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Abstract
A classification of multiplication modules over multiplication rings with finitely many minimal primes is obtained.
A characterization of multiplication rings with finitely many minimal primes is given via faithful, Noetherian,
distributive modules. It is proven that for a multiplication ring with finitely many minimal primes every faithful,
Noetherian, distributive module is a faithful multiplication module, and vice versa.

1. Introduction

In this paper, all rings are commutative with 1 and all modules are unital. A ring R is called a multipli-
cation ring if I and J are ideals of R such that J ⊆ I then J = I ′I for some ideal I ′ of R. An R-module M is
called a multiplication module if each submodule of M is equal to IM for some ideal I of the ring R. The
concept of multiplication ring was introduced by Krull in [5]. In [6], Mott proved that a multiplication
ring has finitely many minimal prime ideals iff it is a Noetherian ring.

The next theorem is a description of multiplication rings with finitely many minimal primes.

Theorem 1.1. ([1, Theorem 1.1]) Let R be a ring with finitely many minimal prime ideals. Then the ring

R is a multiplication ring iff R ∼=
n∏

i=1

Di is a finite direct product of rings where Di is either a Dedekind

domain or an Artinian, local principal ideal ring.

Classification of multiplication modules over multiplication rings with finitely many minimal
primes. Using Theorem 1.1, a criterion for a direct sum of modules to be a multiplication module
(Theorem 2.1) and some other results, a classification of multiplication modules over a multiplication
ring with finitely many minimal primes is given, Theorem 1.2.

Theorem 1.2. Let R be a multiplication ring with finitely many minimal primes, that is R ∼=
n∏

i=1

Di is a

finite direct product of rings where Di is either a Dedekind domain or an Artinian, local principal ideal
ring and 1 = e1 + · · · + en be the corresponding sum of orthogonal idempotents of the ring R. Let M be
an R-modules and M = ⊕n

i=1Mi where Mi: = eiM. Then the R-module M is a multiplication R-module iff
each Di-module Mi is either isomorphic to Di or to Di/Ii where Ii is a nonzero ideal of Di or to a nonzero
ideal of the ring Di in case when the ring Di is a Dedekind domain.
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Classification of faithful multiplication modules over a multiplication ring with finitely many
minimal primes.

Theorem 1.3. Let R be a multiplication ring with finitely many minimal primes. We keep the notation of

Theorem 1.2 (R ∼=
n∏

i=1

Di). Then an R-module M = ⊕n
i=1Mi (where Mi = eiM) is a faithful multiplication

R-module iff for each i = 1, . . . , n, either RMi � Di or RMi � Ii where Ii is a nonzero ideal of the ring Di

in case when Di is a Dedekind domain.

Proof. The theorem follows at once from Theorem 1.2.

Characterization of multiplication rings with finitely many minimal primes via faithful,
Noetherian, distributive modules. Let R be a ring and M be an R-module. A submodule N of M is
called a distributive submodule if one of the following equivalent conditions holds: For any submodules
M1 and M2 of M,

(M1 + M2) ∩ N = M1 ∩ N + M2 ∩ N,

M1 ∩ M2 + N = (M1 + N) ∩ (M2 + N).

The R-module M is called a distributive module if all submodules of M are distributive submodules.

Theorem 1.4. A commutative ring R is a multiplication ring with finitely many minimal primes iff there
is a faithful, Noetherian, distributive R-module.

Classification of faithful, Noetherian, distributive modules over a multiplication ring with
finitely many minimal primes.

Theorem 1.5. Let R be a multiplication ring with finitely many minimal primes. Then every faithful,
Noetherian, distributive R-module is a faithful multiplication R-module, and vice versa.

2. Proofs

In this section, we prove the results from the Introduction.

Definition 2.1. We say that the intersection condition holds for a direct sum M = ⊕
λ∈�

Mλ of nonzero
R-modules Mλ if for all submodules N of M, N = ⊕

λ∈�
(N

⋂
Mλ).

Definition 2.2. Let M = ⊕
λ∈�

Mλ be a direct sum of nonzero R-modules with card(�) � 2, aλ =
annR(Mλ) and a′

λ
= ∩μ 
=λaμ. We say that the orthogonality condition holds for the direct sum M =⊕

λ∈�
Mλ if a′

λ
Mμ = δλμMμ for all λ, μ ∈ �. Clearly, a′

λ

= 0 for all λ ∈ � (since all Mλ 
= 0). In particular,

aλ 
= 0 for all λ ∈ �.

Definition 2.3. Let M = ⊕
λ∈�

Mλ be a direct sum of nonzero R-modules with card(�) ≥ 2. We say that
the strong orthogonality condition holds for M if for each set of R-modules {Nλ}λ∈� such that Nλ ⊆ Mλ,
there is a set of ideals {Iλ}λ∈� of R such that IλMμ = δλμNλ for all λ, μ ∈ � where δλμ is the Kronecker
delta. The set of ideals {Iλ}λ∈� is called an orthogonalizer of {Nλ}λ∈�.

Theorem 2.1 is one of the criteria for a direct sum of modules to be a multiplication module that are
obtained in [1]. It is given via the intersection and strong orthogonality conditions.
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Theorem 2.4. ([2]) Let M = ⊕
λ∈�

Mλ be a direct sum of nonzero R-modules with card(�) ≥ 2. Then
M is a multiplication module iff the intersection and strong orthogonality conditions hold for the direct
sum M = ⊕

λ∈�
Mλ.

An R-module is called a cyclic if it is 1-generated. For an R-module M, let CycR(M) be the set of its
cyclic submodules. For an R-module M, we denote by annR(M) its annihilator. An R-module M is called
faithful if annR(M) = 0. For a submodule N of M, the set [N:M]: = annR(M/N) = {r ∈ R | rM ⊆ N} is an
ideal of the ring R that contains the annihilator annR(M) = [0:M] of the module M. The set θ (M): =∑

C∈CycR(M) [C:M] is an ideal of R. Clearly, annR(M) ⊆ θ (M). If M is an ideal of R then M ⊆ θ (M).

Proof of Theorem 1.2. ( ⇐ ) All the Di-modules Mi of the theorem are multiplication Di-modules.
Hence, the direct sum ⊕n

i=1Mi is a multiplication module over the direct product rings R = ∏n
i=1 Di.

( ⇒ ) Suppose that the R-module M = ⊕n
i=1Mi is a multiplication R-module where Mi = eiM for

i = 1, . . . , n. We have the following claims.
(i) The Di-module Mi is a multiplication Di-module: The statement is obvious since R = ∏n

i=1 Di.
(ii) The Di-module Mi is a finitely generated Di-module: Since Mi is a multiplication Di-module,

Mi =
∑

C∈CycDi
(Mi)

C =
∑

C∈CycDi
(Mi)

[C:Mi]Mi = (
∑

C∈CycDi
(Mi)

[C:Mi])Mi = θ (Mi)Mi.

The ideal θ (Mi) = ∑
C∈CycDi

(Mi)
[C:Mi] of the Noetherian ring Di is a finitely generated Di-module, that

is, θ (Mi) = ∑ni

i=1 Diθi for some elements θi ∈ θ (Mi). Then

Mi = θ (Mi)Mi =
ni∑

i=1

DiθiMi ⊆
ni∑

i=1

Ci ⊆ Mi,

and so the Di-module Mi = ∑ni

i=1 Ci is finitely generated.
(iii) Suppose that the ring Di is a Dedekind domain. Then the Di-module Mi is isomorphic either to

Di or to Di/Ii or to Ji where Ii and Ji are ideals of the ring Di: It is well-known that a nonzero finitely
generated module M over a Dedekind domain D is a direct sum M=F ⊕ T of a torsion-free D-
module F and a torsion D-module T ; F = I ⊕ Dm for some ideal I of D and m ≥ 0; and T = ⊕ti

i=1D/pmi
i

where pi are maximal ideals of the ring D and mi ∈N. Suppose that the D-module M is a multiplication
D-module. By Theorem 2.1, the direct sum of D-modules

M= I ⊕ Dm ⊕
ti⊕

i=1

D/pmi
i

must satisfy the strong orthogonality conditions. Hence, either M= I of M= D or M= ⊕ti
i=1D/pmi

i

where p1, . . . , pti are distinct maximal ideals of the ring D, and so M= ⊕ti
i=1D/pmi

i � D/
∏ti

i=1 p
mi
i .

(iv) Suppose that Di is an Artinian, local, principal ideal ring. Then the Di-module Mi is isomorphic
either to Di or to Di/Ii where Ii is a nonzero ideal of Di: Let D = Di and m be the maximal ideal of the
local ring Di and mν 
= 0 and mν+1 = 0 for some natural number ν. Then

{D, m, m2, . . . , mν , mν+1 = 0}
is the set of all the ideals of the ring D. The D-module Mi is a nonzero finitely generated multiplication D-
module. Hence, {Mi, mMi, m2Mi, . . . , mμMi, mμ+1Mi = 0} is the set of all D-submodules of Mi for some
natural number μ such that μ ≤ ν. In particular, the D-module Mi is a uniserial D-module since

Mi ⊃mMi ⊃m2Mi ⊃ · · · ⊃mμMi ⊃mμ+1Mi = 0.

Since the D-module Mi is a uniserial, we have that

dim km(Mi/mMi) = 1

where km: = D/m, and so Mi = Dmi +mMi for some element mi ∈ Mi\mMi. By the Nakayama Lemma,
Mi = Dmi, and the statement (iv) follows.
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Corollary 2.5. Let R be an Artinian multiplication ring. Then every multiplication R-module is an
epimorphic image of the R-module R.

Proof. The corollary follows at once from Theorem 1.2.

Corollary 2.6. Let R be a multiplication ring with finitely many minimal primes and M be a
multiplication R-module. Then

1. The endomorphism ring End R(M) is also a multiplication ring.
2. End R(M) � R/annR(M).
3. The End R(M)-module M is a faithful multiplication End R(M)-module.

Proof. The corollary follows at once from Theorem 1.2.

In the proof of Theorem 1.4, we will use the following results.

Theorem 2.7. Let R be a commutative ring.

1. ([3, Corollary, p. 177]) Let M be a Noetherian distributive R-module. Then every submodule
of M which is locally nonzero at every maximal ideal of R, is of the form IM where I is a unique
product of maximal ideals of R.

2. ([3, Lemma 2.(ii)]) A finitely generated R-module M is a multiplication module iff the Rp-
module Mp is a multiplication module for all prime/maximal ideals p of R.

3. ([4, Theorem 1.3.(ii)]) (Cancellation Law) If M is a finitely generated, faithful multiplication
R-module then for any two ideals A and B of R, AM ⊆ BM iff A ⊆ B.

Proof of Theorem 1.4. ( ⇒ ) By Theorem 1.2, the R-module R is a faithful, Noetherian, distributive
R-module.

( ⇐ ) Let M be faithful, Noetherian, distributive R-module.
(i) The ring R is a Noetherian ring: The R-module M is Noetherian, hence finitely generated, M =∑n

i=1 Rmi for some elements m1, . . . , mn ∈ M. The R-module M is a faithful module. Hence, the map
R → ⊕n

i=1Rmi, r �→ (rm1, . . . , rmn) is an R-monomorphism. The direct sum is a Noetherian R-module
(as a finite direct sum of Noetherian modules), and the statement (i) follows.

(ii) The ring R has only finitely many minimal primes: The statement (ii) follows from the
statement (i).

(iii) For all maximal idealsm of the ring R, the Rm-module Mm is faithful, Noetherian and distributive:
The R-module M is finitely generated. Hence, annRm (Mm) = annR(M)m = 0 since annR(M) = 0. Clearly,
the Rm-module Mm is Noetherian and distributive (since the R-module M is so and localizations respect
finite intersections).

(iv) The Rm-module Mm is a multiplication Rm-module:
The statement (iv) follows from the statement (iii) and Theorem 2.7.(1).
(v) The R-module M is a multiplication module: The R-module M is finitely generated. By the

statement (iv) and Theorem 2.7.(2), the R-module M is a multiplication R-module.
Let (I(R), ⊆ ) be the lattice of ideals of the ring R and (SubR(M), ⊆ ) be the lattice of R-submodules

of the R-module M.
(vi) The map I(R) → SubR(M), I �→ IM is an isomorphism of latices: The R-module M is a finitely

generated, faithful multiplication module (the statement (v)), and the statement (vi) follows from
Theorem 2.7.(3).

(vii) The ring R is a multiplication ring: The statement (vii) follows from the statements (v) and (vi).
Now, the theorem follows from the statements (ii) and (vii).
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Proof of Theorem 1.5. ( ⇒ ) See the statement (vi) in the proof of Theorem 1.4.
( ⇐ ) This implication follows at once from Theorem 1.3.
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