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ABSTRACT

Let K be a finite unramified extension of Q,. We parametrize the (¢, I')-modules
corresponding to reducible two-dimensional Fj-representations of G and characterize
those which have reducible crystalline lifts with certain Hodge—Tate weights.
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1. Introduction

Buzzard, Jarvis and one of the authors [BDJ10] have formulated a generalization of Serre’s
conjecture for mod p Galois representations over totally real fields unramified at p. To give a recipe
for weights, certain distinguished subspaces of local Galois cohomology groups in characteristic p
are defined in terms of the existence of ‘crystalline lifts’ to characteristic zero. More precisely, let
K be a finite unramified extension of Q,, with residue field &, F a finite extension of F;, containing
k, ¢ : Gg — F* a character, and denote by S the set of embeddings of k& in F. For each J C S,
they define a subspace (or in certain cases two subspaces) of H!(Gy, F(3)), which we denote
Ly (or LF); with certain exceptions these subspaces have dimension |.J| (see Remark 7.7 below
for the relation between our notation and that of [BDJ10]). The definition of these subspaces
in terms of crystalline lifts is somewhat indirect, making it hard for example to compare the
spaces Lj for different J. Viewing the specification of the weights in terms of a conjectural
mod p Langlands correspondence as in [BDJ10, §4], such a comparison provides information
about possible local factors at primes over p of mod p automorphic representations (see [Bre09]).

The aim of this paper is to describe them more explicitly using Fontaine’s theory of (o, I')-
modules. In particular, we prove that, if ¢ is generic, as defined in §5.2, then the subspaces are
well-behaved with respect to J in the following sense.

THEOREM 1.1. If4) is generic and 9|, # x*! where y is the mod p cyclotomic character, then
LJ = ®T€J L{T}

We remark that Theorem 1.1 has been proved independently by Breuil [Bre09,
Proposition A.3] using different methods. We also treat the case where |r, =Tl see

Theorem 7.8 below for the statement.

We also give a complete description of the spaces L; (and Lf) in terms of (¢, I')-modules when
K is quadratic, without the assumption that 1 is generic. In particular, we prove the following
theorem, which exhibits cases where the spaces L; are not well-behaved as in Theorem 1.1.

THEOREM 1.2. Suppose that [K : Qp] =2 and that v is ramified. Writing S = {r, 7'}, we have
Ly = L7y if and only if 9|, = w for some fundamental character wo of niveau 2 and some
integer i € {1,...,p—1}.

This is part of Theorem 7.12 below; see also Theorem 7.15 for the case when v is unramified.

The paper is organized as follows. In § 2 we review preliminary facts on p-adic representations
and (¢, I')-modules, and set up the category of étale (p, I')-modules (corresponding to F[Gk]-
modules) in which we will be working. In §3 we give a parametrization of rank one objects in
the category, and identify them as reductions of crystalline characters of Gx using results of
Dousmanis [Dou08]. In §4 we construct bases for the space of extensions of rank one objects.
(In a different but related direction, see [Her98, Her01, Liu08] for computation of p-adic Galois
cohomology via (¢, I')-modules.) In § 5 we introduce the notion of bounded extensions, motivated
by the theory of Wach modules, which characterizes those (¢, I')-modules corresponding to
crystalline representations (see [Ber02, Ber04b, Wac96, Wac97]), and use this to define subspaces
4S

5, which we compute in the generic and quadratic cases. In §6 we treat certain exceptional

cases excluded from §§4 and 5. In §7 we relate the spaces Lf,i) and V}i) in the generic and
quadratic cases and prove our main results. We remark that a difficulty arises from the fact
that the integral Wach module functor is not right exact; to overcome this we derive sufficient
conditions for exactness that may be of independent interest.
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2. Generalities on p-adic representations

In this section we summarize (and expand a bit upon) basic facts on p-adic representations,
crystalline representations, (¢, I')-modules and Wach modules. We will give references for details
and proofs along the way. For an excellent general introduction to the theory, see [Ber04a].

Let p be a rational prime and fix an algebraic closure Qp of Qp. If K is a finite extension of
Q, contained in Qp, Gk denotes the Galois group Gal(Qp/ K) and K| denotes the absolutely
unramified subfield of K. Let x : Gk — Z,; be the cyclotomic character and let ~: Z, — F) be
the reduction modulo p, so that Y ="0 x : Gx — F is the mod p cyclotomic character. We set
K, = K(pupn) C Q, for n> 1, and get a tower of ﬁelds

K=KyCK C---CK,C---CKxCQ,,

where Koo = J,;5; Kn. We define Hg to be the kernel of x, i.e., Hx = Gal(Q,/K), and set
'k =Gg/Hg = Gal( oo/ K). In many cases where there is no p0851b1hty of confusion, we will
simply write I" for 'y, suppressing K. We set I';, =T'g,, = Gal(K/Ky) for n > 1.

2.1 Fontaine’s rings
Here we give a summary of the constructions of some of the rings introduced by Fontaine that we
will be using. See [CC98, Col99, Fon94a] for more details. Let C,, denote the p-adic completion
of Q, and v, the p-adic valuation normalized by vy(p) = 1. The set
E= lim C,={z= @@, 20 )] 2® ey, (x0T = 0},
TP

together with the addition and the multiplication defined by
(z + y)(i) - jlggo(x(iﬂ) + y(i+j))pj and (xy)(i) =gy

is an algebraically closed field of characteristic p, complete for the valuation vg defined by
vg(z) = v,(2(?). We endow E a Frobenius ¢ and the action of Gq, by

p((@D)) = (")) and  g((2)) = (9(="))
if g € Gq,- We denote the ring of integers of E by E*; it is stable under the actions of ¢ and Gq, .
Let e =(1,eM, ..., @ .. ) be an element of E such that e #1, so that ™ is a primitive
p'th root of umty for all i > 1. Then vg(e — 1) = p/(p — 1) and Eq, is defined to be the subfield
F,((¢ — 1)) of E. We define E to be the separable closure of Eq, in E, and E* (respectively mg)
to be the ring of integers (respectively the maximal ideal) of ET. The field E is stable under the
action of Gq, and we have Efar = Eq,- The theory of the field of norms shows that Ex := Efx

is a finite separable extension of Eq, of degree |Hq,/Hk|= K : Qp(pp=)] and allows one to
identify Gal(E/Eg) with Hg. The ring of integers of Ef is denoted by Ef..

Let . A = W(E) be the ring of Witt vectors with coefficients in E and let B=A[l/p] = (A)
Then B is a complete discrete valuation field with ring of valuation A and residue field E. If
T € E [z] denotes Teichmiiller representative of = in A. Then every element of A can ‘be written
uniquely in the form Y, p'[x;] and that of B in the form > oo P'lwi]. We endow A with the

topology that makes the map x+ (7;);en a homeomorphism A— EN, where EN is endowed
with the product topology (E is endowed with the topology defined by the valuation UE) We
endow B = Uien P ~iA with the topology of inductive limit. The action of Gq, on E induces

continuous actions on A and B that commute with the Frobenius ¢. Let 7 = [¢] — 1. Define Aq,
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to be the closure of Z,[r, 7] in A. Then

Aq, = {Z anm

i1€Z

a; € Ly, aiHOasiHoo}

and Aq, is a complete discrete valuation ring with residue field Eq,. As
o(m)=1+n)P =1 and ~(m)=(1+a)X9 -1 ifge Gq,,

the ring Aq, and its field of fractions Bq, = Aq,[1/p| are stable under ¢ and the action of
Gq,- Let B be the closure of the maximal unramified extension of Bq, contained in B, and set

A =BnNA, so that we have B = A[1/p]. Then A is a complete discrete valuation ring with field
of fractions B and residue field E. The ring A and the field B are stable under ¢ and Gq,. If K
is a finite extension of Q,, we define A = A% and Bx = BX which makes Ax a complete
discrete valuation ring with residue field Ex and the field of fractions Bx = Ag[1/p]. When
K = Q,, the two definitions of Ag and By coincide. If F' is a finite extension of K, then Bp
is an unramified extension of By of degree [Fi : Koo]. If the extension F/K is Galois, then the
extensions Br/Bg and Bp/Bg are also Galois with Galois group

Gal(Bp/Bg) = Gal(Br/Bg) = Gal(Ep /Eg) = Gal(Fx /Koo) = Hi /Hp.
In particular, if K is a finite unramified extension of Q,,, we have

A= {Z anm"

nez

anEOK,anHOaan—oo},

with ¢ acting as the Frobenius and I' acting trivially on Og.

The homomorphism 0 : A+ — Ocys Donso P [Tnl = X0 ol s surjective and its kernel

is a principal ideal generated by w=m/¢ (7). We extend 6 to a homomorphism Bt =
A*[1/p] = C, and we set By to be the ring lim B*/(ker §)". Then 6 extends by continuity
to a homomorphism Bj{R — C,. This makes BCTR a discrete valuation ring with maximal ideal
ker § and residue field C,. The action of Gq, on BT extends by continuity to a continuous
action of Gq, on BJ;. The series logle] =, -, (—1)""'a"/n converges in B, to an element ¢,
which is a generator of ker & on which o € Gq, act via the formula o(t) = x(o)t. We set
Bar = BIR [t~ =Fr BIR, and Bgr comes with a decreasing, separated and exhaustive filtration
Fil' Bar := t'BJ for i € Z. Let Acis={x =Y, an(w"/n!) € B}, | a, € A*, a, — 0}. Then
B:;is = Ais[1/p] is a subring of BIR stable by Gq, and contains ¢, and the action of ¢ on B+

extends by continuity to an action of B'. . We have ((t) = pt and we define Bes to be the

cris®

subring B, [1/t] of Bgr, and define the filtration Fil'B s := Fil'Bgr N Beris.

cris
2.2 Crystalline representations
Let K be a finite extension of Q,, and let Ky denote its maximal absolutely unramified subfield.

DEFINITION 2.1. A p-adic representation of G is a finite dimensional Q,-vector space together
with a linear and continuous action of Gg. A Z,-representation of Gk is a Z,-module of
finite type with a Z,-linear and continuous action of Gx. A modp representation of Gk is
a finite dimensional Fj,-vector space with a linear and continuous action of G .

Remark 2.2. A Z,-representation T' of G that is torsion-free over Z, is naturally identified
with a (Gk-stable) lattice of the p-adic representation V := Q) ®z, T of G.
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If B is a topological Qp-algebra endowed with a continuous action of G and if V' is a p-adic
representation of G, we define Dg(V) := (B ®q, V)X, which is naturally a module over BEx.
If, in addition, B is G-regular (i.e., B is a domain, (Fr B)“% = BY% and every b€ B — {0}
such that Qb is stable under G g-action is a unit), then the map

ay B R pak DB(V) — B ®Qp %4
induced by the inclusion Dg(V') — B ®¢, V is an injection (see [Fon94b, §1.3]). In particular,

we have
dimpge, Dp(V) < dimg, V.
(If B is Gg-regular, BE% is forced to be a field.)

DEFINITION 2.3. If B is Gi-regular, we say that a p-adic representation V of G is B-admissible
if dimge, Dp(V) =dimq,V. We say that V' is crystalline if it is Beis-admissible and that V' is
de Rham if Bgr-admissible.

Remark 2.4. We have the following equivalent conditions (cf. [Fon94b, §1.4]):
(i) dimpge,Dp(V) =dimg,V;

(ii) ay is an isomorphism; and

(iil) B®q, V =~ BYmayV a5 B[G]-modules.

If V is a p-adic representation of G, Dqr(V) := (Bar ®q, V)CK is naturally a filtered K-
vector space. More precisely, it is a finite dimensional K-vector space with a decreasing, separated
and exhaustive filtration Fil'Dgg (V) := (Fil'Bgr ®q, V)GK of K-subspaces for i € Z. If V is
de Rham, a Hodge—Tate weight of V is defined to be an integer h € Z such that FilhDdR(V) #*
Fil" ™ Dgg (V) with multiplicity dim Fil"Dgr(V)/Fil" ™ Dar (V). So there are dimgq,V Hodge-
Tate weights of V' counting multiplicities. We remark that this differs from the more standard
convention (e.g., [Ber04a]) of defining —h to be a Hodge—Tate weight of V' for h as above.

DEFINITION 2.5. A filtered p-module over K is a finite dimensional Ky-vector space D together
with a o-semilinear bijection ¢:D — D and a Z-indexed filtration on Dk :=D ®g, K of
K-subspaces that is decreasing, separated and exhaustive.

If V is a p-adic representation of G, then Dis(V) := (Beris ®q, V)Gx is a filtered p-module
over K. More precisely, the Frobenius on Bg,s induces a Frobenius map ¢ : Deyis(V) — Deyis(V)
and the filtration on Bggr induces a filtration FiliDcris(V) =DgnN (FilinR ®qQ, V)GK on
Deis(V). Moreover, De,is(V') has finite dimension over Ky and ¢ is bijective on Dgis(V). We
get a functor

Deyis : Repq, Gk — MFY,
from the category of p-adic representations of Gx to the category of filtered ¢-modules over K.

If D is a filtered p-module over K of finite dimension d > 1, then ACD is a filtered p-module
of dimension one. If e € /\?(OD — {0} and ¢(e) = Ae then val()) is independent of choice of e and
we define tn (D) := vp(N). Also, we define ty (D) =ty (Dk) to be the largest integer such that
Fil'# (P)(AL Dy ) is non-zero, i.e. Fil' (A4 Dg) = A% Dk for i <ty(D) and Fil'(A%Dg) =0 for
1> H(D)

DEFINITION 2.6. Let D be a filtered ¢-module over K. We say that D is weakly admissible if
tg(D)=tn(D) and ty(D") < ty(D') for every subobject D’ of D. We say that D is admissible
if D >~ Dqis(V) for some p-adic representation V' of dimension dimp,D.
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One can show that, if V' is a crystalline representation of G, then Dcys(V) is weakly
admissible. The converse was conjectured by Fontaine, and proved by Colmez and Fontaine.

THEOREM 2.7 [CF00]. Every weakly admissible filtered ¢-module over K is admissible.

In sum, we have an equivalence of categories
Deris : RepGPGr — MFE™™
between crystalline representations of G and weakly admissible filtered p-modules over K with

a quasi-inverse given by V() := (Fil%(-))#=1.

2.3 (¢, I')-modules

DEFINITION 2.8. A (¢, I')-module over Ak (respectively By, Ex) is an A g-module of finite
type (respectively finite dimensional vector space over By, Ex) endowed with a semilinear and
continuous action of 'y and with a semilinear map ¢ that commutes with the action of I'k.
We say that a (¢, I')-module M over Ak (respectively Ex) is étale if (M) generates M over
Ak (respectively Ex). A (¢, I')-module M over By is étale if M contains an A g-lattice that is
stable under ¢ and is étale.

Remark 2.9. We identify a (étale) (¢, I')-module over A killed by p with the corresponding
(étale) (v, T')-modules over E.

If T is a Z,-representation of G, we define D(T) = (A ®z, T)"%. Then D(T) is naturally a
module over A f of finite type. The Frobenius ¢ on A induces a Frobenius map ¢ : D(T') — D(T)
and the residual action of I'r on D(T") commutes with . One can also check that D(T') is étale
over A . Conversely, if M is an étale (o, I')-module over Ak we define T(M) = (A ®a, M)¥1,
which is a Z,-representation of G.

THEOREM 2.10 [Fon90]. The functor T +— D(T') defines an equivalence of categories
D :Repy Gk — M%

between Z,-representations and étale (¢, I')-modules over A with T as a quasi-inverse. It
induces, by inverting p, an equivalence of categories

D : Repq, Gk — M§,
between p-adic representations and étale (¢, I')-modules over By with
M — V(M) :=(B®g, D)*!

as a quasi-inverse. Moreover, if T' is a Z,-representation and V' a p-adic representation of G,
then

rankz T = ranka , D(T),
dimq,V = dimp, D(V).

When we restrict the equivalence to the p-torsion objects we get the following corollary.

COROLLARY 2.11. The functor T +— D(T) defines an equivalence of categories between mod p
representations of G and étale (p,I'i)-modules over Ef.
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Now we introduce coefficients to representations of G and (¢, I')-modules to extend Theo-
rem 2.10 and Corollary 2.11. We assume that K is absolutely unramified (of degree f over Q,)
and let F' be a finite extension of Q, with ring of integers Op, uniformizer wr and residue
field F. Consider the ring Ak p := O @z, Ak with the actions of ¢ and I' ¢ extended to Ak r by
linearity, i.e., ¢ acts as 1 ® ¢ and v € ' as 1 ® v. We assume there is an embedding 79 : K — F,
which we fix once and for all, and put 7; = 79 o ¢, where ¢ is the Frobenius on K. We denote
by S the set of all embeddings K < F' and fix the identification S = Z/fZ via the map 7; — 1.
We can then identify A g p with A%W 7 via the isomorphism defined by a ® bx™ — (a1 (b) ® 7).

Note that
AQp,F = {Z anm"
neZ

ane(’)F,an—>0asn—>—oo},

and the actions of ¢ and v € ', on A%va become

e(g0(m), g1(m), - ., gg—1(m)) = (g1((m)), . . ., gr—1(2(7)), go(ep(m))),

Y(go(7), g1(7) - -5 gr-1(7)) = (90(v(7)), g1 (¥(7))s - - - s gr—1(7(7))).-
We similarly define Bi p = F ®q, Bk and Ex p =F ®p, Ex and endow them with actions of
¢ and I'. Note that Bx p = Ag r[l/p] and Ex p = Ak p/wprAk r. Again identifying S with
the set of embeddings k¥ — F, we have the isomorphism Ex r = F((7))° with the actions of ¢
and 'k given by the same formulas as above.

DEFINITION 2.12. An Op-representation of Gk is a finitely generated Op-module with a
continuous Op-linear action of Gi. A (¢, I'x)-module over Ak p is a finitely generated A p-
module M endowed with commuting semilinear actions of I'x and ¢. A (¢, I'k)-module M over
Ak p is étale if (M) generates M over Ay, or equivalently over Ak p.

We write Repp, Gk for the category of Op-representations of G, and Mg’lz’? for that of

étale (o, I')-modules over A i r. We use analogous definitions and notation for répresentations
of Gk over F and F, and (¢, I')-modules over By  and Ex . The category of étale (¢, I'x)-
modules over Ex r is the main category we will be working in. Theorem 2.10 and Corollary 2.11
immediately yield the following corollary.

@, et

COROLLARY 2.13. The functor D induces equivalences of categories Repp,Gr — My ',

@, et o, et
ReppGg — MBK,F and ReppGg — MEK,F .

For each embedding 7: K — F, let e;: Axr— Aq, r denote the projection to the 7-
component, defined by a ® br* — ar(b)r’. If M is a (¢,I')-module over Ak p, then M =
[1,cs e- M, each e; M inherits an action of I', and ¢ induces semilinear morphisms e o, M — e, M
compatible with the action of I'. We use the same notation for (¢, I')-modules over B r and
E K,F-

LEMMA 2.14. If M is an étale (p, I')-module over Ak r, then the following are equivalent:

(i) T(M) is free over Of of rank d;
(ii) M is free over A of rank d[F : Q,]; and

(iii) M is free over Ak r of rank d.

If M is an étale (p,I')-module over By r (respectively Eg ), then M is free over Bg p
(respectively Ex ) of rank dimp T(M) (respectively dimg T'(M)).
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Proof. Suppose that M is étale over Ak . Then multiplication by p is injective on M if and
only if it is injective on T(M). Thus M is torsion-free, and hence free, over A if and only
if T(M) is free over Op. Since the A g-rank of M coincides with the Z,-rank of T'(M), the first

two conditions are equivalent.

If M is free of rank d over Ak p, then it is clearly free of rank d[F : Q,] over A . Conversely
suppose that M is free over Ag. Then each e, M is torsion-free, hence free, over the discrete
valuation ring Aq, r. We need only show that each e; M has the same rank. Since M is étale,
the maps

eropM ®aq, rip AQy.r — er M

are surjective, so we have rank(e,, M) < rank(e,, , M) for all i € Z/ fZ. The equivalence between
the last two conditions follows.

The assertions for étale (¢, I')-modules over B k,r and Eg p are similar, but simpler since
Bg and Eg are fields. O

Finally, there are tensor products and exact sequences in the various categories of étale
(¢, I')-modules, compatible via D with tensor products and exact sequences in the corresponding
categories of representations of Gx.

2.4 Wach modules

It is very useful to be able to characterize whether a p-adic representation is crystalline in terms
of the corresponding (¢, I')-module. This can be done via the theory of Wach modules if K is
unramified over Q.

Let At = ANAT=BnNA*T and Bt = At[1/p]. If K is a finite unramified extension of Q,,
we set Aj = (AT)x = O|[r]] C Ak and Bj; = (B1)x = A} [p~!] C Bg.

DEFINITION 2.15. Let K be a finite unramified extension of Q,. We say that a Z,-representation
T (respectively p-adic representation V') of G is of finite height if there exists a basis of D(T)
(respectively D(V')) such that the matrices describing the action of ¢ and the action of ' are
defined over A} (respectively B}.).

Colmez [Col99] proved that every crystalline representation is necessarily of finite height.
The converse is not true in general and there are representations of finite height that are not
crystalline. However, Wach [Wac96, Wac97] proved that finiteness of height together with a
certain condition (existence of a certain Aj.-submodule of the corresponding (¢, I')-module)
implies crystallinity. Berger [Ber02, Ber04b] then refined the results of Wach and Colmez as
summarized below.

DEFINITION 2.16. Suppose a < b € Z. A Wach module over A;r( (respectively B;r() with weights
in [a, b] is a free Aj}.-module (respectively Bj.-module) N of finite rank, endowed with an action
of I'ic that becomes trivial modulo 7, and also with a Frobenius map ¢ : N[1/7] — N[1/x] that
commutes with the action of I'x and such that p(77*N) C 77 *N and 7 *N/p(rm~*N) is killed
by ¢*~%, where we define ¢ := (1) /7.

THEOREM 2.17 [Ber04b]. (i) A p-adic representation V' is crystalline with Hodge—Tate weights
in [a, b] if and only if D(V') contains a Wach module N(V') of rank dimq, V' with weights in [a, b].
The association V — N(V) induces an equivalence of categories between crystalline
representations of G and Wach modules over B};, compatible with tensor products, duality
and exact sequences.
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(ii) For a given crystalline representation V', the map T — N(T') := N(V) N D(T') induces
a bijection between G g-stable lattices of V. and Wach modules over A;} that are A}Q-Iattices
contained in N(V'). Moreover D(T) = Ak At N(T).

(iii) If V' is a crystalline representation of Gk, and if we endow N(V) with the
filtration Fil'N(V) = {z € N(V) | ¢(z) € ¢'N(V)}, then we have an isomorphism D s(V) —
N(V)/7N(V) of filtered p-modules (with the induced filtration on N(V) /7N (V)).

Remark 2.18. If 0 - V3 -V — V5 — 0 is an exact sequence of crystalline representations of
G, then
0—N(W)—=N({V)—-N(Vz)—0

is an exact sequence of B}Q—modules. However, N does not define an exact functor from G-
stable lattices to A}F(—modules; indeed it fails to be right exact. We return to this point in more
detail in §7.

Again by introducing an action of F' to the categories, we get an analogous equivalence of
categories between crystalline F-representations and Wach modules over BE ri=FQq, B;g.
Here, by a crystalline F-representation we mean a finite dimensional F-vector space with a
continuous action of Gg which is crystalline considered as a Qp-linear representation (i.e.,
forgetting F-structure). Similarly, for a fixed crystalline F-representation of G, we have a
corresponding equivalence of categories between G i -stable Op-lattices and Wach modules over
A;_(,F = 0F ®z, A;}

COROLLARY 2.19. Let k € Z>(. An F-representation V of G is crystalline with Hodge-Tate
weights in [0, k] (i.e., positive crystalline) if and only if there exists a B} p-module N free of
rank d := dimp (V') contained in D(V') such that:

(i) the I'-action preserves N and is trivial on N/mwN; and
(i) ¢(N)C N and N/p*(N) is killed by q".
Moreover, if N is given a filtration by
Fil'(N):={z € N | p(z) € ¢'N}
for i > 0, then we have an isomorphism
Deis(V) ~ N/7N
of filtered p-modules over F' ®q, K, where N/nN is endowed with induced filtration.

A standard argument (cf. Lemma 2.14) shows that an F-representation V of G is crystalline
if and only if the filtered p-module Deyis(V) = (Buis ®q, V)Ck is free of rank dimpV over
F ®q, K. We have a decomposition Deis(V) = @, r €rDeris(V), where e;Deis(V) is the
filtered F-vector space D ys(V) ®Koq, Fer F with the filtration given by FﬂieTDCris(V) =
eTFiliDcris(V). A labeled Hodge—Tate weight with respect to the embedding 7: K — F is an
integer h € Z such that FilheTDcﬁs(V) #+ FitheTDcﬁs(V), counted with multiplicity

dimpFil"e; Deis (V) /Fil" e, Deris (V).

LEMMA 2.20. If N is a Wach module over A';(F (respectively B}F( ), then N is free over A;} P
(respectively B ).
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Proof. We just give the proof for Wach modules over A}r( r; the case of B}L( p can be deduced
from this or proved similarly. , ’

Let T denote the Op-representation corresponding to 7', and let d denote its rank. The
OF ®z, Okg-module N/7N is a lattice in Derys(Qp ®2z, T'), which is free of rank d over F' ®q, K.
It follows that N/7N is free of rank d over Op ®z, Ok . Since 7 is in the Jacobson radical of
A} r» Nakayama’s lemma shows that N is generated by d elements over A;r( - By Lemma 2.14,
we know that Ak r ®AJIF< . N is free of rank d over Ak r, so it follows that N is free of rank d

Jr
over AK,F- O

3. Rank one modules

In this section we give a parametrization of rank one étale (¢, I')-modules over Ex r (with a
view toward parametrizing their extensions) and then identify them with the reduction modulo p
of Wach modules of rank one over A}'( P

3.1 A parametrization

Denote by valy : F((7)) — Z the valuation normalized by val,(7) = 1, and let A, € F,,[[]] be the
unique (p/ —1)/(p — 1)th root of v(m)/X(y)7, that is congruent to 1 mod =, if vy € T.

PROPOSITION 3.1. For any C' € F* and any ¢= (co, ..., c;_1) € Z°, letting M = Ef re with
p(e) = Pe= (Cﬂ(p_l)co, ﬂ(p_l)cl, ey ﬁ(p_l)cf—l) e,
v(e) = Gye= (}\7206’ A;l 6, cee, )\ng_l C) e,

where ¥ = %,¢ =Y ¢;p/ summing over 0<4,j < f — 1,47 — j =1 mod f, defines an étale (p, I')-
module of rank one over Eg p. Conversely, for any rank one étale (¢, I')-module M over Ex
we can choose a basis e so that M = Eg pe with the action of ¢ and I' given as above for
some C' and some ¢. Two such modules M and M’ are isomorphic if and only if C =C’ and
YoC= ch_; mod p/ — 1. In particular, every rank one (¢, I')-module over Ex  can be written
uniquely in this form with 0 < ¢; < p — 1 and at least one ¢; <p — 1.

Proof. To show that the given formula actually defines an étale (¢, I')-module we need to verify
that Po(Gy) = Gyy(P) and G = G¥(G.). The first identity holds as

P(G) )Gy = (WE1=Z0 L \PFOTH

_ ()\’cyg(pf—l) )\fyf—l(pf—l))

g e ey

= (A (Y ey

To prove the second identity, as I" acts componentwise, we need to show that A, = Ay(\). But
note that

(a0 = gy (T gy ) = 10 )

T
and Ayy(Ay) =1 mod 7. The claim follows from the uniqueness of the \,. Note also that the
function v+ X\, is continuous since it is the composite of ~(m)/x(y)m with the inverse of
the continuous bijective function z — z® ~1/®=1) on the compact Hausdorff space 1 + wF,[[7]];
it follows that the I'-action we have just defined is continuous.
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We now prove that any rank one module can be written in this form. Suppose we
are given a rank one module M = Eg pe such that ¢(e) = (ho(7), ..., hy_1(7))e and ~y(e) =
(90(7), .., gr-1(m))e. Note that, if u € E ., by a change of basis ¢’ = ue we get P’ = (p(u)/u)P
and G, = (y(u)/u)G., where p(e') = P'¢’ and y(¢/) = GLe/. If u= (n7,...,n7), then p(u)/u=
(w13 . 7P~} So we can assume that hy(7) € F|[[x]] by choosing a large enough j > 0. We
can ‘shift’ between components by appropriate change of basis: if u = (1, ..., 1, u;(m), 1,...,1),
then ¢(u)/u=(1,..., 1, u;_1(7P), u;(7)~%, 1, ..., 1). By successive changes of basis we can make
it into a form where p(e) = (h(7), 1, ..., 1)e with k() € F[[n]]. Moreover, for some choice of e,
p(e)=(Cn% 1,...,1)e for C € F* and v >0 as

o(u(m), u(m® ™), .. u(xP)) e
(), u( D, - u(?) = (u(7?")/u(m),1...,1)

and the map 1+ 7F|[r]] — 1+ 7F[[n]], u(7r)»—>u(7rpf)/u(7r), is surjective: as the map is
multiplicative and 1+ 7F[[n]] is complete m-adically, it suffices to prove that, for any s> 1
and a € F*, 1+ an’t(r) is in the image for some (7)€ F[[x]]*, and indeed 1—am®
(1—an?)/(1 = an®) =1+ ar® mod n5L,

To show that (p — 1)|v, we note that ¢y(e) =vp(e) if and only if

(90, -, 95-1) _¥(Cr",1,...,1)
(905 -+, 9f-1) (Crv,1,...,1)"°

where G, = (go, . . ., gf—1). This is equivalent to

(B B (0 )
go(ﬂ') Y Y gf_l(’ﬂ—) T Y 9y 9y Y
which implies that (y(m)/7)? = go(n?")/go(m) =1 mod 7. If § €T is such that 6Ty generates

I'/T =~ pp—1, then 6(7)/7m = x(d) mod 7. Thus 6(7)/7 has order p — 1 modulo 7 so that p — 1|v
and @(e) = (Cx®P=Dw 1 ... 1), where (p — 1)w = v.

To determine the corresponding action of v € I, we note that ¢y(e) = yp(e) if and only if

(0l <<w<w>>""”w L)

go(ﬂ') b b gffl(ﬂ') T b ) )

if and only if go(n") /go(w) = (3(m)/m)P=% = (3(m) /(7)) P (the order of X being p— 1)
and g1(m) = g2(7P), ..., gf—2(m) = gs—1(7P), gr—1(m) = go(wP). Thus, to get g; that satisfy the

above identity, we just need to define go(7) such that go(wpf)/gg(w) = (y(m) /mx (7)) P~ If we

set go(m) = ay Ay (1) with o, € FX, we have go(m?”) /go(m) = A (27 )2 /A, (1) = A, ()2 ' =) =
(y(m)/7x(7))P~Dw. Conversely if gj(r) € Ej - satisfies

gy (@) /gb(m) = (4(m) Jax (1)) PV = gh (") /gy (),

then h(rm) = gj(m)gy ' () satisfies h(wpf) = h(7) and is therefore constant. Thus we see that the
identity implies that go(7) has the required form.
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Since G = G,y(GY), the map v+ o, must define a character I' — F*, from which we
(

conclude that a, = X/(7)% for some 0 < jo < p — 1. Letting u = (r, 7rpf71, 7rpf72, ..., ), we have
u
Q (ﬂpf 1 1,..., 1)’
u

pf=2

() (7(77), (v(w))ﬁf”’ (v(w))

= (X(7), .-, X(7)) mod m,

so replacing e by v 7e for some j = jo mod p — 1 gives M = Ex re with

ole) = (CxP= D% 1. 1)e,

f-1

v(e) = Ay (1), A (@ ) Ay (7)),
where 0 < w < pf — 1. Write w=cy+c1p+---+ Cf_lpf_l with 0 < ¢; <p— 1. Taking ¢’ = ue
with u = (1, 7P~ Dlerteaptoterap?™) 1 ) yields

(&) = (Crlo-Den_plo-Derteaptoter 7)1 1,

Doing this successively gives ¢(e) = (CrP~Deo gp=Der  rp=Des—1)e for some basis e. It is

easily checked that those changes of basis that maintain G, = (1, ..., 1) mod 7 are €’ = ue such
that u = (uo, ..., us_1) with (p — 1)|val(u;) and that the corresponding action of v € I is given

by 2(e) = (A A5 AT e
Finally, we suppose that M is isomorphic to M’ = Ex pe’ with
ple) = Ple’ = (C'nlr=Db xlp=Dt 7=,

V) =Gle' = (A0 A=Y A e,
and determine when the two are isomorphic. After appropriate changes of bases we can assume
that
p(e) = Pe= (C’w(p_l)w, 1,...,1e,
o)y =P = (C’ﬂ'(p_l)“’/, 1,..., 1),
where w =3 cand ' =3,  satisfy 0 < w, w’ < pf — 1.

Suppose that u = (ug, . .., us-1) € Ef p is such that P’ = (p(u)/u)P and G, = (v(u)/u)G,
for all yeTl. Then ~(ug)/up=1mod 7F[[r]], so (p—1)val; (uo) It follows that u=
(uo(m), uo(7® ), ... up(nP)) with ug(r) = uly(7)7r P13 for some u)(w) € F[[x]]* and j € Z, in
which case we have

F f
o(u)/u=(x (p=1)(p! -1)j ufy ()P L1,...,1).
Thus, we conclude that M and M’ are isomorphic if and only if C'=C" and Y ¢;p' =3 cp’
mod p/ — 1.
The last assertion is clear. O

We denote the module defined in the proposition by Moz = Mg(q,,..
Mgz for Mz if C'=1. We also put

KISD(MC(?) - K;SO(O’ 5) = (Cﬂ(pil)q)? 7_[.([)71)01’ ey W(pil)cf71)7
(M) = 1y (€, ) = 0 S N5, ),

and write X; for X;¢, where the ¢; are understood.

c;_y)- We simply write
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3.2 Lifts in characteristic zero

We now construct rank one Wach modules over A} .. following Dousmanis [Dou08, §2] and
check that these reduce modulo wp to the (¢, I')-modules M¢z over Ex p.

Let g1 =q=¢(m)/7, ¢n=¢"""(q) € Zy[[n]] and let Ay =TT,o0 qiejf/p, Ay=Ap/7(Af) €
Q[[7]]. One then has that Ay € 1 + 7Qp[[n]] and Ay € 1 + 7Zy][[n]].

Suppose we want to construct a rank one Wach module N = A;r( pe such that
p(e)=(Cq®, ¢, ... g e,
v(e) = (go(m), ..., gsr-1(m))e
if y € T, where C' € O} is any lift of C' € F* and each g;(r) = g, ;(r) € Op|[7]] depends on v € T,
Commutativity of the actions of ¢ and I' amounts to the following identities:
V(@) go(m) = ¢ (g1(m)),
V@) g1(m) = ¢ (g2(T)),

(@) 2gp—2(m) = ¢ 20(gr-1(m)),
V(@)Y gp-1(m) = ¢ o(go()).

Thus, we are looking for a solution g;(7) for each ~ of the equation

o= (563) #l5ta) # () - )

It is straightforward to check that
go(m) = ALp(Ay) T2 (Ay) - - - ! 71 (AT

gives the unique solution, that is congruent to 1 modulo 7, and that the remaining g;(7) are
uniquely determined by

gi(m) = (7(qq)>q¢<vg® >62 e <7?€1)>Cf_1(pf_l(go(ﬂ))’

gy—2(m) — (7(qq))C'fﬁw(ﬁq))%lﬁ(go(ﬂ)),

g1(m) = (jq))cf_lso(go(w)).

Dousmanis [Dou08, §6] shows that N = A} e endowed with the actions of ¢ and T
described above defines a Wach module over A}g > Which we denote by Ng.. Furthermore,

(Ngz/T™Ngz) ® Al B - is a filtered -module corresponding to a positive character G — F*

with labeled Hodge-Tate weights (cf_1, co, c1, ..., cf—2). One can check the following by direct
computation.

PROPOSITION 3.2. We have an isomorphism Mcz~ Ng-®,+ Eg r of (¢,I')-modules over
K, F

EK,F'

Combined with [BDJ10, Lemma 3.8], we obtain the following corollary, where w,; denotes
the fundamental character associated to 7 (i.e., w; : [x — F* is defined by composing 7 with
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the homomorphism Ix — k* obtained from local class field theory, with the convention that
uniformizers correspond to geometric Frobenius elements).
COROLLARY 3.3. If ©: Gxg — F* is the character defined by the action on V(M¢z), then

Crop—1

¢|IK - HTeS WT_ e

4. Bases for the space of extensions

We will assume p > 2 for the rest of the paper except in §§6.3 and 7. We fix a topological generator
n of the pro-cyclic group I' = ', and set £ = P!, so that & topologically generates I'y.

Given C € F* and ¢=(co,...,cr—1) €{0,1,...,p— 1}% with some ¢; < p — 1, we are going
to parametrize the space of extension classes Ext!(My, Mcz) in the category of étale (g, T')-
modules over Eg p. Here My denotes the étale (¢, I')-module Ex rp with the usual action of
pand I', so My =M 1.6 corresponds to the trivial character G — F*. Recall that Mz, ko(Mcg)
and K (Mcg) were defined at the end of §3.1; since Mz will be fixed in this section, we denote
these simply x, and k..

We start by noticing that there is an F-linear isomorphism
B: H/Hy — Ext' (Mo, Mcgz),

where H is the subgroup of Ex r x {I' = Ex r} consisting of elements (u,, (tty)~er) such that
7+ fi is continuous and satisfies:!

(1) (ko — 1)(1y) = (Kyy — 1) (1p) Vv €T,
(1) foy = Koy Y (pyr) + 1y Yy, 9 €T,

and Ho = {(rpp(b) — b, (ky7(b) = b)er) | b€ F((m))%} C H.
We call elements of H cocyles and those of Hy coboundaries. The map [ is defined as follows:
given a cocycle p1 = (fig, (fty)yer) € H, we define an extension

0—-Mypz— FE— My—0

Ko Mo

basis {e, e’} such that the action ¢ and vy €T are given by the matrices P = (0 1) and
G, = (”0” “1”) It is straightforward to check that the matrices P and G, define an extension
if and only if u € H, that every extension arises this way, and that a change of basis for an
extension E corresponds to adding an element of Hy to p. If € H, then we write [u] for the
corresponding extension class B(pu).

By Corollary 2.13, we get an isomorphism Extl(Mﬁ, Mcz) ~ HY (K, F(¢)) where ¢ : Gx —
F* is the character defined by the action on V(M¢z).

LEMMA 4.1. Via Corollary 2.13, Mg corresponds to the trivial character and ijﬁ to the mod p
cyclotomic character.

Proof. The assertion is clear for the trivial character. The modp cyclotomic character
factors as Gk — Z; — F,; — F*, where the arrow in the middle is the reduction mod p.
If T=1Z,(1), its Wach module is given by N(Z,(1))=Ajle, where ¢(e)= (r/p(r))e
and y(e) = (x(y)7/y(m))eif v € T' (cf. [Ber04b, Appendice A]). Working modulo p and extending

! We will frequently use the following notation: for an element s and a ring endomorphism ) of Ex s, we denote
by k¥ — 1 the F-linear endomorphism of Ex r defined by (k¢ — 1)(z) = kip(z) — x. We do the same for F(()) in
place of Ex . Thus, for example, if 3, s € Z, then (\Jy — 1)(7°) denotes A, (7)” - y(7*) — 7°.
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scalars to F we see that the étale (¢, I')-module over Ex  corresponding to the mod p cyclotomic

character is given by M = Eg pe with ¢(e) =m1"Pe = (717P,... m17P)e. By a change of basis
¢/ =wue with u= (7P~ ... 7P~1), we get M:ijﬁ. O
Since
+1 if¢=1lory
dimp H' (K, F {f : e
A VA RS
we have
f+1 ifC=1, andé=0oré=p—2
dimyp Ext! (Mg, Mcg) = o - - ’
mg Ext’ (Mg, Mce) {f otherwise.
We are about to define elements By, . .., By_1 € H such that the associated extension classes

form a basis for Extl(Ma, Mez) except for the two cases where C' =1, = 0or C=1, 5:m,
for which a separate treatment will be given in §6. Thanks to the isomorphism (3, we only need
to define p, and the p. satisfying the desired properties () and (). According to whether
the parameter ¢; is equal to p — 1 or not, the extension B; is constructed in a slightly different
manner.

4.1 Construction of B; when ¢; <p — 1

Recall that we have fixed a topological generator 1 for I', and we let ¢ =nP~!, a topological
generator for I'y.

LEMMA 4.2. Suppose that ¥, s € Z, and v =v,(X + s(p/ —1)/(p — 1)) < co. Then

(Ayn = 1)(*) € (X(n)° = n* + UX(U) (XQ(”) ) R, [[7P]),

where ¥ + s(pf —1)/(p—1) = ngv sjpj'

Proof. Tt is easy to see that in F,[[x]]/7P?~! we have

—_— do— 1—
do! |

N0 -D/e-y ) 3 70 1+ Z o

T X(n)m x() ot j!(do — j)! doj!(do — 5)!

where x(1) =350 djp? € Z). Noting that, if s € Z, then
0= = (x5 (L1 — 1)
K T A\X(m)m ’
the result follows as

™ y — —
XA - (L) = 1wt /oD -y

=X A 1
=X() A (va )% Ap (mP

(x(m)° =1 +x(n)s<<1 - X(”;_lwp“yv - 1>

X(m)°*x(n) — 1)
2

““)Swl R |

(X(n)* =1)+5,
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and

X"y (;}S;;L) ~1= (o - 0+ =D ) oy o

We note the following lemma, whose straightforward proof we omit.

LEMMA 4.3. If n>1, y€T, and x(7) =1+ 2p" mod p"*!, then M=1+ 2mP" =1 4 zxP" mod
2p™—2
0 .

LEMMA 4.4. Let x(§)=1+2zp modp? with 0<z<p—1 and let X,s€Z. If v=1,(X +
s(p' —1)/(p— 1)) < 00, then

(AFE — 1)(n°) € 5z (TP =DP" o pstp™hy 4 st W 0-DR [78"]),

where ¥ + s(pf -1)/(p—-1)= Zj;y Sjpj'

Proof. By Lemma 4.3, we have

=1+ 27"+ 277 mod 72

Noting that, if s € Z, then
AE—1)(n) = <)\E- ( E(W) ) — 1>7r8,
the result follows as

\S ( {(W) > ST/
¢ \mx(©) ¢

WPU)Sv)\g(WPU+1)Sv+1 e
)% —1 mod =Dt

=52(r® VP 4 2P mod m2e-Dp

and

Sz(n PP e ¢ m2=DP R [[77"]]. O

A (i@)) -

We now assume ¢; < p — 1 and construct an element B; € H. (For the case ¢; =p — 1, we will
need to use a modified construction described in §4.2.)

Suppose for the moment that we have successfully defined B; with pu,(B;) of the form
0,...,0,Hi(m),0,...,0), H;i(7) being the ith component. For each v € I', by the condition (})
there should exist u,(B;) = (Go(7), ..., Gf_1(7)) such that

(K — 1) (py(Bi)) = (K7 — 1) (e (Bi)),

(CrP=DoG, (zP) — Go(n), 7P~ VGy(nP) — Gy(7), . .., 7P~ VI1Gy(aP) — G_1 ()
=(0,...,0, Ay — 1)(Hy(m)),0,...,0).
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This is true if and only if
(CalP~D%id —1)(Gy(m)) = Ay — 1)(Hi(m)),
Gig1(m) = 7PV Gy o (P),

Gyoa(m) = 772Gy (),
Go(m) = CrP~D0Gy(a?),
Gi(m) = 7P~V Gy(a?),

Gi_1(m) = 7P~ De-1G; (7P,

where ®(G(m)) = G(?Tpf). Except for the case C' =1, €=0, the map Cr®~D¥® — 1 defines a
bijection F[[r]] — F[[n]]. So the trick is to find H;(m) so that we have (A%i'y — 1)(H;(m)) € F[[nx]].
The corresponding G;(7) and so the p.,(B;) are automatically and uniquely determined by the
bijectivity. Moreover, since the bijection CrP~D>i® — 1 on the compact Hausdorff space F|[[r]|
is continuous, so is its inverse, and it follows that v — - (B;) is continuous.

To find such H;(r), we observe via Lemma 4.2 that?
Valw()\%in ~ (7" P)=2—-p and valw()\?n —1)(r°)=s f2—-p<s<—1.
Then there exist unique ea_p, ..., e_1 € Fp such that
()\?77 —D)(r"P f e P4 e ) € F[A]).
We set
Hi(m)=m""P4+hi(m)=a""P + e pm® Pt deqn?
and claim that
(A — 1)(H;(m)) € F[x]]
for all v €. Note that by Lemma 4.3 we have \,, =1 mod 7’~1, so that (A, 71 —1)(7*) =

0 mod 7P~ ! for all 1 — p < s < —1if 77 € T'y. Since any given v € I' can be written as v = n™~,
where m € N>g and v, € I'1, we have

(AT = 1)(Hi(n)) € F[]
by the following lemma.
LEMMA 4.5. Let ¥ and v be integers and H(w) € F((n)). For any v,~" €T, if the valuations
(inw) of (\y — 1)(H(r)) and ()\37’ — 1)(H(m)) are at least v, so is that of()\%,wfy' —1)(H(m)).

Proof. If both AZy(H (w)) — H(w) and )\3’7/<H(7T)) — H(m) are in 7F[[r]], then

vy (H(r)) — H(m)

7TX’Y
~(m) (p—1)/(pf-1) . B
( ) w)) V(o (H () — H(x)

= A7 ( (m)) = H(m)) + AJy(H(m)) — H(m) € a°F|[x]]. O

2 Note that, if ¢; =p — 1, then ¥; = —1 mod p and v > 1 in the notation of Lemma 4.2, which is why we need to
modify the construction in that case.

)(p—l)E/(pf—l)

H(
NS 7/ — 1)(H(m)) = ( ”'(7))
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So far we have defined pu, = pu,(B;) and piy = i (B;) satisfying the condition (1), and need to
verify the condition (). It is easily checked that, if 7,7" € I', both jiy and p_, = kv (1) + iy
satisfy (f). Since when we fix pu, the solution of (1) for vy is unique (by the bijectivity of the
map Cr>i® — 1), we must have () fiyy = iy Y (fiyr) + firy-

4.2 Construction of B; when ¢c; =p —1

PROPOSITION 4.6. If¢; =p—1 and c¢;+1 # p — 2, we have
(A = (P + b (m) + e(x® 2 + hj(m) + hi(m))) € F[x]]
for some unique € € F* and some unique Laurent polynomials b}/ (7) = S"P_2 e/x1-p “+sp , R (m) =
€T and h;(m €T cr|m .
g % ! 2—2p+s dh s 1 l1-pts ¢ 1
Proof. By Lemma 4.2 we have,
(i = D' 7) € FXpt 70 4 P R[]

and

(/\%77 _ 1)(7T1—p2+sp) c FXpl-p*tsp + Z Frl—P+(s+ip + F([x]]
j=1

for 1 < s <p— 2. Thus there exist unique €”, v’ € F such that

p—2
(A?in —1) <7Tl_p2 + Z egﬂl_p2+5p> e V7P 4 F[[x]].
s=1
Similarly, there exist unique €., €5, v € F' such that

p—2 p—2
()\7?"17 -1) <7r2_2p + Z eLm?TTs 4 Z 63771_”+5> € vrl™P + F[[x]].
s=1 s=1
Put hg/( ) Zp 2 // a2— p2+sp, h;( )= Zp 2 / 2-2p+s and hi(m) = ZISJ;% 687.‘.1*})4’3.
The point then is to show that both v and v/ are non-zero so that

(i — 1) (7 4+ h(m) + € (Ao — 1) (w2 + hi(m) + hy()) € F([a],

where e = —1//v € F — {0}. So let us prove the non-vanishing of v/ and v. Suppose v/ =0,
so that Valﬁ()%in —1)(x P+ h!(m)) > 0. By Lemma 4.5, recalling that & =nP"1, it follows
that valﬂ()\?’f — 1)(x*#" 4 h!(x)) > 0, However, by Lemma 4.4 we have valr(AYin — 1)(x 2" +
hY(m)) =1 — p. Thus v/ cannot be zero. Similarly, we get v # 0. O

PROPOSITION 4.7. If ¢;=p—1, and r €{0, ..., f — 1} is such that cjy1 =+ =Ciyr =p — 2
and ¢;1r4+1 #p — 2, we have

r+1
()\?ini ( 1- pr+2+zh])+z >€F[[7T]]
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for some unique Laurent polynomials

W () =D gt (0 <<+ 1),
s=1
hg(j)( )= qltp?—2p7tt +Z o ltp? —2p7 g spl (0<j<r)

in F[r][1/7] with GYH e £ 0.

Proof. By Lemma 4.2 (with v =r + 1, s, = ¢j4r+1 + 2) we get
(ADi — 1) ¢ P R e ey
and

p—s—1
i e ety e S i e g

t=1

for 1 < s <p— 2, so that there exist unique e(rH), e e(rﬂ), (r+1) ¢ F such that
1 p—2

p—2
(ADin — ( A '”+2+SPT+1> e 7= 4 P[]

s=1

We set h; (rl) — =>"r TH gl s
Again by Lemma 4.2 we get
(/\727:i77 o 1)7r1—2pT+1+pT c F><7T1—2pr+1+2pr + 7T1—2pr+1+3pTFH7TpTH

and
p—s—2
()\72731,'7 B 1)7T1—2pT+1+(1+8)pT c F><7r1—2pj+1+(1+s)pj + Z F7_‘_1—2pr+1+(1+5+t)pr + ,R_l—pTJrlF[[TrpTH
t=1
for 1 < s <p—2, so that there exist unique 6/1(7")7 cey p(r)% /(") ¢ F such that

p—2
R D I e R
s=0

) —1.

where we have set ¢

As in the proof of Proposition 4.6, one can show that both »"*1) and /(") are not zero, so
that

A = D7 4 h{THY 4 Oy @l TR ),
where (") = —p(+1) /(") £ 0. Then again
(i — 1)(#%’“ + BT L R L g0y e Bl 4 F (7))
for some h( es —pHsp” Iterating the process proves the proposition. O
s 1

When c;=p—1,¢ix1 ="+ =Citr =P — 2, Citrs1 # D — 2, we define
po(Bi) =(0,...,0, Hy(n),0,...,0),
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where
r—+1

Hi(m) = T Z hz(»j)(ﬂ') + Z e(j)hg(j)(w)
j=1

=0
is the ith component. By Proposition 4.7, we get (A%i’y —1)(pp(By)) € F[[r]] and then
11(B;) is determined by bijectivity of the map CrP~)¥i® — 1 : F[[x]] — F[[r]]. The condition (1)
is checked in an analogous fashion as in §4.1.

Remark 4.8. The cocycle B; for the case ¢;=p—1, ciy1 ="+ =Ciapr =D — 2, Ciqrr1 P — 2 i8
cohomologous to a cocycle B/ defined by

p—2 p—2
po(By) = (6(0)71'2_2p Z ¢Ors 4 gl eg°)7r5> €;

s=0 s=1
p—2
3 3 /(1) 2—2 1), s
< P g 65( 7w+ P E eg )7r>ei+1
s=1

p—2
+ <€(T)7T3—3p Z 6;(7“) S 4 22 Z (r) >€z+r
s=0
p—2
+ <7T2—2p Z 6(r+1) >€2+T+17

s=0

where 60( ) = /(1) =...= eg(r) = e(()TH) =1 and €(") 0. See Lemma 5.7 for the proof in the case

f=2

4.3 Linear independence of the [B;]

Throughout this subsection we assume C # 1 if =0, so that C7®~V>& — 1: F[[r]] — F|[[7]]
defines a valuation-preserving bijection for all 4 € S. From the constructions in §§4.1 and 4.2 we
have at hand the extensions [By], ..., [Bf_1] € Ext!(My, Mcz) such that, if i € S,

,U@(BZ'):(O, . .,O7 Hi(ﬂ’), . .,O)

has ith component
r+1 ) r ' )
Hy(m) =" 43" hf (@) + 3 I (),

1
j=0 j=0
)( ) = hi(m) was defined in §4.1, and, if ¢; = p — 1,
then r is the least non-negative integer such that ¢;y,4+1 7#p —2 and hl(j ), hgj ) and ¢0) were
defined in §4.2.

To prove linear independence of the [B;], suppose that (oBo+---+ Br_1Bs_1 is a
coboundary for some f,...,B3r—1 € F. We want to show that By=---=3;_; =0. By the
cyclic nature of the indexing, it is enough to show that [r_; =0. Since Boue,(Bo)+-- -+
Br-1pp(Br—1) = (BoHo(m), ..., Bf—1Hs_1(m)), by adding another coboundary, we see that

A

where, if ¢; # p — 1, then we set r = —1 and h;

(2

(BoHo(m) + BLOm PV Hy (nP) 4 - 4 B O D=0 5p’ gy (7 ) 0, 0)
= (CrP=He0py (7P) — bo(m), 7P~ Veby(n) — by (7), . .., 7P~V —1ho(7P) — bp_y (7))
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for some (bo(7), ..., bs—1(m)) € F((m))". It follows that

BoHo(m) + SO DO, (27) 4 -+ 4 By Cr PV Es=0 P’ o (a0

= (CrP= V0% — 1) (bo(m))
and
by () = aP—1er by (),
by () = wP=Ve2pg(P),

by—a(m) = w2,y (nP),
by () = mP=Der—1py (nP).

As the map CrP~1)>0® — 1 : F[[x]] — F[[x]] is a bijection, we get a congruence

BoHo(7) + B1Ca P~ DOH (aP) + - - - + ﬁfflcﬂ(lv—l) 950 e Hf,l(’ﬂ'pfil)

= (CxP=V¥ & —1)(b(x)) mod F|[[x]]

for some b(mw) =b_gm° + Zj;i b_stjm 5t € F[1/n] with s >0 and b_s # 0. Suppose Bf_1 #0
and we will get contradictions.
First assume cy_1=p—1,cp=---=cy_147=p — 2,¢p4r #p — 2 with 7 > 0, in which case
we have
r+1

,
Hy_i(m)= R Z hgj)(ﬂ) + Z e(j)h;(j)(w).
j=0 Jj=0
One can check that the lowest degree term (in 7) of the left-hand side of the congruence is
By O 20 ep? (1=t

so that the valuation of the left-hand side is (p — 1)(2;;3 cipd —(L+p+---+pTHp/7h).
On the other hand, we have three possibilities for the right-hand side: (p — 1)%y — spf < —s,
—s5<(p—1)%¢ —sp/ and (p — 1)%g — sp/ = —s.

If (p—1)3p— spl < —s, the leading term of the right-hand side is b_SCw(pfl)Eoﬂ*Spf and
we have s=(p—1)(2+p+---+p") and Bf_1 = b_,;. Now the term

By_1 O™ Ei= b (1) (1 =2pm !

survives on the left-hand side and must match a term on the right-hand side. Considering possible
matching valuations on the right-hand side we get either

f—2
(P=1)Y ep! +(L+p =2 )/ =t
7=0
or
f—2
(P—1)> el +(1+p" =20 )p/ T = (p— 1) — tp/
j=0

for some 0<t<s=(p—1)(2+p+---+p"). The former equation contradicts the inequality
t < s and the latter implies that t =2p" —p"~! 4+ p — 2. Since p/ Jt + (p — 1)Z¢, there must
be a term of degree —t on the left-hand side. However, if m <r, then the leading term
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of 7?1 275" ep? H,,(7P") has degree greater than —t, and, if m >r, then its terms cannot
be congruent to —t mod p", and we again arrive at a contradiction.

If —s < (p— 1) — sp/, the leading term of the right-hand side is —b_sm*. Then (p — 1)]s
and s(pf —1)/(p — 1) < g < pf — 1, so that s < 1, which is impossible.

Lastly, if (p — 1)X¢ — sp/ = —s, working modulo powers of p, we get s =cg=---= Cf_1=
p — 1, a contradiction.

Now we may assume that §; =0 for all j € S such that ¢; =p — 1 and ¢j11 = p — 2. Suppose
now that cy_1 =p — 1 and ¢y # p — 2. We then proceed to show that 3;_; = 0 by induction on m,
where m > 1 is such that c¢y_,,—1 #p—1 and ¢, =cp_pq1 =" cy—1 =p — 1. We may thus
assume that Sy, =---=By_2 =0 if m > 2. The argument used in the case r >0 then goes
through with the following two changes: (1) the induction hypothesis is used to show that the
term

By_1On®D Ei=d e (0 (2=2p)p!

is alive on the left-hand side, and (2) the equality
f—2

(p—1)Y e’ +2—2p)p! ' = (p—1)% — tp/
§=0

immediately gives a contradiction without considering more terms.

Now we may assume that $; = 0 for all j € S such that ¢; =p — 1, and suppose cy_1 <p — 1.
The leading term of the left-hand side then is

By_1On PV =5 ep? p(1-pp!

If (p— 1)S — sp! < —s, sp/ = (p— 1)(S0 — 025 eip? +p/ 1) = (p— 1)(cp—1 + 1)p/ 71, and so
pl(cg—1 + 1), which is impossible as 0 < cp_1 <p — 1. If (p — 1)3 — sp! > —s, then

f—2
—s<(p— 1)<Z ¢;p’ —pf1> <1-p,

§=0
contradicting that s(p/ —1)/(p — 1) < Tp < p/ — 1.

This completes the proof that the [B;] are linearly independent, hence form a basis for
Ext! (Mg, Mcg) (unless C =1,é=00r C=1,=p - 2).

5. The space of bounded extensions

In this section we define bounded extensions, which we will later relate to extensions arising from
crystalline representations.

5.1 Bounded extensions

DEFINITION 5.1. Suppose A, B € F* and 0 < a;, b; < p with exactly one of a; or b; being zero
for each i € S. We say that an extension (class) E € Ext!(Myz, M pp) 18 bounded if there exists a
basis for £ such that the defining matrices P and G, satisfy the following:

: _ (ko(Bb)  x _ (ry(BB)  x : )
() P= ("D ) md Gy= ("0 () itreD
(ii) P € My(F[x]]%); and

(iii) G- — Iy € TMa(F[[x]]®) if y € T;.
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Bounded extensions form a subspace, denoted by Ext{ . (Maz, Mpy;), of the full space
Ext! (Mg, M ) of extensions.

Remark 5.2. Note that the space Ext}4(Magz, M) depends on @ and b and not just on the
isomorphism classes of the (¢, I')-modules Mz and M ;.

LEMMA 5.3. The condition (iii) in Definition 5.1 can be replaced by a weaker condition (iii’)
Ge¢ — I € ™Mo (F[[7]]®). (Recall that £ is a topological generator of T';.)

Proof. If v, € T'y, then

Gyy =G Gy = <1 Ho () +’Y'UM’,(E)) mod T

0 1
by Lemma 4.3. So, if G¢ = Iy mod 7, we have by induction that G¢n = I, for all n > 1. Since (&)
is dense in T'y, continuity of the action gives that G, — I € tMa(F[[r]]¥) for all v € Ty. O

We now describe a way to analyze extensions systematically and to check for boundedness.
Given J C Sandn € Z/(p/ — 1)Z, we can always find a;, bjforicJ, jeS —Jwithl<a;b; <p

such that
n= Z bjpj — Z aipt mod p/ — 1.
jeJ icJ
The congruence has a unique solution if n#n; modp’ — 1, and has two solutions if n=
ny mod p/ — 1, where ny =3, ; p't!t — dig) p* (cf. [BDJ10, §3]). To compute the solutions
explicitly in the double solution case, suppose n = ny mod pf — 1 and we have two solutions a;, b;

and az, b. Then $:= 3. ;(b; — b;-)pj — Y ies(a; — a})p' =0mod p/ — 1. Note that |S| < p/ — 1,

as |a; — ajl, [bj — V| <p—1, so that ¥ =0 or +(pf — 1), and in the latter case we can exchange
a, b and @ , v oif necessary in order to assume X =pf — 1. If £ =0, then reducing modulo
powers of p shows that @ =a’ and b=0.If ¥ =pl — 1, then we have solutions a; =1, bj=p
and a; =p,b; =1 (i€ J, j€S—J).

Now fix JCS, C€F* and ¢c€{0,1,...,p—1}° with some ¢;<p—1. If So¢#ny
mod pf — 1, we can solve the congruence ¥o¢= ZigJ bipt — Yics a;p* mod pf — 1 with unique
solution, and get an isomorphism

Ext! (Mg, Mcz) ~ Ext! (Mg, M,7),

where d; = —a; if i € J and dj = b; if j ¢ J. The isomorphism is (not canonical but) well-defined
up to Aut Mcz=F* and the valuations of entries of the matrices defining the (¢, I')-module
extensions are invariant, which suffices for our purposes. Tensoring M 4z with the subobject and
the quotient of the extension gives an isomorphism

v Ext! (Mg, Mcg) — Ext'(Mag, Mpp),
where CA=B and a; =0ifi ¢ J and b; =0 if ¢ € J. Note that, if J =0, A=1 and ¢; > 0 for all

i, then Mag = Mo, Mgz = Mcz= M,; and ¢ is the identity. In general, we have the following
commutative diagram.

H/Hy H'/H}

| |

Ext! (Mg, Mog) — Ext!(Mag, M ;)
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The vertical arrows are the isomorphisms § defined at the beginning of §4, and the bottom
arrow, which we also denote ¢, is induced by

(keo» (ty)yer) = (Kp(A, @)(C) shp, (Fy (A, @)(E) shin)yer),

where the isomorphism Ej pe= Mgz~ M7= Ex e’ is defined by the change of basis e =
(¢)s€ with (¢); € Ex . It is straighforward to check the following formula for (¢');, which we
will need in order to compute spaces of bounded extensions:

@)y = (nVeo gle=Derr)

where (p/ — 1)g; = %;(¢ — d).
We define
Vy =1 (Exthgq(Mag, Mpp)) C Ext! (Mg, Mcz),
so that dimp V; = dimp Ext},gq(Maz, M ;).
If ¥o¢=n; mod p/ — 1, we can assume that nj = Ziw bipt — dics aip' and ny+1—pf =

> igs bip' — >, aip’ where a;, bj and af, v; are two solutions. Then we have a; =p, b; =1 and

a;=1, by =p (fori€Jand j€S —J).
As in the case of a unique solution, we have isomorphisms (but now there are two)
vy Ext! (Mg, Meg) — Ext!(Mag, My;p),
v Ext! (Mg, Mcz) — Ext' (M 5, M)
and define
VJ+ = LII(EXt%)dd(MAd‘, MBE)) C Eth(M(j, Mcg),
VJ_ = L:I(EXt%)dd(MAa-;, MBb_;)) C Eth(MG’ MCE)'
Note that we always use + to denote the case where all a; = p, b; =1, and — for the case where
all a; =1 and b; = p.
In the next two subsections we will compute explicitly the spaces of bounded extensions in
the generic case and in the case f = 2.

5.2 Generic case
For each i € S, let ¢; : Exc p = F((7))° — F((r)) denote the projection (go, - .., gs—1) — gi-
PROPOSITION 5.4. If0<c¢; <p—1 for all i € S, then:

(i) V{z} = F[Bi-i-l] for all i € S;

(ii) Vy= ®ieJ V{i} if JCS; and

i) VI =Vy =BExt!(Mz, M _,—) if C #1,é=p—2
(ili) Vi =Vg =Ex o Moy=3) 1 ,C=p—2.

—_

Remark 5.5. Proposition 5.4 does not say anything about the cyclotomic case C =1,¢=p — 2,
which will be treated in §6.1.

Proof. First consider the case J # (). We may assume that f — 1€ J; even though we do not
have complete symmetry due to the presence of the constant C, we will see that the argument
goes through independently of which component C' lies in. As 0 < ¢; < p — 1 for all i € S we have
(pf —1)/(p—1) <Zoe< (p—2)(pf —1)/(p — 1). We claim that the congruence

YoC= Z bip' — Z aipt mod p/ —1
i icJ
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has a unique solution a;, b; (i€ J, j¢&J) such that 1<a; b; <p, except when J =S5 and
c= pTé If there were another distinct solution, we have either Yo¢= ENJ pItl — EjeJ pJ or
Yol = ngj pItt — ZjeJ p? + pf — 1. The former is impossible since modulo p we have co = —1
if0eJand ¢cg=0if j € J, and thus cg =p — 1 or 0, contradicting the assumption. In the latter
case, we have 0 € J and cg = p — 2. Computations modulo p? show that 1€ J and ¢; =p — 2.
By induction we get J =5 and ¢; =p — 2 for all i €. S. Thus, unless J =5, EZpTé, we have
unique a;, b; (i € J, j & J) satisfying the equation sz:_ol cipt = ZigJ bip' — Yoics a;p' +pl — 1.
Letting u = (x®~D-1s z=Ddos 7(p=1)dr-27) with §;; =1 if i € J and &;y = 0 otherwise,
one can check that Ex pe = Moz~ MCJ: EK,Fe’ via the change of basis e = ue/, where d; = b;
if i ¢ J and d; = —a; if i € J, and that (¢'); = u. Note that

o((@)y)  (eP=DPSos plp=pdrs - r(p=1)pos-1r)
<E>J N (ﬂ(pfl)(sf—ljj 71—(117—1)(50_;7 o 7.r(pfl)éf,w)
f—t (ﬂ(p_l)(p50‘7_5f—1j)’ ,n.(p—l)(péu—éoj)’ e ﬂ(p_l)(p(sf—l.]_(sf—z]))
and that
(pSos — 8—10) + p(pors —dog) + -+ +p' " (pOp—15 = 620) = () =131y =p/ = 1.
Recall that we have a basis [Bo|, ..., [Bf_1] for Extl(]wﬁ)7 M) such that

po(Bi) = (0,...,0, 7P + hy(n),0,...,0),
ue(Bi) = (G, ... G,

where h;(7) € Fr?P + .- + Fr—! and

G\ (x)

7

—Qy + gi(ﬂ->7
D, () = 7PV~ + gi(wP),
g

D () = plPDlcimateiap) (g, g:(7"°)),

el
ot

G(()i) (1) = P Dleoterpt-te1p™) (o, 4 g (7P")),

G () = g Dlesrreopter teiip) (o, 4 gi(xP ),

G
with a; =350z € F* as in Lemma 4.4.
To show that ¢[B;11] € Ext!(M 4z, Myy) is bounded if i € J is straightforward: as (¢'); =

(w(p_l)éf*U, aP=Ddos Tr(p_l)‘sf*?J) and 6,7 = 1, we have

po(tBit1) = kp(A, @)(C) spp(Bit1)
=(0,...,0,wP DRt (F=P 4 b1y (7)), 0,...,0) € F[[x])°

(m) = p=Deritteip) (Lo g (0" 1)),

with the non-zero entry in the (i + 1)th component, and

p1e(1Biy1) = ke (A, @)(C) pe(Bis1) € nF([x]]°

as e;yipe(LBiy1) = )\ép_l)zj“aﬂp_le(Ql and ejyipe(LBiy1) = )\ép_l)zj“aﬁ(p_l)‘sﬂGg-il is divis-

ible by m(P=Dei+1 if j £ 4.
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Next we need to show that, if F = Zf;& BjB; and [E] € Vy, then ;11 =0 for all i¢ J.
Suppose ([E] is bounded, i ¢ J and SBiy1 #0. Then put(E + B) € F[[r]]¥ and peu(E + B) €
7F[[r]]® for some coboundary B, for which we have

p1,(B) = (Cr®P=Deopy (P) — by, aP=Vetpy(aP) — by, ..., 7PV 1po(7P) — by 1),

c c Y€
pe(B) = (2% — 1)bo(m), O — by (r) ..., (A% — 1)y (),
for some (bo(7), ..., bs_1(7)) € Ex r. Note that kg(A,ad) =1=(1,...,1) mod 7 and e;11(¢) s =
a(P=1)dis =1, As valreip1pe(E + B) = valreipipet(E+ B) > 1 Whlle valre;pipe(E) =0, the
valuation of e;1p¢(B) = ()\?”15 — 1)bi11(m) has to be zero. Letting s = val;b;11(7), Lemma 4.4
implies that (X' — 1)bi1 (1) € 7F|[x]] if 5 > 0, and valy (A€ — 1)big1(r) = s+ (p — 1)p"
if s <0 and ;1€ + s(pf —1)/(p — 1) is divisible by p® but not p**!. Thus val,b; ;1 () must be
negative and divisible by p — 1. Looking at the ¢th component, we have
eitip(U(E + B)) = 7 V@019 (e (E) + €3 (B))
= g P01 (2 17P 4 () + 7@V, (7P) — by(m)),

whose valuation has to be non-negative. Since (p — 1)c; + p valb;11(7) <1 —p=val (7P +
hi(m)), we get val:b;i(m) = (p—1)c; + p valbiy1(m). Cycling this through all j€ S leads to
valbiy1(m) = (p — 1)5:¢ + pfvalsbiy1 (), so that valibii(m)=—(p—1)%:¢/(pf —1)>1—p,
which is a contradiction.

Now suppose J=5, C#1, ¢=p— 2. In this case we have two solutions @ = p, b=0 and

—

a =1, ¥ =0 of the congruence and the corresponding isomorphisms
Ly Ext! (Mg, Mcpfé) — BExt'(Maz, M 5G)>
i Ext! (Mg, M=) — Ext' (M7, Mpg).

One can show that VJJr =V, = Ext! (Mg, M ) by straightforward computations.

If J =0, the congruence equation has a unique solution unless €= 1, in which case we have
two solutions @ =0, b =1 and ¢’ = 0, ¥/ = p. The proof that Vj = 0 (when ¢# 1) and V®+ =V, =0
(when &= 1) is similar to the case J # 0. O

5.3 Case f =2

TLro)ughout this subsection we assume that f =2,0< Sl <p—1,not bothp—1.If ¢= 0 or
p — 2, we further assume C' # 1; the cases ¢ = 0 and é= p — 2 when C' =1 are dealt with in §§6.1
and 6.2. Before determining which extensions are bounded, we describe the basis elements in the
form we will need. Recall that we defined a basis {[Bo], [B1]} for Ext'(Mgz, Mcz), where By and
By are cocycles of the following form:

uw(Bo)Z(Ho( ), 0),
pe(Bo) = (GY(x), G ()

((C?Tp DZ0g _ ) 1(()\?(){—1)H0(7r)),W(p_l)ch(()O)(Wp)),
o (B1) = (0, H1( )
pe(By) = (G (), 6 ()

— (P~ 1coG(1)( p),(Cw(p—l)glcb—1)_1(()\?15—1)1{1(”)))7
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where
7l=P + hyg ifepg<p—1,
Hy(m) = I h((]l) + 6(0)h/(0) + h((]o) ifecp=p—1,¢c1#p— 2,
al-r’ 4 h(()Q) (1 )ho(l) h(()l) + 6(O)hé(o) + h(()O) feo=p—1,¢,=p—2,
P 4+ by ifeg <p—1,
H(m) = I hgl) + 6(0)h/1(0) + hgo) ifer=p—1,c0#p—2,

P’ 4+ B P 4 O 4 gD 4 cOp O 4y O e 1 gg=p—2.

LEMMA 5.6. Suppose that i € {0, 1} is such that 0 < ¢; < p — 1. Then for some «; € F*, g;(7) €
1+ 7F[[n]], we have

Hp(Bo) = (7P + ho(), 0), } i
11e(Bo) = (cogo(m), mP= D aggo ()

pip(Br) = (0, 7177 4 hy (), } el
pe(By) = (CrP=Doqy gy (n?), a1 g1 ()

Proof. We assume i = 0; the case ¢ =1 is similar. As in Lemma 4.4, we have
Lo(m) := ()\?Og — 1)(7'"P 4 ho(7)) =502 mod 7F|[x]],

so that egpe(Bo) = (CrP~ V0% — 1)1 (Lo(n)) = apgo(r) for some go(r) € 1 + nF|[[x]] with ag =
(C —1)"'5pz if cg = ¢; = 0, and oy = —5p2 otherwise. (Recall that we assume for now that C' # 1
if Cho=1C1 = O.) d

If ¢; =p — 1, we introduce a cocycle B! cohomologous to B;, which we will work with.

LEMMA 5.7. Suppose that {i, j} = {0, 1} with ¢; = p — 1 and ¢; < p — 2. Then there is a cocycle
B! such that [B]] = [B;] and

valr (€ (B])) = valr(ejpp(Bf)) = 2 — 2p,
valreipg(B))) >0 and valz(ejue(B))=1—p.

Proof. Again assume i =0, the case ¢ = 1 being similar. By the very construction of Hy(7), we
have Lo(m) := ()\?Of — 1)Hy(m) € F[[x]], so that

90(m) = copg(Bo) = (Cr P> —1)"!(Lo(r)) € F{[[n]]
and pg(Bo) = (gh(m), nP~Ve1 gl (7P)). Now let By = By — B, where B is a coboundary such that

pip(B) = (CrP=D0by (27) — bo (), w =D by () — by ()
= (17" 4+ Y, —0 L (x> L RYY),
pe(B) = (0, (A€ = 1ba(m)),

where by(7m) =0, by(7) =C~ (7272 + hél)) with hél) = Zg;% V722045 Then
po(Bo) = (€OhG” 4+ g, €1 + b))

pe(BY) = (go(m), 7P~ D% go(w?) — (A\FHE = Dba(m)),
so that B( has the required form. O
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LEMMA 5.8. Suppose that {i, j} = {0, 1} with ¢; = p — 1 and ¢; = p — 2. Then there is a cocycle
B/ such that [B]] = [B;] and
valr(€itp(B;)) 22— 2p,  valz(ejpe(B;)) =3 — 3p,
valr(eipg(B))) =1—p and valg(ejue(B;)) =2 — 2p.

Proof. This is similar to Lemma 5.7 but choose the coboundary B such that

pp(B) = (Cr Dby () — by (), w @~V o () — by ()

= (@ e Dp) p n 4 b — TR, o DR + REYY),

pe(B) = (A€ — Dbo(m), (A € = 1)ba (7)),
by taking bo(7)=C" 1h(() ), by(m) =C~ (el )h( ) 4 h(l)) 7=D@=2)p) (7P, where h(z) =
Sp2 2 (2) 72720+5  (with 6(()2) =1), /(1) =y p2 2 / m3780+s  (with ¢ =1) and h(l) —
Zg f 6(1) 2-2p+s 0
PROPOSITION 5.9. If f =2, then

Vs = V& = Ext! (Mg, Mcz),

with + occurring when ¢ = p_——_2)

Proof. By straightforward calculations one can check that both ¢[By] and ¢[B;] are bounded in
each of the following cases that need to be considered:

i 0 Cp, C1 gp 2 1 ap, ai gp—l <H>S:(7Tp7177rp*1);

e co=p—1,0<c1<p—2,a0=1, 1<a;<p—1, (€)g = (aP~t, 72P~2);
e 0<cp<p—2, c1=p—1,1<a<p—1, a; =1, (¢)g = (7?P72, 7P71);
e p—2<cy,c1<p—1,p—1<ap,a1<p, (€)s = (72, x22);
e cy=ci=p—2,a=a1=p, (E’)S (=2 72P=2) (for V); and
e co=c1=p—2,a0=a1=1, (¢)g= (P71, 7P71) (for V). O
ProposiTIiON 5.10. If f =2, then
Vo=V, =0,

with + occurring when ¢ = 1.

Proof. We have the following cases to consider:

e 1<y, c1<p—1,1<by,by<p—1,(C)y=(1,1);

e cp=0,2<c1<p—1, bp=p, 1<b1<p—2, (C)g=(1,7'7P);

e 2<cu<p—1,¢1=0, 1<by<p—2, by =p, (¢)yg= (777, 1); and
e 0<cy,c1 <1, p—1<bg, by <p, (€)g=(xlP, 7l7P),

If E is a cocycle such that ([E] is bounded, then there is a coboundary B associated
to some (bo(m), b1(m)) € F((r))® such that «(E + B) has u, € F[[7]]° and pe € nF[[x]]%. As
k(A @) € (FX)S and (€)y = (r17P0 7z(1=P)e1) for some ¢; € {0, 1}, we get u,(E + B) € F[[x]]°
and p¢(E + B) € nF([7])°.

First consider the case 0<c¢y,c1<p—1 and E=DBg+ By for some [BeF*. As
valreopp(E) =1 —p and valyeip,(E) =1 —p, we have val,(Ct®P=1p (7P) — by(n)) =1 —p
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and val, (1®P=D1pg(7P) — by (7)) = 1 — p. If valbo(m) > 1 — p, then (p — 1)co + pvalybi(7) =1 —
p, which implies p|(co + 1), contradicting co <p — 1. If val bo(mr) <1—p, then (p—1)c; +
pvalzbo(m) < 1 — p, which implies that val:b;(7) = (p — 1)c1 + pvalzbo(m) < 1 — p, which in turn
implies (p — 1)cp + pvalzby(7) < 1 — p, so that val;by(7) = (p — 1)co + pvalbi(m) = (p — 1)%¢ +
p?val,bo(7), yielding a contradiction. The proof that ¢[B;] is not bounded is the same.

Next suppose c¢o=p—1 and 0<e¢; <p—2. First consider the case E = B{+ (B;.
As valzejpe(E)=1—p, we have valw()\?lﬁ —1)bi(mr)=1—p, so that valzb;(m) <2 —2p.
Then val,7®P=1b; (7P) = (p — 1)co + pvalybi(7) < (1 — p)(1 +p) < 2 — 2p = valzeou,(E), and
so valzbg(m) = val,mP~p, (7P) = (p — 1)cg + pvalyby (). Then again val,mP~De1py(7P) =
(p— 1)31 + p?valby (7)) <2— 2p=valreipu,(E), so that valbi(m)= Valﬂ—ﬂ(pil)clbo(ﬂ'p) =
(p — 1)1 + p?valyby (1), or val by (1) = —(p — 1)21 /(p* — 1) > 2 — 2p, a contradiction. The proof
that ¢[B1] is not bounded is the same as in the case ¢o <p — 1.

If co=p—1, ¢c1 =p— 2, the proof is similar to the preceding case, except that we start by
noting that valreoue(E) =1 —p if E = B| + #Bi.

The proof in the case that ¢; =p — 1 is the same as the case co =p — 1. O

ProposITION 5.11. If f =2, then

F[B] ifcg=p—1,
‘/{1}: F[alBO*aOBl] ij<CQ <p*1, 01:0,
F[Bo] 0<c<p—1,0<ca<p—1,
{/;{"1'} — F[OélBO — OcoBl],
Viay =0,

with + occurring when &= 0. (See Lemma 5.6 for the definition of the «;.)
Proof. Unless ¢'= 0, & gives rise to unique @ = (0,_@1), b= (bo, 0) with 1 < ay, by <p. If =0, we
have @ = (0,p),b=(1,0) (for V) or @=(0,1),b=(p,0) (for V;). We always have (¢){} =
(7P=1, 1) except when ¢ = 0, b = p, ap = 1, in which case we have @)y = (1, 7l=P),

(i) Assume ¢y =p — 1. It is straightforward to check that ¢[B; + $B] is bounded for some
0 € F* where B is a coboundary such that

(B) = (Cr0—D7 0=, _210) o pe(B) = (0, (AP€ ~ 1)(w'7).
Suppose ([B})] is bounded. There exists a coboundary B such that u,.(B}+ B) € F[[x]]°,
pet(Bh + B) € 7F[[x]]°, and so
pp(By) + (Cm P~ D0by () — bo (), 7~y () — b () € 7' PF|[x]] x 7P F[[n],
ne(BY) + (A" = Dbo (), (A€ — D)bi(m)) € PF[[x]] x wF[[n]]
for some bg(7), by(m) € F((7)).

If ¢ <p—2, we have Valﬂ()\?lﬁ —1)bi(m)=1—p as valreipue(Bj) =1—p, so that
val:bi(m) <2 — 2p. Then

val, (rP=H0p, (7P)) = (p — 1)co + pvalgby (1) < (1 —p)(1 +p) < valregpy(B)),
and so valzbg(m) = (p — 1)co + pval;bi (7). Then again
val 7P~y (7P) = (p — 1)¢1 4 pvalebo(n) = (p — 1)E1 + pvalyby (1)
<1 =p)(L+p) <(1-pas,
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so that valybi(m) = (p— 1)%1 + p*val by (m), or valbi(n)=—(p—1)X1/(p>?—1)>1—p, a
contradiction.

If ¢ =p— 2, start with Valﬂ()\?of — 1)bp(m) =1 — p and the same argument as above (for
the case ¢; < p — 2) goes through.

(ii) Assume 0 <o <p—1,¢; =0. Straightforward calculations show that p,tBo, LBy €
F([7]]® but petBo(r), pee By € wF|[[7]]°. If, however, we take a1 By — By, it has i, obviously in
F([n]]% and pe = re(A, @) (7P agai (go(m) — CrP=Veogy (7)), agar(go(7?) — g1(r))) € nF[[7]]5.

Now suppose ¢[B1] is bounded, and so we have, for some coboundary B, that p,¢(B1 + B) €
F([7]]® and pee(By + B) € nF[[x]]®, which implies
p(Br) + (CrlP= Dby (x) — bo(m), 7P~ Do (a?) — b (w)) € 7' PF[[r]] x 7P P ([x]],
pe(B1) + (A€ = Dbo(m), (A€ — 1bi()) € 7 PF[[x]] x 7F [[]
for some by(m), by(m) € F((7)).
We have Valﬂ()\?lﬁ —1)by(n) =0 and so valybi(m)<1—p, so that val,w®P=Deop, (7P)
(p — 1)co + pvalgby (7) < 1 — p. Then valybo(7) = (p — 1)cg + pvalyby (7) and val,w®@=Derp (7P)

(p — )31 + p?valby (7)) < (1 —p)ag, so that val.bi(m) =1 + p*val by (), or val.bi(m)
—(p—1)/(p*> — 1)1 > 1 — p, a contradiction.

(i) Assume 0<cy<p—1, 0<cp <p—1. It is straightforward to check that ¢[By] is
bounded:

pot(Bo) = (A, P~ D)%) (7P~ 1 1)(7! P + ho(m)) € F([n]),
pev(Bo) = re(A, @)(mP7, 1) (ang(n), PV aggo (7)) € 7F[[]]°
as c¢1 > 0.

Now suppose ¢[B1] is bounded. Then there exists a coboundary B such that p,t(B1 + B) €
F([7]]%, peu(B1 + B) € wF[[7]]°, and so

po(B1 + B) + (CalP D%, (77) — by (), w0~ h(7P) — bi () € w' PR [[a]] x 71 PIF([x]],
pe(Br+ B) + (\°¢ — Dbo(m), (A€ — Db (7)) € 7 PF|[x]] x «F|[x]].

If ¢y <p—1, then the argument is the same as in case (ii).
Ifc; =p—1, co <p—2,thenas valregue(B] + B) > 2 — p and valregue(B]) = 1 — p, we have
valreope(B) = Valﬁ()\?of — 1)bo(m) =1 — p, so that val by(m) <2 — 2p. Then

val, P~V (7P) = (p — 1)ey + pvalybo(r)
< (1 —p)(1+ p) < min(valreipu,B1, (1 — p)ar),
so that val by (7) = (p — 1)c1 + pvalzbo(m). So
val, P~ (77) = (p — 1) B9 + p*valabo () < (1 — p)(1 +p) < valreoue(BY),

which implies val by(7) = (p — 1)3g + p?valbo(n), or val bo(m) = —(p — 1)/ (p?> — 1) > 1 — p,
a contradiction.

If i =p—1, ¢co=p—2, then as valrejpue(B] + B) > 1 and valzeipe(B]) =1 — p, we have
valreipe(B) = Valﬁ()\?lf — 1)bi(m) =1 — p, so that val:b;(7m) <2 — 2p. Then

val, P~V (7P) = (p — 1)eg + pvalyby (7) < (1 — p)(1 + p) < valreou, By,
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so that val;bo(7) = (p — 1)co + pvalbi (7). So

val, P~ epy(7P) = (p — 1)21 + p*valby (1) < (1 — p)(1 + p) < valzeipu(BY),
which implies val;by(7) = (p — 1)2; + p*val;bi(7), or val b (7) = —(p — )X /(p* — 1) > 1 —p,
a contradiction.

(iv) Assume cg=c; =0, bp =1, a; = p. Straightforward calculations show that p,tBo(7),
piptB1 € F[[7]]° but peuBo(m), peeBy & nF[[7]]°. If, however, we take a3By — apBi, it has g,
obviously in F[[x]]® and

pe = (7" agon (go(m) — Cgi(nP)), apar (go(n?) — g1(m))) € wF([x]).

Now suppose ¢[B1] is bounded, and so we have, for some coboundary B, that p,t(B1 + B) €
F[[7]]° and pet(By + B) € nF[[x]]¥, which implies
p(Bo) + (Cbi(?) = bo(m), bo(x?) — ba(m)) € m' P[] > = ~PPF[[x]],
pe(Bo) + (€ = 1)bo(m), (€ = 1)by(m)) € 7 PF[[x]] x 7F[r]]
for some bo(7), bi(m) € F((m)). We have val,(§ — 1)bi(m) =0 and so valbi(7) <1 —p, so that
val by (7P) = pval b (7) <1 —p. Then valyby(m) = pvalybi(m) and val bo(7P) = p?val by (7) <
(1 —p)p < valregu,(B1), giving val.bi(m) =0 and a contradiction.

(v) Assume cop=c; =0, bp=p, a3 =1. Suppose ¢[By+ B1] is bounded for some (€ F.
There exists a coboundary B such that p,t(Bo + 3B1 + B) € F[x]]¥ and pet(Bo + By + B) €
7F[[7]]°. As ky(A, @)(c) € (F*)°, we have

11o(Bo + BB1 + B) = pip(Bo + BB1) + (Cby(7”) — bo(rr), bo(n”) — by (m)) € F([x])°,
pe(Bo + BB1 + B) = pe(Bo + SB1) + (€ — Dbo (), (€ — )by (m)) € nF[[x]}°
for some by(m), by () € F((7)).
Note that
valreopi,(Bo + 8B1) =1 — p <valrey iy (Bo + BB1),
valreopue(Bo + BB1) 20, valreipug(Bo+ 3B1) >0
Then valrequp(B) = val(Cbi(nP) —bo(m)) =1 —p, and we get either valzbp(m)=1—p<
valzby (7P) or valzby(7P) =val by(m) <1 —p. In either case, we have val by(7P) <1 —p, so

valbo(mP) = valby(7), giving a contradiction. The same argument proves that ¢[Bj] is not
bounded. O

Similarly one proves the following proposition.

ProrosITION 5.12. If f =2, then

F[Bo] ifq =p— 1,
V{O}: F[COQBQ—OJ()Bl] ifcg=0, 0<c1 <p-—1,
F|[B] O0<cp<p—1,0<e1<p—1,
‘/{O} = F[COélBo — Oé()Bl],
Vip =0,

with & occurring when = 0. (See Lemma 5.6 for the definition of the «;.)

In proving Propositions 5.11 and 5.12 we have shown the following, which exhibits instances
of coincidence of the V; for distinct J.

405

https://doi.org/10.1112/50010437X1000504X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1000504X

S. CHANG AND F. DIAMOND

COROLLARY 5.13. Suppose f =2 and recall (co,c1) # (p—1,p—1).
(i) If co=p — 1, then V{l} = V{O} =F[B].
(ii) If c; =p — 1, then V{l} = V{O} = F|[By].

)
(iii) If co = ¢; = 0, then VI, and V{Jg} are distinct and one-dimensional, and V{ 1= V{B}
)

{1}

(iv) In all other cases, Vi1y and Vigy are distinct and one-dimensional.

6. Exceptional cases

6.1 Cyclotomic character
_
Assume C'=1,¢=p — 2, so that
ko(C, €)= (rP~D@=2) = Dp=2))

cea=((Am) )

if v € I'. Recall that the B; for all < € S have already been constructed in §4.1 and we just need
to construct an additional basis element, which we will denote By, (for trés ramifié). Before we
do this for arbitrary f >1, let us first consider the situation where f=1 (ie., K =Q,) and
F =F, as a foundation for the general construction. (We will go back to the general case f > 1
in the paragraph preceding Lemma 6.4.)

LEMMA 6.1. Letn € I' be such that nI'y generates I'/T'y = F{ and let x(§) =1 + zp mod p? with
0<z<p—1.If s €Z is divisible by p* but not by p**! for some v € Z, then
)S+1(—

Y(U)H(WS) —rse (Y(n)s-i-l o 1)7[_ + 35 ;((77) - 1)ﬂ_s+pv + ﬂ_s+2pUFpHﬂ_puH,

X(E)E(m®) — 18 € 5pz(n* T~V 4oty 4 pet" =R (7"

where s =3, s;p’.

_X(n

Proof. This is similar to the proofs of Lemmas 4.2 and 4.4. O

LEMMA 6.2. There exists h'(7) € m'=2 + 72=2PF[[x]] such that
(X(m)n — (W' (x)) € F(x P — 1) + 7F[[x]].
(Recall that n is a topological generator of I'.)

Proof. By Lemma 6.1, there exist ex_op,...,€_1, €y € F (unique if we set e_, =e_; =0) such
that

(X(mn = D)(x' 2 + eg gy -+ eqm ' +e) €Fn P+ Fr ! + 7F[[]].
Set W (m) =712 4 eg_opm? P + -1 L+ €9, SO
(X(mn = 1)(W' (7)) € ar P + Br " + 7F|[x]]
for some «, § € F. Writing (}(£)§ — 1) = (302, 2x(m)int) (x(n)n — 1) we find that
(X(€)€ = 1)(W' (7)) € —(ar™P + fr~ 1) + F[x]].
On the other hand, a direct computation shows that

(X(&)¢ = V(W' (1)) € 2(n™P — 1) + F[]],

where z € F*, so that @« = 3 = —z and the lemma follows. O
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Let h/(m) be as in the lemma. Since ¢ — 1 is bijective on 7F[[r]], it follows that

(X(mn = 1)(I'(m)) € (¢ = 1)(gy())
for a unique g, € —z"tn7l + 7F|[[r]]. We now extend the definition to construct elements
gt (r) € mF|[[x]] for all vy € T. We let

I (1) =D X(0)'n' (g7,(m))
=0

for n € N. If 7/ €'y, then (X(7')y — 1)(h/ (7)) is in 7F[[x]] and can therefore be written as
(¢ —1)(g},(m)) for a unique g/, (7)€ 7F([x]]. If n™ €T, then p(p — 1)|n and the definitions
coincide. Moreover, an arbitrary v € I' can be written as «'n" for some v/ € I'y and n € N, and

g(m) == gy (m) + 9/ (gyn (7))
is independent of the choice of 4/ and n.

One can then check that p = (h'(7), (g5 (7)), er) satisfies conditions (f) and (1), giving an
extension

O—>Mcyc—>E'—>Mo—>0
in the category of étale (p,I')-modules over Eg, where M.y =Ege; is a rank one object
defined by ¢(e]) =€} and y(e}) = x(7)e}] if vy €T (and, of course, My =Egey by ¢(ep) = e
and y(eg) = ep). Using the isomorphism Mcyc >~ M,_9 = Exe; defined by ¢} = 72 Pe; we get an
extension

0— My, o—FE— My—0
defined by the cocycle pu= (m30"P)h(n), (71 7Pg,(n))yer) with h(m) =72~ (), g,(r)=
mgl, (7).

Now we go back to the context of arbitrary f > 1, and define pu,(By) = (r3(=P)h(r),. . .,

mU=Pn(7)) and py(By) = (117 Pgy(7),. .., 7' Pg () for all y€T. Tt is straightforward to
check that By, € H, so that [By] € Ext' (Mg, ijﬁ).

Remark 6.3. The class [Bt,] is not canonical. Choosing e_, = —e_; # 0 in the proof of Lemma 6.2
gives different extension classes [By,] differing by a multiple of [Bo| + [B1] + - - - + [By—_1].

LEMMA 6.4. The extensions [Byl, . .., [By_1], [Bu] € Ext! (Mj, Mpfﬁ) are linearly independent,
and therefore form a basis.

Proof. Tt suffices to show that [Bi,] is not contained in the span of the [B;]. Suppose that
Biy = 6oBo + - - - 4+ Bf—1By_1 for some f; € F. Then E := By — (6oBo + - -+ Bp-1Bf-1) is a
coboundary, so that

o (E) = (0 D02p, (20) — bo(m), ..., w0 D0y (27) — by ()
for some b;(m) € F((m)). As
pp(Byr) = (x*0Ph(r), ... w0 Ph(m)),
pe(Bur) = (7' Pge(m), ..., ' Pge(m)),
(

where h(7), ge(m) € F[[7]]*, we have valre;ju,(E) = val, (r®P~DP=2)p, 4 (7P) — b;(n)) = 3(1 — p)
for all i € S. For each i € S, letting s; := val;(b;(7)), we have s; <3(1 —p) or (p—1)(p—2) +
si+1p = 3(1 — p). The latter is impossible looking at divisibility by p, and so s; < 3(1 — p) for all
it € 5, which yields a contradiction after cycling. O
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The determination of which linear combinations of [By), [Bi], ..., [By-1] are bounded is
exactly as in the generic case. We now extend this to include [By,].

—_—
PROPOSITION 6.5. Suppose that C =1,¢=p—2 and A€ F*;
(i) if J=S, then
L[Btr] S Ethl)dd(MAﬁ, MAﬁ)’
so that Vg = Ext! (M, M-=);
(ii) Vg =@,;cq F[Bi], and if J # S, then Vj = @, ; F[Bij1].
Proof. (i) This is straightforward: as @ = and (¢)g = (x2®=1 ... 72=1) we have
pp(1Biy) = (Ar=Vp(m), @~V h(m), . 2@V h(m)) € P[]},

_ f_ _ _ f_ _ o _
pe(tBy) = AETW TDEmD L NERE D0 et (), L n L ge () € aF[[)S.

(ii) Let E := BoBo + - - - + Bf—1Bf_1 + By, for some [y, . .., By—1 € F. We must show that, in all
other cases where ¢ : Ext! (Mg, Mm) — BExt!(Myg, M ,;) was defined, we have that «[E] is not
bounded.

So suppose that ([E] is bounded. Then there exists a coboundary B defined by
(bo(7), ..., by_1(m)) such that p,(«(E+ B)) € F[[r]]° and pe(L(E + B)) € nF[[r]]®. We have
e;(C)y =1 or 7’71 and valre;ue(tE) < 0. It follows that valre;ugs(B) = valre;us(E)=1—p, so
by Lemma 4.4, we must have s; := val;(b;(7)) < 2(1 — p). Then we have val, (7P~ p;(7P)) =
p—1(p—-2)+sp<(1—p)(p+2), so that s;_1 =(p—1)(p —2) + s;p. Cycling this through
indices leads to a contradiction. O

6.2 Trivial character

In this subsection, we assume that C' =1, =0, so that ko(C,C)=ry(C,C)=(1,...,1) €
F((m))".
Using Lemma 4.2 we can find unique €z_p, ..., e_1 € F such that

(=17 + e yr® P + -+ c1n) € Flal]

Set H(m) =n'"P + e3_pm* P+ +e_1m ' By Lemma 4.4, we get

(€ = 1)(H(m)) € F* + xF[[x],
which implies, via Proposition 4.6, that

(n —1)(H(m)) € v + 7F[x]]

for some v € F — {0}. Likewise we have

(n = D(H (7)) € v + 7F[[x]],
so that

(n = V)(=H(x") + H(r)) € 7F[x]].

Note that, if v/ € 'y, then (v — 1)(H (7)) € nF[[x]], and it follows that (' — 1)(—H(#?) 4+
H(7)) € 7F|[[r]]. Now for each v € T', writing v = 0"+ where ' € I's, we get by Lemma 4.5 that

(v = D(=H(x") + H(x)) € 7F[7]].
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As the map g(m) — g(wpf) — g(m) defines a bijection 7F[[r]] — 7F[[n]], for each v € I" there exists
a unique g-(7) € 7F[[x]] such that

gy (") = gy (m) = (v — D)(~H(x") + H(r))

or equivalently

-1

(¢ = 1)(gy(n), gy (7). oL go(7P)) = (y — 1)(=H (a) + H(7),0,...,0).

If we set
MQD(BO) = (_H(ﬂ.p) + H(ﬂ')v 0,..., 0)7

1

#r(Bo) = (9+(m), 47" ), - g4 (7)),
1(Bo) = (1t (Bo), (b (Bo))ver) satisfies the condition (f) by the considerations above. We
note that p,(Bg) are uniquely determined so that they satisfy (). As both ..,/ (Bp) and
pthr =Yty (Bo)) + 1y (Bo) satisty () for v/, they must coincide, so that (}) is satisfied.

For each 1 < i< f — 1, we construct [B;] € Extl(Mﬁ, Ms) in a similar way, i.e., by setting
peo(Bi) =(0,...,0,—H(x?) + H(m),0,...,0),

?

iy (Bi) = (g (7)., 95 (1), 93 (1), 9, (77 ), gy (7)),
Remark 6.6. For each 0 <i < f — 1, consider the coboundary B} by
pe(B)=(0,...,0,H(x"), —H(7),0,...,0),
iy (BY) = (0, 0,0, (v ~ )(H(x)),0, ..., 0),

where H(m) is the ith component and —H(m) is the (i+ 1)th component of pu,(B)) and
(v — 1)(H(m)) is the (¢ + 1)th component of y1y(BY). Define B} = B; + By for each 0 <7 < f — 1.
Then F[B;] = F[B]] in Ext!(Mg, Mg) for all 0 <i < f — 1, where we have

po(B;) =(0,...,0,H(w), —H(7),0,...,0),
(B = (g3(n”). - 9 (1), g5 (7). gy (a7 ) - (y = DH (), gy (), g5 (m?
Next, we define By, (for non-ramifié) by setting

fip(Bur) = (1,0, ..., 0),

oy (Bur) = (0,0, ...,0)

for all yeT. It is straightforward to check that this defines an extension [By,]€
Extl(Mﬁ, Mg). We can ‘move’ the 1 in p, to any component, i.e., taking any of (1,0,...,0),
(0,1,0,...,0),...,(0,...,0,1) to be p, defines the same cocycle class (up to coboundaries).

Set Beye = sz;ol B]. Then we have
:ulp(BCyC) = (07 cety 0)7
,U'y(BCyC) = (9/7(7")7 e 79/7(77))

for some g € F[[r]]. Since (¢ — 1)g.(7) = 0, we must have in fact g’ (7) = ¢/, € F. In particular,
gy = v. Moreover, v+ g defines a homomorphism I' — F. Thus if v = n"" modulo I'y, then

i+1

))-

py(Beye) = vy (1, ..., 1).
LEMMA 6.7. The extensions [Bu], [Bol, ..., [Bf_1] € Ext' (Mg, My) are linearly independent,
and therefore form a basis.
409

https://doi.org/10.1112/50010437X1000504X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1000504X

S. CHANG AND F. DIAMOND

Proof. Suppose that E = 3By, + BoBo+ -+ [Bf_1Bs_1 is a coboundary. By adding some
coboundary B we have
eoig(E + B) = B+ Bo(—H (xP) + H(r)) + B (—H (") + H(x")) +
+ Bp-2(—H (@) + H@ ) + fpa(-H (@) + Hx' )
=B+ BoH(m) + (61 — Bo)H(7") +
+ (Br-1 = Bro)H(x"" ) = B 1 H(x"")
= (®—1) <Z bjﬂ'j>
j=zs
for some .- bjml € F((r)). Equating constant terms gives 8=0. If 8y_1 #0, then s=
1—p, BoH(m)= —(bl_pwl_p +-odbgr ) and fp=pr=---= Bfr—1. It follows that E =

Br-1 Z{;ol B; is cohomologous to (37_jBcye, and therefore that By is a coboundary. Thus
there exists (bo(7), ..., bs_1(m)) € F((r))* such that

(o = D(bo(m), ..., by-1(m)) = (0, ..., 0),
(&—=1)(bo(m), ..., bp—1(m))=—v(1,...,1),
which is impossible, as the former implies that bo(m)=---=bs_1(m) €F, so that we get

(6 )(bO( )7~--abf—1( ))_0 ThUS, /Bf—l—o-
If 0<i< f—2is the largest such that §; # 0, then val,(eouy(E + B)) = p'™1(1 — p), which
leads to an easy contradiction. Thus, G; =0 for all 0 <7 < f — 2. a

We now assume f =2 and compute the spaces of bounded extensions. We then have the
following cases to consider:

e J=S, ay=a1=p-—1;
o J={1},bp=1, a1 =p (for V;);
o J={1},by=p, ay =1 (for V)
o J={0}, ap=p, b1 =1 (for V;);
o J={0},a0=1,b1=p ( )
e J=0,bp=b=p—1.

PROPOSITION 6.8. If f=2,C=1, =0 and A € F* then:
(i) Ve = Bxt!(My, My);

J )

(i) Vit = ([Bul, [B) for i =0, 1;
(iii) {}—([ ¢]) for i =0, 1;
(iv) Vp={0}.

Proof. (i) We have (¢)g = (7P~1, 7P~1) and it is straightforward to check that ¢[By], ¢[B] and
t[Byy] are bounded.

(ii) Suppose J = {1}. Then by =1, a1 = p and (¢) g1y = (7', 1) and it is straightforward to
check that «[B1] and ¢[Byp,| are bounded. Therefore, it suffices to prove that ¢[Bcy.] is not bounded.
So suppose that B is a coboundary such that t(Beyc + B) has u, € F[[7]]® and pe € 7F[[x]]°.
Then

fp(Beye + B) = pip(B) = (b1 (?) = bo(7), bo(7") — ba ()
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for some by(m), bi(m) € F((7)), and (A7Tp_1 P~ u,(B) € F([n]]%. Letting vy = val, (bo(r))
and vy = val,(b1(7)), we see that vg > 1 — p and v; > 0. Therefore

pe(Beye + B) = (—v + (£ = )bo(m), —v 4 (§ — 1)bi (7)),
and since —v + (£ — 1)bi(7) has constant term —v, we arrive at a contradiction.

The case J = {0} is the same.

(iii) Suppose again that J = {1}. Now we have by = p, a1 =1 and (¢) {13 = (1, 7' ) and it is
clear that ¢[By,] is bounded. Therefore, it suffices to prove that, if E = 5yBy + 1 B1 with £y, 51
such that ¢[E] is bounded, then 5y = 81 = 0. The argument in the proof of Lemma 6.7 shows that
Bo = B1, so we are reduced to proving that ¢[Bcy| is not bounded. The proof of this is similar to
the proof of part (ii).

The case J = {0} is the same.

(iv) Now we have (¢)g = (7177, 717P), and if .[E] is bounded then u,(E + B) € 7?~'F[[x]]¥
for some coboundary B. The proof of Lemma 6.7 then shows that F is cohomologous to a
multiple of By, and the boundedness of ¢[Bcy| yields a contradiction as above. O

6.3 Case p=2

We assume p = 2 throughout this section. Now I' is not pro-cyclic; we write I' = A x I'y, where
A = (n) with x(n) = —1, so A has order 2, and we choose a topological generator & of T's.

LEMMA 6.9. We have \;, =1 + 7 mod waF[[w]]. If v € T'y, then Ay = 1 mod ©*F|[[x]].

Proof. The first assertion follows from the fact that
N = () fr= (1)
For the second assertion, note that, if vy € T'y, then x(7) = 1 mod 4, so y(7) /7 = 1 mod 73F|[r]]. O

Let C € F* and ¢=(co,...,cp—1) € {0, 1}° with some ¢; =0 be given. First assume that
C #1if =0, so that C7>i°® — 1: F|[[r]] — F[[x]] defines a valuation-preserving bijection for
all 7 € S. As in the case p > 2, we will define for each ¢ € S an element H;(7) € F((7)) such that

(A7 = 1)H;() € F|[x]]

for all vy € T. If ¢; = 0, we let H;(m) = 7~1; otherwise we use the following lemma.

LEMMA 6.10. Suppose that ¢; =1, and r €0, ..., f —1 is such that ¢;11 =---=¢j+» =0 and
Citr4+1 =1. Let
H;(m) = g2 + glter—2r+?
(2 - .
Then (A%igfy — 1)H;(m) € F[[x]] for all y € T.
Proof. Note that we can assume f > 2. We have
( ) 1_2r+2
. _or+2 . '}/ T _or+2 . f_ _or+2 _or+2
)\%er 2 :>\§1< - > 12 :)\§l+(2 D(1-27+2) 122

Note that ¥; =1 if r=f —1 and X; =1+ 2" mod 272 otherwise. In either case we have
¥ + (27 —1)(1 — 27+2) = 271 mod 272, Tt follows that

Wiy - DETFH) =2 —1)r mod F[[x]).
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Similarly we find that

Ay = DET) = (A - D mod F[x).
Lemma 6.9 gives )\7273 =1+ 72 mod 72 for s > 0, and it follows that
()x%ﬂrl - 1)7?1_?+2 = ()\%r - 1)7T1+2T_2T+2 =22 od F[[x]].

Therefore the lemma holds for v = n. We also get that )\?YS =1 mod 73*%" for v € T'y, from which
it follows that (A?f“ —1)a=2"* and ()\3 — )72 2" are in F[[r]]. The lemma therefore
holds for v € I's as well, and we deduce from Lemma 4.5 that it holds for all vy € T". O

By the bijectivity of Cr>0® — 1, for each v € T' we have a unique G;(7) = G; () € F[[7]]
such that (C7>0® — 1)(Gy(n)) = ()\%’57 —1)(H;(7)). Then letting
,Ufgo(Bz) = (0, ceey 0, Hz‘(ﬂ'), O, ey 0),
:u"Y(B’L) = (GO(W)7 CIE) Gi(ﬂ—)v I Gf*l(ﬂ-))a
where
Go(m) = Croot2at=+27 e Gy (r2)

Gi(m) = mort 2ot 2 e gy (2,

3

Gi—1(m) = Trci—lGi(ﬂj)’
Giy1(m) = chi+1+2cz‘+2"'+2f‘26¢_1Gi(wzf—l)7
Gf,l(ﬂ’) = Cﬂ'cf71+200+'"+2ici,1Gi(ﬂ_QH—l)7

gives rise to an extension [B;] € Extl(Ma, M¢z). By almost identical arguments to the case p > 2,

one finds that [Bo], ..., [By_1] are linearly independent, so that they form a basis.
Now suppose that C'=1 and &=0. We can define, similarly to the p>2 case,
[Bol, ..., [Bf—2], [Bf—1] such that
pio(Bo) = (72 +7710,...,0),
po(B1) = (0,7 2+ 7710,...,0),

pio(Bp—1) = (0,...,0,7 2477 1),

As before, each B; is cohomologous to B; with
/‘L@(B’L) = (07 ce 07 71'_1, 77_17 Oa ce O)a

the non-zero entries being in the i, 7+ 1 coordinates (unless f =1, in which case p,(Bg) =0).
We again set Beye = Zg’;ol B!, and define a cocycle By, by setting

po(Bnr) = (1,0, ...,0),
N'y(Bnr) = (Oa 0,..., O)
for all v €T
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The difference now is that, if p =2, then dimp Extl(Ma, Mz) = f + 2, so we need one more
basis element. We define By, by
Ho(Bar) = (0,0, ..., 0),
piy(Bur) =1y (1,1, ..., 1),
where n, =0 if v € I'3 UnI's, and ny = 1 otherwise (so v +— n, defines a homomorphism I' — F).

One can check as in the case p > 2 that the elements [By,], [Bol, [Bi], . . ., [Bf—1], [By| are linearly
independent, hence form a basis for Extl(Mﬁ, Mg).

Finally we assume f =2 and compute the spaces of bounded extensions. There are three
possibilities to consider:

(i) €¢=(0,1) or (1,0);
(ii) ¢=(0,0) and C # 1;
(iii) ¢=(0,0) and C' =1.
We omit the proofs of the following which are essentially the same as for p > 2.
PRrROPOSITION 6.11. If &= (0, 1) or (1,0), then:
o Vg= Extl(Mﬁ, Mez);
if ¢=(0,1), then Vioy = Vi1y = F[By;
if ¢=(1,0), then Vigy = V13 = F[B1];
o Vp=0.
PROPOSITION 6.12. If ¢=(0,0) and C € F* with C # 1, then:
o Vi =Vi =Ext! (Mg, Mg);
Vi, =F[Bo + Bi;

!
° VY{J(S}:F[CB()—I-BH,

- Y- Ut U —
V=V =% =Y =0

PROPOSITION 6.13. If &= (0,0) and C =1, then:
o Vi =Vy =Ext! (Mg, Mj);
V{j} =F[Bn] ® F[B;] fori=0, 1;

o V{;}:F[Bnr] fori=0,1;
+ _ 1y —
o Vyh =V, =0.

Remark 6.14. With a view towards relating bounded extensions to crystalline ones, we would
have liked Vg = F[By;] ® F[Bo] @ F[By] in the trivial case. This could have been achieved with
a more restrictive definition of boundedness, requiring for example that 11, € 72F|[[x]]° for v € 5
if p = 2. However, we opted instead for the definition we found most uniform and easiest to work
with.

7. Crystalline = bounded

The paper [BDJ10] formulates conjectures concerning weights of mod p Hilbert modular forms in
terms of the associated local Galois representations G g — GLa(F). When the local representation
is reducible, i.e., of the form (% ;2), the set of weights is determined by the associated class
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in HY(Gk, F(x1x5 1)), or more precisely whether the class lies in certain distinguished subspaces.
These subspaces are defined in terms of reductions of crystalline extensions of crystalline
characters. Our aim is to relate these to the spaces of bounded extensions we computed in the
preceding sections. The idea is to show that Wach modules over A?{ p associated to crystalline
extensions have bounded reductions. This is easily seen to be true when the Wach module itself
is the extension of two Wach modules; the problem is that this is not always the case. Recall
that Theorem 2.17 establishes an equivalence of categories between crystalline representations
and Wach modules over B;. We note however that N does not define an exact functor from
G i-stable lattices to A}—modules.

Example 7.1. Let K = Qpand V = Q,(1 — p) ® Qp. The corresponding Wach module is N(V') =
Bapel @ Bapeg with:

o p(e1) =q" 'er and y(e1) = (y(m)/x(7)m)P~ ey for y €T}

e ¢ and I' acting trivially on es.
Let fi = p~!(e1 — m™"~les) and consider the Aap—lattice N = Aap f1® Aapeg in N(V). Then it is
straightforward to check that NV is a Wach module over Aap, hence corresponds to a G'q,-stable
lattice T in V. Such a lattice necessarily fits into an exact sequence

0—-2Z,1-p)—-T—Z,—0

of Z,-representations of Gq,, but there is no surjective morphism o : N — Aap. Indeed, the
image would have to be generated over Aap by elements «(f1) and «a(eq2) satisfying pa(fi1) =
—mP~La(es), and hence could not be free over Aap. This example is somewhat special since V'
is split and 7" can also be written as an extension

0—Z,—-T—7Z,1-p)—0,

which does correspond to an extension of Wach modules. However, it illustrates the
problem, which we shall see also occurs for lattices in non-split extensions of Q,-representations.

We will prove under certain hypotheses that the relevant extensions of Z,-representations do
in fact correspond to extensions of Wach modules. In particular, we will show this holds in the
generic case, and in all but a few special cases when f =2. As a result, we will be able to give
a complete description of the distinguished subspaces in [BDJ10] in terms of (¢, I')-modules in
the generic case and the case f = 2.

7.1 The extension lemma

We first establish a general criterion for a Wach module over A;r( p to arise from an extension of
two Wach modules. We consider extensions of crystalline representations of arbitrary dimension
since it is no more difficult than the case of one-dimensional representations.

Suppose that we have an exact sequence
0—-V1i—=V-=V—=0

of crystalline Q,-representations of G with Hodge Tate weights in [0, b] for some b> 0. We
shall identify V; with a subrepresentation of V. By Theorem 2.17, we have an exact sequence of
corresponding Wach modules over B}Q:

00— M — M — My, — 0,
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where M =N(V), M; =N((V1) =N(V)ND(V;) and M, is the image of N(V') in D(V3). Now
suppose that T is a G g-stable lattice in V. Letting Ty = T'N Vj and Ty = T'/T}, we have an exact
sequence

0—-T1—T—15—0
of Z,-representations of Gk. Letting N = N(T') = M N D(T') be the Wach module in M = N(V)
corresponding to T, we see that Ny := N N M; = N(77) since
NNM =NT)nD(V1)=D(T)NnN{V)nD(V1) =D(T)NN(V1) =D(T1) nN(V1).
The quotient Ny := N/Nj is a finitely generated torsion-free A;g—module with an action of ¢ and
I' such that ¢’ No C ¢*(Ns) and T' acts trivially on Ny/7No. (Note that N is torsion-free since
N/Ny <= Ms, but Ny is not necessarily free, as we will see below.) Furthermore N(7T') — N(7T3)
induces an injective homomorphism Ny — N(7%), which becomes an isomorphism on tensoring
with B;r(.
Letting Ej. = AL /pA}, N = N/pN and N; = N;/pN;, we know also that
N[l/ﬂ'] =Eg ®E} N and Nl[l/ﬂ] =Eg ®E;§ N;
for i=1,2 are the (¢,I')-modules over Eg corresponding to the reductions modp of the

corresponding G g-stable lattices. Moreover N1 and N are free over E} and the homomorphism
Ny — N is injective; we identify N1 with a submodule of N.

LEMMA 7.2. The following are equivalent:

(i) the homomorphism N(T') — N(T3) is surjective;

(ii) No=N(T)/N(T) is free over A}.; and
(iii) Wl =NnN D(T1/pT1).
Proof. If N(T') — N(T5) is surjective, then Ny = N(T?) is free over A}. Conversely, if Ns is free,
then N(T") maps onto a Wach module over A} in N(V2), which by Theorem 2.17 is of the form
N(T3) for some Gg-stable lattice T4 in Va; moreover N(73) C N(7T%) implies that T4 C T». On

the other hand, since N(T') maps to N(73), D(T) maps to D(T%), hence T" maps to T3, and
therefore Ty = Ty,.

Since B;r( ® AL Ny 2 N(V3) is free of rank dy := dimq, V2 over B;g, it follows from Nakayama’s

lemma that N is free over AJIQ if and only if No/pNo = N /N1 is free of rank do over E;r( Since
N and N; are free over E}r{ and the difference of their ranks is do, this in turn is equivalent to
N /N being torsion-free over E}., which in turn is equivalent to N1 = N N N[1/x]. O

Example 7.3. Returning to Example 7.1, note that, since e; — m°~ley € pN, we have P~ ley =
—€1EN, so €y =—7l"Pe; € N’l, where N’l = NN Ny[l/7]. Thus we find in this case that
N1 =Fy[[r]]e1, but N, = 71=PF,[[r]]e1, so the criterion of the lemma is not satisfied.
We remark that everything above holds with coefficients; in particular, if
0—-Ty—T—-T5—0
is an exact sequence of G i-stable Op-lattices in crystalline representations, then the sequence
0—N(T1) > N(T) - N(Tz) — 0
of A}“{’ p-modules is exact if and only if
N(T1)/wrN(T1) = (N(T)/wrpN(T)) N D(T1/wrTh).
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7.2 Extensions of rank one modules

We now specialize to the case where V; and V5 are one-dimensional over F', with labeled Hodge—
Tate weights (by_1, bo,...,bs—2) and (af_1,ao,...,ar—2) where each a;, b; > 0. Suppose that
we have an exact sequence

of crystalline F-representations of Gg, and T is a Gi-stable Op-lattice in V. We thus have
exact sequences

0—T,—-T—T5,—0 and 0—>T1—>T—>TQ—>O,

where each T; is a Gg-stable Op-lattices in V; and -~ denotes reduction modulo wp. We
let N=N(T) be the Wach module over A} . corresponding to T, and N its reduction

modulo wp. Thus N is a free rank two E;r( p-module with an action of ¢ and I' such that I"
acts trivially modulo N /7 N. Furthermore Ef ®EJ&,F N =D(T) as (¢, T')-modules over Ef f.
Letting W’l =D(T;) NN and N’Q :N/Nll, we see that each W; is an E}F-lattice in D(T;),
stable under ¢ and I" with I acting trivially modulo 7.

From the classification of rank one (¢, I')-modules over Ex , we know that D(T1) & Mgz =
Ek re for some C € F* and ce Z5. Under this isomorphism, W’l corresponds to a submodule of
the form (7", 7™, ..., WTf—l)E}r(’Fe. Since I' acts trivially on E}Q’Fe/TrE}Fe and on W’l/ﬂﬁ;,
we see that (p — 1)|r; for i =0,..., f — 1. Moreover,

(W) = (w2 D)

for some by, . . ., b’f_l, all non-negative since W’l is stable under . Similarly we have
p"(Ny) = (rP~ D0 7P~V )N

for some ag, . . ., a’f_l > 0.

For the following proposition, recall that ¥;(¢) = sz:_ol ci+jp', where ¢y, is defined for k € Z
by setting ¢ = ¢ if k=&’ mod f. We also define a partial ordering on Z° by ¢ < & if ¢; < ¢} for
all 4.

PropPOSITION 7.4. With the above notation, we have:

(i) min(a;, b;) < af <max(a;, b;), min(a;, b;) < b, <max(a;, b;) and a, + b, =a; +b; for i=

0,....f—1;

(ii) if @< b or b<a, then {@, b} = {a, V'};

(iii) ¥,;(@)=>%,(@), S;0)<20), ¥;(@)=%,;@) mod (pf —1) and X;(¥)=%;(b) mod
(pf —1) for j=0,...,f—1; and

(iv) @=d’ if and only if b="¥if and only if N(T) — N(T3») is surjective.

Proof. (i) We first prove that a} + b, =a; + b; fori =0, ..., f — 1. The A}'(’F—module /\i}+< FN(T)

inherits actions of ¢ and I', making it a Wach module in /\]231+<FN(V) >~ N(A%V), hence it

corresponds to an Op-lattice in AZV. The same is true of N(7}) ® AL, N(T3); since any two

such lattices are scalar multiples of each other, it follows that the correéponding Wach modules
over A;g p are isomorphic, and hence that

T AN~ N~
Ny ®gy , N2 = A‘QE},FN = (N(T1)/@rN(T1)) @y (N(T2)/wrN(12))
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as E; p-modules. Moreover, the isomorphisms are compatible with the action of ¢, so a] + b} =
a; + sz for all 3.

For the inequalities, suppose first that min(a;, b;) =0 for each 4. Since a; + b; = al, + b}, we
know that a; + b, < max(a;, b;) for each 7, and the result follows. The general case follows by
twisting 7" by a character with the correct Hodge structure and N(7') by the corresponding
Wach module.

(11) By twisting we can again reduce to the case where mln(az, bi) = 0 for each . The condition

<borb<ad becomes a or b= 0, and we must show that @ or b’ = 0. The result then follows
from the equality @+ b=a’ + b’ proved in (i).

If @ #0 and ¥ #0, then o/ (N,) C 7N, for i =1, 2, so that ©2/(N) C #N. This means that
¢ is topologically nilpotent on N in the sense that ¢(N) C (7, wp)N for some n > 0.

On the other hand, the F-representation V of G is ordinary in the sense that there is an
exact sequence

0—-Vo—=V-=V/Vh—0,
where V[ is unramified, V/V} is positive crystalline and each is one-dimensional over F. (If
b =0, then take Vj = Vi; if b# 0 and @ = 0, then the sequence 0 — V; — V — V5 — 0 splits and
we can take Vj to be the image of V5.) Since Derys(Vo) C Derys(V) =2 N(V)/7N(V) and N/7N
is a @-stable lattice in N(V)/7N(V), we see that there is an element ey € N/7N such that
eo € wp(N/mN) and ¢(eg) =uep for some u € (Op @ Ok )*. Choosing a lift éy € N of ey, we

have that ¢(€p) € uép + (7, wr)N, contradicting that ¢ is topologically nilpotent on N.
(iii) Since N1 =N(T1) /@ pN(T}) is contained in N, we can write N = (xf0, 1, ... wtr-1)N}

for some integers g, t1,...,t;—1 = 0. We therefore have

¢*(Ny) = (xP!r, 7Pl2 . Pt Wpto)d)*(ﬁ/l)

/ / / / —_
= (7rb0+pt1, phtptz be*2+ptf‘1, 7rbf*1+pt°)N1.

On the other hand, we also have

o*(Ny) = (wb0, 7t ..., 7% =1)(Ny)
— (Wbo-&-to, 7Tb1+t17 e 7rbf71+tf71)ﬁ'l.

It follows that bj +1t;= b; + ptjt1 and thus Ej(g) + Elf:_ol ti_|_jpi = Ej(g/) + zlf:_ol ti+j+1pi+1,
and therefore that ¥; (b) = ti(pf — 1)+ % (V). The assertions concerning Ej(l_)” ) follow, and those
concerning ¥;(@’) then follow using (i).

(iv) We see from the proof of (iii) that the hypotheses of Lemma 7.2 are satisfied if and only if
Ny = N’l if and only if £ = 0. On the other hand, b=10if and onlyift; =pt;y fori=0,..., f—1,
which i_’mpli_’es that t; = pft; for i=0,..., f — 1, hence is equivalent to = 0. That @ = @ if and
only if b =1 follows from (i). ]

7.3 Generic case

In this subsection, we specialize to the generic case in the sense of §5.2, namely 0 < ¢; <p—1
for all 7. Recall that if J C S, then there are integers a; and b; for i € S such that:

° l\aigpifieJ and a; =0if i & J,;
gbzéplfng and b; =01if i € J; and
° Zz’eS D _Zz’es a;p’ :Zies ¢;p* mod pf — 1.
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Moreover, the a; and b; are uniquely determined by ¢ and J except in the case where we can
take either a;=p forie Jand b;=1fori g J,ora;=1forie J and b; =p for i & J.

LEMMA 7.5. Suppose that 0 < ¢; <p— 1 for all i. Then a; < p and b; < p for all i unless =1,
J=0and b=p, or c¢=p—2, J=S and d = p. In particular, @ and b are uniquely determined
by ¢ and J except in the above two cases where we can also have b or @ =1 instead of p.

-,

Proof. Suppose that b; = p and consider ¥;(¢). We have ¥;(¢) = %;(b) — ¥;(@) mod (p/ — 1) and
Lp+-+p/ <@ <@ D) - +p+---+p7).
If %;(b) — %i(@) €[0,pf — 1), then ¥;(¢)=%(b) — Zi(@)=0 modp, so ¢; =0, giving a
contradiction. If ¥;(b) — X;(@) € [1 — p/, 0), then 3;(¢) = pf — 1 + Z;(b) — Zi(&') =p—1 mod p,
so ¢; =p — 1, giving a contradiction. If () — (@) = p/ — 1, then 0< Zi(b) — E i(@) — (pf -
)<14---+p/L giving (@) =1+---4+p/!, so that é=1, J=0 and b=p. If ;(b) —
Yi@)<1— p/, then similar considerations give a contradiction. The proof in the case a; = p is
—_— -
similar (in fact, one can exchange & with p — 1 — & J with its complement and @ with b), giving

—

c=p—2,J=5and d=p. O

Suppose that Vi = F(x1) and Vo = F(x2), where x1 and y2 are crystalline characters of Gk
with labeled Hodge-Tate weights (bs_1, by, ..., bs—2) and (af_1, ao, . . . , af_2) respectively, V is
an extension

of representations of G over F', and T is a Gg-stable Op-lattice in V. Letting Ty =T N V1 and
T, =T/T1, we have

0—-Ty—T—T5—0.
LEMMA 7.6. Suppose that ¢ € Z° is generic and @, be ZS are as above. If V is crystalline, then
0— N(Th) - N(T') - N(T3) — 0
is exact.

Proof. Since V is crystalline, there is a Wach module N = N(T') over A} p corresponding to T'.
Since €is generic, we have max(a;, b;) < p — 1 for all ¢, unless {@, E} = {0, p}. If max(a;, b)) <p—1
for all 4, then by Proposition 7.4(i) and (iii), we have:

e 0<a; <max(a;, bi) <p—1 for all 7; and
Zz 0 a;pl = Z 0 a;p’ mod (p/ — 1).

These conditions imply that @=a (unless {@ @} ={0,p— 1} which would give {@,b}=
{0, pTi} and hence that &= 0 is not generic). If {@, b} = {0, 7}, then we instead use parts (ii)
and (iii) of Proposition 7.4 to conclude that @ = @’. Thus in either case, we conclude from part (iv)
of the proposition that N(7") — N(7%) is surjective, and therefore the sequence of Wach modules
is exact. O

Now consider a character 1 : Gg — F*. By the classification of rank one (¢, I')-modules over
Ex r, there is a unique pair C € F*, ce Z5 with 0 < ¢; <p— 1 and some ¢; < p — 1, such that
D(F(¢)) 2 Mce. Suppose that JC S and @,be Z° satisfying the usual conditions, and

that A, B € F* with BA~! = C. Recall then that we have defined a subspace Ext{ ;4(M 4z, Mgp)
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of Ext! (M sz, M pg) and an isomorphism

L: Eth(Ma, Mez) — Eth(MAg, MBE)’
well-defined up to an element of F*. We then define V; as the preimage of Ext%)dd (Mg, Mgp).
This space is independent of the choices of A and B such that BA~! = C, but for certain .J
there are two choices for the pair @, b; we denote by Vf the space obtained by taking a; = p for

all i€ J and b; =1 for all ¢ € J, and by V; the one obtained by taking a; =1 for all 7 € J and
bj=pforalligJ.

We now also recall the definition of the subspaces of H'(G, F(v)) used in [BDJ10], but
we modify the notation from there to be more consistent with this paper. (For the translation
between the notations, see the remark below.) For v, J, d, b as above, we consider a crystalline
lift 1/1] : G — F* of 1 with labeled Hodge-Tate weights (h¢_1, ho, . .., hy_2), where h; = —a; if
ieJand h; =b; if i ¢ J. Such a character ¢ is uniquely determined up to an unramified twist,
which we specify by requiring that 1 7(g) be the Teichmdiller lift of ¥(g) for g € Gk corresponding
via local class field theory to the uniformizer p € K*. When (@, l;) is not uniquely determined
by J, we adopt the notation 1;3: as usual. Recall that H}(GK, F(¢;)) denotes the space of
cohomology classes corresponding to crystalline extensions

0— F(ip;) =V —F—0.

We then define the space L, as the image in H' (G, F(1)) of the preimage in H' (G, Op (1))
of H}(GK, F(1y)). We set Ly = L', except in the following two cases.

— If 4 is cyclotomic, J = S and @ = p, we let Ly = H'(Gf, F(v)).

— If ¢ is trivial and J # S, we let L be the span of L', and the unramified class.
As usual we disambiguate usmg the notation Li More p1re,01sely7 we define 1/1 7 as above, taking
all a; =p and b; =1 for 1/JJ, and all a; =1 and bj =p for 1/1J We then define (L’) as the
image in HI(GK, (1)) of the preimage in Hl(GK,(’)F(wj)) of HI(GK, F(¢5)%). We then
make the same modifications as above in the same exceptional cases to obtain the space L . In

particular, the first exceptlonal case above actually only applies to LJr We identify Lj (or Lt 7)
with subspaces of Ext! (Mg, Mc¢) via the isomorphisms

H'(Gk, F(¥)) = Extyg, (F, F(¢)) = Ext' (D(F), D(F(¢))) = Ext' (Mg, Mce),
the last of these given by an isomorphism D(F (1)) = Mgz that is unique up to an element of F*.

Remark 7.7. The article [BDJ10] (after Lemma 3.9) defines spaces L, C H' (G, F,(¢)) for
certain pairs (V,J) where JC S and V is an irreducible representation of GLa(k). The
relation between the spaces is that Ly, j)= Ly ®f F,, where J={i|i—1€J'} and if V =
X);cg(det™ @y, Sym™i~ 1?2 Rk, Fp), then we take a; =n;_y if i € J and b; =n,;_1 if i ¢ J. (The
space Ly, is in fact independent of 17, and when there are two choices of 7 compatible with
y and J', the resulting spaces Ly, ;) are obtained from L}L in the evident way.)

We now prove our main result in the generic case.
THEOREM 7.8. Suppose that C is generic.

(i) Suppose that J # S (respectively J #0) if c=p — p—2 (respectively @=1). Then Vj = Ly,
SO LJ = @ZEJ L{l}.
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(i) Ifé=p—2 and J =9, then V¥ = L* so L7 =@
(iti) If =1 and J =0, then Vi = LT = {0}.

ieg L if f> 1.
Proof. We first prove part (i). Suppose that 2 € Ly, so z is a class of extensions
0— Mcz— E— Mz—0
corresponding via D to a class of extensions of Galois representations
0—F()—T—F—D0.
The assumption that x € L; means that there is an extension
0—>(’)F(1/~1J)—>T—>(’)F—>0

whose reduction modwp is T and such that F ®o, T is crystalline. Let 15 : Gg — F* be a

crystalline character with labeled Hodge-Tate weights (af_1, ag, ..., ar_2) and let ¢ = Dy
(Recall that a; =0 if i ¢ J and b; =0 if ¢ € J.) Then ¢ is crystalhne with Hodge—Tate weights
(bf—1,b0,...,bs—2) and we have an exact sequence

0—-T) —T(¢2) = To— 0,

where T; = Op(¢;) and F ®o, T(1)2) is crystalline. By Lemma 7.6, the corresponding sequence
of Wach modules over A}r( IR

0—N(T1) = N — N(T3) — 0,

is exact. Reducing mod wp, we obtain an exact sequence of free E}; K, p-modules with commuting
¢ and I' actions such that I" acts trivially mod 7. Tensoring with Ex r yields an exact sequence

O—>MBg—>E — Myz—0

of (¢, I')-modules, bounded with respect to a basis for N. It follows that E’ defines an element of
Extgq(Mag, M ). Moreover, this exact sequence is obtained from the one defining z by twisting
with M4z, so we have shown that ¢(x) is bounded, and hence that x € V;. Thus L; C V.

By Proposition 5.4 of this paper and Lemma 3.10 of [BDJ10], we have that dimpV; = |J| =
dimpL; = |J|; therefore L;=V;. The assertion that L;=D,;c; L; then also follows from
Proposition 5.4.

ieJ

The proofs of parts (ii) and (iii) are exactly the same as that for part (i), except that for part
(ii) in the cyclotomic case one uses Proposition 6.5. O

Remark 7.9. We see from the proof of the theorem that, in the definition of Ly, ¥, can be
replaced by its twist by any unramified character Gx — O with trivial reduction mod wp.
This can also be proved using Fontaine—Laffaille theory.

However, in the case where 1 is cyclotomic, J = S and @ = p, we defined L; as H' (G, F(v))
rather than L’,. In fact L; has codimension one and depends on the unramified twist, as the
next proof shows.

As a further application, we show that, in the generic case, bounded extensions ‘lift’ to
extensions of Wach modules.

COROLLARY 7.10. Suppose that ¢ € Z° is generic and d, b e Z5 are as above and that

0—>MBg—>E—>MAa—>O
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is a bounded extension of (y,I')-modules over Ex . In the case A= B, ¢=p—2 and d = p,
assume F' is ramified. Then the extension I arises by applying Ex r® AL, to an exact sequence

over A}; p of Wach modules of the form
0— N(¢1) = N — N(2) — 0,

where 1)1 (respectively o) is a crystalline character with labeled Hodge—Tate weights
(by—1,bo, ... ,br_o) (respectively (ar_1,ao,...,ar_2)).

Proof. First assume we are not in the exceptional case where A= B, ¢=p — 2 and @ = p. Since
the extension class defined by E is bounded, the equality V; = L; of the preceding theorem
shows that F arises by applying D to the reduction mod wp of a crystalline extension

0— OF(1,D1) —T — OF(¢2) —0,

where 91 and 1 have the required Hodge-Tate weights. Lemma 7.6 then gives the desired
extension of Wach modules over A}Q P

Suppose now that A= B, E':pTQ> and d@=p. Consider the class z:=((E)¢€
Ext! (Mg, MpA_a) =~ H'(Gk,F(x)), where x denotes the cyclotomic character. We claim that
there is an unramified character p: Gg — (9; with trivial reduction mod wp so that x is in the
image of H' (G, Op(xPp)). (This is essentially proved in [KW09a, Proposition 3.5] or [KW09b,
§3.2.7], but there it is assumed that x is trés ramifié, so we recall the argument here.) The long
exact sequence associated to

0 — Op(x’1) =5 Op(x’1) = F(x) = 0
shows that the image of H'(Gx, Op(xPu)) is the kernel of the connecting homomorphism
H' Gk, F(x)) — H*(Gx, Op(x" ).
By Tate duality, this is the space orthogonal to the image of the connecting homomorphism
H(Gk, (F/Op)(x'?Pp™")) = H'(Gk, F)

arising from the dual short exact sequence. Letting o denote the homomorphism G — F defined
by (x!7? —1)/p, and 3 the unramified homomorphism sending Frobx to 1, we find that the
image of the connecting homomorphism is spanned by 3 if u # 1 mod pOp (which is possible as
F' is ramified over Q,) and by a + A8 if p(Frobg) =1+ pA mod pwrpOp. If 2 U =0 then we
can take p # 1 mod pOp, and if z U 3 # 0 then there is a unique A so that A(z U ) = -z U«
and we choose u accordingly. Now since H!(Gy, F(xPu)) = H}(GK, F(xPu)), we see that F
arises from the reduction of a crystalline extension of the required form, and the result again
follows from Lemma 7.6. O

7.4 Case f=2

In this subsection we will show that, if f=2, then L;=V; (or Lf = VJi) unless ¢=0; in
other words, the space of bounded extensions coincides with the one obtained from reductions of
crystalline extensions of the corresponding weights unless the ratio of the characters is unramified.
Furthermore, we give a complete description in this exceptional case.

Before treating the case f =2, we note what happens in the case f =1. The case ¢#0 is
already treated by the results of the preceding section. Assume for the moment that p > 2. Then
the proof goes through just the same if =0 and J = S = {0}. Suppose then that =0 and J = ().
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If C' #1, then Vj = Ly = {0}, so there is nothing to prove. If C'=1, then we have Vj = {0}, but
Lyp=H 1(GQp, F). Indeed, all such classes arise as reductions of lattices in representations of the
form Q, ® Q,(x'~Pu) with p unramified; the corresponding Wach module is described just as in
Example 7.1 and so does not give rise to a bounded extension. If p =2, there are differences
in the case C' =1 (see Remark 6.14). In that case

V; = VS_ = L+ = HI(GQQ, F) = <Bnr7 chC7 Btr>

and V" =V~ ={0}, but Lg =Ly =(Bu, Beye) and Ly = (Bur, By). (For the explicit
descriptions, note that the extensions of Galois representations are unramified twists of ones
on which Hg acts trivially, and if Hg acts trivially on T, then D(T) =Ex ® T.)

We now turn our attention to f=2. We maintain the notation of the preceding section,
without the assumption that ¢is generic. In particular, J C S and @, b satisfy the usual conditions,
V1 and V5 are one-dimensional crystalline representations with labeled Hodge-Tate weights
(b1, bo) and (a1, ap), V' is an extension of V5 by Vi, T is a Gi-stable Op-latticein V, Th =T NV,
and Ty = T'/T). The refinement of Lemma 7.6 is the following lemma.

LEMMA 7.11. Suppose that f =2 and ¢ 0. If V is crystalline, then
0—N(T}) = N(T) - N(T3) — 0

is exact.

Proof. Since the generic case is covered by Lemma 7.6, we can assume (interchanging embeddings
if necessary) that ¢=(i,0) for some i€ {1,...,p—2} or that ¢=(i,p—1) for some i€
{0,...,p—2}. The cases where J={ or J=S are covered by the same argument (using
parts (ii), (iii) and (iv) of Proposition 7.4), as are the cases where ¢=(i,0) or J={1}
(using parts (i), (iii) and (iv) of the proposition). We are thus left with the case where
&= (i,p—1) for some i € {0, ..., p—2} and J = {0}, in which case @= (p — i, 0) and b = (0, p).
In the notation of Proposition 7.4, the possible values of ¥ are (0, p) and (1, 0). To complete the
proof, we must rule out the latter possibility, which we accomplish by considering the reduction
of N(T') modulo p?. From the exact sequence

0—D(Th) - D(T) - D(T») — 0

and the description in [Dou08] of rank one (¢, I')-modules recalled in §3, we see that there is
a basis {e1, ea} for D(T") over A r in terms of which the matrices describing the actions of ¢
and vy €T are

P=(" i) e @= (T e )

for some A, B € O. On the other hand, since V' is crystalline, there is a basis {€/, €;} for D(T)
over Ak p in terms of which the matrices P’ and G’7 describing these actions lie in GLo (A} )
with G =T mod 7TM2(ARF). If we assume further that ¥ = (1,0) (and so @ = (p —i—1,p))
then we can choose €, €/, such that

o _ <(B7rp1, 1) * > d T — <(>\7,)\’7’) « >

0 (Aﬁ(p—i—l)(p—l), 7Tp(p—l)) ¥ 0 ()\?fﬁv*ifl’ )\gkzp)

)
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where * denotes reduction modulo wp. Since D(T') = Ak, p @+ N(T), we can write (€], €)=
(€1, e2)Q for some @ € GLa(Ak, ), and then we have ’

P =Q'Pyp(T) and G, = Q'Gy(Q) forall yeT.
CrAIM. We have @@ = RS mod pAk r for some matrices R = (a(qgl’l) 5(; 1)) € GLy(Ak r) with
a,f€0p and S € I + wpMa (A ).

Since F' may be ramified over Q,, we prove the claim by showing inductively that Q =

R,,Sm mod wi Ak p for some matrices R,,, Sy, of the prescribed form for m =1,..., e where
e=e(F/Qp).
To prove the statement for m = 1, note that setting Ry = ((qiol’l) (q01)> gives
1= 5. ((BrP711) *
Ry Py(Ro) = < 0 (Ax@=D@=1) 7p(p-1)) |

So if we write R = RSy, then

_ (B?Tp*17 1) % B (Bﬂ'pil, 1) N B
So( 0 (Aw(p—z‘)(p—l)’ Wp(p—l)) = 0 (Aﬂ.(p—i)(p—l)’ AP(p=1) ©(Sp).

It follows easily that So= (% %) for some &, 3 € F*, § € Ex p. Choosing lifts a, 8 € O and

DRI

a
0

d € Ak r and setting Ry = Ry(§ g) gives the result for m = 1.

Suppose now that m € {1, ..., e — 1} and that Q = R, S, mod wii Ak p with R,,, Sy, of the
prescribed form. Setting Qy, = R,,!QS,,,}, we have Q,,, = I + @2 Q’,, for some @, € M2(Ak F).
Define

Py =R, 'Po(Rpn),  Goym =Ry 'Gy(Rp),
Pl =5,"P'o(Sy) and G, =5,"G v(Sm),
so that
Py = Q' Pnp(@Qm) and G, = QL 'Gl v (Qm).-

Note that P, € My(Aj ), G, €l+aMay(Af p), Ppn=P), modwpiMy(Agr), Gym
G ., mod wEMa(Ak ),

— (Bﬂ-p_17 1) *
Pm = ( 0 (A,]T(pfifl)(pfl)’ ﬂ_p(pfl)) mod pM2(AK,F)
and
(Ay, A9) * )
G m = ( 2 —i—1 2—i mOd pMQ(A'K,F)
' 0 (L)

Note that, since m 4+ 1 < e, the last two congruences hold mod w?ﬁ“, and that Q. '=1—

@R Q! mod wiE T My (Ak r). Tt follows that

P, = (I —wp Q) Pl + @i e(Qr,))
= P, + @ (Pnp(Ql,) — QL Pr) mod whi ™ Ma(A g r),
and therefore that

X
(Pl Q) = o) = P = P =t (7 V) iod s MalA e
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with z, z, w € A?(,F' Note that P,, = FI, so we have F’gp(@/ ) — Q P = (ZY) for some 7, z, w €
E};’F, y € Eg p. Similarly we find that é;fy(@/m) - @:né; (Z ff,”) for some Z, Zy, W, € 7rEK I
Yy € Ex.p.

Writing

g - <(ro, r1)  (so, 31)>
™\ (to, t1)  (uo, u1)

with 79,71,...,u0,u1 € F((m)), the condition that z€E} , becomes mPP~Vty(r)P —
ti(m), ArP=i=D@=D¢) (7P) — BrP~ty(7) € F[[x]], from which one deduces that val(tg) =1 —p
and valr(t) >0. The condition that z, € mEjf p then becomes that ~(to)\} it e
7mF|[[r]]. Lemma 4.2 rules out the possibility that 1 — p < valy (to) <0, and Lemma 4.4 rules
out the possibility that val:(tg) =1 — p. Therefore (to,t1) € Ef .. Since P e Mz (Ef 1), the
condition that Z € E}F then becomes that 7~ !(ry(7P) — ro(n)), 7o(7P) — r1(7) € F|[r]], which
implies that (ro, 1) € Ej; ;. The condition that @ € E}. » becomes that 7(P~=DP=1) (¢ (7P) —
ug(m)), PP~ Do (7P) — uy (m )GF[[ ]], which implies that val(up) >1—p and val;(u1) =i+
2 — p. Since (tg, t1) € EK 7 and G,y =] mod TI'MQ(EK ), the condition that w, € 7rEK  becomes
that y(u;) —u; € TE) o for i =0, 1, so that Lemmas 4.2 and 4.4 again imply that (ug,u;) €
E}F We can thus lift Q. to a matrix (§5) € My (Ak,F) with 7, t,u € A+ . Setting Rp41 =

1 o™ 14+wPr 0 _ m-+1
R, (0 wfs and Sp,41= ( w;{; - S then gives Q = Ryy1Sm11 mod wp " Ma(Ag F)

with R,+1, Sm1 of the prescribed form, and completes the proof of the claim.

To derive a contradiction from the claim, we proceed as in the proof of the induction step
above, but with m = e and working modulo w}?“. More precisely, we define Q., QL, P., G+, P!
and Gﬁ,ve as above; the difference now is that the congruences satisfied by P, and G . modulo p
are not satisfied modulo pwp. In particular, the upper left-hand entry of P. is (Aq, ¢*/¢(q)),

and a straightforward calculation shows that

=10l ) —g(r ) + () mod 1P Aq,
where g(X) =S/ (=X)i/i and f(r) € AJr As before, we have P p(Q.) — QP = (2 ¥) with

zeEf k. since P is upper-triangular, but now 7 € (0, c( (m~ p) g(r™h))) + Ef , for some
c € F* (the reduction of p/w¢%). Similarly we have G,ﬂ(Q ) - Q. G (x“’ y”) with 27 € ﬂ'EKF
So just as before we get (to, t1) € E 1, but this implies that 7P~ l(rl(ﬂp) —ro(m)) € F[[r]] and

ro(7P) — r1(7) € c(g(n~P) — g(n~1)) + F[[x]], which leads to a contradiction and completes the
proof of the lemma. O

THEOREM 7.12. Suppose that f =2 and é# 0. Then Vy =Ly (or Vi = L:J]E) for all JC S. In
particular, Loy = Lyyy if and only if ¢= (i,p — 1) or (p — 1, i) for some i € {1,...,p — 2}.

Proof. The proof of the first assertion is exactly the same as for Theorem 7.8. The second then
follows from the corresponding result for V; in §5.3. O

Theorem 1.2 of the introduction now follows in view of Corollary 3.3.

Remark 7.13. Again we see that, in the definition of L, @E 7 can be replaced by its twist by
any unramified character with trivial reduction; the cases where some a; or b; is p (with J = {0}
or {1}) are outside the range of Fontaine-Laffaille theory.
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Note also that the case where we had to work the hardest in the proof of Lemma 7.11 is
precisely the one where Loy = Lyy3.

By the same proof as Corollary 7.10, we obtain the following corollary.

COROLLARY 7.14. Suppose that f =2, that ¢+# 0 and @, b€ ZS are as above and that
0= Mg —E— Mazg—0

is a bounded extension of (y,I')-modules over Ex . In the case A=B, ¢=p—2 and d =p,
assume F' is ramified. Then the extension I arises by applying Ex r® A%, to an exact sequence

over A}’ p of Wach modules of the form
0— N(¢p1) = N — N(¢)2) — 0,

where 11 (respectively 1)3) is a crystalline character with labeled Hodge—Tate weights (b1, by)
(respectively (a1, ap)).

We now say what we can in the case @= 0. First note that the proof of Lemma 7.11 goes
through in the following cases:

e J =S5, in which case Ei:p———_l) (or 2if p=2);

o J={0},@=(p,0),b=(0,1) (the + case);

o J={1},@=(0,p), b= (1,0) (the + case).

The proof of Theorem 7.12 goes through in these cases unless J =S5, p=2,d =1, C' =1, where we
get Lg C Vg, but dim Lg =3 # dim Vg =4 (see Remark 6.14). In this case, however, we know
that Ly consists of the peu ramifiée extensions. To compute the corresponding (¢, I')-modules,
note that V:{J(S} = L?o} contains the classes arising from reductions of Galois stable lattices in
F(u?) @ F(y7), where ¢ : Gx — Op is a crystalline character with labeled Hodge-Tate weights
(0,1), o is the non-trivial element of Gal(K/Qz), and p: Gxg — OF is an unramified character
with trivial reduction mod wp. These classes correspond to homomorphisms G g — F whose
restriction to inertia is a multiple of the reduction of 1/2()7¢~2 — 1);,.. One can compute these
explicitly using class field theory and check that they are peu ramifiée. It follows that L?o} C Lg,
and similarly L?l} C Lg, so that Ly = (Bu, Bo, B1).

If J=0, we have Vj={0}, and Ly={0} unless C=1. If C =1, one can compute
the extensions and associated (¢, I')-modules explicitly since they are unramified twists of
representations on which Hy acts trivially. If p # 2, one gets Ly = (Bur, Beye). If p=2, one
gets L = (Bur, Beye) (with b=1) and Ly = (Bur, By) (with b= 2).

The most interesting is the — case when S = {0} or {1}. For example, if S = {0}, @= (p, 0)
and b= (0, 1), the proof of Lemma 7.11 breaks down, but we see that, if the associated sequence
of Wach modules is not exact, then @ = (0, 1) and &’ = (p, 0), so the extension of (¢, I')-modules
associated to T is in V{'h Since V{B} - VH}, it follows that L{_o} - VH}, and dimension counting
implies equality. We therefore have that V{B} is contained in L{_o} = V{T} = LE} with codimension
one. Similarly V{I} is contained in L{}} = V{B} = LEFO} with codimension one.

Putting everything together we get the following theorem.

THEOREM 7.15. Suppose that f =2, ¢=0.
(i) If C #1, then:

— ifp>2 then Lg = Vi = Ext! (Mg, Mg);

425

https://doi.org/10.1112/50010437X1000504X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1000504X

S. CHANG AND F. DIAMOND

— if p=2 then L3 = Vi = Ext! (M M, )
. _ 7t _7— .
Viop =V =10} a“d Ly =Ly = V{l} # Vioy = Loy = Ly
— if p>2 then Ly =V ={0}; and
— ifp=2 then LT = V@i ={0}.
(ii) If C =1, then:
— ifp>2 then Lg = VS = Extl(MG, Mg);
— if p=2 then L = VS = Ext (M M5) and Lg = (B, Bo, Bl>
V- vy _yt _ - _y+
Vioy = Viay = (Bu) Ligy = Ly = Viiy = (Bur, Bu) and Ly = Ljgy = Vi, =
if p> 2 then % = {0} and Ly = (Buyr, Beye); and
— if p=2 then V" = {0}, Lj = (Bur, Beye) and Ly = (Buy, Bu).

(Bnra B0>7

Note that the strict inclusion V_o} CL{_O} implies the existence of non-split crystalline
extensions 0 — F(¢1) =V — F(¢2) — 0 with Galois stable Op-lattices T" such that the
corresponding sequence of Wach modules over A;g, # is not exact (with ¢ and v, of labeled
Hodge Tate weights (p, 0) and (0, 1) respectively).

As in Remark 7.13, we see that the definitions of Lj; are independent of the choice of
unramified twist, unless C =1, J = () and F is ramified, in which case twisting by an unramified
character that is trivial mod wp but not mod p would give L', = Lj = (Byy).

Finally we remark that the proof of Corollary 7.14 goes through when =0 except in the
following two cases where C = 1.

— If p=2and @=1, then only classes in Ly lift (see Remark 6.14).

— If @=(1,0) and b= (0,p) (or @=(0,1) and b= (p,0)), then we have not determined
whether B, lifts.
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