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The Earth magnetopause, when sufficiently plane and stationary at a local scale, can
be considered as a ‘quasi-tangential’ discontinuity, since the normal component of the
magnetic field Bn is typically very small but not zero. Contrary to observations, the
‘classic theory of discontinuities’ predicts that rotational and compressional jumps should
be mutually exclusive in the general case Bn �= 0, but allows only one exception: the
tangential discontinuity provided that Bn is strictly zero. Here we show that finite Larmor
radius (FLR) effects play an important role in the quasi-tangential case, whenever the
ion Larmor radius is not fully negligible with respect to the magnetopause thickness.
By including FLR effects, the results suggest that a rotational discontinuity undergoes
a change comparable to the change of a shear Alfvén into a kinetic Alfvén wave when
considering linear modes. For this new kind of discontinuity, the co-existence of rotational
and compressional variations at the magnetopause does no more imply that this boundary
is a strict tangential discontinuity, even in one-dimensional (1-D)-like regions far from
X lines if any. This result may lead to important consequences concerning the oldest
and most basic questions of magnetospheric physics: how can the magnetopause be open,
where and when? While the role of FLR is established theoretically, in this paper we show
that it can be proved experimentally. For this, we make use of magnetospheric multiscale
mission (MMS) data and process them with the most recent available four spacecraft
tools. First, we present the different processing techniques that we use to estimate spatial
derivatives, such as grad(B) and div(P), and the magnetopause normal direction. We
point out why this normal direction must be determined with extremely high accuracy
to make the conclusions unambiguous. Then, the results obtained by these techniques are
presented in a detailed case study and on a statistical basis.

Keywords: space plasma physics, plasma nonlinear phenomena, plasma sheaths

1. Introduction

In space physics there is a natural tendency of the medium to self-organize into distinct
cells, separated by thin layers. This behaviour can be observed at very different scales.
Notable examples are planetary magnetospheres, which are bubbles in the solar wind
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stream and that are separated from it by bow shocks and magnetopauses (Kivelson &
Russell 1995; Belmont et al. 2014; Parks 2019). The interaction of the solar wind with
unmagnetized bodies such as comets also produces similar bubbles (Coates 1997; Bertucci
2005). The solar system itself is a bubble in the flow of the local interstellar cloud, and it is
separated from it by the heliopause and at least one shock (‘termination shock’) (Lallement
2001; Richardson et al. 2022). Similar cells and thin layers can also form spontaneously,
far from any boundary condition as in the context of a turbulent medium (Frisch 1995;
Chasapis et al. 2015).

Among all these thin layers, the terrestrial magnetopause plays a particular role. This
region has been explored by a large number of spacecraft since the beginning of the space
era, up to the most recent multi-spacecraft missions as Cluster (Escoubet, Schmidt &
Goldstein 1997; Escoubet, Fehringer & Goldstein 2001) and magnetospheric multiscale
(MMS) (Burch & Phan 2016), allowing for a detailed description of its properties. In
addition, due to a very small normal component of the magnetic field with respect
to the magnetopause (defined Bn = B · n, where B is the magnetic field and n the
magnetopause’s normal) it can be identified as a ‘quasi-tangential’ layer. This feature is
a direct consequence of the frozen-in property that prevails at large scales, on both sides
of the boundary, almost preventing any penetration of magnetic flux and matter between
the solar wind and the magnetospheric media (both of them being magnetized plasmas).
By large scales here we refer to the fluid scales where an ideal Ohm’s law holds, as in
the ideal magnetohydrodynamic (MHD) regime. However, small departures from a strict
separation between the two plasmas do exist, at least locally and for a given time interval,
and they are known to have important consequences for all the magnetospheric dynamics:
substorms, auroras, etc (McPherron 1979; Tsurutani et al. 2001).

Knowing when and where plasma injection occurs through the magnetopause has been
one of the hottest subjects of research for decades (Haaland et al. 2021 and references
therein, Lundin & Dubinin 1984; Gunell et al. 2012; Paschmann et al. 2018a). The
largest consensus presently considers the equilibrium state of the boundary, valid on
the major part of its surface, as a tangential discontinuity, with a strictly null Bn, while
plasma injection is allowed only around a few reconnection regions, where the gradients
characterizing the layer present two-dimensional (2-D) features. For that purpose, many
studies have been carried out to understand where magnetic reconnection occurs the
most (Fuselier, Trattner & Petrinec 2011; Trattner, Petrinec & Fuselier 2021). Moreover,
the conditions under which the magnetopause opens due to magnetic reconnection has
been studied theoretically (Swisdak et al. 2003) and experimentally (Gosling et al. 1982;
Paschmann 1984; Phan et al. 2000; Fuselier et al. 2011; Vines et al. 2015). The results of
the present study may allow reconsidering this paradigm by questioning the necessity of a
strictly tangential discontinuity for the basic equilibrium state.

In the whole paper hereafter, we will call one dimensional all geometries in which the
gradients of all parameters are in the same direction N . In this sense, a plane magnetopause
with not a tangential gradient is said here to be one dimensional, while it would be
considered two dimensional if considering real space instead of k space.

2. Classic theory of discontinuities

At every layer, the downstream and upstream physical quantities are linked by the
fundamental conservation laws: mass, momentum, energy and magnetic flux (Landau &
Lifshitz 1987). The simplest case occurs whenever the number of conservation laws is
equal to the number of parameters characterizing the plasma state. When this condition is
met, the possible downstream states are uniquely determined as a function of the upstream
state, regardless of the (non-ideal) physics at play within the layer. In particular, it is
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possible to describe pressure variations without any closure equation. In this case, the
jumps of all quantities are determined by a single scalar parameter (namely the ‘shock
parameter’ in neutral gas).

We refer hereafter to the ‘classic theory of discontinuities’ (CTD) as for the theory
corresponding to this condition, which is used both for neutral media and (magnetized)
plasmas. The CTD is characterized by the following simplifying assumptions: a stationary
layer, 1-D variations, and isotropic pressure on both sides. For plasmas, the additional
assumption of an ideal Ohm’s law on both sides is considered (Belmont et al. 2019).

In CTD the conservation laws provide a system of jump equations between the upstream
and downstream physical quantities, namely the Rankine–Hugoniot conditions in neutral
media and generalized Rankine–Hugoniot conditions in plasmas. The sets of equations
used to compute the linear modes in hydrodynamics and MHD are similar to this system
of jump equations, simply because the hydrodynamics and MHD models rely on the same
conservation laws as Rankine–Hugoniot and generalized Rankine–Hugoniot, respectively.
A direct consequence is that many properties are shared by the solutions of the two types
of systems: linear modes and discontinuities. For a neutral medium, the linear sound
wave solution corresponds to the well-known sonic shock solution, while for a magnetized
plasma, the two magnetosonic waves correspond to the two main types of MHD shocks:
fast and slow. However, an additional discontinuity solution, the intermediate shock, has no
linear counterpart. The intermediate shock presents a reversal of the tangential magnetic
field through the discontinuity, which is not observed either in the fast or in the slow mode.
Furthermore, a non-compressional solution exists in both types of systems, represented by
the shear Alfvén mode for linear MHD, and by the ‘rotational discontinuity’ solution for
the generalized Rankine–Hugoniot system.

Focusing on magnetized plasma physics, CTD leads to distinguish compressive
and rotational discontinuities. An important feature of these solutions is that the
compressional and rotational solutions are mutually exclusive: the shock solutions are
purely compressional, without any rotation of the tangential magnetic field (this is
called the ‘coplanarity property’), while the rotational discontinuity does imply such
a rotation but without any variation of the magnetic field amplitude and without any
compression of the particle density (figure 1). This distinction persists whatever the
fluxes along the discontinuity normal, even when the normal components un and Bn
of the velocity and the magnetic field are arbitrarily small. The only exception is the
‘tangential discontinuity’ when both normal fluxes are strictly zero. This solution would
correspond, for the magnetopause, to the case without any connection between the solar
wind and magnetosphere. It appears as a singular case since the tangential discontinuity,
with Bn = 0, is not the limit of any of the general solutions with Bn �= 0. While the limit
always implies two solutions, one purely rotational and the other purely compressional, the
singular solution Bn = 0 only provides one solution where the two characters can coexist.

In the solar wind, discontinuities are routinely observed and several authors have
performed statistics for a long time to determine the proportion of the different kinds of
discontinuities, mainly focusing on the tangential and rotational ones. They conclude that
in most cases tangential discontinuities (i.e. with Bn small enough to be barely measurable)
are the most ubiquitous (see Colburn & Sonett 1966 for a pioneering work in this domain
and Neugebauer 2006; Paschmann et al. 2013; Liu et al. 2022, and references therein,
for more recent contributions). In these studies, rotational discontinuities are identified
only when Bn is large enough. However, many discontinuities present features that are
typical of both rotational and tangential discontinuities and are classified as ‘either’ of
the two. Extending these studies in the range of small Bn, where all discontinuities are
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(a) (b)

(c) (d)

FIGURE 1. Cartoon showing the different variations of B between a rotational discontinuity
(a,c) and a compressive one (b,d). The top panel shows in three dimensions the variation of B
inside the magnetopause plane; the bottom panel shows the hodogram in this tangential plane: a
circular arc for the rotational discontinuity and a radial line for shocks.

not necessarily ‘tangential discontinuities’ in the CTD sense, requires the study of the
quasi-tangential case.

3. The Earth’s magnetopause

Thanks to in-situ observations, the Earth’s magnetopause has a pivotal role in testing the
discontinuity theories. Indeed, the Earth’s magnetopause boundary exhibits, over its entire
surface, both a rotation of the magnetic field (Sonnerup & Ledley 1974) and a density
variation (Otto 2005) since it is the junction of two media, the magnetosheath and the
magnetosphere where the magnetic field and the density are different (Dorville et al. 2014).

As stated above, the usual paradigm is that the magnetopause is always a tangential
discontinuity and that it becomes ‘open’ only exceptionally at a few points where
the boundary departs from one-dimensionality due to magnetic reconnection. Does it
mean that it justifies the very radical hypothesis of a magnetopause nearly completely
impermeable to mass and magnetic flux, with strictly null Bn and un and quasi-independent
plasmas on both sides (apart from the normal pressure equilibrium)? From a theoretical
point of view, it is clear that the singular limit from Bn � 0 to Bn = 0 remains to be solved.
From an experimental point of view, if the components Bn and un are known to be always
very small, the observations can hardly distinguish between Bn � 0 and Bn = 0 because
of the uncertainties, due to the fluctuations and the limited accuracy in determining the
normal direction (Haaland et al. 2004; Dorville et al. 2015b; Rezeau et al. 2018).

The results of the present paper will question the above paradigm. We will show
theoretically and experimentally that CTD fails at the magnetopause and that rotation
and compression can actually coexist with finite Bn and un, even in the 1-D case. Such a
paradigm change may be reminiscent of a similar improvement in the theoretical modelling
of the magnetotail in the 70’s studies (Coppi, Laval & Pellat 1966; Galeev 1979; Coroniti
1980 and references therein). In that case the authors demonstrated that even a very weak
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component of the magnetic field across the current layer was sufficient to completely
modify the stability properties of the plasma sheet, so that the finite value of Bn had to
be taken into account, contrary to the pioneer versions of the tearing instability theories.

4. The role of pressure

In CTD the separation between the compressional and rotational properties of the
discontinuities comes from only two equations projected on the tangential plane. These
equations are the momentum equation and the Faraday/Ohm’s law, that read

ρ
du
dt

+ ∇ · P i + ∇ · Pe = J × B, (4.1)

∇ × E = −∂B
∂t

, (4.2)

where

E = −u × B + 1
ne

J × B − 1
ne

∇ · Pe, (4.3)

where B is the magnetic field and u is the flow velocity in a reference frame where the
layer is steady.

Considering 1-D gradients along the normal direction n, neglecting the non-ideal terms
in Ohm’s law and integrating across the layer, these two equations, projected on the
tangential plane, give

ρ2un2ut2 − Bn2Bt2/μ0 = ρ1un1ut1 − Bn1Bt1/μ0, (4.4)

Bn2ut2 − un2Bt2 = Bn1ut1 − un1Bt1. (4.5)

Due to the divergence free equation, the values Bn1 and Bn2 are equal and will be written
as Bn without index in the following. Similarly, ρ1un1 and ρ2un2 are equal because of the
continuity equation and will be simply noted ρun in the following. Here, the indices n and
t indicate the projection along the normal and in the tangential plane, respectively, while
indices 1 and 2 indicate the two sides of the discontinuity. It is important to note that, in
CTD, the pressure divergence terms do not appear in (4.4) because of the assumption in
this theory that the pressure is isotropic on both sides so that their integration gives terms
of the form ( p2 − p1)n, with no component in the tangential plane.

We see that all terms in these two equations are proportional to Bn or un, so that any
non-ideal term, even small, can become dominant when these two quantities tend to
zero (if these non-ideal terms do not tend to zero at the same time). As the distinction
between compressional and rotational character fully relies on this system of equations,
this evidences the necessity of investigating the quasi-tangential case for resolving the
usual singularity of the tangential discontinuity. We note that the left- and right-hand
sides of (4.5) can be put equal to zero by choosing the ‘De Hoffmann–Teller’ tangential
reference frame where the electric field is zero (Belmont et al. 2019). However, this choice,
even if it can simplify some calculations, is not necessary here. Finally, the variables ut
can be eliminated from the system by a simple linear combination of the two equations,
leading to

(un2 − un0)Bt2 = (un1 − un0)Bt1, (4.6)

where

un0 = B2
n

μ0ρun
= cst. (4.7)
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Equation (4.6) leads to the distinction between shocks, where the tangential
magnetic fields on both sides are collinear (but with different modules), and rotational
discontinuities, where the terms inside the brackets must be equal to zero. Rotational
discontinuities correspond to a propagation velocity equal to the normal Alfvén velocity
and imply un1 = un2 = un0, and therefore, an absence of compression of the plasma.

As previously stated, the separation between the compressional and rotational characters
mainly derives, in CTD, from the assumption of isotropic pressures on both sides, which
prevents the pressure divergences having tangential components. When the isotropic
hypothesis is relaxed (Hudson 1971), the set of conservation equations is no longer
sufficient to determine a unique downstream state for a given upstream one. As a
consequence, the global result depends on the non-ideal processes occurring within the
layer. In addition to anisotropy effects, finite Larmor radius (FLR) effects can be expected
to break the gyrotropy of the pressure tensor around B in the case of thin boundaries
between different plasmas. This means that the main effect that explains departures from
CTD comes from the tangential component of the divergence of the pressure tensor, which
must be taken into account in the momentum equation. On the other hand, the non-ideal
effects related to the generalized Ohm’s law are negligible, at least in the examples shown
in this paper. The possible types of discontinuities in an anisotropic plasma have been
discussed in several papers a long time ago (Abraham-Shrauner 1967; Lynn 1967; Chao
1970; Neubauer 1970), and the present paper improves the analysis in light of the new
experimental possibilities given by the MMS measurements.

When the dynamics drives the conditions for the pressure tensor to become anisotropic
(and a fortiori in the non-gyrotropic case) the ∇ · P term comes into play linking upstream
and downstream quantities. Considering the ‘simple’ anisotropic case, i.e. keeping the
gyrotropy around B, it has been shown (Hudson 1971) that the ∇ · P term then just
introduces a new coefficient:

α = 1 − p‖ − p⊥
B2/μ0

. (4.8)

This coefficient has been interpreted as a change in the Alfvén velocity V ′2
An = αV2

An, but
it appears more basically as a change in (4.6):

(un2 − α2un0)Bt2 = (un1 − α1un0)Bt1. (4.9)

This equation shows that, in this simple anisotropic case, coplanar solutions still exist
(Bt2 and Bt1 are collinear), but that whenever α2 is not equal to α1, the equivalent of the
rotational discontinuity now implies compression, i.e.

un2 �= un1 if α2 �= α1, (4.10)

since un2 = α2un0 and un1 = α1un0. The variation of un explains why the modified
rotational discontinuity can be ‘evolutionary’ (Jeffrey & Taniuti 1964), the nonlinear
steepening being counter-balanced at equilibrium by non-ideal effects for a thickness
comparable with the characteristic scale of these effects.

There is actually no additional conservation equation available that would allow the
jump of the anisotropy coefficient α to be determined. Consequently, there is no universal
result that gives the downstream state as a function of the upstream one, regardless of the
microscopic processes going on within the layer. This remains valid for the full anisotropic
case, with non-gyrotropy. As soon as the ion Larmor radius ρi and the ion inertial length
di are not fully negligible with respect to the characteristic scale L of the layer, kinetic
effects, and in particular FLR effects, which make the pressure tensor non-gyrotropic,
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must be taken into account to describe self-consistently the internal processes. Then, the
effect of the divergence of the pressure tensor is no longer reduced to adding a coefficient
α since its tangential component is no longer collinear with Bt. Such an effect has already
been reported and analysed in the context of magnetic reconnection (Aunai et al. 2011;
Aunai, Hesse & Kuznetsova 2013) and in kinetic modelling of purely tangential layers
(Belmont, Aunai & Smets 2012; Dorville et al. 2015a). It has also been investigated in
the case of linear modes where they are responsible for the transition from shear Alfvén
into kinetic Alfvén waves (Hasegawa & Uberoi 1982; Belmont & Rezeau 1987; Cramer
2001). On the other hand, it has never been introduced in the context of quasi-tangential
discontinuities.

If a simple anisotropy preserving gyrotropy around B can be straight fully taken into
account for modelling the pressure tensor and using it in fluid equations, introducing
non-gyrotropy does not lead to a general and simple modelling for the pressure tensor.
It would demand a priori a full kinetic description or, at least, some expansions assuming
that these effects are small enough (see Braginskii (1965) for the pioneer work in this
field, Passot & Sulem (2006) and references therein). Several papers have investigated
the changes in rotational discontinuities when such non-ideal effects are introduced (Lyu
& Kan 1989; Hau & Sonnerup 1991; Hau & Wang 2016). These theoretical papers used
different analytical models based on different simplifying assumptions. Contrary to these
papers, we will not use such kind of assumptions. Instead, we will just analyse the observed
magnetic hodograms, and show that their shape is incompatible with a gyrotropic pressure.

5. The magnetopause normal

When studying the magnetopause with in situ measurements, the most basic geometric
characteristic to be determined is the normal to its surface (which may vary during
the crossing). An accurate determination of the magnetopause normal is actually a
fundamental condition for determining reliable estimates of the normal components
of both the magnetic and the mass fluxes. Moreover, having a good estimation of
the normal direction is also necessary to determine the speed of the structure and its
thickness. Quantitatively speaking, to determine the normal component of the magnetic
field sufficiently well (assuming that Bn/|B| ∼ 2 %), an accuracy of the normal should be
of the order of δθ < 1◦. In the literature, a good accuracy of determination of the normal
is considered to be of the order of 5 % (Denton et al. 2018).

Beyond determining the normal direction, some ‘reconstruction methods’ can be used
to provide a more global view of the large-scale structure around the spacecraft. Although
these methods have proven to provide remarkable results (Hasegawa et al. 2005; De Keyser
2008; Denton et al. 2020) they will not be used here (the first two studies assume the
Grad–Shafranov equations to be valid, implying stationary MHD, and are therefore not
appropriate to investigate the non-MHD effects such as the FLR effects).

Over the years, several methods have been developed with the purpose to precisely
determine the normal direction (see, e.g. Haaland et al. 2004; Shi et al. 2019). The
most common is the minimum variance (MVA) introduced with the first measurements
of the magnetic field in space (Sonnerup & Cahill 1967; Sonnerup & Scheible 1998). This
method, which requires single spacecraft measurements, provides a global normal, i.e. a
single normal vector for each entire time series across the boundary. The tool is based
on the assumption that the boundary is a perfectly 1-D and stationary layer crossing the
spacecraft. Other notable examples are the generic residue analysis technique (Sonnerup
et al. 2006), which consists of a generalization of the MVA to other parameters than B,
and the BV method (Dorville et al. 2014), which combines magnetic field and velocity
data. Even though these methods can give an accurate normal determination (Dorville
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et al. 2015b), they provide, like MVA, a global normal and, thus, they cannot provide the
necessary basis for investigating the variations of the magnetopause normal within the
structure and test the possible departures from mono-dimensionality. Let us finally recall
that waves and turbulence, which are always superimposed to the laminar magnetopause
profiles, bring strong limitations in the normal direction accuracy for all methods, in
particular these global ones.

In this context, multi-spacecraft missions have represented a fundamental step in
increasing the accuracy of the normal determination, allowing one to determinate the
gradients of the measured fields. A notable example is the minimum directional derivative
(MDD, Shi et al. 2005) method. This tool generally uses the magnetic field data, but it
must be kept in mind that it is not based on specific properties of this field. The MDD
technique is a so-called ‘gradient based method’ since the calculation of the normal is
based on the experimental estimation of the dyadic tensor G = ∇B. This tensor gradient
can be obtained from multi-spacecraft measurements using the reciprocal vector method
(Chanteur 1998). The MDD method consists in diagonalizing the matrix L = G · GT,
finding the normal direction as the eigenvector corresponding to the maximum eigenvalue.
Moreover, the gradient matrix can also be used for estimating the dimensionality of
the boundary from the ratio between the eigenvalues. A way of finding a quantitative
determination of this dimensionality was proposed in Rezeau et al. (2018).

For the vector B, the MDD method makes use only of the spatial derivatives ∂iB, which
are accessible at each time step thanks to the four-point measurements today available
with multi-spacecraft space missions. In this sense, it is the opposite of the MVA method,
which makes use only of the temporal variances of the B components. It therefore allows
for an instantaneous determination of the normal at any point inside the layer, while MVA
can only provide a single normal for a full crossing. In addition, contrary to MVA, MDD
does not make any assumption about the geometry of the layer (1-D variations or not), and
about the physical properties of the vector used. Indeed, it can be applied to the magnetic
field data but also to any other vector since the property ∇ · B = 0 is not used.

However, due to waves and turbulence, the magnetopause can present locally 2-D
properties that are insignificant for the profiles we are looking for. For this reason, we will
focus here on intervals where the magnetopause is mainly one dimensional, discarding
the crossings in which local 2-D features are observed. The intervals considered as
one dimensional are those for which λmax 	 λint. Here λmax and λint are defined as the
highest and the intermediate eigenvalues of the matrix G. In this limit, the ordering
between λint and λmin (i.e. the smaller eigenvalue) is not relevant in defining the intervals.
Specifically, we use the parameter, D1 = (λmax − λint)/λmax, which enables us to quantify
this mono-dimensionality of the magnetopause as a function of time.

A more recent tool proposed to study the magnetopause is the hybrid method presented
in Denton et al. (2016, 2018), in which the orientation of the magnetopause is obtained
through a combination of the MDD and MVA methods, resulting in an improved accuracy
of the normal direction.

The only limitation to the MDD accuracy comes from the uncertainty of the spatial
derivatives that it uses. In particular, the local gradient matrix is calculated through the
reciprocal vector technique (Chanteur 1998), which assumes linear variations between
the spacecraft. Because small-scale waves and turbulence are always superimposed on
the magnetopause profiles being searched for, this assumption cannot be well respected
without some filtering. This filtering actually leads to introducing part of the temporal
information on the variations, but it still allows keeping local information inside the layer
whenever one filters only the scales sufficiently smaller than those associated to the full
crossing duration. The quality of the filtering is therefore the biggest challenge to complete
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for getting accurate results. For instance, simple Gaussian filters done independently on the
four spacecraft would provide insufficient accuracy: this can be observed by the fact that,
when doing it, the relation ∇ · B = 0 is violated in the result. In the following section, it is
shown how the MDD method can be included in a fitting procedure of the four spacecraft
simultaneously and where this relation can be imposed as a constraint. We also show that,
when no constraint is added, this procedure justifies the use of MDD with data that are
filtered independently.

6. A new tool

The tool we present here, namely GF2 (gradient matrix fitting), has been derived from
the MDD method. The digit 2 indicates that in the version of the tool that we use here
the data are fitted with a 2-D model (it can be shown that fitting with a 1-D model is
mathematically equivalent to the standard MDD technique used with smoothed data).
Differently from the original method, we assume that the structure under investigation can
be fitted locally (i.e. in each of the small sliding window used along the global crossing),
by a 2-D model. This does not imply that the magnetopause is assumed globally two
dimensional. As for MDD, the instantaneous gradient matrix G is obtained from the data
using the reciprocal vector’s technique (Chanteur 1998). When performing the 2-D fit in
each sliding window, we then impose some physical constraints, which could be checked
only a posteriori with the classic MDD method.

The model Gfit is obtained as follows:

Gfit = e0B′
e0 + e1B′

e1. (6.1)

Here we define e0 and e1 as two unit vectors in the plane perpendicular to the direction of
invariance and B′

e0 and B′
e1 as the variation of the magnetic field along these two directions.

By performing the fit, we impose ∇ · B = 0 (as used in MVA but ignored in standard
MDD). In the model, this can be written as

e0 · B′
e0 + e1 · B′

e1 = 0. (6.2)

In order to fit the experimental G by the model Gfit, the following quantity has to be
minimised:

D2 = Tr[(Gfit − G) · (Gfit − G)T]

= B′2
e0 − 2e0 · G · B′

e0 + B′2
e1 − 2e1 · G · B′

e1 + Tr(GGT). (6.3)

We can disregard the last term, since it is independent of the fit parameters. To impose the
physical constraints, we use Lagrange multipliers, minimizing

D2 = B′2
e0 − 2e0 · G · B′

e0 + B′2
e1 − 2e1 · G · B′

e1 + 2λ(e0·B′
e0 + e1 · B′

e1)

= B′2
e0 − 2e0 · (G − λI) · B′

e0 + B′2
e1 − 2e1 · (G − λI) · B′

e1. (6.4)

By assuming in the first approximation that the direction of invariance e2 is known, we can
choose the two vectors e0 and e1 as an arbitrary orthonormal basis for the plane of variance.
For performing the minimisation, we have just to impose equal to zero the derivatives with
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respect to B′
e0, B′

e1 and λ, obtaining (6.2) and

B′
e0 = e0 · (G − λI), (6.5)

B′
e1 = e1 · (G − λI). (6.6)

By introducing these two equations in (6.2) we obtain

λ = G00 + G11

2
, (6.7)

from which we get the values of B′
e0 and B′

e1. At this point, the matrix Gfit is fully
determined. We can then look for its eigenvalues and eigenvectors, as in the standard MDD
method, and get the normal n and the tangential directions t1 (i.e. the one orthogonal to
the direction of invariance) from this smooth fit.

The choice of the direction of invariance has actually no major influence on the
determination of the normal direction, neither on the estimation of the 2-D effects. For
large 2-D effects, one could choose the direction of MVA obtained by applying directly the
standard MDD method to the data. Nevertheless, for almost 1-D cases (the most common
situation), the spatial derivatives in the tangential directions are generally much smaller
than the noise, so this result is not reliable. We simply choose here the constant M direction
given by MVA, which is often considered as the direction of the X line if interpreted in
the context of 2-D models of magnetic reconnection (cf. for instance, Phan et al. 2013 for
a typical use of this choice and Aunai et al. 2016, Denton et al. 2018, Liu et al. 2018 for
discussions about it).

Finally, another useful by-product of the method can be obtained: comparing the spatial
derivatives and the temporal ones and using a new fitting procedure, we can compute the
two components of the velocity of the structure Vn0 and Vt1 with respect to the spacecraft.
Only the motion along the invariant direction then remains unknown.

6.1. Normal from ions mass flux
This tool can be easily adapted to any other vector dataset by just changing the physical
constraint. In particular, we chose to study the structure using the ion mass flux data. In
this case we impose mass conservation ∇ · Γ i = −∂tni (with Γ i = niui). Equation (6.2)
now writes

e0 · Γ ′
e0 + e1 · Γ ′

e1 + ∂t.ni = 0. (6.8)

Therefore, when using the Lagrange multipliers, (6.4) changes to

D2 = Γ ′2
e0 − 2e0 · G · Γ ′

e0 + Γ ′2
e1 − 2e1 · G · Γ ′

e1 + 2λ(e0 · Γ ′
e0 + e1 · Γ ′

e1 + ∂tni)

= Γ ′2
e0 − 2e0 · (G − λI) · Γ ′

e0 + Γ ′2
e1 − 2e1 · (G − λI) · Γ ′

e1 + 2λ∂tni. (6.9)

By using the same algorithm as above, the constraint can now be written as

λ = G00 + G11 + ∂tni

2
. (6.10)

6.2. Dimensionality index
From this procedure, we can also derive another significant result: we can obtain an
indicator of the importance of the 2-D effects in the profiles, free of the parasitic noise
effects. Specifically, we can estimate the variation of the magnetic field along the normal
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by projecting the Gfit matrix along it varn = |Gfit · n|. Consequently, if we designate the
variation along t1 as vart, we can introduce a new dimensionality index:

DGF2 = varn − vart

varn
. (6.11)

This index can usefully be compared with the instantaneous index D1 = (λmax − λint)/λmax
of Rezeau et al. (2018).

7. Expected accuracy and tests of the tool

In this section we test the accuracy of the GF2 tool. To accomplish this, we exploit a
case crossing, which will be investigated in detail in the following section. The crossing
considered comes from MMS data (Burch & Phan 2016), taking place at around 22:11
on 28th December 2015. For this study, we use data from the FluxGate magnetometers
(FGM, Russell et al. 2016), providing the magnetic field data, the electric double probe
(Ergun et al. 2016; Lindqvist et al. 2016), for the electric field, and dual ions and electrons
spectrometer instrument (Pollock et al. 2016), for plasma measurements. An overview of
the event is shown in figure 2, where both the magnetic field and ion bulk velocity are given
in geocentric solar ecliptic (GSE) coordinates. For this event, the spacecraft are located in
[7.6,−6.7,−0.8] RE in GSE coordinates (where RE is the Earth’s radius).

The temporal interval in which we observe the shear in the magnetic field and the
crossing in the particle structure is about 8 s, enough to allow for high resolution for both
sets of measurements. The crossing is chosen by also analysing the dimensionality of the
magnetic field measurements averaged along the crossing. In particular, the dimensionality
parameter defined in (6.11), denoted as DGF2, and the one introduced in Rezeau et al.
(2018), denoted as D1, were considered. In this interval, indeed, we have D1,mean =
0.97 ± 0.03 while DGF2 = 0.89 ± 0.06, both highlighting that the crossing exhibits 1-D
features throughout the time interval. We remind here that in burst mode, the frequency
of magnetic field measurements is 132 Hz while it is 6.67 Hz for ions. To conduct the
following study, it is necessary to interpolate all measurements at the same times. We
did it by testing two sampling frequencies: the magnetic field and the ion ones. The
results obtained are consistent with the two methods. All figures shown in the paper are
obtained with the sampling times of the MMS1 magnetic field. Furthermore, the crossing
is observed quasi-simultaneously for the two quantities, with a large interval where the
two kinds of results can be compared.

As a first test, we compare in figure 3 the normals obtained by GF2 and those by the
standard MDD technique (using data smoothed in a 0.31 s time window), for both the
magnetic field and the ion data. For reference, we also compare the result of GF2B with
the MVA one.

Vertical dashed lines indicate the time interval during which all the satellites are inside
the boundary. We observe that the time required for the ions flux to complete the crossing
(of about 5 s) is shorter than for the magnetic field (about 8 s). To perform a quantitative
analysis of the differences, we studied the angles between the different normals obtained
through GF2, MDD and MVA, as shown in figure 4(a).

The first striking result is that all these results are quite consistent. Almost all the
directions are less than 10◦ apart from each other, with an average difference of about
5◦. The major exception concerns the comparison between MVA and GF2B during the
last second of the interval where the two directions appear to be up to 35◦ apart. This
can be explained by the fact that the local normals are observed (by GF2B as well as
by MDDB) to differ noticeably in this part from their averaged value and that MVA is
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(a)

(b)

(c)

(d )

(e)

( f )

FIGURE 2. Main features of the crossing of the 28th December 2015. From top to bottom: (a)
the magnetic field (in nT), (b) the ion particle density (in m−3), (c) ion velocity (in km s−1), (d)
total current (computed from the curlometer (Dunlop et al. 1988), in nA m−2), (e) the ion and
( f ) electron spectrograms (energies are shown in eV). Vertical lines indicate the time interval
chosen for the case study.

not able to detect such a change. Looking in more detail, we can see a slight difference
between the first part of the crossing (between 2 and ∼6.5 s), where the two normals
GF2B and MDDB differ by less than 5◦, and the second part, where the angle between
the normals can be up to 10◦ (probably due to a smaller ratio signal/noise for the
gradient matrix G). The normals derived from ion measurements are not much different
from those derived from the magnetic field, showing that the particle and magnetic
structures are approximately identical. In figure 4(b) the dimensionality of the structures
is analysed as a function of time, by using both the DGF2 and the D1 (Rezeau et al.
2018) parameters, as explained above. Even if the numerical values of the two indices
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(a) (b)

(c) (d)

FIGURE 3. Comparison for the normals obtained with GF2 with respect to the MDD tools.
Panel (a) shows the magnetic field and (b) the ion mass flux, measured by the four MMS
spacecraft. Panels (c,d) show the magnetic and the ion normal, respectively. The continuous
(respectively dashed) line correspond to the components of GF2 (respectively MDD) normal.
Horizontal dotted lines indicate the MVA normal obtained along the whole interval. Vertical
dashed lines correspond to the time interval boundaries for the crossing, which are different for
the magnetic field and the ion mass flux.

(a) (b)

FIGURE 4. (a) Angle between the normals obtained using the state-of-the-art tools (MDD,
MVA) and GF2. The subscripts B and ions indicate whenever the magnetic field or the ion flux
measurements are used. (b) Dimensionality of the structure as a function of time; here both the
DGF2 (continuous line) and the D1 (dashed line) indices are shown, for both the magnetic field
(blue) and ions (red) data.
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Angle with
Model Normal (GSE) nGF2,B [deg]

nGF2,B [0.82, −0.49, −0.29] x
nGF2,ions [0.76, −0.59, −0.26] 7.2
MVA [0.76, −0.57, −0.30] 6.1
MDD [0.83, −0.49, −0.28] 0.7
Denton [0.82, −0.49, −0.29] 0.4

TABLE 1. Magnetopause normal vectors obtained with the main tools presented above averaged
in the time interval and their angle with respect to the normal obtained with GF2 using the
magnetic field data (in degrees).

are slightly different, they both indicate structures close to one-dimensionality in the first
part, with a – small but significant – decrease in the second part. This increased departure
from mono-dimensionality can explain the slight difference between the two parts when
comparing the normals from standard MDD and GF2 techniques.

The present test does not allow us to state that GF2 is more accurate than standard MDD
(this will be checked in future work by comparing the two tools in a global simulation
involving realistic turbulence) but it shows at least a good agreement between the two
approaches. We will see in the following that this accuracy is anyway sufficient to prove
the role of FLRs.

In order to smooth the small fluctuations over the time interval and to reduce the
statistical error associated with the determination of the normal, we can compare the
directions averaged along the crossing time. Mean values obtained through the tools
presented above are shown in table 1. Here we observe that all the averaged normals differ
by less than 10◦. Specifically, we observe that the normals obtained with GF2, MDD and
(Denton et al. 2018) are similar, with a difference of less than 1◦ (with ours being closer
to that from Denton et al. 2018). The MVA normal, instead, differs around 6◦ from all
these other normals. Finally, we also observe that the one computed with ions flux data
is the most distant. This is interpreted to be due to the higher uncertainty of particles
measurements.

8. Case study

In this section we undertake a detailed analysis of the previously mentioned crossing
case by employing the normal obtained using the GF2 tool. Here, we focus on the
time interval between 2 and 9 s in figure 2. To mitigate the potential influence of
non-unidimensionality effects, we chose to exclude the last second of the time interval
studied in the preceding section for the magnetic field (where both DGF2 and D1 show
that the structure is less one dimensional and where we observe that the normal is more
different from the averaged one). To carry out this analysis, we study the hodogram of the
magnetic field in the tangential plane. Here the tangential results are presented in a basis
(T 1, T 2) chosen as

T 1 = nmean × b̂, (8.1)

T 2 = nmean × T 1. (8.2)

where b̂ = B/|B| and nmean is the direction of the averaged normal in the chosen time
interval. Note that the choice of the reference frame (T 1, T 2) is just a convention. The
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FIGURE 5. Hodogram in the tangential plane of the magnetic field for a magnetopause crossing
by MMS in 28.12.2015 from 22:12:02 to 22:12:09. See text for the significance of the arrows.
Here BT1 and BT2 are the projections of B along the tangential directions computed as described
in the text. The black line (respectively violet) is the hodogram when the nmean (respectively n)
value is used to define the reference frame.

shape of the hodogram remains unaffected by this choice except for the corresponding
rotation in this tangential plane. The direction t1, which characterizes the direction of the
second dimension of the model in GF2 and that is also in the tangential plane, is generally
different from T 1.

If CTD was valid everywhere, the hodogram of the magnetic field in the tangential
plane for a rotational discontinuity would correspond to a circular arc with constant radius
while a shock would correspond to a radial line (as shown in figure 1). For this reason, the
hodogram is a good tool to recognize the cases for which the CTD fails at describing the
magnetopause. The hodogram for this case is shown in figure 5. We observe a clear ‘linear’
(although not radial) hodogram. This non-radial variation of the magnetic field although
not predicted by CTD, is a striking feature of the hodogram. It cannot be explained by
a departure from the 1-D assumption since we have measured that the crossing can be
considered as one dimensional to a good degree of accuracy. It is therefore due to an
intrinsic property of the layer itself. Also, in figure 5 we present the hodogram derived
from the local normal (un-averaged, violet line). It is clear that averaging does not affect
the shape of the hodogram.

To further analyse the causes of the disagreement between the hodogram of this
case crossing and what is expected from CTD, we compare the different terms of the
tangential momentum equation and Faraday/Ohm’s law. As discussed above, indeed, these
two equations are responsible for the distinction between the rotational and tangential
discontinuities in CTD. This is the object of figure 6, where we plot the different terms of
the two equations projected along the nmean (panels (a) and (b)) and t1,mean (panels (c) and
(d)) directions obtained using the GF2 tool (averaged over the whole time interval). The
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(a)

(c)

(b)

(d)

FIGURE 6. Terms of Ohm’s law (panels (a) and (c), units of mV m−1) and the momentum
equation (panels (b) and (d), units of 10−15 kg m s−2), projected in the normal direction n (a,b)
and in the tangential direction t1 (c,d ). To reduce the noise, a running average with a time window
of 0.35 s is applied to the electric field measurements. Shaded regions in panel (d) represent
the estimated uncertainties of the divergence of the pressure (red), the J × B (blue) and the
classic inertial term (green). Concerning Ohm’s law, we included the sum U × B − J × B/nq to
facilitate the readability (blue dashed line). Note that the terms of the tangential Faraday/Ohm’s
law used in the text are just the derivatives of those in (a) (apart from a π/2 rotation).

influence of the averaging of the t1,mean direction on the results is discussed in Appendix A.
We do not show the quantities along the direction of invariance, which are dominated
by noise. The current and the gradient matrix for the pressure term are obtained via the
reciprocal vector method described in Chanteur (1998).

Concerning Ohm’s law (figure 6, panels (a) and (c)), we see that the electric field is
well counter-balanced by the u × B and J × B/nq terms (ideal and Hall terms). Outside
the layer, on both sides, the ideal Ohm’s law is satisfied, as assumed in CTD (this is not
visible on the figure, which is a zoom on the inner part of the layer, and where the Hall term
is important). It has been shown in the literature that ∇ · Pe/nq is not always negligible in
Ohm’s law and that it can even be dominant close to an electron diffusion regions. This has
been predicted theoretically (Hesse et al. 2011, 2014) and observed experimentally (Torbert
et al. 2016; Genestreti et al. 2018), but it is not the case for events like this one. We observe
that at approximately 3.5 s, the ∇ · Pe/nq is not entirely negligible along the tangential
direction (a similar peak can also be observed in panel (c) for the term associated with
the electron pressure in the momentum equation). However, during this time interval, this
value is not dominant, this term being smaller than both the electric field and the J ×
B/nq components. Furthermore, this effect exhibits a local characteristic, as ∇ · Pe/nq is
only non-negligible within a small subinterval (with respect to the magnetopause temporal
width). It is therefore not likely to be indicative of proximity to a reconnection point.

Concerning the momentum equation, shown in panels (b) and (d) of figure 6, we
observe that, in the normal direction (panel b), the J × B term is counter-balanced by the
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divergence of the ion pressure tensor, as expected. But, if the isotropic condition assumed
in CTD was valid, we would expect the divergence of the ion pressure tensor to be zero in
the tangential direction, or at least negligible with respect to the inertial term ρ du/dt. On
the contrary, we observe that the J × B term along t1 is of the same order of magnitude
as the divergence of the ion pressure tensor, and one order of magnitude larger than all
the other terms. Panel (d) also shows an estimation of the error on the relevant terms:
J × B, ∇ · P i and the classical inertial term. It is known that measurement errors are
difficult to estimate, especially at small scales. In order to validate our results, however,
we sought to obtain an upper bound of the error associated with the quantities of interest.
For that purpose, an overestimation of the uncertainty of the measurements (acquired as
the maximum during the crossing of the errors available in Fast Plasma Investigation
(FPI) datasets for the pressure tensor and from the FGM nominal error for the magnetic
field) was exploited. These values are propagated as a statistical (i.e. quadratic) error (by
assuming that the errors on the reciprocal vectors can be neglected with respect to that of
other physical quantities).

From panel (d) of figure 6, we see that the J × B and the ∇ · P i terms are pointing in
opposite directions and balancing each other. If valid in the first part of the interval, this
conclusion cannot be safely trusted due to measurement uncertainty, but we observe that
in the middle part (particularly between 3.5 and 6 s) it is evident that the two quantities
counterbalance each other while the classical inertia term ρ du/dt is much lower with
respect to the others. This proves that the tangent ∇ · P i term plays a fundamental role in
the magnetopause equilibrium.

This point can be emphasized also by analysing the hodogram. In figure 5 the arrows
are directed along the directions of the tangential plane that are physically relevant for the
problem: (i) the tangent to the hodogram (green), which indicates the total variation of Bt;
(ii) the radial direction (red), which corresponds to the plasma compression; (iii) the ∇ ·
P it direction (blue), which is the direction of the divergence of the ion pressure tensor in the
tangential plane, and therefore, corresponds to a term that is absent in CTD. The relative
lengths of the arrows are chosen proportional to the corresponding term magnitudes. These
directions are averaged in two subintervals (bold hodogram). The striking result is that the
total variation is mainly determined by the non-classic term ∇ · P it and not by the radial
classic one. This explains the very recurrent (even if not reported in the literature hitherto)
feature that the hodograms are almost linear but not radial.

8.1. Comparison of the width of the magnetopause to relevant physical lengths
Finally, we compare the width of the magnetopause (L) to the two main ion-related lengths:
the ion Larmor radius (ρL) and the ion inertial length (di). The magnetopause width is
estimated using the normal velocity obtained from the GF2 tool. By averaging the velocity
of the magnetopause in the normal direction, we can estimate L = V n,mean�t (where �t is
the time length of the full crossing). These three scales are shown in figure 7. We observe
that this width is larger than the ion Larmor radius and the ion inertial length all across the
crossing, but only two to five times larger, which appears sufficient to drive the observed
kinetic effects.

9. Ion pressure tensor analysis

To further investigate the question of the ion non-gyrotropy with respect to the magnetic
field and quantify this effect, let us now examine the properties of the ion pressure
tensor and introduce a new non-gyrotropy index. For that purpose, we define the matrices
P‖ = p‖bb, where b = B/|B|, p‖ = b · P i · b and P⊥ = P i − P‖. By defining p1 and p2
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FIGURE 7. Comparison of the magnetopause width (L) with the ion inertial length (di) and the
ions Larmor radius (ρL). Vertical lines highlight the considered temporal interval.

the maximum and intermediate eigenvalues of the P⊥ matrix, we define

Dng,⊥ = p1 − p2

p1 + p2
. (9.1)

In figure 8(a) this parameter is compared with the non-gyrotropy index presented in Aunai
et al. (2013). The two indices define non-gyrotropy differently, Aunai et al. (2013)’s index
defining non-gyrotropy as the ratio of the non-gyrotropic to the gyrotropic part of the
tensor (instantaneous), while ours makes use of the 2-D modelling of the data used in
GF2 (averages on sliding windows). We note how both indices are significantly different
from zero, approximately of the order of 0.1 within the boundary, corresponding to clearly
present, although not predominant, non-gyrotropic effects. We note a decrease in both
indices outside the magnetopause, as expected, but it is worth noting also that, despite a
continuous decrease, these indices remain relatively high in the time interval just preceding
the crossing, in a region where the magnetic field, density and pressure tensor are almost
constant. This can be understood by noting that an ion velocity gradient is observed in this
interval, suggesting that the non-diagonal terms of the pressure tensor could be due there
to a kind of gyroviscous effect, the non-diagonal terms of the pressure tensor (Braginskii
1965) being due to FLRs (Stasiewicz 1993). One must take care that, in this interval, the
pressure tensor has low values characterized by larger relative errors, which could partially
influence this result. To further analyse this question, we have estimated the uncertainties
on both non-gyrotropy indices. This estimation is derived from the nominal uncertainties
of the FPI dataset. The diagonal terms have higher values and lower relative errors.
Concerning the time interval before the crossing that we discuss here, the diagonal terms
have errors of approximately 5 %, whereas off-diagonal terms have an average relative
error about 50 %. We observe on figure 6 that this way of estimating the uncertainty well
encompasses the variance of the results. It confirms that, within the crossing interval, all
relative errors are smaller than 10 %, as considered in the Ohm’s law study (figure 6).

In addition, a preliminary study appears to confirm the validity of the gyroviscous
interpretation. Using the theoretical expressions given in Stasiewicz (1989), we can
compare the variations of the non-diagonal terms of the pressure tensor with the spatial
derivatives of the flow velocity, and evidence a fairly good correlation (see Appendix B).

Figure 8(c) also shows the evolution of the eigenvalues of the P i tensor, averaged
on the four spacecraft. This figure shows how outside of the magnetopause the three

https://doi.org/10.1017/S0022377824001089 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001089


Role of FLR effects in magnetopause equilibrium 19

(a)

(b)

(c)

FIGURE 8. Panels (a) and (b) show the evolution of the Dng,⊥ and Dng,Aunai (Aunai et al.
2013) indices, respectively, along with their estimated uncertainties. Thin lines correspond to the
real-time values while thick lines to an averaged window of 1 s. (c) Evolution of the eigenvalues
of the Pi matrix (averaged on the four spacecraft). The dotted line indicates the magnetopause
crossing. The red dotted lines in panel (c) highlight the time interval studied in figure 9.

eigenvalues tend to converge towards each other meaning that these media are close to
isotropy. However, inside the magnetopause, we note a transition in the behaviour of the
intermediate eigenvalue, shifting from a value close to the minor one to being closer to
the major eigenvalue. The minor eigenvalue exhibits a significant deviation from the other
two towards the last part of the crossing.

Focusing on the temporal interval marked by the red square in figure 8, this transition
is further investigated in figure 9 where we show the ions’ distribution functions in the
tangential plane (with respect to the magnetopause) for four different intervals during
the crossing, highlighting the non-gyrotropy of the ions’ distribution function over time.
Velocity distribution functions (VDFs) (printed using a linear 2-D interpolation on a
Cartesian grid in the chosen plane using the Pyspedas library) are here averaged in the
corresponding time intervals framed with the same colour as in the bottom plot where the
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FIGURE 9. (a) Ions’ VDFs in the tangential plane (the T 1–T 2 plane) averaged in four different
time periods. Velocity axes are between −220 and 220 km s−1. (b) Eigenvalues of the pressure
tensor (same interval as in the red dashed square of figure 8c). The four coloured boxes are used
to distinguish the four time intervals.

eigenvalues of the ion pressure tensor are plotted again (the time length decreases as the
density increases).

Finally, we analysed the non-gyrotropy with respect to a generic direction, i.e. without
imposing that this direction is the magnetic field direction. Specifically, we have looked at
a direction, denoted as g, around which the rotated matrix could be rewritten as follows:

⎛
⎝

P2 0 0
0 P1 0
0 0 P1

⎞
⎠ . (9.2)

To achieve this, we employ a minimization algorithm to derive the rotation matrix M
that allows us to put the pressure tensor data under a form as close as possible to this
one. Results from this study are shown in figure 10 (here shown for MMS2). Figure 10(a)
displays the variation of P1 and P2 along the crossing, where P2 consistently exceeds
P1. In addition, we imposed an upper limit on the temporal variation of the gyrotropic
direction g, excluding points with significant temporal variations (indicated by the thin
line). Consequently, the remaining points reflect instances where the direction of g can be
considered as stable and reliable. The vector g itself is represented in panels (b) and (c),
where it is clear that the direction of gyrotropy is not close to the magnetic field direction:
it is close to nmean × B, the component along B being smaller and varying. This result
reminds us that at boundaries such as the magnetopause, the strong gradients can break
the isotropy as much, and even more here, than the magnetic field, so that gyrotropy can be
around another vector than B. A similar remark had already been made in Belmont et al.
(2012) concerning the modelling of a tangential discontinuity.
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(a)

(b) (c)

FIGURE 10. (a) Evolution of parameters P1 and P2. (b,c) Projections of the gyrotropy direction
in two planes. The ordinate is the direction of B, the abscissa is the direction of nmean × B for
panel (b) and nmean for panel (c).

10. Dataset selection

In order to expand the results on a statistical basis, we selected a dataset of 146 crossings,
chosen from the largest one reported in Nguyen et al. (2022) and Michotte De Welle et al.
(2022). From this database, the following conditions were required in order to carry out
an accurate study.

(i) The MMS data are in burst mode.
(ii) The crossing duration is between 3 and 15 s. Too short crossings do not have a

sufficient number of points within the structure (ion measurements are every 0.15 s).
Too long crossings may imply non-stationary structures.

(iii) Partial crossings are discarded. For that, we impose a density threshold less than
4 cm−3 in the magnetosphere and larger than 15 cm−3 in the magnetosheath.

(iv) Only cases presenting simultaneous crossing features in the particles and magnetic
field are considered, in order to compare normals computed at the same time.
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(b)

(a)

FIGURE 11. Spatial distribution of the selected database of crossings on the (a) x, y and (b) x, z
planes. The dashed grey lines represent the magnetopause location (Shue et al. 1997).

In addition to these basic requirements, we also excluded some of the selected crossings
for criteria that demand a more detailed analysis of the internal structure of the boundary.
First, we excluded 2-D features. The quantitative determination of the dimensionality was
done with the parameters presented in Rezeau et al. (2018) and the dimensionality index
presented in § 6.2, which are functions of the ratio between the eigenvalues of the gradient
matrix. Namely, we considered only crossings with D1 > 0.9 and DGF2 > 0.8, these two
parameters being averaged on the crossing interval. These parameters are calculated at
each time step but, due to waves and turbulence, attention must be paid to the fact that some
of these 2-D features can be only local and insignificant for the profiles we are looking for.
It is the reason why we use only the averaged values. The 146 selected crossings span
from September 2015 to December 2017 (included). We can observe in figure 11 that the
crossings are evenly distributed in the x, y plane. Regarding the z component, there is a
prevalence of cases at negative z.
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The list of crossings can be found in supplementary materials. For each crossing, the
classification and the physical quantities relevant for the study (normals, dimensionality
index, non-gyrotropy index and the main characteristic lengths discussed above for the
case crossing) are included.

11. Statistical study of the magnetic hodograms

The previous results about the role of the FLR effects at the magnetopause are now
carried out statistically. This study aims to generalize the results obtained from the case
crossing studied in the previous section and to estimate the role played by FLRs at the
magnetopause.

The database described above has first been used to perform a statistical study on the
hodogram shapes, to determine how often linear hodograms are observed in magnetopause
crossing. Having an estimation of the percentage of crossings that do not conform to CTD
allows us to gauge how frequently the assumptions made by this theory do not accurately
represent the magnetopause. For this purpose, we separate the crossings into the following
different classes, this classification being based on CTD distinctions and on the preceding
findings.

(i) Linear crossings, i.e. straight lines not passing through the origin as in the above
case study.

(ii) Radial crossings, including all linear crossings whose best fit line passes through the
origin (considering uncertainty). These crossings correspond to CTD compressional
discontinuities.

(iii) Circular crossings, when the distance from the origin is constant. These cases
correspond to CTD rotational discontinuities.

(iv) Other crossings, whose features are not included in the previous classes. This class
includes crossings with various features, e.g. circular hodograms not centred on the
origin, crossing characterized by two different hodograms in two subintervals, etc.,
and crossings that do not have an obvious distinction between the previous classes,
due to noise.

To classify each crossing, we only focus on its central time interval, where the gradients
are maximum. By considering larger time intervals, the hodograms’ shape becomes more
complex because the variations out of this interval are generally unrelated to the main
boundary jumps. Selecting only the middle part of the crossing provides simpler and more
conformal hodograms. Even if the boundary jumps are not fully completed in this part,
this will not prevent comparing the experimental results with CTD predictions since this
theory, when valid, is based on conservation laws for any subinterval of the discontinuity.
When this theory fails to reproduce the observed properties, we can interpret those new
features as coming from kinetic effects, therefore confirming the limitation of CTD to
describe the magnetopause boundary. To that purpose, for each dataset, we selected the
crossing temporal interval following the algorithm used in Haaland et al. (2004, 2014) and
Paschmann et al. (2018b) to estimate the spatial scale of the magnetopause (intervals are
identified as 75 % of the magnetic field BL component variation).

The classification performed here differs from previous attempts to classify
magnetopause hodograms, as seen in studies such as Sonnerup & Ledley (1974), Berchem
& Russell (1982) and Panov et al. (2011). In these previous works, hodograms were
categorized as C-shaped or S-shaped based on their form in the tangential plane. However,
unlike those studies, we considered the central part of the crossing, rather than considering
the entire temporal interval. Our classification of hodograms involves the following
two-step process.
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(1) Visual inspection: initially, all hodograms are visually inspected to identify the cases
that are clearly not linear or circular, which are classified separately as ‘Others’.
Additionally, a preliminary distinction is made between crossings with circular and
linear features.

(2a) Analysis of hodograms with possible circular features: for these crossings, we
analyse the variation of the modulus of the magnetic field in the plane, allowing for
a maximum possible variation of 20 %. This accounts for factors such as turbulence
and waves propagating alongside the magnetopause. Any crossings exceeding this
20 % threshold are categorized as ‘Others.’

(2b) Analysis of hodograms with possible linear or radial features: these crossings
undergo an initial assessment to confirm their linearity. This involves examining
the width-to-length ratio of the crossing, with any ratio exceeding 20 % classified
as ‘Other’. Finally, the remaining crossings are classified as either radial or linear
based on whether their projection passes through the origin.

From this database, we found the following distribution:

(i) 36.3 % (53/146) of the crossings present linear features;
(ii) 2.7 % (4/146) of the crossings present circular features (rotational discontinuity);

(iii) 15.8 % (23/146) of the crossings present radial features (compressional
discontinuity);

(iv) 45.2 % (66/146) of the crossings could not be interpreted definitely as either of the
three before (presenting more than one feature at the same time).

It follows that more than a third of the selected crossings show linear features, emphasizing
that the fundamental role FLR effects have on magnetopause structure is found in a
significant number of crossings.

It could be interesting to compare the above results with the several classifications
that were previously published (see Liu et al. 2022 and references therein). These
previous classifications were not based on the analysis of the rotational and compressional
properties as done here, but on the normal component of the magnetic field and its
magnitude (background and variation) (Smith 1973; Burlaga, Lemaire & Turner 1977;
Tsurutani & Smith 1979; Neugebauer & Giacalone 2010). For such a comparison, however,
one should take care that there are important differences in the definitions: in these
previous classifications in particular, any discontinuity is named ‘tangential’, whatever its
other properties, as soon as the measured Bn is sufficiently smaller than B, the threshold for
this ratio being, for instance, of the order of 0.3 (Smith 1973; Burlaga et al. 1977; Tsurutani
& Smith 1979; Neugebauer & Giacalone 2010; Liu et al. 2022). This is of course a very
different approach from the one we use here since, even when Bn is small (and even if
barely measurable), we consider that different kinds of discontinuities exist, with different
properties.

As done for the case study above, it was possible to study on a statistical basis (i)
the ratio between the width of the magnetopause and the ion Larmor radius, and (ii)
the non-gyrotropy index. For both parameters, the case study appears rather typical. On
average, the magnetopause was found to be approximately 6.5 times the ion Larmor radius,
only slightly smaller (6.1) for linear hodograms. Similarly, the non-gyrotropy index Dng,⊥
has an average value of 0.07, only slightly higher (0.08) for linear hodograms. The Dng,Aunai
index has even comparable averages for the four different classes. It therefore seems
that, although non-gyrotropy has been demonstrated above to play an important role, the
non-gyrotropy index alone is not decisive for predicting unequivocally the shape of the
hodograms. This question should be the subject of future works.
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12. A comparison between the magnetic and the particles normals

For each crossing, both the magnetic and the particles normals were computed with
the GF2 tool. Thanks to the high resolution of the MMS measurements, we can measure
the local fluctuations of the normals inside the magnetopause around their mean values.
However, in order to compare the magnetic and ion geometries, a single average normal
was used for each case. The mean normal is obtained inside the same time interval as in
the previous study.

To study the differences between the two normals, we compared them via their departure
from the Shue model’s normal (where the magnetopause is assumed to be a paraboloid,
Shue et al. 1997). This normal was obtained using the solar wind and Interplanetary
magnetic field (IMF) properties from the OMNI dataset (King & Papitashvili 2005).
The time delay between the crossing time and the measurement time of the solar wind
relevant parameters is estimated by using the propagation method used in Michotte De
Welle et al. (2022) (which was adapted from Šafránková et al. 2002). The procedure
for acquiring these parameters is as follows: (i) the distance from the bow shock’s nose
(where OMNI data are defined) to the crossing location, projected along the Earth–Sun
axis, is estimated; (ii) we estimate the solar wind’s propagation time (test) between these
two points, assuming an average solar wind velocity of 400 km s−1; (iii) the solar wind
velocity Vsw is then determined from the OMNI dataset, averaging over a 2-min interval
centred on the crossing time adjusted by the time delay test; and (iv) ultimately, a final time
delay is computed based on Vsw, which is subsequently utilized to obtain final values of
solar wind and IMF parameters. The crossings for which OMNI data computed with this
procedure are missing (10 out of 146) were left out of this analysis.

In figure 12(a) we plot the angle between the nominal normal and the magnetic and
particles normals, respectively. In this figure we observe that most of the crossings are
along the diagonal, corresponding to cases where the two normals, ionic and magnetic,
are similar (82 points out of 146 are between the two thin lines, which indicate differences
of ±10◦).

The cases are distributed throughout the plane, with many cases above 40◦, although we
observe a cluster at lower angles, between zero and 30◦. The largest angles correspond to a
magnetopause very far from the paraboloid shape assumed in Shue’s model, which relies
on the assumption of a magnetopause at (or near) equilibrium. The departures are likely
to be related to surface waves on the boundary itself.

Finally, the distribution of the angles between the two normals is shown in figure 12(b).
Here we evidence again that most of the cases studied (82 out of 146) are below 20◦, with
the maximum of the distribution at 10◦. However, we also observe again that several cases
have much larger angles, up to 90◦. The strongest departures are problematic and deserve
further investigation. This appears to be due to the more complex ion structure with respect
to the magnetic one. As the criteria used for the dataset selection were built from magnetic
data, they are not as relevant when considering ion normals. This is evidenced in figure 12,
where the colours indicate how several ion criteria are satisfied. These criteria concern
respectively the dimensionality, the stationarity and the variance of the normal direction.
All details are given in Appendix C. Focusing on points respecting all the criteria for the
ions flux (black markers and hodogram), we observe that only a few crossings are outside
the diagonal. Only two of these crossings have angles above 40◦.

13. Conclusions

The study of the properties of the magnetopause is a very important issue for
understanding the penetration of the solar wind plasma into the magnetosphere. In the
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(b)

(a)

FIGURE 12. (a) Comparison between the angle between the theoretical normal (Shue et al.
1997) and the magnetic and ion normals. (b) Distribution of the angle between the magnetic
and ion normals. Here the markers for each point are chosen depending on whether each
crossing respects the criteria on dimensionality, stationarity and normal variance on the ions
flux measurements (see Appendix C for further details). Colours in the histograms are used
accordingly. Blue, green and yellow points indicate the crossing with small variance on the
ions normal direction within the crossing, good one-dimensionality and good stationarity. Black
points indicate the crossings respecting all criteria, red points not any criteria.

theoretical part, we show that the notion of ‘quasi-tangential’ discontinuity has to be
introduced to complete the theory of discontinuities and understand the limit when
the crossing fluxes tend to zero as in the magnetopause case. We emphasize that, in
the presence of anisotropy, the physical processes occurring inside the layer play a
fundamental role because they are responsible for the conditions linking the downstream
and upstream quantities. In particular, for thin current layers, the FLR corrections
corresponding to the non-gyrotropic pressure tensor components must be taken into
account.

The tool GF2 presented in the paper and used for determining the normal direction to
the boundary derives from the MDD method. It includes in addition a fitting procedure,
which allows introducing a part of the temporal information via a four-point filtering of
the data and adding constraints such as ∇ · B = 0. It is shown here to provide results quite
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compatible with the original method (when used with smoothed data), which is enough
for drawing reliable physical conclusions on the magnetopause equilibrium. We expect
that this approach could bring more precise information concerning the magnetopause
gradients. Unfortunately, investigating this point in more detail cannot be done using
MMS data but requires testing the tool in fully three-dimensional kinetic simulations with
realistic turbulence. This point is the subject of future work. Here, we have applied this
tool on a particular crossing case and compared with other state-of-the-art normals. We
have shown that the local normal (at each time step during the crossing) differs by less
than 10◦ from the one calculated by all the other models. When averaging over the whole
crossing, the normal obtained with the GF2 is even less than 1◦ apart from the normals
from Shi et al. (2005), Denton et al. (2018).

Although we cannot claim to have achieved the ideal accuracy of about 1◦, the reached
accuracy is sufficient to evidence the correct physics at play, resumed as FLR effects.
We have presented the results for a crossing observed by the four MMS spacecraft. For
this crossing, the ‘linear’ hodogram in the tangential plane shows that the boundary
properties differ from those predicted by CTD. This discrepancy is explained by looking
at the tangential components of the momentum equation, which highlights the role of
the pressure tensor symmetries in the magnetopause equilibrium. This result agrees
with the theoretical results of the first part and it is likely to hold more generally for
all quasi-tangential discontinuities. The ion pressure tensor has been analysed for this
purpose. We have used two indices of non-gyrotropy, which both confirm the presence
of a significant, even if small, non-gyrotropic part in this tensor. Furthermore, we have
shown that the non-gyrotropy direction differs from the magnetic field one, aligning
approximately with the nmean × B direction. Finally, the analysis of the VDFs directly
confirms the presence of non-gyrotropic distributions.

To show that our methodology applies to cases that CTD cannot handle, we have
selected a substantial number of magnetopause crossings with 1-D characteristics to have
a proper statistical basis for our findings. For all these crossings, we have plotted the
hodogram of the magnetic field in the tangential plane and classified them depending on
their geometry. Our results show that 36.3 % of the crossings evidence clear linear features,
incompatible with the CTD description, while only 18.5 % of the crossings show either
circular or radial hodograms as predicted by CTD. In other words, a significant number of
cases escape the classic theory, proving that the relevance, even if not a predominance, of
FLR effects at the magnetopause can be generalized and that the case crossing presented
in the first section is rather typical. It is well known that the linear version of the rotational
discontinuity is the MHD shear Alfvén wave. Here it appears that the magnetopause-like
‘quasi-tangential’ discontinuities correspond in the same way to the quasi-perpendicular
‘kinetic Alfvén waves’ (Hasegawa & Uberoi 1982; Belmont & Rezeau 1987; Cramer
2001).

Several papers have investigated the changes in rotational discontinuities when various
non-ideal effects are introduced. These theoretical papers have addressed the problem as a
Riemann problem using the methodology of a ‘piston’ to study the formation of different
discontinuities. Some introduced FLRs and gyroviscosity in the layer while assuming
isotropy on both sides (Lyu & Kan 1989; Hau & Sonnerup 1991), and others introduced
anisotropy everywhere while assuming gyrotropy in the layer (Hau & Wang 2016). These
different papers lead to different conclusions; in particular concerning the role of electron
inertia in the layer equilibrium.

It is worth noting that the hodograms of B obtained with these theoretical studies were
never far from circular ones, contrary to the almost linear shapes shown in the present
paper. Our methodology has been different here: without assuming predefined forms for
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the non-ideal terms, we look experimentally to the hodograms and the form of the P tensor
and explain theoretically how the second can explain the first ones.

Finally, we have used the same database of crossings to compare the geometric
properties of the magnetic and ion structures. We have compared the normal obtained
from the magnetic field and the ion flux measurements to the one expected from the Shue
et al. (1997) model. Many crossings differ by more than 40◦ from the nominal equilibrium
condition, underlining a very dynamical environment, but it is worth noting that the two
kinds of determination are most often in agreement with each other, and therefore, confirm
the result. Furthermore, an accurate study of the ion flux measurements have shown that
crossings showing bigger discrepancies between the magnetic field and ion flux normals
are generally due to non-stationarities, non-one-dimensionality or variations in the ion flux
normals. When excluding these cases from the study, the ion and magnetic flux normals
are compatible with only two crossings (over 77) showing angles larger than 40◦.

Supplementary material

Supplementary material is available at https://doi.org/10.1017/S0022377824001089.
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Appendix A. Influence of averaging the t1 direction in the momentum equation
balance

In this section we investigate the impact of using an averaged tangential direction along
the crossing on the outcomes concerning the role of the pressure tensor in the momentum
equation. In figure 13 we show the projection of the terms of the momentum equation
along the local t1 direction (i.e. without averaging). We observe here some reversals of the
sign of the dominant terms, that were not observed in the averaged case. Nonetheless, it
is still evident that the pressure tensor counterbalances the J × B term, hereby confirming
our earlier findings.

Appendix B. Analysis of the gyroviscous effects

In this section we use the magnetopause crossing analysed in detail above to study
the validity of the gyroviscous interpretation. In particular, we employ the Braginskii
gyroviscosity term (Braginskii 1965) as applied by Stasiewicz (1989) to the magnetopause,
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FIGURE 13. Terms of the momentum equation (units of 10−15 kg m s−2), projected on the local
tangential direction (t1). Shaded regions are estimated uncertainties of the divergence of the
pressure (red), the J × B (blue) and the classic inertial term (green).

to analyse the pressure tensor. In this case, the pressure tensor is considered as the sum of
an isotropic component, P iso, and a viscosity term, σ :

P i = P iso − σ . (B1)

To investigate the viscosity term, we use the reference system where the normal direction is
aligned with the z axis (the x and y directions are chosen accordingly to form an orthogonal
triad). By exploiting the definition of σ , we focus here on its projection along the normal
yielding the following relation:

− σ · n =
⎛
⎝

Pnx

Pny

Pnn

⎞
⎠ = ρν

⎛
⎝

0 bn by

−bn 0 −bx

by −bx 0

⎞
⎠ ·

⎛
⎝

u′
x

u′
y

u′
n

⎞
⎠ . (B2)

Here ν is the gyroviscosity coefficient, b̂ = (bx, by, bz) the normalized magnetic field and
u′ = (u′

x, u′
y, u′

z) is the vector of the spatial derivatives of the velocity components along the
normal. We now consider the first two components of this equation, yielding the following
expressions that allow us to compare the non-diagonal terms with the velocity changes:

Pnx

ρ
= ν(bnu′

y + byu′
n), (B3)

Pny

ρ
= −ν(bnu′

x + bxu′
n). (B4)

The terms of these equations are shown (normalized) in figure 14. Here we observe a fairly
good correlation between the non-diagonal terms of the pressure tensor and the spatial
derivatives of the flow velocity.

Appendix C. Quality indices for the ion normals

In the absence of additional caution, figure 12 shows that the angle between the normal
obtained with the magnetic field and the one with the ion flux reaches very high values,
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(b)

(a)

FIGURE 14. Left-hand (blue) and right-hand (red) sides of (B3) (a) and (B4) (b). Thin-dotted
lines correspond to the real-time values while thick lines to an averaged window of 1 s. All terms
are normalized.

up to 90◦. This result requires a more accurate study, as the criteria used for the dataset
selection are based on the magnetic field (except for the threshold imposed on the density
values).

To interpret the results accurately, the following parameters were considered.

(i) Dimensionality of ion flux. For this purpose, we exploit the dimensionality index
defined in (6.11), computed from the ion flux measurements.

(ii) Stationarity of the ion flux measurements. To evaluate stationarity, we exploit the
GF2 tool. Specifically, we consider the quality of the fit of the gradient matrix as
an index of stationarity. By defining D = Gfit − G we can introduce the stationarity
index

S = Tr(D · DT)

Tr(G · GT)
. (C1)

Since for a truly stationary magnetopause, S should be equal to zero, deviations from
zero suggest potential non-stationarity.

(iii) Variance of the normal. In some crossings of the database, the normal associated
with ion flux exhibits local differences with respect to the mean value, such as
fluctuations or rotations within a plane, with one component varying within the
crossing. In these cases, the ion flux is therefore characterized by more complex
structures and the mean normal is not meaningful. To exclude such cases, we
examined the variation of the normal around the mean value, defined as follows:

δnorm = 〈|ni − nmean,i|2〉. (C2)

Small values of δnorm indicate almost constant normals.
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(b)(a) (c)

FIGURE 15. Dimensionality (a), stationarity (b) and normal variance (c) averaged for each
crossing as a function of the angle between the magnetic field normal and the ion flux one.
Green, blue and yellow indicate crossings respecting the DGF2,ions > 0.6, δnorm > 0.07, S >
0.22 criteria individually. Black dots indicate the crossings for which all the criteria are met and
red dots (two cases) when no condition is met.

The average values of these three parameters for each crossing are shown in figure 15
as a function of the angles between the normal of the magnetic field and the ion flux.
We observe here that crossings showing the largest angles occur when at least one of these
conditions fails. To select the cases for which the ions are characterized by a stationary and
1-D structure, for which the normal has no variations around the mean value, we applied
the following thresholds: DGF2,ions > 0.6, δnorm > 0.07, S > 0.22. Specifically, crossings
individually meeting one of these criteria are shown in green, blue and yellow, respectively.
When all criteria are met, crossings are indicated by black dots. This figure underlines a
correlation between the difference between the two normals and the values of these three
parameters, showing how cases with higher DGF2,ions and smaller δnorm and S are those with
smaller differences between the two normals.
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