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Abstract.
In this work wave propagation in a 3-D magnetic flux tube is solved numerically. The aim is

to find interaction between kink waves and higher order modes (flute modes).
A 60x60x60 cube is set up, containing a vertically oriented uniform magnetic flux tube, to

solve numerically. Waves are observed propagating after triggering them with solution to the
linearized system.

The waves propagate acquiring a distinctive shape (seen in the crosscut of the tube at an
arbitrary height showing the radial velocity maps). It is discarded that this is caused by the
existence of higher order modes and is found that the radial dependence of the phase speed
creates the motion.

It was also found that the study of the profile of the radial velocity map of a slice of the
system is a very intuitive way of analysing the modes of waves propagating through the flux
tube.
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1. Introduction
This research is focused towards the study of the viability of wave damping through the

interaction of oscillating MHD modes. Until recently many theoretical mechanisms have
been put forward to explain coronal loop damping; however none of them by itself is able
to account for the measured fast evanescence (within around 4 periods of oscillations).
Favourite damping mechanisms are e.g. the resonant absorption, phase mixing, nonlinear
interaction, wave leakage, etc. For details see e.g. Erdélyi (2004, 2007) and Erdélyi &
Ballai (2007).

The mechanism considered here is not really a wave damping process but the transfer
of the energy from the (visible) kink wave into other higher harmonic modes that are
not (yet) observed with the current high-resolution technology. The mechanism was first
considered by Ruderman in an analytical study [Ruderman ’92].

In the present work a 3-D magnetic cylinder embedded in a fully ionized plasma is
considered, and the full set of the non-linear, ideal MHD equations are solved numerically.

The simulation box is divided into a mesh of 60x60x60, and by varying the source,
that acts near the bottom end of the cylinder, the flux tube is driven(fig. 1). The source
is characterized by a Bz profile harmonically varying with time, defined by the linear
solution of the system. The parameters are set satisfying the initial condition vA > ce >
ck > c0 > vAe characteristic of the photosphere. Here vA and vAe are the Alfvén speeds
inside and outside the cylinder, c0 and ce are the sound speeds inside and outside the
cylinder, and ck is the kink speed, respectively.
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Figure 1. Graphical representation of the mesh of the computational domain showing the
driver (source) obtained from the analytic solution of the linearized system.

2. Model and Governing Equations
The full nonlinear equations of the problem are: the continuity equation,

Dρ

Dt
+ ρ∇ · v = 0, (2.1)

the momentum equation,

ρ
Dv
Dt

= −∇p + (∇× B) × B
µ

, (2.2)

the energy equation (adiabatic case),

D

Dt

(
p

ργ

)
= 0, (2.3)

the ideal induction equation (with no diffusive term, i.e. in the perfectly conducting
limit),

∂B
∂t

= ∇× (v × B), (2.4)

and the solenoidal equation that defines the absence of magnetic monopoles,

∇ · B = 0. (2.5)

It is also assumed that the plasma is fully ionized and that there is no background
equilibrium flow. The linearized versions of the above set of the governing MHD equations
are:

∂ρ

∂t
+ (v · ∇)ρ0 + ρ0∇ · v = 0, (2.6)

ρ0
∂v
∂t

= −∇p + (∇× B) × B0

µ
, (2.7)

∂p

∂t
+ (v · ∇)p0 − cs

2
(

∂ρ

∂t
+ (v · ∇)ρ0

)
= 0, (2.8)
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∂B
∂t

= ∇× (v × B0), (2.9)

∇ · B = 0, (2.10)
where ρ, v, p, B, are the small perturbations of the density ρ0 , velocity v0 , pressure

p0 , and magnetic field B0 respectively. Let us search for a solution of the next form (as
suggested by E&R[E&R ’83]):

∆ = ∇ · v = R(r)ei(ωt+nθ+kz ) . (2.11)

It can be shown that R(r) is

R(r) = A0

{
In (m0r) if m2

0 > 0
Jn if n2

0 = −m2
0 > 0 (2.12)

for r < a and,

R(r) = A1Kn (mer) provided m2
e > 0. (2.13)

for r > a. Here a is the cylinder radius, m0 is a quantity that charaterizes the inside
of the cylinder and me the outside of the cylinder and are defined as follow:

m2
0 =

(k2c2
0 − ω2)(k2v2

A − ω2)
(c2

0 + v2
A )(k2c2

T − ω2)
, (2.14)

where,

c2
T =

c2
0v

2
A

c2
0 + v2

A

, c2
0 =

γp0

ρ0
, v2

A =
B2

0

µρ0
. (2.15)

The same equations apply for me but with the cylinder surrounding’s quantities.
The dispersion relation of surface waves of the system is:

ρ0(k2v2
A − ω2)me

K ′
n (mea)

Kn (mea)
= ρe(k2v2

Ae − ω2)m0
I ′n (m0a)
In (m0a)

, (2.16)

This equation is used in finding the value of the angular frequency ω for a given wave
number k. These two parameters define the source term in the simulation.

3. Results and Discussion
Fig. 2 shows snapshots of radial velocity maps of horizontal crosscuts of the mesh near

its top end (nz = 50) at increasing times. Note that the kink oscillations can be inferred
from the graph, and that the null velocity points form a distinctive S shaped line.

Fig. 3 demonstrates the kink mode (n = 1) with the first flute mode (n = 2) changing
their relative phases from one image to the other. The amplitudes of the modes are chosen
to be relatively similar.

The snapshots of Fig. 4 are crosscuts along z (plane ny = 30 units of grid planes) and
the vy velocity map. It can be observed that the phase speed of the waves inside the tube
is greater then outside, where the waves are evanescent.

The following are some conclusions resulting from the analysis:
1. The shape of the line formed by the points of null radial velocity in snapshots of

the Fig. 2 shows a clear S shape near the center of each snapshot. However this S shape
cannot be seen in the snapshots of the analytical solution of the superposition of the
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Figure 2. Radial velocity maps of the simulation at a horizontal crosscut at succesive times.

Figure 3. The radial velocity map of the kink mode also showing the first flute mode (n = 2)
at different phases. The snapshots were calculated with the analytical solution.

Figure 4. Vertical slices of the system showing vy at successive times.

modes n = 1 and n = 2 in Fig. 3. It can be concluded that the S shape may not be
caused by the superposition of the kink wave with the first flute mode.

2. In Fig. 3 the radial velocity outside the tube vanishes closer to the cylinder’s bound-
ary than the radial velocity does in Fig. 2. However, it is worth to note the vr vanishes
as slowly as it does in the numerical MHD simulation, in the map of radial velocity for
analytic kink wave without adding the flute mode.

3. The S shape formed by the null radial velocity points in Fig. 2 can be explained
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by the radial dependence of the phase speed of the wave and the fact that the source
produces a helical wave.

4. Radial velocity maps were implemented permitting to see in an easy and intuitive
way the difference between a kink mode and the other higher order modes of the system.

5. Snapshots of the analytical solution included two modes (n = 1 and n = 2). The
plots were constructed in such a way that the relative phases between the two modes
were changed to see wether null velocity points formed and S shape or not. No S shape
was found.
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