
Measuring Pixel Classification Accuracy Using Synthetic Spectrum Images 
 
John Henry J. Scott and Nicholas W. M. Ritchie 
 
National Institute of Standards and Technology, Gaithersburg, MD 20899-8370 
 
As the use of data acquisition hardware capable of acquiring spectrum images becomes widespread, 
many analysts are employing pixel classification techniques to process their microanalysis datasets. 
Before the advent of spectrum imaging, analysts classified structural features in their samples using 
elemental x-ray maps. Today, many commercial microanalysis packages come equipped with some 
form of classification procedure for assigning pixels or larger spatial features to one of a small 
number of categories or classes. These class labels are presented to the analyst to provide insight 
into the chemical heterogeneity of the sample, or sometimes even its spatial distribution of 
“phases”.   
 
This proliferation of classification techniques within the microanalysis community has led to the 
need for accurate measures of performance of the various classification algorithms. Different pixel 
classification methods vary in their accuracy, precision, and specificity; they exhibit different 
strengths and weaknesses depending on the situation and what information is to be extracted from 
the data.  The methods also exhibit different levels of sensitivity to problems in the data such as the 
presence of noise or badly overlapped spectral peaks.  Thus, the goal of post-classification 
performance metrics is to illuminate how these methods meet the required analytical challenges and 
how gracefully their performance degrades when applied to poor or unusual data. 
 
The best measures of performance for classifiers of all types are based on comparison of their 
predicted class assignments with known class membership. With real samples this is nearly 
impossible since the spectrum image is often the only source of phase information available at the 
relevant length scales. The calculation of synthetic spectrum images from computer models (Fig. 
1a-e) obviates this problem, since both the composition and microstructural geometry are precisely 
known for the phantom samples [1]. This allows the creation of a “ground truth” image revealing 
the true class membership of each pixel. Using this ground truth image as a key, the performance of 
any given classifier can be assessed, including measurement of error rates (both errors of 
commission and omission). When the classifier returns the same number of classes as the ground 
truth (Fig. 1f), all errors can be tabulated in a confusion matrix [2]; when the number of classes is 
variable (Fig. 1g) error assessment is not as straightforward. Classifiers with thresholds as free 
parameters (such as Bayes classifiers) benefit from analysis of their receiver-operator characteristic 
(ROC) curves, which reveals the relationship of false negative vs. false positive classification error 
rates as a function of the cut-off threshold. 
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Fig 1.(a) ground truth image showing arrangement of the four Raney Nickel phases simulated by 
3D Monte Carlo; a 64x64 pixel spectrum image (SI) was generated with an XEDS spectrum at each 
pixel (b) Al K x-ray map derived from the SI (c) Ni K x-ray map (d) Fe K x-ray map (e) RGB 
overlay of the three elemental maps with red=Al, green=Fe, and blue=Ni (f) unsupervised pixel 
classification result using iterative K means [2] and four pixel categories to classify the first 20 
principal components of the SI; the poor quality of the classification is deliberate to illustrate the 
utility of post-classification performance metrics (g) unsupervised pixel classification result using 
the ISODATA iterative algorithm [3] to classify the first 20 principal components; the number of 
classes is a free parameter in this algorithm, complicating measurement of classification accuracy. 

Raney Nickel Phases 
1 = Al99.5Ni0.5;  2 = Al71.2Ni24.6Fe4.2; 
3 = Al60Ni40;    4 = Al46.5Ni53.5; 
0.5µm x 0.5µm x 100 µm subblocks
Monte Carlo Simulation 
20 keV, 1 nm beam diam., 64x64 
pixels over 4µm x 4µm (64 pixels 
per subblock, 62.5 nm pixel pitch), 
XEDS resolution 130 eV FWHM @ 
MnK, 2048 channels, 10 eV/chan, 
TOA = 50° down x-axis up z-axis, 
runtime ~ 3 days on one 2.4GHz 
Intel CPU, Windows XP
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