian approach
could not do this, it showed the way: a one-sided replacement for the Laurent series
was then concretely worked out about 20 years later by the French mathematician
Achille Marie Gaston Floquét (1847–1920) and, at about the same time, by the
German mathematician Ludwig Wilhelm Thomé (1841–1910). (That is why these
approaches are now called Thomé solutions in Germany and Floquét solutions in
France.) The crucial idea was to write down the asymptotic factors, explicitly. The
problem with Thomé’s solutions, however, was that they did not converge in all cases.
Thomé put a lot of effort into showing under what conditions his series approaches
converged. It was finally the French mathematician Henri Poincaré (1854–1912)
who showed the significance of Thomé’s series: they are asymptotic solutions of
the differential equation that represent their solutions within sectors, at the top of
which is placed the singularity. The lateral lines delimiting these sectors are called
Stokes lines, after the Irish mathematician and physicist Sir George Gabriel Stokes
(1819–1903).
Another important insight into linear differential equations was that it was under-

stood that differential equations with exclusively regular singularities could serve as
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the cornerstone of a mathematical theory, because the irregular singularities could
be generated by merging regular singularities. Equations with exclusively regular
singularities were given the name Fuchsian differential equations and the simplest
forms among them were in turn given their own names. Thus, the simplest form
of the Fuchsian differential equation with only one singularity is called Laplace’s
equation, the one with two singularities is called Euler’s equation and the one with
three singularities is called Gauss’ equation.
The Fuchsian approach always leads to difference equations for its coefficients and

thus to asymptotic questions of their solution for large values of the index. It has been
found that significant differences in the asymptotic behaviour of the solutions can
exist, although the ratio of two successive terms of the solutions tends towards one
and the same value for large values of the index. Depending on whether this is the
case with a difference equation or not, it is called regular or irregular.

As far as the investigation of regular difference equations is concerned, Henri
Poincaré and the German mathematician Oskar Perron (1880–1975) excelled. For
the study of irregular difference equations, in turn, the Canadian mathematician
George David Birkhoff (1884–1944), the Russian mathematicianWaldemar Juliet
Trjitzinsky (1901–1973) and the American mathematician Clarence Raymond
Adams (1898–1965) made lasting contributions in the 1920s (see, e.g., Birkhoff–
Trjitzinsky theory and the Birkhoff–Adams theorem in Aulbach et al., 2004). Thus,
while Henri Poincaré recognised the importance of Thomé’s approaches to linear
differential equations by proving their asymptotic character, Birkhoff and Trjitzinsky
carried out the analogous investigations for linear difference equations.

The importance of all this work for the development of modern physics at the be-
ginning of the twentieth century should be undisputed, namely relativity and quantum
theory, just as this development in turn had an effect on mathematics. The realisation
that nature is essentially linear on small scales, as evidenced by the Schrödinger
equation, has given rise to this retroactive influence. Singular boundary eigenvalue
problems of linear differential equations of second orderwere henceforth an important
object of research. It turned out that it is not the order of the differential equation that
determines the order of the difference equation resulting from a Fuchsian approach,
but the number of its singularities.

In order for the solution of a linear differential equation to behave in a prescribed
manner not only at one point, but at two, this solution must have a parameter. In
quantum theory, this is the energy parameter. In order for the solution to behave
in a prescribed manner at two different points, this energy parameter must assume
certain values. Calculating these means solving the boundary eigenvalue problem.
The condition on which this determination is based is called the boundary eigenvalue
condition.

The mathematical form of the boundary eigenvalue condition is of central impor-
tance for the solution of the problem. It turns out that this condition is generally
only algebraic in nature if the underlying differential equation is either of the Lapla-
cian, Eulerian or Gaussian type, i.e., originates from a Fuchsian equation that has
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at most three singularities. If this number of singularities is larger than three, then
the boundary eigenvalue condition becomes transcendental. And for such equations,
there was only one method to write the boundary eigenvalue condition at all, and this
is only if the order of the difference equation which the coefficients of Fuchs’ solution
approaches is at most two: the method of infinite continued fractions.
Transcendental boundary eigenvalue conditions thus occur systematically for Fuch-

sian differential equations that have more than three singularities. The simplest of
these equations is called Heun’s differential equation, because the German mathe-
maticianKarl Heun (1859–1929) studied it systematically for the first time in a paper
from 1889.
Today, a distinction is made between algebraic and transcendental boundary eigen-

value conditions in two respects: the singular boundary eigenvalue problems that lead
to transcendental eigenvalue conditions are called central two-point connection prob-
lems (CTCPs) and the resulting solution functions are called higher special functions;
all others are called classical special functions.
To be precise, local solution approaches such as those of Lazarus Fuchs are no

longer sufficient for solving singular boundary eigenvalue problems. This required
a large-scale scientific development that began when Arnold Sommerfeld (1868–
1951) had his great era as a professor at the Ludwig Maximilian University of
Munich. In 1919,Wolfgang Ernst Pauli (1900–1958) asked Sommerfeld for a topic
for a doctoral thesis. Pauli received from Sommerfeld the task of applying the rules
of quantum mechanics established by Niels Bohr (1885–1962) in 1913 in order to
show that the ionised hydrogen molecule is stable under the conditions of the then
new quantum mechanics. Since the quantisation rules of Bohr and Sommerfeld (for
which Bohr received the Nobel Prize) were not quite correct (they were what are now
called semiclassical quantisation rules), he did not quite succeed, but obtained the
result that the ionised hydrogenmolecule was at least metastable. Thus the problem of
calculating quantummechanical energy levels became themost important in quantum
physics, as it was supposed to explain the chemical bonding between two protons by
a single electron.
In 1933 George Cecil Jaffé (1888–1965) took up the problem anew, then having

available Schrödinger’s differential equation and thus the correct quantisation rules.
So, Jaffé was eventually able to show the stability of the ionised hydrogen molecule.
However, what became much more important was that Jaffé applied a marvellous
transformation of the underlying differential equation that enabled him to apply a
solution ansatz that solved the problem exactly. This idea is the basis of the method
of solution of the specific singular boundary eigenvalue problem, called the central
two-point connection problem in this book. It consists of a series ansatz and a trans-
formation that I call, in honour and commemoration of George Jaffé, the Jaffé ansatz
and the Jaffé transformation, respectively. The particular solution of the underlying
differential equation represented by the Jaffé ansatz is called the Jaffé solution (see
Jaffé, 1933).
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Unfortunately, George Jaffé, as a Jewish professor at the Universität Gießen, was
dismissed in 1933 and in 1934 had to abandon his position as a professor, eventually
going into exile in 1939, leaving Germany for ever. He went to Bâton Rouge in the
US state of Louisiana but did not pick up his ideas there any more.

Sixty years after this great publication, in spring 1993, I visited the elderly
Friedrich Hund (1896–1997) – one of the founders of quantum theory – in Göttin-
gen. He told me the sad story of George Jaffé’s fate. So this book was also written as
a protest against oblivion, against the forgetting of a great scientist and his difficult
life.

In 1989, Karl Heun’s publication about the differential equation that nowadays
bears his name celebrated its centennial appearance. In order to mark this date, an
international conference was organised that brought together experts from all over the
world who worked in the field. The result of this conference was several commitments
to promote the topic, and even several notations that have been agreed. It was common
opinion that the step from classical special functions to higher special functions was
ripe to be made, and the participants were in agreement that this was a fundamental
step.

Subsequently, following this conference, an unpublished conference booklet was
written (Seeger and Lay, 1990), then a book written by several participants of the
conference (Ronveaux, 1995), then a monograph on the topic by the Russian expert
Serguei Yuriewitsch Slavyanov (1942–2019) and the present author (Slavyanov and
Lay, 2000), and eventually a successor to the famous Handbook of Mathematical
Functions by Milton Abramowitz (1915–1958) and Irene Stegun (1919–2008)
that was edited by Frank William John Olver (1924–2013), entitled The NIST
Handbook of Mathematical Functions, published (within the DLMF) by the National
Institute of Standards and Technologies (NIST; Olver et al., 2010). In this book, the
Heun differential equation has been dealt with as a new differential equation, not
incorporated within the set of differential equations, the solutions of which belong to
the classical special functions of mathematical physics (cf. Chapter 31). The authors
of this part on Heun’s differential equation were Brian D. Sleeman (1939–2021), a
British professor and participant of the famous conference introduced above, and the
Russian mathematician Vadim B. Kuznetsov (*1963).
However, the Heun equation has not been treated in an exhaustive manner, since

several important topics had not been tackled or settled up to that time. These circum-
stances were the impetus for me to undertake a large-scale investigation in order to
treat themain remaining problem: the central two-point connection problem for differ-
ential equations beyond Gaussian type. The solution of this problem in a satisfactory
manner, i.e., theoretically as well as calculatory, yields the possibility of raising the
whole field on a new level: singular boundary eigenvalue problems of differential
equations beyond Gaussian type, stemming from applications that are solvable. Now,
these mathematical problems lead to new functions (higher special functions) and
show up new phenomena not yet seen, based on the fact that the differential equations
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have a sort of parameter that differential equations yielding classical special functions
do not have.

1.2 Classical Special Functions: Testing the New in
a Well-Known Area

In this section, those differential equations are described whose singular boundary
eigenvalue problems lead to the classical special functions. It may seem superfluous
to rewrite what has already been sufficiently described in books such asWhittaker and
Watson (1927), Coddington and Levinson (1955), Ince (1956), Bieberbach (1965),
Olver (1974) or Hille (1997). However, this is an inaccurate impression. Here, in order
to get beyond the results of classical theory, one must adopt a somewhat different
viewpoint than the one which developed the classical theory. This slightly different
viewpoint, which allows a generalisation, must of course also be applicable to the
classical theory. Thus, the known terrain is useful because it allows the new theory
to be proven on the basis of known results. Anyone who picks up pencil and paper
and starts calculating will appreciate being able to direct the new along the lines of
the old.

1.2.1 Differential Equations
The Gauss Equation

Basically, there is one differential equation whose singular eigenvalue problems
produce classical special functions: that is, the Gauss differential equation. It is a
differential equation (1), where P0(z) is the fourth-order polynomial

P0(z) = z2 (z − 1)2,

P1(z) is the third-order polynomial

P1(z) = (A0 + A1) z3 − (2 A0 + A1) z2 + A0 z

and P2(z) is the second-order polynomial

P2(z) = (B0 + B1 − C) z2 − (2 B0 − C) z + B0.

By means of

P(z) =
P1(z)
P0(z)

, Q(z) =
P2(z)
P0(z)

, (1.2.1)

equation (1) on page ix becomes

d2y

dz2 + P(z)
dy
dz
+Q(z) y(z) = 0, z ∈ C (1.2.2)
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with

P(z) =
P1(z)
P0(z)

=
A0
z
+

A1
z − 1

,

Q(z) =
P2(z)
P0(z)

=
B0

z2 +
B1

(z − 1)2
+

C
z
−

C
z − 1

.

(1.2.3)

As is seen, the coefficient P(z) has a first-order pole at the singularities of the
differential equation, located at z = 0 and at z = 1, and the coefficient Q(z) has
a second-order pole there. This is the crucial significance of the singularity of the
differential equation at hand. Astonishingly, this differential equation has not just two
but three singularities, two of which are placed at finite points, being called finite
singularities for short, namely at z = 0 and at z = 1; the third one is located at infinity,
being called infinite singularity for short. Since infinity is neither a proper point nor a
number, this improper point of the differential equation (1.2.2) is dealt with by means
of inverting it, viz. applying the transformation

ζ =
1
z
, (1.2.4)

thus getting

d2y

dζ2 +

[
2
ζ
−

1
ζ2 P (ζ)

]
dy
dζ
+

1
ζ4 Q (ζ) y = 0, ζ ∈ C, (1.2.5)

with P(ζ) = P(1/z) and Q(ζ) = Q(1/z), and then considering the point ζ = 0. With
equation (1.2.3) this means

P̃(ζ) =
2
ζ
−

1
ζ2 P (ζ) =

Ã0
ζ
+

A1
ζ − 1

,

Q̃(ζ) =
1
ζ4 Q (ζ) =

B̃0

ζ2 +
B1

(ζ − 1)2
+

C̃
ζ
−

C̃
ζ − 1

.

(1.2.6)

As may be seen, this differential equation is just the same as (1.2.2), (1.2.3), except
for the coefficients A0, B0, C. These do have other values, namely

Ã0 = 2 − A0 − A1,

B̃0 = B0 + B1 − C,

C̃ = 2 B1 − C,

(1.2.7)

while A1 and B1 are not affected. In particular, the order of the pole at ζ = 0 is the
same as at z = 0 in (1.2.3).

All the properties of singularities of equation (1.2.2), (1.2.3) at infinity are trans-
ferred to the singularity at zero of equation (1.2.5), (1.2.6) by means of the transfor-
mation (1.2.4).
Turning to the local solutions at the finite singularities of the differential equation

(1.2.2), (1.2.3) it was the great discovery of Lazarus Fuchs that an ansatz for the local
solutions at the singularity z = 0 has the form (Fuchs, 1866)
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y0(z) =
∞∑
n=0

an zn+α0 = zα0

∞∑
n=0

an zn. (1.2.8)

The term zα0 is denoted the asymptotic factor. Inserting the ansatz into the differential
equation and equating each power in z to zero yields

[α0 (α0 − 1) + A0 α0 + B0 ] a0 = 0,
[(A0 + α0) (α0 + 1) + B0] α1

− [2α0 (α0 − 1) + 2 (A0 + B0) + A1 − C] a0 = 0,
[1] an+1 + [0] an + [−1] an−1 = 0, n = 1,2,3, . . . ,

with

[1] = (n + 1 + α0) [(n + α0) + A0] + B0,

[0] = −2 (n + α0) [(n − 1 + α0) − (2 A0 + A1)] + (C − 2 B0),

[−1] = (n − 1 + α0) [(n − 2 + α0) + A0 + A1] + B0 + B1 − C.

This may also be written in the form

[α0 (α0 − 1) + A0 α0 + B0 ] a0 = 0, (1.2.9)
[(A0 + α0) (α0 + 1) + B0] a1

− [2α0 (α0 − 1) + 2 (A0 + B0) + A1 − C] a0 = 0, (1.2.10)(
1 +

α1
n
+
β1

n2

)
an+1 −

(
2 +

ᾱ0
n
+
β0

n2

)
an

+

(
1 +

α−1
n
+
β−1

n2

)
an−1 = 0, n = 1,2,3, . . . , (1.2.11)

with

α1 = A0 + 2α0 + 1, β1 = (A0 + α0) (α0 + 1) + B0,

ᾱ0 = 2 A0 + A1 + 2 (2α0 − 1),
β0 = (2 A0 + A1)α0 + 2α0 (α0 − 1) + 2 B0 − C,

α−1 = A0 + A1 + 2α0 − 3,
β−1 = (A0 + A1) (α0 − 1) + α0 (α0 − 3) + B0 + B1 − C + 2.

With a0 , 0 (a0 = 0 would mean getting the trivial solution y(z) ≡ 0), two values of
α0 result from (1.2.9), namely

α01 =
1 − A0 +

√
(1 − A0)2 − 4 B0

2
,

α02 =
1 − A0 −

√
(1 − A0)2 − 4 B0

2
.

(1.2.12)
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Thus, fixing the value of the first coefficient a0 of the series in (1.2.8) [that actually
may be used for normalising the particular solution y(z)] allows us to calculate the
value of the second coefficient a1 from the initial condition (1.2.10). This, in turn,
allows us to recursively calculate as many coefficients an from (1.2.11) as are needed.
As can be seen, there appear two particular solutions of the differential equation

(1.2.2) from the ansatz (1.2.8). However, these are only two linearly independent
solutions, i.e., a fundamental system of the differential equation, if the difference
between the two characteristic exponents (1.2.12) is not an integer. Otherwise, there
may appear a logarithmic term in one of the two particular solutions (see, e.g.,
Bieberbach, 1965, pp. 128, 136). These particular solutions are called Frobenius
solutions. The quantity α0 is called the characteristic exponent. y01(z) and y02(z) are
linearly independent, thus, the pair {y01(z), y02(z)} may also serve as a fundamental
systemof solutions of the differential equation (1.2.2), (1.2.3), i.e., the general solution
y(g)(z) of (1.2.2), (1.2.3) may be written in the form

y(g)(z) = C1 y01(z) + C2 y02(z),

whereC1 andC2 are the totality of complex-valued constants in z. The series in (1.2.8)
is convergent with radius of convergence r ranging to the neighbouring singularity of
the differential equation (1.2.2), (1.2.3), thus r = 1. This is a consequence of the fact
that for linear differential equations, all the particular solutions at ordinary points of
the differential equations are holomorphic there (cf. Bieberbach, 1965, p. 5).
There are also two local solutions at the singularity z = 1, given by

y1i(z) =
∞∑
n=0

an (z − 1)n+α1i = (z − 1)α1i

∞∑
n=0

an (z − 1)n, i = 1,2,

with

α11 =
1 − A1 +

√
(1 − A1)2 − 4 B1

2
,

α12 =
1 − A1 −

√
(1 − A1)2 − 4 B1

2
.

y11(z) and y12(z) are linearly independent, thus the pair {y11(z), y12(z)}may also serve
as a fundamental system of solutions of the differential equation (1.2.2), (1.2.3), i.e.,
the general solution y(g)(z) of (1.2.2), (1.2.3) may be written in the form

y(g)(z) = C1 y11(z) + C2 y12(z),

where C1 and C2 are not specific constants but are the totality of complex-valued
constants in z.
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Last but not least, the characteristic exponents of the Frobenius solutions at infinity
are given by

α∞1 =
Ã0 + Ã1 − 1 +

√
[Ã0 + Ã1 − 1]2 − 4 (B̃0 + B̃1 + C̃1)

2
,

α∞2 =
Ã0 + Ã1 − 1 −

√
[Ã0 + Ã1 − 1]2 − 4 (B̃0 + B̃1 + C̃1)

2
,

with Ã0 and B̃0 from (1.2.7) and

Ã1 = A1, B̃1 = B1, C̃1 = C.

Eventually it should be mentioned that the sum of all the characteristic exponents
is given by

α01 + α02 + α12 + α12 + α∞2 + α∞2 = 1.

It may be seen from (1.2.12) that, if B0 vanishes, thus B0 = 0, one of the two
characteristic exponents vanishes as well, namely

α02 = 0.

This, in turn, means that one of the two Frobenius solutions is holomorphic at
the singularity z = 0 of the differential equation (1.2.2), (1.2.3), and thus may be
represented by a pure Taylor series. The analogous happens with respect to the
singularity at z = 1 in the case when B1 = 0. This is an important mathematical
mechanism for dealing with the singular boundary eigenvalue problem in §1.2.4.

The Single Confluent Case of the Gauss Equation
The differential equation

d2y

dz2 +

[
A0
z
+ G0

]
dy
dz
+

[
B0

z2 +
C
z
+ D0

]
y(z) = 0, z ∈ C, (1.2.13)

is called the single confluent case of the Gauss equation since it may be derived from
the Gauss differential equation (1.2.2), (1.2.3)

d2y

dz2 +

[
A0
z
+

A1
z − 1

]
dy
dz
+

[
B0
z
+

B1

(z − 1)2
+

C
z
−

C
z − 1

]
y(z) = 0, z ∈ C,

in such a way that the singularity at z = 1 is considered to be located at an arbitrary
point z = z0 that is driven to infinity:

d2y

dz2 +

[
A0
z
+

A1
z − z0

]
dy
dz
+

[
B0
z
+

B1

(z − z0)2
+

C
z
−

C
z − z0

]
y(z) = 0, z ∈ C,

with z0 → ∞, thus by carrying out a limiting process. However, the result of this
limiting process depends on how it is carried out, for it has to be recognised that
in order to get the most general result, the coefficients A0, A1, B0, B1, C have to be
dependent on z0. Taking the constants A0, A1, B0, B1, C as independent of z0 does not
lead to the most general result. To correctly carry out this limiting process, one has
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to dive deeper into the topic and give some more definitions. Therefore, the technical
carrying out of this process is postponed to Chapter 2.

The single confluent case of the Gauss differential equation (1.2.13) has two
singularities, one located at the origin z = 0 and the other positioned at infinity, as
seen by the inversion ζ = 1

z :

d2y

dζ2 + P̃(ζ)
dy
dζ
+ Q̃(ζ) y = 0, ζ ∈ C,

with

P̃(ζ) =
[

2
ζ
−

1
ζ2 P (ζ)

]
dy
dζ
= −

G0

ζ2 +
2 − A0
ζ

,

Q̃(ζ) =
1
ζ4 Q (ζ) =

D0

ζ4 +
C
ζ3 +

B0

ζ2 .

As seen, the nature of this singularity is different in that the order of the pole of P̃(ζ)
at the origin ζ = 0 is two and the order of the pole of Q̃(ζ) at the origin ζ = 0 is four.
This makes a significant difference with respect to the local solution, as may be seen
below.

Local solutions at the origin z = 0 are given by

y(z) = zα0

∞∑
n=0

an zn. (1.2.14)

The quantity α0 is called the characteristic exponent. As above, it is given by inserting
the ansatz (1.2.14) into (1.2.13), (1.2.1) and setting the equation of zeroth power to
zero, resulting in the quadratic algebraic equation called the indicial equation:

α2
0 + (A0 − 1) α0 + B0 = 0, (1.2.15)

generally yielding the two values

α01,02 =


1 − A0 +

√
(1 − A0)2 − 4 B0

2
,

1 − A0 −
√
(1 − A0)2 − 4 B0

2
.

(1.2.16)

The coefficients an of the ansatz (1.2.14) are given by means of the above-
mentioned insertion and equating higher powers of z to zero, resulting in the difference
equation

α2
0 + (A0 − 1) α0 + B0 = 0,

G0 (1 + α0) a1 + (B0 + D0) a0 = 0,
(n + α0) (n − 1 + α0) an+1 + [(n + α0) A0 + B0 + D0] an

+ C an−1 = 0, n = 1,2,3, . . . ,

(1.2.17)

which may be turned into a recurrence equation by fixing a0.
Now, turning to the local solutions at infinity, the ansatz has to change such that

– according to the German mathematician Ludwig Wilhelm Thomé (1841–1910) –
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12 Introduction

an exponential term occurs in the asymptotic factor. He wrote this down for the first
time in 1883:

y(z) = exp (α1∞ z) zα0∞

∞∑
n=0

Cn z−n. (1.2.18)

It is plausible that the series is to bewritten in descending powers, since the singularity
is located at infinity. It is to be remarked here that even in this case, the infinite series
in the ansatz (1.2.18) are one-sided infinite, that is by no means to be taken for
granted. The quantity α1 – calculated by the same procedure as above – is called
the characteristic exponent of the second kind and is determined by an algebraic
second-order equation

α2
1∞j + G0 α1∞j + D0 = 0, j = 1,2, (1.2.19)

generally yielding the two values

α1∞1 =
−G0 +

√
G2

0 − 4 D0

2
,

α1∞2 =
−G0 −

√
G2

0 − 4 D0

2
.

(1.2.20)

The characteristic exponent of the first kind α0∞j obeys the first-order rational
equation

α0∞j

(
G0 + 2α1∞j

)
+ A0 α1∞j + C = 0, j = 1,2,

which depends on the characteristic exponents of the second kind α1∞j , thus generally
yielding two values:

α0∞j = −
A0 α1∞j + C
G0 + 2α1∞j

, j = 1,2. (1.2.21)

The Biconfluent Case of the Gauss Equation
For the sake of completeness, it has to be remarked that there is still one further
confluent case of theGauss equation, namely bymoving both of the finite singularities
to infinity. The result is the biconfluent case of the Gauss equation. It has no finite
singularity any more and looks like

d2y

dz2 + (G0 + G1 z)
dy
dz
+

(
D0 + D1 z + D2 z2

)
y = 0, z ∈ C. (1.2.22)

As may be seen from (1.2.5) and (1.2.6), at infinity there is a singularity of this
differential equation: P(ζ) has a third-order pole while Q(ζ) has a sixth-order one.

The special choice
G0 = G1 = 0

of its parameters does not touch the fundamental character of the differential equation
with respect to its local solutions at its singularity, but yields a biconfluent case of
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1.2 Classical Special Functions: Testing the New 13

the Gauss equation, a pair of fundamental solutions of which are the so-called and
well-known parabolic cylinder functions (cf. Slavyanov, 1996, §3).
The local solutions of (1.2.22) at the infinite singularity (which is actually a Thomé

one, see above) are given by

y(z) = exp
(α2

2
z2 + α1 z

)
zα0

∞∑
n=0

Cn

zn
,

where the characteristic exponents of second kind and second order α2 are given by

α21 = −
1
2

(
G1 +

√
G2

1 − 4 D2

)
,

α22 = −
1
2

(
G1 −

√
G2

1 − 4 D2

)
,

(1.2.23)

and the characteristic exponents of second kind and first order α1 are given by

α11 = −
G0 α21 + D1
2α21 + G1

,

α12 = −
G0 α22 + D1
2α22 + G1

.

(1.2.24)

Eventually, the characteristic exponents of first kind α0 are given by

α01 = −
α21 + α11 + G0 + D0

G0 + 2α21
,

α02 = −
α22 + α12 + G0 + D0

G0 + 2α22
.

(1.2.25)

1.2.2 Linear Transformations
There is a linear transformation of the independent variable of equation (1.2.2) as
well as of the dependent variable, the characteristic property of which is that it
leaves the essential properties of the differential equation untouched. These linear
transformations play an important role in the theory. In the former case, it is a
specific Moebius transformation, which changes the position of the singularities of a
differential equation in the complex number plane without touching the essentials of
the equation itself, and the other changes in asymptotic factors of the local solutions,
also without changing the essential properties of the equation. Because of their
importance, they should be explicitly mentioned here.

Moebius Transformations
To have a transformation of the independent variable of the differential equation
(1.2.2) that changes the locations of its singularities without touching the essential
properties is of calculatory importance. In the actual context this means that the
transformed differential equation has the same number of singularities, keeping the
pole orders of the coefficients (1.2.3). The only change allowed is in the locations of
the singularities of the differential equation.
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14 Introduction

It is to be expected that such a transformation is not of substantial significance,
since it does not touch the structure or character of the differential equation, or the
local solutions in the neighbourhood of its singularities, wherever these are located.
However, as will be seen below, placing the singularities in an appropriate manner
results in calculatory simplifications that often make the theory clearer and more
comprehensible. Therefore, it is not surprising that the Moebius transformation is
frequently applied in the following.
The access to Moebius transformations may be alleviated by means of purely

geometric considerations. It iswell known that the Eulerian complex plane of numbers
may be compactified by means of a stereographic mapping, i.e., a mapping of the
plane onto a sphere, the south pole of which is placed at the origin of the Eulerian
plane (see Behnke and Sommer, 1976, pp. 13–19). The result is a sphere-shaped
space of the complex numbers, with point of infinity the north pole. This is to be
kept in mind in the following considerations. If the compactified plane of complex
numbers is meant in the following, it is spoken of as the ‘complex sphere’.
The transformation

x =
a z + b
c z + d

, a d , b c, (1.2.26)

of the independent variable z is called the Moebius transformation (cf. Gutzwiller,
1990, p. 345). This transformation is named after the German mathematicianAugust
Ferdinand Moebius (1790–1868). It is the only bijective conformal mapping of the
closed complex sphere onto itself (sometimes also called isomorphic transformation
or homographic transformation; cf. Behnke and Sommer, 1976, p. 324). It is just this
mapping, interpreted as a transformation, that meets the condition formulated above.
A Moebius transformation is nothing other than a rotation, as well as a stretching of
the complex sphere, irrespective of what is done mathematically on this sphere.
The inverse mapping of (1.2.26) is of the same sort:

z =
d x − b
−c x + a

. (1.2.27)

This mapping can put three singularities of equation (1.2.2) onto three other
singularities without touching the substance of the equation, i.e., the number and
s-ranks, and thus the characteristics, of any of its singularities. This allows us always
to put three arbitrary points of equation (1.2.2) lying in the complex plane to the
points 0, 1, ∞ (cf. Figure 1.1). This will become important in the following.
These are the locations where the differential equations have the most simple

formulae, whatever is to be calculated.
With the help of the derivatives

dx
dz
=

a d − b c
(c z + d)2

=
(c x − a)2

a d − b c
,

d2x
dz2 = −2 c

a d − b c
(c z + d)3

= 2 c
(c x − a)3

(a d − b c)2
,
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1.2 Classical Special Functions: Testing the New 15

Singularity Singularity

Singularity Singularity
z = z1

z = 0 z = 1 z = ∞

z = z3 z = z2

Singularity 

Singularity 

Singularity SingularitySingularity 

Figure 1.1 Moebius transformation placing three arbitrary points.

the coefficients P̃(x) and Q̃(x) of the transformed differential equation

d2y

dx2 + P̃(x)
dy
dx
+ Q̃(x) y = 0

become

P̃(x) = P(x)
dx
dz

+

d2x
dz2(
dx
dz

)2 = P(x)
a d − b c
(c x − a)2

+
2 c

c x − a (1.2.28)

and

Q̃(x) =
Q(x)(
dx
dz

)2 = Q(x)
(a d − b c)2

(c x − a)4
.

(1.2.29)

s-Homotopic Transformations
The ansatz (1.2.8)

y(z) = zα0

∞∑
n=0

an zn

for the solution of the differential equation (1.2.2), (1.2.3), may also be written in the
form

y(z) = f (z) v(z) (1.2.30)

with

f (z) = zα0,

v(z) =
∞∑
n=0

an zn.
(1.2.31)
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Equation (1.2.30) may be considered as a transformation of the underlying differential
equation (1.2.2), (1.2.3) to a differential equation for v(z). This equation has the form

d2v

dz2 + P̃(z)
dv
dz
+ Q̃(z) v(z) = 0, z ∈ C,

with

P̃(z) = P(z) + 2
f ′

f
=

Ã0
z
+

Ã1
z − 1

,

Q̃(z) = Q(z) + P(z)
f ′

f
+

f ′′

f
=

B̃0

z2 +
B̃1

(z − 1)2
+

C̃
z
−

C̃
z − 1

,

(1.2.32)

whereupon

f ′ =
d f
dz
, f ′ =

d2 f
dz2 ,

Ã0 = A0 + 2α0,

Ã1 = A1,

B̃0 = α0 (α0 + A0 − 1) + B0,

B̃1 = B1,

C̃ = C − α0 A1.

(1.2.33)

The crucial point now is that for α0 = α01 from (1.2.12), as well as for α0 = α02, it
holds that

α01 (α01 + A0 − 1) + B0 = 0,
α02 (α02 + A0 − 1) + B0 = 0.

This means, because of (1.2.33), that for α0 in (1.2.30), (1.2.31) being one of the
characteristic exponents of the singularity of the equation (1.2.2), (1.2.3) at z = 0,
the coefficent B̃0 vanishes. Moreover, for α0 = α01 in (1.2.30), (1.2.31) it holds that

α̃01 =
1 − Ã0 +

√
(1 − Ã0)2 − 4 B̃0

2
= α01 − α01 = 0,

α̃02 =
1 − Ã0 −

√
(1 − Ã0)2 − 4 B̃0

2
= α02 − α01,

(1.2.34)

and for α0 = α02 in (1.2.30), (1.2.31), it holds that

α̃01 =
1 − Ã0 +

√
(1 − Ã0)2 − 4 B̃0

2
= α01 − α02,

α̃02 =
1 − Ã0 −

√
(1 − Ã0)2 − 4 B̃0

2
= α02 − α02 = 0.

(1.2.35)

Thus, in any case, one of the characteristic exponents vanishes under the transforma-
tion (1.2.30), (1.2.31).
As a result, it may be seen first that, as might have been expected, the coefficients Ã1

and B̃1 in (1.2.33) are not affected by the transformation (1.2.30), (1.2.31). Second, as
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may be seen from (1.2.34), (1.2.35), the transformed characteristic exponents α̃01 and
α̃02 are the differences between the original α01, α02, respectively, and those taken
in the transformation (1.2.30), (1.2.31). As may be seen from (1.2.34), (1.2.35), this
means that in any case one of the characteristic exponents vanishes. This, in turn,
means that one of the two Frobenius solutions becomes holomorphic at the origin,
and thus has a pure Taylor series representation.

The transformation (1.2.30), (1.2.31) is called an s-homotopic transformation, a
linear transformation of the dependent variable ywith respect to one ormore singular-
ities that changes the characteristic exponents of the related singularity of a differential
equation (1.2.2), (1.2.3) but leaves the location of the singularity unchanged.
Two subsequent s-homotopic transformations at the singularities z = 0 and z = 1

may be put together by applying

f (z) = zα0 (z − 1)α1 .

In this case, the final result is that Q̃(z) does not have a second-order pole any more,
but only a first-order one. Or, in other words, it holds that B̃0 = 0 and B̃1 = 0 in
(1.2.32):

d2v

dz2 +

(
Ã0
z
+

Ã1
z − 1

)
dv
dz
+

(
C̃
z
−

C̃
z − 1

)
v(z) = 0, z ∈ C. (1.2.36)

This means that there may be solutions of the differential equation that are holomor-
phic at z = 0 as well as at z = 1. Or, said another way, these particular solutions y(z)
are entire functions. Since the coefficient P(z) in (1.2.3) at the singularity at infinity
has a first-order pole, and the coefficient Q(z) in (1.2.3) at the singularity at infinity
has a second-order pole, as may be seen from (1.2.5), (1.2.6), this entire function
must be a polynomial.

Traditionally, it is just this form that is called aGauss differential equation, although
– for didactical reasons – I use this notation for the slightly more general equation
(1.2.2), (1.2.3).

It is clear that the differential equation (1.2.36) has a local solution at the origin
z = 0 that may be written as in a Taylor series:

y(z) =
∞∑
n=0

an zn. (1.2.37)

Inserting (1.2.37) into (1.2.36) yields a first-order linear difference equation

an+1 = f (n) an, n = 0,1,2,3, . . . , (1.2.38)

with

f (n) =
n2 + (Ã0 + Ã1 − 1) n − C̃

n2 + (Ã0 + 1) n + Ã0
= 1 +

α

n + Ã0
+

β

n + 1
, (1.2.39)
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whereby

α =
Ã0 (Ã1 − 1) + C̃

Ã0 − 1
,

β = −
Ã0 + Ã1 + C̃ − 2

Ã0 − 1
.

(1.2.40)

Determining a0 makes a linear two-term recurrence relation out of the first-order
difference equation (1.2.38), whereas this determination means a normalisation of
the solution (1.2.37) of (1.2.36). The resulting solution y(z) via (1.2.37) is called a
hypergeometric function (cf. Abramowitz and Stegun, 1970, Chapter 15).
Since (1.2.38) is a first-order equation, its general solution is given by the totality

of values of a0. All the particular solutions of (1.2.38) differ just by a factor:

a(g)n = L an, n = 0,1,2,3, . . . ,

where L is the totality of complex-valued contants in n, an is given by (1.2.38) and
a0 takes any fixed value, for example a0 = 1.
Classical analysis tells us that the ratio of two consecutive terms an+1 and an tends

to the inverse of the radius of convergence of the Taylor series in (1.2.37), thus to
unity. Here,

lim
n→∞

����an+1
an

���� = 1
r
= 1.

This is quite clear since the solution, represented by this ansatz, has the form

y1(z) = (z − 1)α0

∞∑
n=0

an (z − 1)n

at the singularity at z = 1. This, in general, is a function that is not holomorphic
at z = 1. Generally, series in the ansatzes of local solutions of linear differential
equations do converge up to the neighbouring singularity of the underlying differential
equation.
The totality of particular solutions an of the difference equation (1.2.38) only com-

prises the non-trivial solutions. However, there are also trivial particular solutions,
defined by a truncation of the sequence an:

an+1 = f (n) an, a0 = 1,n = 0,1,2,3, . . . ,m,

where
f (m) = 0, m ∈ N0. (1.2.41)

This means
m2 + (Ã0 + Ã1 − 1)m − C̃ = 0, m = 0,1,2, . . . . (1.2.42)

In this case, an = 0 for n > m holds. The corresponding series in (1.2.37) in this case
become finite and the function y(z) becomes a polynomial, which is actually called
a hypergeometric polynomial.
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1.2 Classical Special Functions: Testing the New 19

Examples

• Consider the condition f (1) = 0, i.e., m = 1. Then

C̃ = Ã0 + Ã1.

As a result, the particular solution of the difference equation (1.2.38) is a trivial
one, namely

a0 = 1,

a1 = f (0) a0 = −
C̃
Ã0
= −

Ã0 + Ã1

Ã0
= −1 −

Ã1

Ã0
,

a2 = f (1) a1 = 0 · a1 = 0,
a3 = f (2) a2 = 0,
. . .

The solution is the first-order hypergeometric polynomial

y(z) = 1 + a1 z = 1 −
(
1 +

Ã1

Ã0

)
z.

• Consider the condition f (2) = 0, i.e., m = 2. Then

C̃ = 2
[
Ã0 + Ã1 + 1

]
.

As a result, the particular solution of the difference equation (1.2.38) is a trivial
one, namely

a0 = 1,

a1 = f (0) a0 = −
C̃
Ã0
= −2

Ã0 + Ã1 + 1
Ã0

,

a2 = f (1) a1 = −
Ã0 + Ã1 + 2

2 Ã0 + 2
a1 = 2

Ã0 + Ã1 + 1
Ã0

Ã0 + Ã1 + 2
2 Ã0 + 2

,

a3 = f (2) a2 = 0,
a4 = f (3) a3 = 0,
. . .

The solution is the second-order hypergeometric polynomial

y(z) = 1 + a1 z + a2 z2.

1.2.3 Forms of Differential Equations
As may be seen from what is written above, it is crucial how many singularities
there are of the differential equation (1.2.2), and of what sort these are. On the
other hand, it is not essential for a differential equation where these singularities
are located. This is nothing but a matter of appropriateness. Moreover, the con-
crete values of the characteristic exponents at the singularities of equation (1.2.2)
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are not substantially important, since these values might always be changed by an
s-homotopic transformation. What is significant in this respect is the difference in the
pair of characteristic exponents at a singularity of equation (1.2.2) (these are actually
invariants of the s-homotopic transformations). Therefore, two differential equations
(1.2.2) may look completely different, although they are essentially the same. Such a
(trivial) distinction between differential equations (1.2.2) is called their form.
The form of a differential equation distinguishes equation (1.2.2) according to the

locations of its singularities, as well as the concrete values of the pairs of characteristic
exponents belonging to the singularities. As may be understood, this open up a rich
variety of forms of equation (1.2.2). It is not reasonable to display them all here
explicitly; the totality of forms of a differential equation (1.2.2) is generated by
means of a Moebius as well as s-homotopic transformations. Both of these are linear
transformations, the former of the independent variable and the latter of the dependent
variable.
It is a matter of historical evolution that there are a few forms of equation (1.2.2)

which have gained certain attention and thus are introduced below.Themost important
ones among them are determined by the following properties:

• The point at infinity is a singularity of the differential equation (1.2.2) with pole
order the highest (or one of the highest) among all appearing singularities.
• At least one of the characteristic exponents at each of the finite singularities is zero.
• If the differential equation (1.2.2) has at least two singularities, then one of them
is located at the origin z = 0.
• If the differential equation (1.2.2) has three or more singularities, then one of them
is located at unity z = 1.

Such a differential equation is said to be in standard form. There are several other
forms of equation (1.2.2) bearing a similar notation, the most important of which are
mentioned in the following (cf. Slavyanov and Lay, 2000, pp. 4, 5, 13, 21):

• General form: No parameter of the differential equation is specified.
• Natural form: The singularity (or one of the singularities) having the highest pole
order is located at infinity.
• Normal form: The coefficient in front of the first derivative vanishes.
• Self-adjoint form: The differential equation (1) is characterised by the condition

dP0(z)
dz

= P1(z)

(see Courant and Hilbert, 1968, p. 238).
• Canonical form: All zeros of P0(z) in equation (1) are simple ones.

The totality of forms of a differential equation (1.2.2) is the totality of equations
(1.2.2) that emerge from one another by means of Moebius, as well as s-homotopic,
transformations. This totality is an uncountably infinite set.
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1.2.4 Singular Boundary Eigenvalue Problems
In §1.2.2 we gave a criterion (cf. 1.2.41) for the parameters of the Gauss differential
equation (1.2.36) that determines a particular solution that is holomorphic simulta-
neously at both of its finite singularities. Moreover, it was given an explicit method
for its calculation. This is the most simple singular boundary eigenvalue problem.

Now we are going to treat the singular boundary eigenvalue problem of the single
confluent case of the Gauss differential equation, a typical singular boundary eigen-
value problem, in order to display the aspect under which this mathematical problem
is considered here, in this book, and, moreover, in order to give the method that is
based on this aspect. The main point is that the method works not only for those
differential equations the solutions of whose singular boundary eigenvalue problems
yield classical special functions, but also for the full generality of the differential
equation (1.2.2), (1.2.3):

d2y

dz2 + P(z)
dy
dz
+Q(z) y(z) = 0, z ∈ C, (1.2.43)

with

P(z) =
P1(z)
P0(z)

, Q(z) =
P2(z)
P0(z)

(1.2.44)

and with Pi(z), i = 0,1,2, being polynomials in z, from which result higher special
functions by formulating singular boundary eigenvalue problems.

As already mentioned in the Introduction, the basic idea of this method for coping
technically with this problem comes fromGeorge Cecil Jaffé, who, in connectionwith
the calculation of the quantum mechanical energy levels of the hydrogen molecule
ion, in 1933 applied this method for the first time (cf. Jaffé, 1933).

Jaffé did not do this with the single confluent case of theGauss differential equation,
as is done here for the sake of showing this method for a more simple equation, such
that the principle comes out clearlywithout being botheredwith complex calculations.
The single confluent case of the Fuchsian differential equation with three singulari-
ties is the simplest non-trivial equation for which the method of singular boundary
eigenvalue problems, presented in this book, applies. In the following this method is
presented in detail for this differential equation that may be considered as exemplary.

Formulation
As was shown in §1.2.1, the single confluent case (1.2.13)

d2y

dz2 +

[
A0
z
+ G0

]
dy
dz
+

[
B0

z2 +
C
z
+ D0

]
y(z) = 0, z ∈ C, (1.2.45)

of the Gauss differential equation has the characteristic exponents (1.2.16)

α01 =
1 − A0 +

√
(1 − A0)2 − 4 B0

2
,

α02 =
1 − A0 −

√
(1 − A0)2 − 4 B0

2

(1.2.46)
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at the singularity of the differential equation at the origin z = 0, from which result
two different asymptotic behaviours of its particular solutions

y01(z) ∼ zα01,

y02(z) ∼ zα02
(1.2.47)

on approaching the singularity, radially, on the positive real axis.
Moreover, as shown in §1.2.1, the single confluent case of the Gauss differential

equation has the characteristic exponents

α1∞1 =
−G0 +

√
G2

0 − 4 D0

2
,

α1∞2 =
−G0 −

√
G2

0 − 4 D0

2

(1.2.48)

and

α0∞1 = −
A0 α1∞1 + C
G0 + 2α1∞1

,

α0∞2 = −
A0 α1∞2 + C
G0 + 2α1∞2

(1.2.49)

[cf. (1.2.20), (1.2.1)] at the infinite singularity of the differential equation, fromwhich
result two different asymptotic behaviours of its particular solutions, on approaching
the singularity, radially, on the positive real axis:

y∞1(z) ∼ exp (α1∞1 z) zα0∞1,

y∞2(z) ∼ exp (α1∞2 z) zα0∞2
(1.2.50)

as z →∞.
Suppose now thatwe are looking for a particular solution of the differential equation

(1.2.45) that behaves like

y(z) = y02(z) (1.2.51)

and simultaneously like

y(z) = y∞2(z) (1.2.52)

on approaching the singularity at z = 0 and at infinity on the positive real axis,
radially. Because of the linearity of the differential equation, it holds that

y02(z) = c1 y∞1(z) + c2 y∞2(z). (1.2.53)

Thus, the condition for this to happen is given by

c1 = 0,

whereby this quantity c1 is dependent on the parameters of the underlying differential
equation but not dependent on the independent variable z.
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1.2 Classical Special Functions: Testing the New 23

This is the formulation of a boundary eigenvalue problem in searching for particular
solutions that behave in a prescribed manner, simultaneously, on approaching the
finite as well as the infinite singularity, radially, on the positive real axis.

The formulation of a criterion in dependence on the parameters of the differen-
tial equation is the solution of this problem. This criterion is called the eigenvalue
condition. Such a condition is developed in the following.

One of the two Frobenius solutions at the finite singularity of the differential
equation is to be connected with one of the two Thomé solutions at the infinite
singularity of the differential equation. Hereby, it is assumed that the Thomé solution
to be connected decreases exponentially as z → ∞ along the positive real axis, and
thus is a recessive particular solution of the underlying differential equation.

Jaffé Ansatz I
The particular solution of the singular eigenvalue problem immediately above is a
rather special one. The eigensolutions, viz. the solutions of the differential equation
(1.2.13)

d2y

dz2 + P(z)
dy
dz
+Q(z) y = 0 (1.2.54)

with

P(z) =
A
z
+ G0,

Q(z) =
B
z2 +

C
z
+ D0

(1.2.55)

that meet the boundary condition (i.e., the specific asymptotic behaviour as z → ∞
on the positive real axis), consist of an exponential factor, a power term, and an entire
function w(z):

y(z) = exp (α1∞2 z) zα0∞2 w(z) (1.2.56)

with<(α1∞2) < 0. The differential equation for w(z) is

d2w

dz2 + P̃(z)
dw
dz
+ Q̃(z)w = 0,

the coefficients P̃(z) and Q̃(z) of which are given by

P̃(z) = g̃0 +
g̃−10

z
,

Q̃(z) =
d̃−10

z

(1.2.57)

with

g̃0 = G0 + 2α1∞2,

g̃−10 = A + 2α0∞2,

d̃−10 = 2α1∞2 α0∞2 + Aα1∞2 + α0∞2 G0 + C.
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In order to get the eigenvalue condition, these particular solutions are to be con-
nected to those, that meet the boundary condition at the origin. This is to be investi-
gated in the following.

Jaffé Transformation
The singular boundary eigenvalue problem of the differential equation (1.2.45), and
the differential equation (1.2.4), (1.2.57) under the ansatz (1.2.56), is considered. We
apply the specific Moebius transformation

x =
z

z + 1
(1.2.58)

to the independent variable z of (1.2.4), (1.2.57), the crucial point of which is that the
positive z-axis, i.e., the relevant interval of the singular boundary eigenvalue problem
dealt with here, is compressed such that the points on the z-axis are shifted according
to the following table:

z : +∞ +1 0 − 1
2 −1

↓ ↓ ↓ ↓ ↓ ↓

x : +1 + 1
2 0 −1 −∞.

As a result, the relevant interval of the boundary eigenvalue problem changes from

{z ∈ R|0 ≤ z < ∞}

to

{x ∈ R|0 ≤ x ≤ 1}.

In order to carry out the transformation, it is necessary to write the coefficients
P̃(z) and Q̃(z) in (1.2.57) in dependence on x, yielding, with the help of

1
z
= −

x − 1
x
=

1
x
− 1,

the coefficients

P̃(x) = g̃0 − g̃−10 +
g̃−10

x
,

Q̃(x) = −d̃−10 +
d̃−10

x

and the differential equation for w(x):

d2w

dx2 +
˜̃P(x)

dw
dx
+ ˜̃Q(x)w = 0
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with [cf. (1.2.28)]

˜̃P(x) =
P̃(x)
(x − 1)2

+
2

x − 1

=
g̃0 − g̃−10 +

g̃−10
x

(x − 1)2
+

2
x − 1

=
g̃0 − g̃−10

(x − 1)2
+

g̃−10

x (x − 1)2
+

2
x − 1

.

By means of
1

x (x − 1)2
=

1
(x − 1)2

−
1

x − 1
+

1
x
,

we can eventually write

˜̃P(x) =
g̃0 − g̃−10

(x − 1)2
+ g̃−10

(
1

(x − 1)2
−

1
x − 1

+
1
x

)
+

2
x − 1

=
g̃0

(x − 1)2
+

2 − g̃−10
x − 1

+
g̃−10

x

=
˜̃g−2+1

(x − 1)2
+

˜̃g−1+1
x − 1

+
˜̃g−10

x
(1.2.59)

with

˜̃g−2+1 = g̃0,

˜̃g−1+1 = 2 − g̃−10,

˜̃g−10 = g̃−10.

The coefficient ˜̃Q(x) [cf. (1.2.29)] is

˜̃Q(x) =
Q̃(x)
(x − 1)4

=
−d̃−10 +

d̃−10
x

(x − 1)4

= −
d̃−10

(x − 1)4
+

d̃−10

x (x − 1)4

and with the help of

1
x (x − 1)4

=
1
x
+

1
(x − 1)4

−
1

(x − 1)3
+

1
(x − 1)2

−
1

x − 1

it becomes eventually

˜̃Q(x) =
˜̃d−10
x
+

˜̃d−3+1

(x − 1)3
+

˜̃d−2+1

(x − 1)2
+

˜̃d−1+1
x − 1
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with
˜̃d−3+1 = −d̃−10,
˜̃d−2+1 = d̃−10,
˜̃d−1+1 = −d̃−10,
˜̃d−10 = d̃−10.

Jaffé Ansatz II
In order to take into account the power term

zα02

of the asymptotic factor of the Frobenius solution (1.2.8), we make a rather sophisti-
cated ansatz, that I refer to as the Jaffé ansatz, since it was George Jaffé who seems
to have applied it for the first time in Jaffé (1933, p. 539):

w(x) = f (x) v(x) (1.2.60)

with
f (x) = (1 − x)β (1.2.61)

and where v(x) is to be holomorphic at the origin x = 0. This ansatz completes the
solution method.
The resulting differential equation in v(x) is

d2v

dx2 + P̄(x)
dv
dx
+ Q̄(x) v = 0 (1.2.62)

with [cf. (1.2.32)]

P̄(x) = ˜̃P(x) + 2
f ′

f
,

Q̄(x) = ˜̃Q(x) + ˜̃P(x)
f ′

f
+

f ′′

f
,

whereby

f ′ =
d f
dx
, f ′′ =

d2 f
dx2

and

f ′(x) = −β (1 − x)β−1 = −β (1 − x)−1 f =
β

x − 1
f ,

f ′′(x) = β (β − 1) (1 − x)β−2 = β (β − 1) (1 − x)−2 f

=
β (β − 1)
(x − 1)2

f .

The calculation of P̄(x) results in

P̄(x) =
ḡ−2+1

(x − 1)2
+
ḡ−1+1
x − 1

+
ḡ−10

x
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and the calculation of Q̄(x) results in1

Q̄(x) =
d̃−10

x
−

d̃−10

(x − 1)3
+

d̃−10

(x − 1)2
−

d̃−10
x − 1

+

(
g̃0

(x − 1)2
+

2 − g̃−10
x − 1

+
g̃−10

x

)
β

x − 1

+
β (β − 1)
(x − 1)2

=
d̄−3+1

(x − 1)3
+

d̄−2+1

(x − 1)2
+

d̄−1−1
x + 1

+
d̄−10

x

with

ḡ−2+1 = g̃0,

ḡ−1+1 = 2 + 2 β − g̃−10,

ḡ−10 = g̃−10,

d̄−3+1 = g̃0 β − d̃−10,

d̄−2+1 = d̃−10 + (2 − g̃−10) β + β (β − 1),
d̄−1+1 = g̃−10 β − d̃−10,

d̄−10 = −(g̃−10 β − d̃−10) = −d̄−1+1.

The reason for applying the Jaffé transformation (1.2.60), (1.2.61) is that it is
possible now to put

d̄−3+1 = 0

by choosing β accordingly:

β =
d̃−10
g̃0

. (1.2.63)

The final forms of P̄(x) and of Q̄(x) are thus

P̄(x) =
ḡ−2+1

(x − 1)2
+
ḡ−1+1
x − 1

+
ḡ−10

x
,

Q̄(x) =
d̄−2+1

(x − 1)2
+

d̄−1+1
x − 1

−
d̄−1+1

x
=

d̄−2+1

(x − 1)2
+

d̄−1+1
x (x − 1)

and the differential equation for v(x) is given by

x (x − 1)2
d2v

dx2 +

2∑
i=0
Γi xi

dv
dx
+

1∑
i=0
∆i xi v = 0 (1.2.64)

1 It should be recognised that 1
x (x−1) =

1
x−1 −

1
x .
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with

Γ2 = ḡ−1+1 + ḡ−10,

Γ1 = −(ḡ−2+1 + ḡ−1+1 + 2 ḡ−10),

Γ0 = ḡ−10,

∆1 = d̄−2+1 + d̄−1+1,

∆0 = −d̄−1+1.

The Meaning of β
It is quite clear that the exponent β in (1.2.61) reflects the connection of the two
relevant local solutions of the differential equation (1.2.60), (1.2.61) at z = 0 and at
infinity. This is to be substantiated in the following.

The power terms of the asymptotic factors of the two Jaffé ansatzes (1.2.56) and
(1.2.60), (1.2.61) are

zα02

(
2

z + 1

)β
= zα02 (z + 1)−β 2β

= zα02−β

(
1 +

1
z

)−β
︸      ︷︷      ︸
→1 as z→∞

2β . (1.2.65)

According to (1.2.52), the power term of the asymptotic factor of the Thomé solution
(1.2.18) is

zα0∞2 (1.2.66)

as z →∞. Thus, it has to be

β = α02 − α0∞2 (1.2.67)

if the power of z in (1.2.65) has to meet the power of z in (1.2.66). That this is the
case may be seen from (1.2.63):

β =
d̃−10
g̃0

=
2α1∞2 α02 + Aα1∞2 + G0 α02 + C

G0 + 2α1∞2

=
Aα1∞2 + C
G0 + 2α1∞2

+
G0 + 2α1∞2
G0 + 2α1∞2

α02

= −α0∞2 + α02,

which is to be compared with (1.2.67):

α0∞2 = −
Aα1∞2 + C
G0 + 2α1∞2
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that is just the same and explains its meaning. The choice (1.2.63) of β guarantees
that the two-step Jaffé ansatz (1.2.56) and (1.2.60), (1.2.61) admits the correct and
complete asymptotic factor of the Thomé solution (1.2.18) when approaching the
irregular singularity of the differential equation (1.2.22) (being located at infinity)
along the positive real axis.

Difference Equation
Inserting the ansatz

v(x) =
∞∑
n=0

an xn (1.2.68)

into the differential equation (1.2.64) results in the following calculation.
Taking the derivatives

dv
dx
=

∞∑
n=0

an n xn−1,

d2v

dx2 =

∞∑
n=0

an n (n − 1) xn−2

and inserting these as well as (1.2.68) into the differential equation

x (x − 1)2
d2v

dx2 +

2∑
i=0
Γi xi

dv
dx
+

1∑
i=0
∆i xi v = 0,

results in
∞∑
n=0

an [n (n − 1) + Γ0 n] xn−1

+

∞∑
n=0

an [−2 n (n − 1) + Γ1 n + ∆0] xn

+

∞∑
n=0

an [n (n − 1) + Γ2 n + ∆1] xn+1 = 0.

Equating coefficients of equal powers to zero yields the following second-order linear
difference equations:

x0 : (1 · 0 + 1 Γ0) a1 + (−2 · 0 + 0 · Γ1 + ∆0) a0 = 0,
x1 : (2 · 1 + 2 Γ0) a2 + (−2 · 1 · 0 + 1 · Γ1 + ∆0) a1 + ∆1 a0 = 0,
x2 : (3 · 2 + 3 Γ0) a3 + (−2 · 2 · 1 + 2 · Γ1 + ∆0) a2 + (1 · 0 + 1 · Γ2 + ∆1) a1 = 0,
x3 : (4 · 3 + 4 Γ0) a4 + (−2 · 3 · 2 + 3 · Γ1 + ∆0) a3 + (2 · 1 + 2 · Γ2 + ∆1) a2 = 0,
x4 : (5 · 4 + 5 Γ0) a5 + (−2 · 4 · 3 + 4 · Γ1 + ∆0) a4 + (3 · 2 + 3 · Γ2 + ∆1) a3 = 0,
. . .
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Second-order difference equations of Poincaré–Perron type (cf. §1.3) for the coeffi-
cients

Γ0 a1 + ∆0 a0 = 0,
(n + 1) [n + Γ0] an+1

+ [−2 (n − 1) n + n Γ1 + ∆0] an
+ [(n − 2) (n − 1) + (n − 1) Γ2 + ∆1] an−1 = 0, n = 1,2,3,4, . . . ,

may be written in the form of a three-term recurrence relation

a0 arbitrary,
Γ0 a1 + ∆0 a0 = 0,(
1 +

α1
n
+
β1

n2

)
an+1 +

(
−2 +

α0
n
+
β0

n2

)
an

+

(
1 +

α−1
n
+
β−1

n2

)
an−1 = 0, n ≥ 1,

(1.2.69)

where the coefficients of the difference equation are

α1 = Γ0 + 1, β1 = Γ0,

α0 = Γ1 + 2, β0 = ∆0,

α−1 = Γ2 − 3, β−1 = ∆1 − Γ2 + 2.
(1.2.70)

The term ‘recurrence relation’ is justified because of the initial condition in (1.2.69):
after havingfixed the value of a0, all the subsequent terms an, n ≥ 1maybe calculated,
recursively. Thus, the partial solutions of (1.2.69) may be calculated numerically, as
precisely as needed.
In the following we discuss which specific particular solutions of the linear differ-

ence equation (1.2.69) are to be calculated in order to solve the singular boundary
eigenvalue problem. Since the particular solutions of the difference equation (1.2.69),
solving the singular boundary eigenvalue problem, are characterised by its index
asymptotic behaviour as n→∞, equation (1.2.69) is investigated in this respect.

Summary
The solution path shown above is paradigmatic and applicable to any differential
equation (1) on page ix. It is the central method (cf. §1.4.2 below) for the realisation
of the mathematical principle (cf. §1.4.1) proposed in this book. Therefore, in the
following, the method is summarised in a comprehensive form.

Differential equation:

d2y

dz2 + P(z)
dy
dz
+Q(z) y(z) = 0, z ∈ C, (1.2.71)
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with

P(z) =
A0
z
+ G0,

Q(z) =
B0

z2 +
C
z
+ D0.

(1.2.72)

Characteristic exponents of the singularity at zero:

α01 =
1 − A0 +

√
(1 − A0)2 − 4 B0

2
,

α02 =
1 − A0 −

√
(1 − A0)2 − 4 B0

2
.

(1.2.73)

Characteristic exponents of the singularity at infinity:

α1∞1 =
−G0 +

√
G2

0 − 4 D0

2
,

α1∞2 =
−G0 −

√
G2

0 − 4 D0

2

(1.2.74)

and

α0∞1 = −
A0 α1∞1 + C
G0 + 2α1∞1

,

α0∞2 = −
A0 α1∞2 + C
G0 + 2α1∞2

.

(1.2.75)

Jaffé ansatz I:

y(z) = exp (α1∞2 z) zα0∞2 w(z) (1.2.76)

with

P̃(z) = g̃0 +
g̃−10

z
,

Q̃(z) =
d̃−10

z

and

g̃0 = G0 + 2α1∞2,

g̃−10 = A + 2α02,

d̃−10 = 2α1∞2 α02 + Aα1∞2 + α02 G0 + C.
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Jaffé transformation: The relation (1.2.58)

x =
z

z + 1

results in

P̃(x) = g̃0 − g̃−10 +
g̃−10

x
,

Q̃(x) = −d̃−10 +
d̃−10

x
.

Thus we have

˜̃P(x) =
˜̃g−2+1

(x − 1)2
+

˜̃g−1+1
x − 1

+
˜̃g−10

x
,

˜̃Q(x) =
˜̃d−10
x
+

˜̃d−3+1

(x − 1)3
+

˜̃d−2+1

(x − 1)2
+

˜̃d−1+1
x − 1

,

with

˜̃g−2+1 = g̃0,

˜̃g−1+1 = 2 − g̃−10,

˜̃g−10 = g̃−10,
˜̃d−3+1 = −d̃−10,
˜̃d−2+1 = d̃−10,
˜̃d−1+1 = −d̃−10,
˜̃d−10 = d̃−10.

Jaffé ansatz II: The relation

w(x) = f (x) v(x) (1.2.77)

with

f (x) = (1 − x)β (1.2.78)

results in

P̄(x) =
ḡ−2+1

(x − 1)2
+
ḡ−1+1
x − 1

+
ḡ−10

x
,

Q̄(x) =
d̄−3+1

(x − 1)3
+

d̄−2+1

(x − 1)2
+

d̄−1−1
x + 1

+
d̄−10

x
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with

ḡ−2+1 = g̃0,

ḡ−1+1 = 2 + 2 β − g̃−10,

ḡ−10 = g̃−10,

d̄−3+1 = g̃0 β − d̃−10,

d̄−2+1 = d̃−10 + (2 − g̃−10) β + β (β − 1),
d̄−1+1 = g̃−10 β − d̃−10,

d̄−10 = −(g̃−10 β − d̃−10) = −d̄−1+1.

A Taylor expansion of the particular solution (that is convergent in the unit disc)
results in a linear second-order difference equation, the coefficients of which are
given by

Γ2 = ḡ−1+1 + ḡ−10,

Γ1 = −(ḡ−2+1 + ḡ−1+1 + 2 ḡ−10),

Γ0 = ḡ−10,

∆1 = d̄−2+1 + d̄−1+1,

∆0 = −d̄−1+1.

(1.2.79)

Index Asymptotics
As has been seen, the Jaffé transformation (1.2.58) and the Jaffé ansatz (1.2.60),
(1.2.61) for getting the eigensolutions of the singular boundary eigenvalue problem,
discussed above, lead to the irregular difference equation (1.2.69) of Poincaré–Perron
type, that is symptomatic for this approach.With respect to themathematical problem,
these sort of difference equations have to be investigated in detail concerning their
index-asymptotic behaviours, viz. as n→∞.
We start by dealing with second-order equations, although third-order as well

as fourth-order equations occur as well, later in the text. Higher than fourth-order
equations do not occur in this book, concretely; however, the general underlying
principle becomes clear and is addressed in several places, particularly on a general
level in §§1.4 and 3.5.

Given the irregular second-order difference equation (1.2.69) of Poincaré–Perron
type(

1 +
α1
n
+
β1

n2

)
an+1 +

(
−2 +

α0
n
+
β0

n2

)
an +

(
1 +

α−1
n
+
β−1

n2

)
an−1 = 0 (1.2.80)

with n = 1,2,3, . . ., dividing this equation by an yields(
1 +

α1
n
+
β1

n2

)
tn +

(
−2 +

α0
n
+
β0

n2

)
+

(
1 +

α−1
n
+
β−1

n2

)
1

tn−1
= 0 (1.2.81)

with
tn =

an+1
an

.
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If the limit

t = lim
n→∞

tn

exists, a carrying out of the limiting process yields a second-order algebraic equation
for t:

t2 − 2 t + 1 = (t − 1)2 = 0 (1.2.82)

having a twofold solution

t1 = t2 = 1. (1.2.83)

Equation (1.2.82) is called the characteristic equation of zeroth order of the difference
equation (1.2.80) (cf. Adams, 1928, pp. 507–541).
If all solutions of the characteristic equation of zeroth order of a linear, homoge-

neous, ordinary difference equation are finite values, then the underlying difference
equation is said to be of Poinaré–Perron type. If, furthermore, the characteristic
equation of a difference equation of Poincaré–Perron type does have multiple roots,
it is said to be irregular; otherwise, it is called regular. Thus, (1.2.80) is an irregular
difference equation of Poincaré–Perron type.
The two foldedness of the solution (1.2.83) of the characteristic equation (1.2.82)

means that the ratio
an+1
an

of two consecutive terms of each particular solution of the difference equation (1.2.80)
tends to unity.
As may be expected at this level of zeroth-order asymptotics, it is not obvious

from the characteristic equation (1.2.82) that the general solution of the difference
equation (1.2.80) is a two-dimensional vector space since it is an irregular one of
Poincaré–Perron type. The distinction between the two fundamental solutions of
(1.2.80) becomes clear only when carrying out a leading-order asymptotics. This is
done in the following.
Take one more order term in equation (1.2.82):(

1 +
α1
n

)
t2
n +

(
−2 +

α0
n

)
tn + 1 +

α−1
n
= 0, (1.2.84)

the asymptotic solutions of which are given by

tn1,2 = 1 ±

√
−

∑i=+1
i=−1 αi

n
+ O

(
1
n

)
as n→∞. (1.2.85)

The O symbol may be seen in Slavyanov (1996, §I.1.1, pp. 1, 2). This symbol had
already been coined in the 1930s (cf. Erdélyi, 1956, Chapter I).
Equation (1.2.84) is called the characteristic equation of the first order of the

difference equation (1.2.80) (cf. Adams, 1928, p. 509). Here it is seen that there are
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two particular solutions of equation (1.2.80), since the ratio of two consecutive terms
tends to unity:

an+1
an
→ 1

as n→∞ for each of them, albeit, from two different, namely opposite, directions in
the complex t-plane at a rate

O

(
1
√

n

)
as n→∞. There are two possibilities. Either the discriminate in (1.2.46) is positive,
then there is an exponentially increasing and an exponentially decreasing particular
solution. This is shown in Figure 1.2. On the other hand, if the discriminant in (1.2.46)
is a negative number, then both partial solutions are oscillating. In this case, the two
arrows in Figure 1.2 are rotated by 90◦ at their arrowheads (cf. Figure 1.6). In the
example given in §1.2.5 this case occurs and is considered in more detail there.

t

0 1 Re(t)

Im(t)

Figure 1.2 Solutions of the second-order characteristic equation.

Birkhoff Sets. Although the ratio of two consecutive terms
an+1
an

of all the particular solutions of the difference equation (1.2.80) tends to unity, there
is a significant difference in their asymptotic behaviour as n→∞. Either

an+1,1

an,1
∼ 1 +

√
−

∑i=+1
i=−1 αi

n
(1.2.86)

or

an+1,2

an,2
∼ 1 −

√
−

∑i=+1
i=−1 αi

n
(1.2.87)

as n→ ∞. These ratios indicate the asymptotic behaviours of a pair of fundamental
solutions of the difference equation (1.2.80) as n → ∞, that is considered in the
following.
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Proposition. Suppose that two sequences of numbers an1,2, n = 1,2,3, . . . , behave
like

an1 ∼ exp
(
γ n

1
2

)
, (1.2.88)

an2 ∼ exp
(
−γ n

1
2

)
(1.2.89)

as n→∞, then both of them fulfil the difference equation (1.2.80):

γ = 2

√√√
−

i=+1∑
i=−1

αi , 0.

Proof Taking the first equation of (1.2.88) and adding the number 1 yields

an+1 = exp
[
γ (n + 1)

1
2

]
= exp

[
γ n

1
2

(
1 +

1
n

) 1
2
]

∼ exp
[
γ n

1
2

(
1 +

1
2 n

)]
= exp

[
γ n

1
2

]
exp

[
γ n

1
2

2 n

]
= exp

[
γ n

1
2

]
exp

[
γ

2 n
1
2

]
as n→∞.

Taking the first equation of (1.2.88) and subtracting the number 1 yields

an−1 = exp
[
γ (n − 1)

1
2

]
= exp

[
γ n

1
2

(
1 −

1
n

) 1
2
]

∼ exp
[
γ n

1
2

(
1 −

1
2 n

)]
= exp

[
γ n

1
2

]
exp

[
−
γ n

1
2

2 n

]
= exp

[
γ n

1
2

]
exp

[
−

γ

2 n
1
2

]
as n→∞.

Insertion of these expressions into the difference equation (1.2.80), which may be
written in the form(

n2 + α1 n + β1

)
an+1 +

(
−2 n2 + α0 n + β0

)
an +

(
n2 + α−1 n + β−1

)
an−1 = 0,

leads to(
n2 + α1 n + β1

)
exp

(γ
2

n
)

exp
[
γ

2 n
1
2

]
+

(
−2 n2 + α0 n + β0

)
exp

(γ
2

n
)

+
(
n2 + α−1 n + β−1

)
exp

(γ
2

n
)

exp
[
−

γ

2 n
1
2

]
= 0
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or

n2
(
1 +

γ

n
1
2
+

γ2

2 n
2
2
+ · · ·

)
+ α1 n

(
1 +

γ

n
1
2
+

γ2

2 n
2
2
+ · · ·

)
+ β1

(
1 +

γ

n
1
2
+

γ2

2 n
2
2
+ · · ·

)
− 2 n2

(
1 +

γ

2 n
1
2
+

γ2

8 n
2
2
+ · · ·

)
+ α0 n

(
1 +

γ

2 n
1
2
+

γ2

8 n
2
2
+ · · ·

)
+ β0

(
1 +

γ

2 n
1
2
+

γ2

8 n
2
2
+ · · ·

)
+ n2 + α−1 n + β−1 = 0.

(1.2.90)

Thus, a decomposition of the difference equation (1.2.90) into half-integer powers
yields

n
4
2 + γ n

3
2 +

1
2
γ2 n

2
2 + · · ·

+ α1 n
2
2 + α1 γ n

1
2 +

1
2
α1 γ

2 n
0
2 + · · ·

+ β1 n
0
2 + β1 γ n−

1
2 +

1
2
β1 γ

2 n−
2
2 + · · ·

− 2 n
4
2 − γ n

3
2 −

1
4
γ2 n

2
2 + · · ·

+ α0 n
2
2 +

1
2
α0 γ n

1
2 +

1
8
α0 γ

2 n
0
2 + · · ·

+ β0 n
0
2 +

β0 γ

2
n−

1
2 +

β0 γ
2

8
n−

2
2 + · · ·

+ n
4
2 + α−1 n

2
2 + β−1 n

0
2 = 0.

(1.2.91)

In order for the left-hand side of this equation to be zero, it is necessary that all of
the coefficients in front of the powers of n have to be zero. Therefore, every power of
equation (1.2.91) is to be considered separately.

The highest power term is n
4
2 :

n
4
2 : (1 − 2 + 1) n

4
2 = 0.

This equation is fulfilled by the difference equation (1.2.80) itself! Thus, a condition
cannot be made out of this term.

The next lower power term is n
3
2 :

n
3
2 : (γ − γ) n

3
2 = 0.

This equation is also fulfilled by the difference equation (1.2.80) itself!
The next lower power term is n

2
2 :

n
2
2 :

(
α1 + α0 + α−1 +

1
2
γ2 −

1
4
γ2

)
n

2
2 = 0.
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From this equation result the two characteristic exponents γ = γ1 and γ = γ2:

γ1 = +2

√√√
−

i=+1∑
i=−1

αi .

γ2 = −2

√√√
−

i=+1∑
i=−1

αi = −γ1.

Thus, both of the sequences in (1.2.88) fulfil the difference equation (1.2.80) as
n→∞ �

Thus, in dependence on the sign of the parameter γ, the sequence an, n = 1,2,3, . . . ,
either tends to infinity or to zero as n → ∞. In both cases, the behaviour is of
exponential type.
According to these lines, higher and higher orders may be incorporated into the

calculations. The results are the coefficients of the so-called Birkhoff set, consisting
of two formal expressions of two particular solutions {an1} and {an2} of the irreg-
ular difference equation (1.2.72) of Poincaré–Perron type and representing the full
asymptotic behaviour of two linearly independent particular solutions of the differ-
ence equation as n → ∞ that may be considered exact. However, because of the
considerable increase in calculatory expenditure, it is advisable to use an algebraic
computer program. The Birkhoff set of the difference equation (1.2.72) is given by

an1 (n) = exp
(
γ1 n

1
2

)
nr1

[
1 +

C11

n
1
2
+

C12

n
2
2
+ · · ·

]
,

an2 (n) = exp
(
γ2 n

1
2

)
nr2

[
1 +

C21

n
1
2
+

C22

n
2
2
+ · · ·

] (1.2.92)

as n→∞, with

γ1 = 2

√√√
−

i=+1∑
i=−1

αi , 0,

γ2 = −γ1,

r1 = r2 = −
1
4
(2α1 − 2α−1 − 1) .

(1.2.93)

The coefficients Ci j, i = 1,2, j = 1,2,3, . . . , may be calculated but do not play any
role in the following. The solutions {an1}, {an2} of the Birkhoff set (1.2.92), (1.2.93)
are called Birkhoff series solutions.
This sort of formal solution of linear ordinary difference equations is the analogue

to the Thomé solution (cf. §1.2) for linear ordinary differential equations. These
analogous ansatzes were shown, by George David Birkhoff and Waldemar Juliet
Trjitzinsky (Birkhoff and Trjitzinsky, 1933), in the late 1920s and early 1930s, to be
asymptotic solutions as n→∞. Henri Poincaré showed this with respect to Thomé’s
formal series solutions a few decades earlier for differential equations.
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Taking the difference equation (1.2.72) as a recurrence relation, the increase of the
independent variable n is in a sense ‘natural’. Thus, the index asymptotics here is the
‘natural’ behaviour of the independent variable n.
As a result of (1.2.93) it is now clear that if

γ = 2

√√√
−

i=+1∑
i=−1

αi

then (1.2.92) gives the possible asymptotic behaviours of the particular solutions an
of the difference equation (1.2.80).

The question now appears which of the two particular solutions has to be chosen if
the parameters adopt eigenvalues of the singular boundary eigenvalue problem, i.e.,
if the particular solution of the differential equation adopts the required asymptotic
behaviour on approaching the singularity at z = 0 as well as at infinity along the
positive real axis. This question is to be dealt with in the following.

A Proof
After having investigated the index-asymptotic behaviour of the particular solutions
{an},n = 0,1,2,3, . . . , of the irregular difference equation (1.2.69) of Poincaré–
Perron type, the final step now is to be done in order to clarify the asymtotic behaviour
of the function (1.2.68) as z →∞ or x → 1.

General Remarks
It is quite clear from what is written above that the asymptotic behaviour of the
function v[x(z)] in (1.2.59) generally (viz. if the parameters of the differential equation
c do not admit eigenvalues) is given by

v[x(z)] =
∞∑
n=0

an xn ∼ exp [(α1∞1 − α1∞2) z]

as z →∞, since only then is the asymptotic behaviour of y(z) in (1.2.56) in accordance
with the dominant behaviour given by the Thomé solutions in formula (1.2.18) as
z →∞:

y(z) ∼ exp (α1∞2 z) exp [(α1∞1 − α1∞2) z] = exp (α1∞1 z) .

On the other hand, it is clear that in the case when c admit eigenvalues, the asymptotic
behaviour of the function w(z) in (1.2.59) must be weaker than

exp (α z) , |α | = α1∞2

as z →∞, such that it is dominated by means of the asymptotic factor in (1.2.56):

exp (α1∞2 z)
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since only then is the asymptotic behaviour of y(z) in (1.2.56) realised in formula
(1.2.18) as z →∞:

y(z) ∼ exp (α1∞2 z) exp [α zε] ∼ exp (α1∞2 z)

with {ε ∈ R, −1 < ε < +1} and α assumed to be |α | < α1∞2. That this really happens
is to be shown in detail in the following.

No-Eigenvalue Behaviour
In the following, these global aspects may be confirmed by a local consideration. We
start with the non-eigenvalue case.

Proposition. If the particular solution {an}, n = 0,1,2,3, . . . , of the difference
equation (1.2.72) is given by

an ∼ exp
(
γ1 n

1
2

)
as n→∞

then the function v[x(z)] in (1.2.60) behaves like

v(x(z)) =
∞∑
n=0

an xn ∼ exp [(α11 − α12) z] (1.2.94)

as z →∞.

To prove this proposition, according to the Euler–Maclaurin formula (cf. also, e.g.,
deBruijn, 1961; Abramowitz and Stegun, 1970), the infinite sum in (1.2.94)

∞∑
n=0

an xn =
∞∑
n=0

an

(
z

z + 1

)n
is replaced by the integral2 ∫ ∞

n=0
uz(n) dn

with

uz(n) = exp
(
γ1 n

1
2 −

n
z

)
, γ1, z > 0, real-valued,n ∈ N

as n→∞. We hereby make use of Auxiliary I below.

Auxiliary I. If

x =
z

z + 1
(1.2.95)

then it holds that

xn ∼ exp
(
−

n
z

)
(1.2.96)

2 This is correct modulo a constant, which does not matter in the following.
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as z →∞. This means that the ratio

xn

exp
(
− n

z

) (1.2.97)

tends to unity as z tends to infinity for any natural value of n.

Proof of Auxiliary I We have3

ln
(

z
z + 1

)
= ln

(
z

z + z
z

)
= ln

(
1

1 + 1
z

)
= ln 1 − ln

(
1 +

1
z

)
= − ln

(
1 +

1
z

)
∼ −

1
z

as z →∞

and thus

xn = exp
[
ln

(
z

z + 1

)n]
= exp

[
n ln

(
z

z + 1

)]
∼ exp

(
−

n
z

)
as z →∞. �

We formulate the following Auxiliary II.

Auxiliary II. If the coefficients an in the Taylor series (1.2.94)

v(x(z)) =
∞∑
n=0

an

(
z

z + 1

)n
=

∞∑
n=0

an exp
[
n ln

(
z

z + 1

)]
behave like

an ∼ exp
(
γ1 n

1
2

)
as n→∞, then the function v(x(z)) behaves like

v[x(z)] ∼ exp
[(γ1

2

)2
z
]

as z →∞.

3 See Bronstein et al. (2001, p. 1043): ln(1 + x) ∼ x as x → 0, viz. z →∞.
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Proof of Auxiliary II We consider that
∞∑
n=0

an xn =
∞∑
n=0

an

(
z

z + 1

)n
∼

∞∑
n=0

exp
(
γ1 n

1
2

) (
z

z + 1

)n
=

∞∑
n=0

exp
(
γ1 n

1
2

)
exp

[
n ln

(
z

z + 1

)]
=

∞∑
n=0

exp
[
γ1 n

1
2 + ln

(
z

z + 1

)
n
]

=

∞∑
n=0

exp [h(z,n)] =
∞∑
n=0

u (z,n)

with

u (z,n) = exp [h (z,n)] Auxiliary I
∼ exp

[
γ1 n

1
2 −

n
z

]
as n, z →∞.
On the basis of the Euler–MacLaurin sum formula (see, e.g., deBruijn, 1961;

Abramowitz and Stegun, 1970), we calculate

v[x (z)] =

∞∫
n=0

u(z,n) dn =

∞∫
n=0

exp [h(z,n)] dn =

∞∫
n=0

exp
[
γ1 n

1
2 −

n
z

]
dn. (1.2.98)

It is important to understand that for γ1 > 0 or for <(γ1) > 0, the function
u(z,n) = uz(n) always has a hump that has two properties as n→∞, z = const.:

• The apex of the hump tends to infinity as n→∞.
• The hump becomes smaller and taller, viz. a peak, a delta function in the limit

n→∞.

These two properties are the conditions for applying the Lagrange integrationmethod,
which is done in the following.

According to this method, the function u(z,n) = uz(n) is approximated by a second-
order polynomial in the limit n→∞, z = const. (cf., e.g., deBruijn, 1961):

uz(n) ∼ g1(n) = a1 [n − n0]
2 + b1 as n→∞ (1.2.99)

with
a1 = a1(n0, γ1, z),

b1 = b1(n0, γ1, z),

n0 = n0(γ1, z),

(1.2.100)
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where n0 is the location of the hump on the n-axis. In order to calculate an approxi-
mation of the integral function in (1.2.98), this function g1(n)may be integrated from
the lower zero n11 of g1(n) to the upper one n12 yielding

∞∫
0

g1(z,n) dn ∼

n12∫
n11

g1(z,n) dn ∼ v (z)

as n→∞ and for fixed values of the independent variable z.
According to the Lagrange integration method, there are three determining condi-

tions for the three parameters a1, b1, n0:

g1(n = n0) = uz(n = n0),

dg1(n)
dn

����
n=n0

=
duz(n)
dn

����
n=n0

= 0,

d2g1(n)
dn2

����
n=n0

=
d2uz(n)
dn2

����
n=n0

.

In the following, these three conditions are evaluated:

• The first condition yields

exp
[
γ1 n

1
2
0 −

n0
z

]
= a1 (n0 − n0)

2 + b1 = b1.

• The second condition yields

du
dn
=
γ1 z − 2

√
n

2 z
√

n
exp

(
γ1
√

n −
n
z

)
,

thus
du
dn

����
n=n0

=
γ1 z − 2√n0

2 z
√

n0
exp

[
γ1 n0 −

n0
z

]
= 0,

resulting in
γ1 z − 2

√
n0 = 0

or

n0(γ1, z) =
(γ1 z

2

)2
.

On the other hand [cf. (1.2.99)]
dg1(n)
dn

= 2 a1 (n − n0) ,

from which follows
dg1(n)
dn

����
n=n0

= 2 a1 (n0 − n0) = 0,

as is shown to be correct.
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• The third condition yields

d2u
dn2 =

γ1 z2 (
γ1
√

n − 1
)
− 4 γ1 n z + 4 n

3
2

4 z2 n
3
2

exp
(
γ1
√

n −
n
z

)
,

thus

d2u
dn2

����
n=n0

=
γ1 z2 (

γ1
√

n0 − 1
)
− 4 γ1 n0 z + 4 n

3
2
0

4 z2 n
3
2
0

exp
(
γ1
√

n0 −
n0
z

)
and

d2g1

dn2 = 2 a1,

from which follows

a1 =
1
2

©­«
γ1 z2 (

γ1
√

n0 − 1
)
− 4 γ1 n0 z + 4 n

3
2
0

4 z2 n
3
2
0

exp
(
γ1
√

n0 −
n0
z

)ª®¬
= −

exp
(
γ2

1 z

4

)
γ2

1 z3
∼ exp

(
γ2

1 z

4

)
as n0 →∞ or z →∞.

Summarising the calculations, it is to be remarked that the function

uz(n) = u(z,n) = exp
(
γ1 n

1
2 −

n
z

)
in the limit n→∞ is approximated by the quadratic parabola

g1(n) = a1 [n − n0]
2 + b1

with4

n0(γ1, z) =
(γ1 z

2

)2
,

a1(n0, γ1, z) = −
b1

γ2
1 z3
= −

exp
(
γ2

1 z

4

)
γ2

1 z3
,

b1(n0, γ1, z) = exp
(
γ1 n

1
2
0 −

n0
z

)
= exp

(
γ2

1 z

4

)
.

For later use, we write

−
b1
a1
= γ2

1 z3.

The calculation of the zeros of g1(n) is done by

a1 [n1 − n0]
2 + b1 = 0

4 Thus, for z →∞, we have a1 → −b1.
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or

a1 n2
1 − 2 a1 n0 n1 + a1 n2

0 + b1 = 0.

Thus

n11 =
1

2 a1

[
2 a1 n0 −

√
4a2

1 n2
0 − 4 a1

(
a1 n2

0 + b1

)]
= n0 −

√
−

b1
a1
=

(γ1 z
2

)2
− γ1

√
z3 = n0 − γ1

√
z3

and

n12 =
1

2 a1

[
2 a1 n0 +

√
4a2

1 n2
0 − 4 a1

(
a1 n2

0 + b1

)]
= n0 +

√
−

b1
a1
=

(γ1 z
2

)2
+ γ1

√
z3 = n0 + γ1

√
z3.

The final result is summarised by stating

v[x(z)] =
∞∑
n=0

an xn

∼

∞∑
n=0

exp
(
γ1 n

1
2

)
xn as n→∞

∼

∫ n12

n11

[
a1 (n − n0)

2 + b1
]
dn

=
a1
3
(n − n0)

3 + b1 n
���n12

n11

=
2
3

b1

√
−

b1
a1

=
4
3
γ1

√
z3 exp

(
γ2

1 z

4

)
∼ exp

(
γ2

1 z

4

)
or

v[x(z)] ∼ exp
[(γ1

2

)2
z
]

(1.2.101)

as z →∞, which is to be shown. �

In order to prove the proposition, we need Auxiliary III below.

Auxiliary III. For the coefficient (γ1
2

)2
=
γ2

1
4
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of the exponent of the dominant term of the series (1.2.101) for v[x(z)] of the single
confluent case of the Gauss differential equation, it holds that

γ2
1

4
= α11 − α12,

with α11, α12 being the characteristic exponents of second kind of the first order of
the irregular singularity at infinity:

α11 =
1
2

(
−G0 +

√
G2

0 − 4 D0

)
,

α12 =
1
2

(
−G0 −

√
G2

0 − 4 D0

)
.

Proof of Auxiliary III From the Birkhoff set (1.2.92), (1.2.93) it is given that

γ2
1

4
= −

+1∑
i=−1

αi .

The Jaffé expansion (1.2.68) yields the relations (1.2.70):

α1 = Γ0 + 1,
α0 = Γ1 + 2,
α−1 = Γ2 − 3,

resulting in

−

+1∑
i=−1

αi = −

2∑
i=0
Γi .

Furthermore

Γ2 = −4 + g2 − g1 + g0 + 2 g−1,

Γ1 = 6 + g1 − 2 g0 − 3 g−1,

Γ0 = −2 + g0 + g−1,

yielding

−

2∑
i=0
Γi = ḡ−2+1 = g̃0 = G0 + 2α12 =

√
G2

0 − 4 D0. (1.2.102)

So

γ2
1

4
= −

+1∑
i=−1

αi = −

2∑
i=0
Γi = −g2 = − (G0 + 2α11) =

√
G2

0 − 4 D0. (1.2.103)
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On the other hand [cf. (1.2.48)]

α1∞1 =
1
2

(
−G0 +

√
G2

0 − 4 D0

)
= −

1
2

G0 +
1
2

√
G2

0 − 4 D0,

α1∞2 =
1
2

(
−G0 −

√
G2

0 − 4 D0

)
= −

1
2

G0 −
1
2

√
G2

0 − 4 D0,

from which it is immediately seen that

α1∞1 − α1∞2 =
√

G2
0 − 4 D0,

which is the same as (1.2.102). Thus(γ1
2

)2
= α1∞1 − α1∞2,

as has to be shown. �

Proof of the Proposition Summarising the results of Auxiliaries I, II and III above,
it becomes obvious that if the parameters c are supposed to be no eigenvalues,
then

y(z) = exp (α12 z) zα0r2

∞∑
n=0

an

(
z

z + 1

)n
as n→∞
∼

exp (α12 z)︸      ︷︷      ︸
asymptotic factor

∞∑
n=0

exp
(
γ1 n

1
2

) (
z

z + 1

)n
Auxiliary I
∼

exp (α12 z)
∞∑
n=0

exp
(
γ1 n

1
2 −

n
z

)
Auxiliary II
∼

exp (α12 z) exp

[(
1
2
γ1

)2
z

]
Auxiliary III
∼

exp (α12 z) exp [(α11 − α12) z]

= exp (α12 z) exp (α11 z) exp (−α12 z)

= exp (α11 z) ,

which proves the proposition. �

Boundary Eigenvalue Behaviour
In the followingwe admit that the parameters c are supposed to be eigenvalues, viz. we
admit values such that the particular solution y(z) of the differential equation (1.2.54),
(1.2.55)meets the boundary conditions simultaneously at the regular singularity at the
origin (already fulfilled by means of the ansatz (1.2.56), (1.2.58), (1.2.60), (1.2.61),
(1.2.68)) as well as at the irregular singularity, located at infinity (to be fulfilled
by means of a specific asymptotic behaviour of the particular solution {an, n =
0,1,2,3, . . .} as n→ ∞ of the difference equation (1.2.69), possible only for special
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values c (eigenvalues) of the underlying differential equation (1.2.54), (1.2.55). In
the eigenvalue case, asymptotics may be settled by means of an estimation.

Proposition 1.1. Suppose that

uz(n) = exp
(
−α n

1
2 −

n
z

)
, α, z > 0, real-valued

holds. Then the integral∫ ∞

n=0
uz(n) =

∫ ∞

n=0
exp

(
−α n

1
2 −

n
z

)
dn

is finite, defining a function

U(z)

that tends to a finite value as z →∞.5

Proof of the Proposition Estimating

u(z,n) < exp

(
−α n

1
2 −

n
1
2

z

)
for all z > 0, real-valued

yields an integral∫ ∞

1
u(z,n) dn <

∫ ∞

1
exp

[
−n

1
2

(
α +

1
z

)]
dn for all z > 0, real-valued, (1.2.104)

which may be solved exactly. By means of the substitution

N =
√

n

and
dN
dn
=

1
2
√

n
=

1
2 N

,

the integral (1.2.104) becomes∫ ∞

1
exp

[
−n

1
2

(
α +

1
z

)]
dn = 2

∫ ∞

1
N exp

[
−N

(
α +

1
z

)]
dN

= 2
α + 1

z + 1(
α + 1

z

)2 for all z > 0, real-valued.

For z →∞, this yields

lim
z→∞

2
α + 1

z + 1

(α + 1
z )

2
= 2

α + 1
α2 + O

(
1
z

)
,

5 It is possible to prove the proposition by means of the monotone convergence theorem; the result is∫ ∞
n=0 exp

(
−α n

1
2 − n

z

)
dn = 2

( z
α

)2.
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thus

v[x(z)] = const. + O
(

1
z

)
as z →∞ if c adopts an eigenvalue, which has to be shown. �

As a summary of the foregoing considerations we state the following:

• If c is no eigenvalue, then the function v(x) in (1.2.94) behaves like

v(x) =
∞∑
n=0

an xn ∼ exp [(α11 − α12) z]

as z →∞, whereby x = z
z+1 [cf. (1.2.58)].

• If c adopts an eigenvalue, then the function v(x) in (1.2.94) behaves like

v(x) =
∞∑
n=0

an xn ∼ const. + O
(

1
z

)
as z → ∞ or x → 1. This means that the series in the recessive Thomé solution
(1.2.18) at the infinite singularity of the underlying differential equation

yT2(z) = exp (α1∞2 z) zα0∞2

(
1 +

∞∑
n=1

Cn2 z−n
)
as z →∞,

which are generally asymptotic and divergent, become convergent series.
Besides the proof above, it is obvious that a series

∑∞
n=0 an, where the an are

exponentially decreasing, is finite.

Variable Asymptotics
Equation (1.2.54) is linear and of second order. Therefore, so is (1.2.69).
Because of this linearity, the general solution of the difference equation (1.2.69)
is given by

a(g)n = L1 an1 + L2 an2, n = 0,1,2, . . . ,

whereby an1 and an2 are any two linearly independent particular solutions of (1.2.69)
for which it holds that

L1 an1 + L2 an2 = 0 (1.2.105)

only for L1 = L2 = 0 and where L1 = L1(c) and L2 = L2(c) are any complex- or real-
valued constants in n that may be dependent, however, on the parameters (denoted c)
of the differential equation (1.2.54), (1.2.55) (but not on n).
From the asymptotic behaviours (1.2.88) it is seen that a(1)n and a(2)n form a funda-

mental system of solutions of the difference equation (1.2.69). Then, as a result of
the foregoing considerations, it has been shown that the eigenvalue condition of the
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singular boundary eigenvalue problem of the single confluent case (1.2.54), (1.2.55)
of the Gauss differential equation (1.2.2), (1.2.3) is

L1(c) = 0 (1.2.106)

in (1.2.105) and the eigensolutions are given by (1.2.56), (1.2.58), (1.2.60), (1.2.61),
(1.2.68), (1.2.69).
Thus, the singular boundary eigenvalue problem of the single confluent case

(1.2.54), (1.2.55) of the Gauss differential equation (1.2.2), (1.2.3) is solved
exactly. The Jaffé approach to the singular boundary eigenvalue problem, established
above, seems a lot more complicated than the traditional approach, given before.
However, the advantage of this approach is its generalisability. From a mathematical
point of view, there is no limit on the order of the difference equation coming out of
a Jaffé ansatz for the central two-point connection problem to be dealt with along the
lines above.

Eigenvalue Condition
According to (1.2.106), the eigenvalue condition of the singular boundary eigenvalue
problem is

L1(c) = 0.

The practical calculation is easy. For arbitrary c we need to calculate a value aN0 for
a sufficiently large index n = N0. This is possible in a recursive way by means of
the linear second-order difference equation (1.2.69), used as a three-term recurrence
relation. Hereby, ‘sufficiently large’ is dependent on the required accuracy of the
eigenvalues and in this context it means that the exponentially increasing fundamental
solution an1 for n → ∞ is fully developed. Then, we equate aN0 (c) to zero (or,
alternatively, a change of sign) in dependence on c. This eventually determines the
value of the eigenvalue parameter(s) that solve(s) the singular boundary eigenvalue
problem.

1.2.5 Example: Laguerre Polynomials
It was pointed out at the beginning that there are special functions whose treat-
ment has been known for a long time; these are called classical special functions
and the method of their calculation is presented again here, for reasons of being
able to test the new method displayed above. In this way it is possible to draw a
comparison with problems whose results are known. One such classical (i.e., well-
known) problem is the quantum mechanical calculation of the energy levels (i.e.,
eigenvalues) of spherically symmetric atoms. Such atoms are described by a so-
called Coulomb potential of the stationary three-dimensional Schrödinger equation.
This equation can be separated into its spatial dimensions, resulting in the sin-
gle confluent case (1.2.13) of the Gauss differential equation (1.2.1) for the radial
component.
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First this classical solution will be calculated and then the new method, presented
above, will be carried out and its results compared with those of the classical cal-
culation. It will turn out that the classical solution is somewhat simpler than the
new method; however, while the classical solution focuses on specific properties
of the problem at hand and can, therefore, no longer be applied to problems that
deviate even slightly from it, the new method is applicable to much more general
problems, in principle to all singular boundary eigenvalue problems of differential
equations (1.2.2), (1.2.1). It is precisely this limited applicability of the classical
method, called the Sommerfeld polynomial method – based on focusing on the spe-
cific properties of each of the classical problems, that makes a separate treatment
necessary, the characteristic property of which is taking care of the general as-
pects.

Classical Approach
The quantum mechanical treatment of the Schrödinger equation, the potential of
which is the Coulomb potential (a spherical one, with first-order pole at its centre;
cf. Figure 1.3), results in an algebraic boundary eigenvalue condition. This is shown
in the following.

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
-6 -4 -2 0 2 4 6

Figure 1.3 Quantum Coulomb problem.

The differential equation of the radial part is the single confluent case of the Gauss
equation

d2y

dz2 + P(z)
dy
dz
+Q(z) y = 0, z ∈ R+0 , (1.2.107)
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the coefficients of which are

P(z) =
A0
z
+ G0 =

2
z
,

Q(z) =
B0

z2 +
C
z
+ D0 =

2
z
+ D0,

(1.2.108)

whereby the coefficients are given by

G0 = 0,
A0 = 2,
B0 = 0,
C = 2

and D0 is the energy parameter. The local solutions at the two singularities are
determined by the characteristic exponents. These are calculated in the following,
starting with the singularity at the origin z = 0. The particular local solutions are
Frobenius solutions

y(z) = zα0

∞∑
n=0

an zn,

whereby the two characteristic exponents are given by

α01 =
1 − A0 +

√
(1 − A0)2 − 4 B0

2
= 0,

α02 =
1 − A0 −

√
(1 − A0)2 − 4 B0

2
= −1.

The local solutions at infinity are the Thomé solutions

y(z) = exp (α1 z) zα∞
∞∑
n=0

Cn z−n

with

α11 =
−G0 +

√
G2

0 − 4 D0

2
=

√
−D0,

α12 =
−G0 −

√
G2

0 − 4 D0

2
= −

√
−D0

and

α∞1 = −
A0 α11 + C
G0 + 2α11

= −1 −
1
√
−D0

,

α∞2 = −
A0 α11 + C
G0 + 2α11

= −1 +
1
√
−D0

.

The singular boundary eigenvalue problem of the physical problem is formulated
as follows. Look for those values of D0 that yield solutions of equation (1.2.107)
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that behave holomorphically at the origin z = 0 and, simultaneously, behave like
y(z) ∼ exp

(
−
√
−D0 z

)
as z →∞, radially, on the positive real axis.

The classical ansatz in order to solve this singular boundary eigenvalue problem is
(cf. Schubert and Weber, 1980, p. 160)

y(z) = exp (α12 z) zα01

∞∑
n=0

an zn = exp
(
−
√
−D0 z

) ∞∑
n=0

an zn, (1.2.109)

resulting in a linear first-order difference equation

(n + 1) (n + 2) an+1 −

[
n + 1 −

1
√
−D0

]
an = 0, n = 0,1,2,3, . . . , (1.2.110)

that may be converted into a two-term recurrence relation by fixing a0 = 1, obtaining

an+1 = f (n,D0) an =
n + 1 − 1√

−D0

(n + 1) (n + 2)
an, n = 0,1,2,3, . . . .

The eigenvalue condition of the problem according to the Sommerfeld polynomial
method is

f (n,D0) = 0 { D0n = −
1

(n + 1)2
, n = 0,1,2,3, . . . ,

which is actually just the condition for the difference equation (1.2.110) to admit
trivial solutions. All the non-trivial particular solutions of the difference equation
lead to an exponentially increasing behaviour of the solution y(z) of the differential
equation at infinity, as may be seen from the characteristic exponent α11. In this case

∞∑
n=0

an zn ∼ exp
(
2
√
−D0 z

)
as z →∞

in (1.2.109).
The result are the eigenvalues

D00 = −1,

D01 = −
1
4
,

D02 = −
1
9
,

. . .

D0n = −
1
n2 ,

. . .

As may be seen, the quantum mechanical treatment of the Coulomb potential yields
energy levels that cumulate at D0 = 0 with

D0n = −
1
n2 , n = 1,2,3, . . . . (1.2.111)
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The corresponding eigensolutions of the underlying equation (1.2.107), (1.2.108) are
given by

yn(z) = exp
(
−
√
−D0 z

)
L(1)n (z) = exp

(
−

z
n + 1

)
L(1)n

(
2 z

n + 1

)
, n = 0,1,2,3, . . . ,

where the L(1)n (z) are polynomials. These polynomials are called Laguerre polynomi-
als (see Figure 1.4), bearing the name of Edmund Nicolas Laguerre (1834–1886),
a French mathematician of the nineteenth century, who discovered them in 1879. The
explicit form of the Laguerre polynomials is

L(1)0 (z) = 1,

L(1)1 (z) = 1 − z,

L(1)2 (z) = 1 − 2 z +
1
2

z2,

L(1)3 (z) = 1 − 3 z +
3
2

z2 −
1
6

z3,

L(1)4 (z) = 1 − 4 z + 3 z2 −
2
3

z3 +
1

24
z4,

. . .

or

-8

-4

0

4

8

-3 -1 1 3 5 7 9

-12

-8

Figure 1.4 Laguerre polynomials.

L(1)n (z) =
n∑

k=0

(
n
k

)
(−1)k

k!
zk, n = 0,1,2,3, . . . .
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As a final result we give the eigensolutions belonging to the eigenvalues, the five
lowest of which are given by (see Figure 1.5)

y0(z) = exp
(
−
√
−D00 z

)
L(1)0 (z) = exp (−z) ,

y1(z) = exp
(
−
√
−D01 z

)
L(1)1 (z) = exp

(
−

1
2

z
)
(1 − z) ,

y2(z) = exp
(
−
√
−D02 z

)
L(1)2 (z) = exp

(
−

1
3

z
) (

1 − 2 z +
1
2

z2
)
,

y3(z) = exp
(
−
√
−D03 z

)
L(1)3 (z) = exp

(
−

1
4

z
) (

1 − 3 z +
3
2

z2 −
1
6

z3
)
,

y4(z) = exp
(
−
√
−D04 z

)
L(1)4 (z) = exp

(
−

1
5

z
) (

1 − 4 z + 3 z2 −
2
3

z3 +
1
24

z4
)
,

. . .

As one may see, the exponential term dominates the expression of the eigensolutions
above.

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90

y_00 y_01 y_02 y_03 y_04

Figure 1.5 Radial eigensolutions of the quantum Coulomb problem.

Jaffé Method
The starting point is the single confluent case of the Gauss differential equation

d2y

dz2 + P(z)
dy
dz
+Q(z) y = 0
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with

P(z) =
A0
z
+ G0 =

2
z
,

Q(z) =
B0

z2 +
C
z
+ D0 =

2
z
+ D0.

(1.2.112)

Thus

G0 = 0,
A0 = 2,
B0 = 0,
C = 2.

The local (i.e., Frobenius) solutions at the singularity of the differential equation at
the origin z = 0 have the form

y(z) = zα0

∞∑
n=0

an zn,

the two characteristic exponents of which are

lα01 =
1 − A0 +

√
(1 − A0)2 − 4 B0

2
= 0,

α02 =
1 − A0 −

√
(1 − A0)2 − 4 B0

2
= −1.

(1.2.113)

The local (i.e., Thomé) solutions at the singularity of the differential equation at
infinity have the form

y(z) = exp (α1 z) zα0∞

∞∑
n=0

Cn z−n,

the characteristic exponents of which are

α11 =
−G0 +

√
G2

0 − 4 D0

2
=

√
−D0,

α12 =
−G0 −

√
G2

0 − 4 D0

2
= −

√
−D0

(1.2.114)

and

α0∞1 = −
A0 α11 + C
G0 + 2α11

= −1 −
1
√
−D0

,

α0∞2 = −
A0 α12 + C
G0 + 2α12

= −1 +
1
√
−D0

.

(1.2.115)

For physical reasons, the boundary eigenvalue problem consists of connecting the
Frobenius solution at the origin, related to α01, to the Thomé solution, related to α12.
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This determines the Jaffé ansatz that consists of two parts, the first of which is given
by (Jaffé ansatz I) [cf. (1.2.56)]

y(z) = exp (α12 z) zα01 w(z) = exp
(
−
√
−D0 z

)
w(z), (1.2.116)

resulting in a differential equation, having the coefficients

P̃(z) = g̃0 +
g̃−10

z
,

Q̃(z) =
d̃−10

z
,

with

g̃0 = G0 + 2α12 = −2
√
−D0,

g̃−10 = A0 + 2α01 = 2,
d̃−10 = 2α12 α01 + A0 α12 + G0 α01 + C = −2

√
−D0 + 2.

This determines the exponent β [cf. (1.2.63)] to be

{ β =
d̃−10
g̃0
= 1 −

1
√
−D0

.

A Jaffé transformation (1.2.58)

x =
z

z + 1
(1.2.117)

changes the coefficients (1.2.112) of the differential equation (1.2.5) according to

P̃(x) = g̃0 − g̃−10 +
g̃−10

x
,

Q̃(x) = −d̃−10 +
d̃−10

x
.

The Jaffé transformation (1.2.117) results in a differential equation, the coefficients
of which are given by

˜̃P(x) =
˜̃g−2+1

(x − 1)2
+

˜̃g−1+1
x − 1

+
˜̃g−10

x
,

˜̃Q(x) =
˜̃d−10
x
+

˜̃d−3+1

(x − 1)3
+

˜̃d−2+1

(x − 1)2
+

˜̃d−1+1
x − 1

,
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with

˜̃g−2+1 = g̃0 = −2
√
−D0,

˜̃g−1+1 = 2 − g̃−10 = 0,
˜̃g−10 = g̃−10 = 2,

˜̃d−3+1 = −d̃−10 = 2
√
−D0 − 2,

˜̃d−2+1 = d̃−10 = −2
√
−D0 + 2,

˜̃d−1+1 = −d̃−10 = 2
√
−D0 − 2,

˜̃d−10 = d̃−10 = −2
√
−D0 + 2.

The second part of the Jaffé ansatz (Jaffé ansatz II; cf. (1.2.60), (1.2.61)) is

w[x(z)] = zα0∞2−α01 v(x) = zα0∞2 v(x) (1.2.118)

and results in a differential equation (1.2.107), the coefficients of which are given by

P̄(x) =
ḡ−2+1

(x − 1)2
+
ḡ−1+1
x − 1

+
ḡ−10

x
,

Q̄(x) =
d̄−3+1

(x − 1)3
+

d̄−2+1

(x − 1)2
+

d̄−1−1
x + 1

+
d̄−10

x
,

with

ḡ−2+1 = g̃0 = −2
√
−D0,

ḡ−1+1 = 2 − g̃−10 = 0,
ḡ−10 = g̃−10 = 2,

d̄−3+1 = g̃0 β − d̃−10 = 0,

d̄−2+1 = d̃−10 + (2 − g̃−10) β + β (β − 1) = 2 − 2
√
−D0 −

1
√
−D0

+
1

√
−D0

2 ,

d̄−1+1 = g̃−10 β − d̃−10 = 2
√
−D0 −

2
√
−D0

,

d̄−10 = −(g̃−10 β − d̃−10) = −d̄−1+1 =
2
√
−D0

− 2
√
−D0.

A Taylor expansion

v(x) =
∞∑
n=0

an xn (1.2.119)

of the particular solution (that is convergent in the unit disc of the complex num-
ber plane) eventually results in the linear second-order difference equation for the
coefficients an:

(n + 1) [n + Γ0] an+1 + [−2 (n − 1) n + n Γ1 + ∆0] an
+ [(n − 2) (n − 1) + (n − 1) Γ2 + ∆1] an−1 = 0, n = 1,2,3,4, . . . , (1.2.120)

https://doi.org/10.1017/9781009128414.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128414.002


1.2 Classical Special Functions: Testing the New 59

and an initial condition

Γ0 a1 + ∆0 a0 = 0,

the coefficients of which are given by

Γ2 = ḡ−1+1 + ḡ−10 = 2,

Γ1 = −(ḡ−2+1 + ḡ−1+1 + 2 ḡ−10) = 2
√
−D0 − 4,

Γ0 = ḡ−10 = 2,

∆1 = d̄−2+1 + d̄−1+1 = 2 +
1

√
−D0

2 −
3
√
−D0

,

∆0 = −d̄−1+1 = −2
√
−D0 +

2
√
−D0

.

(1.2.121)

The difference equation (1.2.120) may be put into a three-term recurrence relation

a0 arbitrary,
[3pt]Γ0 a1 + ∆0 a0 = 0,(

1 +
α1
n
+
β1

n2

)
an+1 +

(
−2 +

α0
n
+
β0

n2

)
an

+

(
1 +

α−1
n
+
β−1

n2

)
an−1 = 0, n ≥ 1,

(1.2.122)

where the coefficients of the difference equation are

α1 = Γ0 + 1, β1 = Γ0,

α0 = Γ1 + 2, β0 = ∆0,

α−1 = Γ2 − 3, β−1 = ∆1 − Γ2 + 2,
(1.2.123)

which finalises the Jaffé method.
As can be seen from the Jaffé method, the classical approach, presented above, is

only possible because α0∞1 in (1.2.113) is an integer multiple of α0 [with D0 = D0n
from (1.2.111)] in (1.2.114): α∞1 = k α0 with k ∈ Z. The Jaffé method, and this is
its strength, can be applied even if this condition is no longer fulfilled.

Crucial for the applicability of the classical method is that α0∞2 in (1.2.116) [for
the eigenvalues (1.2.111)] is integer. This is used implicitly in the classical method.
In the Jaffé method, however, this fact becomes obvious. Therefore, it can also be
understood as a condition, an eigenvalue condition:

α0∞2 = n, n = 0,1,2,3, . . . .

This results in two conditions [cf. (1.2.115)]:

(1)

−1 +
1

√
−D0n

= n, n = 0,1,2,3, . . . ,
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resulting in

D0n = −
1

(n + 1)2
, n = 0,1,2,3, . . . .

(2)

−1 −
1

√
−D0n

= n, n = 0,1,2,3, . . . ,

resulting in

D0n = −
1

(n + 1)2
, n = 0,1,2,3, . . . .

The crucial thing about the difference equation (1.2.121) is that all of its partial
solutions {an} oscillate when n→ ∞. This will be considered in more detail below.
The Birkhoff set (cf. §1.2.4) of the difference equation (1.2.120) is given by

an1 (n) = exp
(
γ1 n

1
2

)
nr1

[
1 +

C11

n
1
2
+

C12

n
2
2
+ · · ·

]
,

an2 (n) = exp
(
γ2 n

1
2

)
nr2

[
1 +

C21

n
1
2
+

C22

n
2
2
+ · · ·

] (1.2.124)

as n→∞, with

γ1 = 2

√√√
−

i=+1∑
i=−1

αi , 0,

γ2 = −γ1,

r1 = r2 =
1
4
(2α1 − 2α−1 − 1) =

1
4
(2 Γ0 + 2 − 2 Γ2 − 6 − 1) = −

5
4
.

(1.2.125)

The relationship with the coefficients of the differential equation was given in the
central proof of §1.2.4:

γ2
1

4
= −

+1∑
i=−1

αi = −

2∑
i=0
Γi

= −ḡ−2+1 = − (G0 + 2α11)

= −

√
G2

0 − 4 D0 = −4
√
−D0,

γ1 = 4
√
−
√
−D0 = 4 4

√
|D0 | ı =

4
4√n + 1

ı, n = 0,1,2,3, . . . .

This is seen in Figure 1.6.
However, this means that with

γ1 = −γ2 = γ
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t

0 1 Re(t)

Im(t)

Figure 1.6 Solutions of the first-order characteristic equation.

and because of Euler’s formula

exp
(
ı γ n

1
2

)
= cos

(
γ n

1
2

)
+ ı sin

(
γ n

1
2

)
,

exp
(
−ı γ n

1
2

)
= cos

(
γ n

1
2

)
− ı sin

(
γ n

1
2

)
and thus

exp
(
ı γ n

1
2

)
+ exp

(
−ı γ n

1
2

)
= cos

(
γ n

1
2

)
+ ı sin

(
γ n

1
2

)
+ cos

(
γ n

1
2

)
− ı sin

(
γ n

1
2

)
= 2 cos

(
γ n

1
2

)
,

an oscillating behaviour.
Since the difference equation has only real-valued coefficients, it also has real-

valued solutions. Therefore, the imaginary parts in the partial solutions of the differ-
ence equation must cancel each other out. This, in turn, means that for the general
solution

a(g)n = L1 a(1)n + L2 a(2)n ,

the two constants L1 and L2 must be equal: L1 = L2 =
1
2 L, meaning

a(g)n ∼ L1

[
exp

(
ı γ n

1
2

)
+ exp

(
−ı γ n

1
2

)]
nr

= L1

[
cos

(
γ n

1
2

)
+ ı sin

(
γ n

1
2

)
+ cos

(
γ n

1
2

)
− ı sin

(
γ n

1
2

)]
nr

= L cos
(
γ n

1
2

)
nras n→∞

and this is an oscillating behaviour. Because r < 0, this is asymptotically decreasing.
As a result, we keep in mind that in this example, in the series (1.2.119), the

boundary eigenvalue condition is not hidden in the Taylor series of the solution set,
but in the exponent α0∞2 in (1.2.115). Also, the series in (1.2.119) converges on
the entire interval 0 ≤ x ≤ 1 over which the singular boundary eigenvalue problem
converges, because for x = 1 the following holds:

v(1) =
∞∑
n=0

an ∼
∞∑
n=0

cos (γ n) nr < ∞,

since r < 0, as it is an alternating series.
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1.3 Difference Equations of Poincaré–Perron Type

For the sake of simplicity, the most simple but still non-trivial difference equation is
of second order and thus has the form

p1(n) an+1 + p0(n) an + p2(n) an−1 = 0, n = 1,2,3, . . . , (1.3.1)

and the initial condition may have the form

p1(0) a1 + p2(0) a0 = 0. (1.3.2)

If, in this case, a0 is fixed,6 then (1.3.2) yields the start of a recursive calculation of
the an for as many terms as are needed by means of the three-term recurrence relation
(1.3.1).

Since the treatment of linear difference equations by Henri Poincaré and Oskar
Perron (Poincaré, 1885, 1886; Perron, 1909, 1910, 1911), it has been customary not
to treat the solutions as sequences of numbers

a0, a1, a2, a3, . . . , an, . . .

but as the ratio of two consecutive terms

tn =
an+1
an

. (1.3.3)

For our purposes here, the asymptotic behaviour of this ratio for large values of
the index n,

lim
n→∞

tn,

is of particular interest, since this behaviour determines the solution of the differential
equation in the neighbourhood of the singularity of the differential equation at z0 [cf.
the ansatz (1.2.119)], which generally represents the behaviour of the function at the
still undetermined end of the relevant interval.

This asymptotic behaviour of two consecutive terms of the differential equation is
determined by an algebraic equation whose order is as large as that of the underlying
differential equation. This equation is called a characteristic equation; it is the most
important criterion for its possible particular solutions.

If a linear, ordinary, homogeneous difference equation has only coefficients that
converge to finite values for large indices n, then it is called a difference equation of
Poincaré–Perron type. For the difference equation (1.3.1), this means

lim
n→∞

pi(n) = const. < ∞, i = 0,1,2.

If the characteristic equation of a linear, ordinary, homogeneous difference equation
has only simple roots, such a difference equation is called regular, otherwise irregular.
Linear ordinary difference equations of the first order

p1(n) an + p2(n) an−1 = 0, n = 1,2,3, . . . , (1.3.4)
6 This determination gives a normalisation of the function (1.2.119).
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are to be regarded as trivial in the sense of the above explanations. The simplest
non-trivial example is the second-order difference equation in which a new term is
the sum of the two foregoing ones:

an+1 = an + an−1, n = 1,2,3, . . . , (1.3.5)

which may be written in the form

an+1 − an − an−1 = 0, n = 1,2,3, . . . . (1.3.6)

Here, all the coefficients p0(n), p1(n), p2(n) are independent of n, thus are constants:
p0(n) = −p1(n) = −p2(n) = 1. This linear, second-order difference equation is the
most instructive one with respect to the principle that is to be shown in this book.
Therefore, it is considered in some detail below.

1.3.1 Fibonacci Difference Equation
Fibonacci Sequence

It is easily seen that the initial condition of fixing two consecutive terms, a0 and a1,
say, transforms the linear, homogeneous, second-order difference equation (1.3.5) or
(1.3.6) into a linear, three-term recurrence relation, allowing the successive calcula-
tion of as many terms an as are needed.
Starting with a0 = 0 and a1 = 1 in (1.3.5) the recursively calculated sequence of

numbers

a0 = 0, a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 =,5, a6 = 8, a7 = 13, a8 = 21, a9 = 34, . . .
(1.3.7)

is the well-known Fibonacci sequence. Therefore, I refer to (1.3.6) as the Fibonacci
difference equation.

The characteristic equation of the difference equation (1.3.6) is given by

t2 − t − 1 = 0, (1.3.8)

the two solutions of which are

t1 =
1 +
√

5
2
≈ 1.61803, (1.3.9)

t2 =
1 −
√

5
2

= −
1
t1
= 1 − t1 ≈ −0.61803. (1.3.10)

The fact that equation (1.3.6) is of second order generates two solutions t1 and t2 of
its characteristic equation (1.3.8). This is of extraordinary importance, since it shows
that there are two fundamental particular solutions of the difference equation (1.3.6)
and the general solution a(g)n of the linear difference equation (1.3.6) has – because
of its linearity – the form

a(g)n = C1 a(1)n + C2 a(2)n , (1.3.11)
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where a(1)n and a(2)n are two linearly independent particular solutions of the difference
equation (1.3.6), meaning that one solution is not amultiple of the other.Moreover,C1
andC2 do not depend on n, a(1)n is related to (1.3.9) and a(2)n is related to (1.3.10),mean-
ing that the ratio of two subsequent terms of the particular solution a(1)n of (1.3.6) tends
to t1 as n→∞ and that the ratio of two subequent terms of a(2)n tends to t2 as n→∞.
It has been known for more than 300 years that

a(1)n = tn1 (1.3.12)

and
a(2)n = tn2 . (1.3.13)

This fact is expressed in the famous deMoivre–Binet formula, which, moreover, gives
the constants C1 and C2 of (1.3.11):

an =
1
√

5
tn1 −

1
√

5
tn2 . (1.3.14)

The French mathematician Jacques Philippe Marie Binet (1786–1856) published
this formula in 1843, although it was already well known to the French mathemati-
cian Abraham de Moivre (1667–1754) and to the Swiss mathematicians Daniel
Bernoulli (1700–1782) and Leonhard Euler (1707–1783). The de Moivre–Binet
formula gives the exact term an in dependence on n for the Fibonacci sequence, i.e.,
for the initial condition a0 = 0 and a1 = 1. The formula is remarkable since it displays
each term of an infinite sequence of integer numbers by a sum of two irrational ones.
It is clearly seen from the de Moivre–Binet formula (1.3.14) that the Fibonacci

sequence (1.3.7) consists of two series, one of them increasing exponentially as
n→∞, the other decreasing exponentially in this limit since

|t1 | > 1 and |t2 | < 1 :

an =
1
√

5
[exp (n ln t1) − (−1)n exp (−n ln t1)]

=


2√
5

sinh (n ln t1) for n even (n = 0,2,4,6, . . .),

2√
5

cosh (n ln t1) for n odd (n = 1,3,5,7, . . .).

This composition of the Fibonacci sequence is shown in Figure 1.7.
Thus

C1 =
1
√

5
, a(1)n = exp (n ln t1) , (1.3.15)

C2 = −
(−1)n
√

5
, a(2)n = exp (−n ln t1) . (1.3.16)

It is quite understandable that the partial solution a(2)n in (1.3.16) is often not
recognised since the terms become exponentially small on increasing index n:

a(2)n = exp (−n ln t1) . (1.3.17)
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Figure 1.7 Composition of the Fibonacci sequence.

This is called the recessive particular solution of the difference equation (1.3.6),
while the exponentially increasing particular solution

a(1)n = exp (n ln t1)

is called the dominant particular solution of the difference equation (1.3.6). So, one
can say that the recessive solution is masked by the dominant one. The masking of
recessive particular solutions by dominant ones is a quite deep-lying phenomenon of
linear equations with order higher than one.

The constants C1 and C2 of the general solution (1.3.11) of the difference equation
(1.3.6) do not depend on n. These two quantities are exclusively dependent on the
initial condition {a0, a1} in a one-to-one relation, meaning that for each pair {a0, a1}

of initial conditions there is one and just one pair of constants {C1, C2} and vice versa.
As the formula of de Moivre and Binet (1.3.14) shows, for a0 = 0, a1 = 1 the two

constants C1 and C2 are equal to one another, having value 1/
√

5:

a0 = 0, a1 = 1 { C1 = −C2 =
1
√

5
≈ 0.44721.

There remain two interesting questions on this problem that are to be solved in the
following:

(1) For which pair {a0, a1} of initial conditions does it hold that C1 = 0, C2 , 0?
(2) For which pair {a0, a1} of initial conditions does it hold that C1 , 0, C2 = 0?
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Case (1) is the only situation with respect to the initial condition where the recessive
solution appears numerically, since the dominant one vanishes. Thus, one may say
that in this, and only this, case, the recessive particular solution of the difference
equation (1.3.6) is unmasked. Because of this being a deep-lying structure of linear
equations, I call it the mathematical principle of unmasking recessive solutions.
In case (2), the solution of the difference equation (1.3.6) is a pure exponentially

increasing series as n → ∞. It is the fastest growing sequence of numbers as a
solution of the difference equation (1.3.6).
Questions (1) and (2), posed above, were answered within a general theory only

in the twentieth century when the Danish mathematician and astronomer Niels Erik
Nörlund solved the problem in his famous book (Nörlund, 1924) on difference equa-
tions. However, as is shown in the following section, the questions in the case of
(1.3.6) may be answered by elementary means.

Adjoint Fibonacci Sequence
In order to answer questions (1) and (2) posed at the end of the previous section,
the most important equation is (1.3.14), since it displays the structure of the general
solution of linear, homogeneous, second-order equations (1.3.6):

a(g)n = C1 tn1 + C2 tn2 , n = 0,1,2,3, . . . , (1.3.18)

where t1 and t2 are the two solutions (1.3.9) and (1.3.10) of the characteristic equation
(1.3.8) of the difference equation (1.3.6). Writing explicitly the equations for a0 and
a1 yields

n = 0 : a0 = C1 + C2,

n = 1 : a1 = C1 t1 + C2 t2.

Considering a0 and a1 as being given, this is a system of two linear equations of two
unknown quantities C1 and C2 that may be solved by standard methods, yielding

C1(a0,a1) = −
a1 − a0 t2

t2 − t1
= −

a1
t2 − t1

+
a0 t2

t2 − t1
,

C2(a0,a1) =
a1 − a0 t1

t2 − t1
=

a1
t2 − t1

−
a0 t1

t2 − t1
,

thus linear equations in a0 and a1. For the sake of obtaining a one-dimensional
problem, we put a1 = 1 in the following (without losing generality), resulting in the
solution of the posed problem:

(1) C1 = 0
a1=1
{ a0 =

1
t2
= −t1 ≈ −1.61803

{ C2 =
1
t2
= −t1 ≈ −1.61803, (1.3.19)

(2) C2 = 0
a1=1
{ a0 =

1
t1
= −t2 ≈ 0.61803

{ C1 = −
1
t1
= t2 ≈ −0.61803. (1.3.20)
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In Figure 1.8 it is shown that the two constants C1 and C2 are dependent on a0, while
we take a1 = 1. The most important pairs of values are given in the following table:

a0 = C1 + C2 C1 C2

−2.00 −
1+2 t2
t2−t1

≈ −0.1056 1+2 t1
t2−t1

≈ −1.8944

−t1 ≈ −1.61803 0,00 −t1

−1.00 −
1+t2
t2−t1
≈ 0.1708 1+t1

t2−t1
≈ −1.1708

t2 ≈ −0.61803 −
1−t2 t1
t2−t1

≈ 0.2764 1−t2 t1
t2−t1

≈ −0.8944

0.00 1√
5
≈ 0.4472 = 1√

5
≈ −0.4472

−t2 ≈ 0.61803 −t2 0.00

1.00 −
1−t2
t2−t1
≈ 0.7236 1−t1

t2−t1
≈ 0.2764

t1 ≈ 1.61803 −
1−t1 t2
t2−t1

≈ 0.8944 1−t2
1

t2−t1
≈ 0.7236

2.00 1.00 1.00

Equation (1.3.19) answers the question as to the unmasking of the recessive solution
(1.3.13) of (1.3.6). Taking the initial condition a0 =

1
t2
≈ −1.61803 and a1 = 1

unmasks the recessive solution, the first few terms of which are given by
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Figure 1.8 Coefficients of the general solution of the difference equation (1.3.6).

Number Value

a0 −t1 ≈ −1.61803

a1 + 1.00000

a2 t2 ≈ −0.61803

a3 ≈ +0.38197

a4 ≈ −0.23607

a5 ≈ +0.14590

a6 ≈ −0.09017

a7 ≈ +0.05573

a8 ≈ −0.03444

a9 ≈ +0.02129

a10 ≈ −0.01316

a11 ≈ +0.00813

. . . . . .

I refer to this sequence of numbers as the adjoint Fibonacci sequence for reasons
which should be clear from the above execution. This behaviour is shown in Figure
1.9.
As can be seen, the adjoint Fibonacci sequence is an alternating one, as this is

expected because of t2 < 0. Its explicit calculation is given by
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Figure 1.9 The adjoint Fibonacci sequence.

a(2)n = C2 tn2 = −t1 tn2 = tn−1
2 , n = 0,1,2,3, . . . .

Equation (1.3.20) – in contrast to equation (1.3.19) – shows the purely exponentially
increasing particular solution of the difference equation (1.3.6), where the exponen-
tially decreasing particular solution is vanishing because C2 = 0. This behaviour is
shown in Figure 1.10. Its explicit calculation is given by

a(2)n = C1 tn1 = −t2 tn1 = tn−1
1 , n = 0,1,2,3, . . . .

Final Remarks
It should be mentioned that the quite simple solution of problems (1) and (2) given
above is possible only since the fundamental solutions (1.3.12) and (1.3.13) of the
difference equation (1.3.1) are explicit, as shown by the formula of de Moivre and
Binet. However, in the general case, i.e., if the linear second-order difference equation
(1.3.1) has the form

an+1 + pn an + qn an−1 = 0, n = 1,2,3,4, . . . , (1.3.21)

there is an elaborate theory, based on the fact that this difference equation may be
written formally as an infinite continued fraction; this is to be shown in the following.
A linear second-order difference equation

an+1 + pn an + qn an−1 = 0, n = 1,2,3, . . . , (1.3.22)

may be considered as a three-term recurrence relation if two subsequent numbers, a0
and a1, say, are fixed. This then determines a sequence an, n = 1,2,3, . . . ,of numbers.
Dividing (1.3.22) by an−1 yields
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Figure 1.10 Purely exponentially increasing solution.

an+1
an−1

an
an
+ pn

an
an−1

+ qn = 0

or
an

an−1

[
an+1
an
+ pn

]
+ qn = 0. (1.3.23)

This is an equation for the ratio
an

an−1

of any two subsequent numbers an+1 and an of this difference equation (1.3.21) that
may be transformed into an infinite continued fraction. For this, equation (1.3.23) is
written as

an
an−1

= −
qn

pn +
an+1
an

= −
qn

pn −
qn+1

pn+1 −
qn+2

pn+2 −
qn+3
...

an infinite continued fraction. For n = 1 this results in
a1
a0
= −

q1

p1 −
q2

p2 −
q3

p3 −
q4
...

(1.3.24)
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This theory was developed by Nörlund (1924); see in particular page 438.
The question of unmasking the recessive solutions is answered by the theory of

Nörlund, such that equation (1.3.24) may be written as

a(2)1

a(2)0

= −
q1

p1 −
q2

p2 −
q3

p3 −
q4
. . .

.

The first theory of transcendental boundary eigenvalue conditions of singular bound-
ary eigenvalue problems of linear, second-order differential equations was built on
the basis of this (Gelfand and Schilow, 1964; Gelfand and Wilenkin, 1964).
The theory of Nörlund, in a sense, completed the mathematical questions posed by

Fibonacci’s presentation of the sequence that nowadays bears his name.
I do not want to finish this section without having pointed to the relevance of these

results to what is called the golden section, sometimes called the golden ratio. Al-
though already known in antiquity, it became the most important ratio in Renaissance
times. It is the dividing of a length into two unequal parts such that the ratio of the
whole distance to the larger part x is the same as the ratio of the larger part x to the
smaller one 1 − x:

1
x
=

x
1 − x

.

As is easily seen, this equation is similar to the characteristic equation (1.3.8) of the
difference equation (1.3.5). The Fibonacci sequence is a particular solution of

x2 + x − 1 = 0,

given by

x1 = −
1 +
√

5
2

= −t1 ≈ −1.61803,

x2 = −
1 −
√

5
2

= −t2 =
1
t1
= 1 − t1 ≈ 0.61803.

The example of the Fibonacci difference equation and its solutions has been dealt
with in such detail since it shows clearly the mathematical principle of unmasking
the recessive solution that is at the centre of this book. In particular, it may be
seen by elementary means how we can carry out this unmasking, technically. Since
the recessive solutions are normally eigensolutions of singular boundary eigenvalue
problems, this is the mathematical mechanism underlying the solution method that
is presented in this book. In the general case, the problem is a technical one. How
can we get the coefficient of the dominant particular solution of the difference or
differential equation to vanish in dependence on the parameters involved.
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1.3.2 Regular Difference Equations
Consider the first-order linear difference equation

p1(n + 1) an+1 − p2(n) an = 0, n = 0,1,2,3, . . . . (1.3.25)

If one determines the value of a0 here, then a linear two-term recurrence relation
results from (1.3.25):

an+1 − tn an = 0, n = 0,1,2,3, . . . , (1.3.26)

with

tn =
p2(n)

p1(n + 1)
, n = 0,1,2,3, . . . , (1.3.27)

with the help of which one can calculate as many values of an in a recursive way as
needed. If one writes (1.3.25) in the form

an+1 = tn an, n = 0,1,2,3, . . . , (1.3.28)

then it may be seen that the solution of (1.3.25) is given by

an+1 = a0 Π
n
i=1ti, n = 0,1,2,3, . . . .

If the function tn is a constant in n, i.e., tn = t, then the result is

an+1 = a0 tn = a0 exp [n ln(t)] , n = 0,1,2,3, . . . . (1.3.29)

This was the case for the Fibonacci difference equation (1.3.6). For t > 1 this means
an exponential growth of the solution an as n → ∞ and for t < 1 an exponential
decay of the solution an towards zero as n→∞.
For t = 1 the solution is given by a constant:

an = a0, n = 1,2,3, . . . . (1.3.30)

It is, in a certain sense, the transition from exponentially increasing to exponentially
decreasing behaviour.
If tn is not constant but tends to unity, t → 1, then the solution an of the difference

equation (1.3.28) is given by a power behaviour. For

tn = 1 +
r
n
, n = 1,2,3, . . . , (1.3.31)

we have

an = a0 Π
n
i=1

(
1 +

r
n

)
= a0 nr , n = 1,2,3, . . . . (1.3.32)

This formula is also valid if r < 0 holds.
The characteristic behaviour displayed above remains the same for difference equa-

tions of higher order.However, onemust now take into account that the function spaces
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of the solutions basically have vector-space structure, i.e., the general solution of the
difference equation of mth order is the linear hull of its particular solutions:

a(g)n =

m∑
i=1

Li a(i)n . (1.3.33)

This will be focussed on in the following.
It was important above that tn tends to a finite, non-vanishing number as n→ ∞.

Therefore, we start with a second-order linear difference equation having the form

p0(n) an+1 + p1(n) an + p2(n) an−1 = 0, n = 1,2,3, . . . , (1.3.34)

with
limn→∞ p0(n) = p0 = const.,
limn→∞ p1(n) = p1 = const.,
limn→∞ p2(n) = p2 = const.

(1.3.35)

Dividing (1.3.34) by an, defining

tn =
an+1
an

, n = 0,1,2,3, . . . , (1.3.36)

leads to

p0(n) tn+1 + p1(n) +
p2(n)
tn−1

= 0, n = 1,2,3, . . . . (1.3.37)

Under the conditions (1.3.35), the limit t = limn→∞ tn exists, resulting in what is
called the characteristic equation

p0 t2 + p1 t + p2 = 0, n = 1,2,3, . . . , (1.3.38)

a second-order algebraic equation for t, indicating the possible asymptotic behaviours
of the ratio of two consecutive term an+1, an of the particular solutions of the differ-
ence equation (1.3.34).

If the characteristic equation of a linear, ordinary, homogeneous difference equation
has only simple roots, such a difference equation is called regular, otherwise it is
called irregular.

1.3.3 Irregular Difference Equations
The characteristic equation of the Fibonacci difference equation (1.3.6) does have the
two different values

t1 =
1 +
√

5
2

and

t2 =
1 −
√

5
2

.

As can be seen, the quantity t on its own is decisive for the asymptotic behaviour of
the partial solutions of the difference equation (1.3.6) as n → ∞; and the behaviour
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for n→∞ is, after all, the natural behaviour of the difference equation, because it is
used as a recursion and thus the index n grows in a natural way beyond all limits.
The characteristic of the particular solutions presented in §1.3.2 changes funda-

mentally, as soon as the characteristic equation of type (1.3.34) has multiple roots.
This, of course, is possible only for difference equations whose order is larger than
one. Let us therefore consider a second-order difference equation of the form(

1 +
α1
n

)
an+1 +

(
−2 +

α0
n

)
an +

(
1 +

α−1
n

)
an−1 = 0, n = 1,2,3, . . . .

Its characteristic equation

(t − 1)2 = 0 (1.3.39)

has the twofold solution

t1 = t2 = 1. (1.3.40)

The considerations in §1.3.2 can no longer help here. What matters, and this is
decisive, is how the twofold solution t1 in (1.3.40) of the characteristic equation
(1.3.39) is approximated by the two particular solutions of the difference equation.
Information about this is therefore not provided by the characteristic equation (1.3.39),
but by a characteristic equation extended by a term:(

1 +
α1
n

)
t2(n) +

(
−2 +

α0
n

)
t(n) +

(
1 +

α−1
n

)
= 0. (1.3.41)

Its asymptotic solutions are

t1 = 1 +

√
−

∑+1
i=−1 αi

n
+ O

(
1
n

)
,

t2 = 1 −

√
−

∑+1
i=−1 αi

n
+ O

(
1
n

)
as n → ∞. This shows that the one particular solution approaches the unit circle in
the complex t-plane from inside and the other from outside.
A linear difference equation, the coefficients of which tend to finite values as the

index tends to infinity and the characteristic equation of which has exclusively simple
finite roots, is called a regular difference equation of Poincaré–Perron type.
A linear difference equation, the coefficients of which tend to finite values as the

index tends to infinity and the characteristic equation of which has multiple finite
roots, is called an irregular difference equation of Poincaré–Perron type.
A second-order characteristic equation (1.3.41) of an irregular difference equation

is named after the American mathematician Clarence Raymond Adams (1898–
1965), who applied it for the first time in Adams (1928).
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1.4 Underlying Principle and Basic Method

The method for solving singular boundary eigenvalue problems of linear, ordinary,
homogeneous differential equations of second order

P0(z)
d2y

dz2 + P1(z)
dy
dz
+ P2(z) y = 0, z ∈ C, (1.4.1)

Pi(z), i = 0,1,2, being polynomials in z, presented in this book relies essentially on
approaches of generalised power series of the form

y(z) = f (z)
∞∑
n=0

an (z − z0)
n, (1.4.2)

where f (z) – being called an asymptotic factor – is either a power or an exponential
function, at least an explicit function. These series (1.4.2) converge on dotted circular
domains of the complex number plane around the point of expansion z0. If one
enters the differential equations with such power series, then the linear, ordinary,
homogeneous differential equation of second order (1.4.1) is transformed into linear,
ordinary, homogeneous difference equations for the coefficients an. These always have
a start-up calculation in the form of an initial condition which turns the difference
equation into a linear recursion, sometimes called a recurrence relation, with the help
of which one can recursively calculate as many coefficients an of the power series as
needed.

The special thing about this transformation is that the difference equation resulting
from the differential equation is again linear, ordinary and homogeneous, but it does
not necessarily have to be of second order. The order of the difference equation
is not determined by the order of the differential equation behind it, but by the
number, position and nature of its singularities. Therefore, it is useful to mention
some properties of linear, ordinary, homogeneous difference equations, whereby
their order should not be limited from the outset.

1.4.1 The Mathematical Principle of Unmasking Recessive Solutions

Consider the Frobenius solutions (1.2.8)

yF1(z) = zα01

∞∑
n=0

an1 zn,

yF2(z) = zα02

∞∑
n=0

an2 zn

about the singularity z = 0 of the differential equation (1.2.2), (1.2.1) as well as the
Thomé solutions (1.2.18)
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yT1(z) = exp (α1∞1 z) zα0∞1

(
1 +

∞∑
n=1

Cn1 z−n
)
as z →∞,

yT2(z) = exp (α1∞2 z) zα0∞2

(
1 +

∞∑
n=1

Cn2 z−n
)
as z →∞

at the irregular singularity at infinity. Both pairs of solutions may serve as a fun-
damental system in order to represent the general solution y(g)(z) of the differential
equation (1.2.2), (1.2.1):

y(g)(z) = c1 yF1(z) + c2 yF2(z)

and

y(g)(z) = C1 yT1(z) + C2 yT2(z)

where c1, c2 as well as C1, C2 are arbitrary constants in z, viz. the totality of complex
numbers. Thus, it is clear that the particular solution of the differential equation
(1.2.2), (1.2.1) that is written by the Jaffé ansatz presented in §1.2.4 [cf. (1.2.56),
(1.2.60), (1.2.61)]

y(z) = exp (α1∞2 z) zα02 (z + 1)α0∞2−α02
∞∑
n=0

an

(
z

z + 1

)n
is representable by means of either of these fundamental systems yF1(z), yF2(z) and
yT1(z), yT2(z) by choosing specific, yet generally unknown, values c1 = c10, c2 = c20
or C1 = C10, C2 = C20:

y(z) = c10 yF1(z) + c20 yF2(z)

and

y(z) = C10 yT1(z) + C20 yT2(z).

Thus, it is always possible to write

y(z) = exp (α1∞2 z) zα02 (z + 1)α0∞2−α02

∞∑
n=0

an xn

= C10 exp (α1∞1 z) zα01

(
1 +

∞∑
n=0

Cn1 z−n
)

+C20 exp (α1∞2 z) zα02

(
1 +

∞∑
n=0

Cn2 z−n
)

as z →∞, whereby the in general unknown constants C10, C20 are dependent on the
parameters of the differential equation (1.2.2), (1.2.1):

C10 = C10(c), C20 = C20(c)
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whereby c is the totality of parameters of the differential equation (1.2.2), (1.2.1). If
the parameters of the differential equation c are arbitrary, then in general

C10 = C10(c) , 0.

Thus, because α1∞1 > 0 and α1∞2 < 0:

exp (α1∞2 z) zα02 (z + 1)α0∞2−α02
∞∑
n=0

an x(z)n

∼ C1 exp (α1∞1 z) zα01

(
1 +

∞∑
n=0

Cn1 z−n
)

as z →∞, from which results

∞∑
n=0

an xn ∼ C1 exp [(α1∞1 − α1∞2) z] zα01−α02 (z + 1)−α02

×

(
1 +

∞∑
n=0

Cn1 z−n
)

∼ exp [(α1∞1 − α1∞2) z]

as z →∞.
If the parameters of the differential equation c take on eigenvalues, then

C10 = C10(c) = 0.

Thus

exp (α1∞2 z) zα02 (z + 1)α0∞2−α02
∞∑
n=0

an xn

∼ C2 exp (α1∞2 z) zα0∞2

(
1 +

∞∑
n=0

Cn2 z−n
)

as z →∞, from which follows

∞∑
n=0

an xn ∼ C2

(
1 +

∞∑
n=0

Cn2 z−n
)
∼ const.

as z →∞, whereby

(z + 1)−α0∞2 = z−α0∞2

(
1 +

1
z

)−α0∞2

as z →∞.
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The asymptotic considerations above [cf. (1.2.79)] tell us that there are two different
asymptotic behaviours of the coefficients an as n→∞:

an1 = exp
(
γ1
√

n
)

nr
(
1 +

∞∑
i=1

C1i n−i/2
)
,

an2 = exp
(
γ2
√

n
)

nr
(
1 +

∞∑
i=1

C2i n−i/2
)
.

Since the difference equation (1.2.69) is linear, the general solution of which is a
two-dimensional vector space given by

a(g)n = L1 an1 + L2 an2 (1.4.3)

where L1 and L2 in general is the totality of complex constants in n, but dependent
on the parameters c of the difference equation (1.2.69) and thus of the differential
equation (1.2.2), (1.2.1):

L1 = L1(c); L2 = L2(c).

Thus, if
C1(c) , 0 then L1(c) , 0 and an = an,1,

and if
C2(c) = 0 then L2(c) = 0 and an = an,2. (1.4.4)

Hereby, the latter behaviour (1.4.4) solves the singular boundary eigenvalue problem
of the single confluent case of the Gauss differential equation (1.2.2), (1.2.1), since the
term on the right-hand side of (1.4.3) is dominated by the exponentially decreasing
asymptotic behaviour of the Jaffé ansatz (1.2.56), (1.2.60), (1.2.61) as z → ∞.
Therefore, the eigenvalue condition of the singular boundary eigenvalue problem

L1(c) = 0

in (1.4.3), which determines the eigenvalues.
The mechanism that makes the eigensolutions of the singular boundary eigenvalue

problem – generally asymptotically dominated, viz. recessive – appear numerically
as soon as the eigenvalue parameter adopts an eigenvalue, I call the mathematical
principle of unmasking recessive solutions. It seems to be the crucial and rather
general mechanism in solving boundary eigenvalue problems of linear differential
equations.

1.4.2 The Method of Realising the Mathematical Principle
The mathematical principle of unmasking recessive solutions (of both difference and
differential equations), as outlined in §1.4.1, is a very general one, which is, however,
nothing more than a consequence of the structure of the function spaces that the
particular solutions in question originate from: the linear structure of vector spaces.
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This fundamental structure of abstract spaces is one thing; something quite different is
its realisation in the concrete case. This requires a mathematical method. This method
is now almost one hundred years old and comes from the mathematical physicists
of quantum mechanics: Wolfgang Pauli, Friedrich Hund and above all George Cecil
Jaffé. As explained in §1.2, it consists of several steps, aimed at finding the particular
solution that solves the singular boundary eigenvalue problem of the differential
equation in question, into a problem for a difference equation, which is first solved
and, above all, whose solution can be interpreted in terms of the original boundary
eigenvalue problem. The goal is a computationally solvable boundary eigenvalue
condition.

Starting from the formulation of the problem by a differential equation, this solution
proposed by Jaffé consists of four steps:

• First of all, an approach is needed that includes the asymptotic factors of the
local solutions when radially approximating the two relevant singularities of the
differential equation in question.
• If the relevant interval is not the unit interval, a Moebius transformation is per-
formed that maps the relevant interval of the singular boundary eigenvalue problem
to the unit interval.
• The connection must be established by introducing an additional power term.
• The differential equation resulting from these three steps has a particular solution
that may be written in the form of a power series whose radius of convergence is
the unit circle of the complex number plane. Its coefficients obey a linear ordinary
difference equation of Poincaré–Perron type, which can be solved recursively.
With this recursive solution, the boundary eigenvalue problem is formally solved,
exactly.

The interpretation of the particular solution of the difference equation then succeeds
on the basis of this approach in three further steps:

• Within the framework of an index asymptotics, it can be shown which behaviour
the partial solutions exhibit for the difference equation mentioned above with the
coefficients of the power series.
• Within the framework of a variable asymptotics, the index asymptotics of the
coefficients of the series is related to the asymptotic behaviour of the particular
solutions of the difference equation that solves the singular boundary eigenvalue
problem.
• With this, a boundary eigenvalue condition can finally be formulated.

In this way, a solution of the problem is achieved, which also includes an understand-
ing of the numerical procedure. The special feature – and this is the novelty – is the
general validity of the method. It can be applied in principle to all singular bound-
ary eigenvalue problems where linear, ordinary, homogeneous differential equations
(1.2.2), (1.2.1) have polynomial-like coefficients, with the order of the polynomials
not restricted, principally.
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The analytical path from the differential equation to the difference equation is char-
acterised by analytical and algebraic computations, which require a certain amount of
calculatory effort. Already the new procedure for the classical case of the Coulomb
potential of the Schrödinger equation requires – as explained – considerably more
computational effort than the classical method. It is therefore advisable to use alge-
braic computer programs here. Otherwise, the generality of the method is limited by
the manual computational effort, which can stand in the way here.
Higher special functions differ from the classical special functions in that the

eigenvalue conditions are transcendental functions, whereas those of the classical
special functions are of algebraic nature. It is immediately obvious that the variety
of higher special functions is far greater than that of the classical ones. It is therefore
a strategic advantage to specify a procedure for the extraction of the higher special
functions and no longer to catalogue them explicitly, as was the case with the classical
special functions. The main aim of this book is to indicate the procedure that will
enable the reader to find solutions to his or her own problems. Thus, it is hoped that
in this way new higher special functions will be found, which are hitherto unknown.
Apart from algebraic and numerical computation possibilities, the procedure given
in this book is a suitable means for this.
The principles andmethods presented in this first chapter can be applied unchanged

to more general differential equations. Only there is more computational effort nec-
essary. This is done in Chapters 3 and 4 for the equations that are in a certain sense
next to the Gaussian-type equations, namely, the differential equations of Heun type.
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