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Abstract

For unbounded operators A4,,...,4;, Gevrey spaces S’-p--nl.x(Al’ ..., A;) of order

Ay, ..., Ay) are introduced, where the orders 4, ..., 4; need not be equal. These extend
the notion of Gevrey space defined by Goodman and Wallach where 4, = --. = 4, . Several
mild conditions on the operators A4,, ..., A, and the orders 4, ..., 4, are presented such

that the equality S‘-; ld(Al N P n:=1 Slk (A4,) is valid. Examples are included.
1991 Mathematics subject classification (Amer. Math. Soc.). 47 D 30, 22 E 45,

1. Introduction

In his well-known paper, [11], Nelson has introduced the concept of analytic
vector relative to a finite set of operators as follows: Let 4,, ..., 4; be (not
necessarily bounded) operators in a normed space E. A vector u € E is
called a C*-vector for {A4,, ..., A;} if u belongs to the domain D(Ai. o
---oA,.") of the operator Ai, o---0d;, forall neNj andall i ,...,i, €

n n
{1,...,d}. Let D*(4,,..., 4;) denote the space of all C*-vectors for
{4,, ..., 4,}. Avector u € E is an analytic vector relative to {4, ..., 4,}
if u is a C*-vector and there exist constants ¢, ¢ > 0 such that for all

neNyandall i,...,i,€{l,...,d} wehave
14, o0 d, ull < ct'n!.

An extension of the concept of analytic vector, given by Goodman and
Wallach [10], is derived by replacing n! in the above expression by nt*.
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264 A. F. M. ter Elst [2]

Thus we arrive at the concept of Gevrey vector of order A > 0 relative to
{4,,..., 4;}. In the latter definition of Gevrey vector the operators are
treated on the same level.

The notion of Gevrey vector is based on the notion of Gevrey function
whose definition according to Gevrey [6], is the following. Let 4,,...,4, >

0. A function f defined on an open subset U of RY is called a Gevrey
function of order (A, ..., A;) (in [6], a function of class 4, in x,,..., of
class A, in x,;) if f is infinitely differentiable and for every compact subset
K of U there exist constants ¢, ¢ > 0 such that for all n,,...,n; € Nj
and all x € K we have

I(D}*...DJ f)(x)| < et Mapph g e

Here D, denotes partial differentiation with respect to the k-th coordinate.
We see that in Gevrey’s original definition the variables (x,,..., x;) are
not treated on the same level and thus the following natural generalization
of the concept of Gevrey vector arises. Let A4,,..., A, be (possibly not
everywhere defined) operators in locally convex topological vector space E .
Let A,,...,4; > 0. A vector u € E is called a Gevrey vector of order

(Ays...,4y) relative to (A,, ..., A;) if for every continuous seminorm p
on E there exist constants ¢, ¢ > O such that for all n € N; and all
i,...,i,€{1,...,d} the vector u belongs to the domain of the operator
A; 0---04;, and p(4; o---04; u) < ct"nl!l‘ ---nd!ld , where n, := card{/ €
1 n 1 n
{1,...,n}: i, =k} forall k € {1,...,d}. By Sﬂ.,,...,i.d(Al’ ey Ay)
we denote the space of all Gevrey vectors of order (4,, ..., 4,) relative to
(A, ..., 4,).
Trivially, a Gevrey vector of order (4,, ..., 4,) relative to (4,,..., 4,)

is a Gevrey vector of order 4, relative to 4, forall k,so S, 1,,(’41 yeens
-

A;) C ﬂ‘;:l Slk (4,). So the following interesting problem comes up: find
appropriate conditions on 4,,...,4, and 4,,..., 4, such that

(1 S,

12

d
3, Aps s ) =[S, (4)-
k=1

In Sections 3 and 4 such conditions are presented for skew-hermitian oper-
ators. Our strategy is as follows. First mild conditions are presented such

that
(2)

St Ay s A =8, G (A s A)NS, A s Ag)
for some n € {1,...,d — 1}. Then from this we derive stronger condi-

tions such that equality (1) holds. In the literature these problems have been
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looked at only in case 4, =--- =4, =1 by [7] and [4] in order to prove sep-
arate and joint analyticity for representations of Lie groups in certain cases.
In those papers, the operators 4, are infinitesimal generators for the repre-
sentation. (Cf. Theorem 24.) However, in general equality (1) is not valid.
(See Example 7.)

In general, the C*°-domain D°°(Al » ..., Ay) is trivial, i.e. it contains
only the zero vector, hence the Gevrey space SA“__” 9 (A, ..., Ay) is also
trivial. In Section 5 we present several examples of non-trivial Gevrey spaces
by taking for 4, ..., 4, infinitesimal generators of a representation of a
Lie group. In Section 6 we consider the ax + b group. Another interesting
illustration is the Heisenberg group. This group has served as a major source
of inspiration and is used frequently in the present paper.

2. Multi-indices and Gevrey spaces

Let d eN andlet 4,, ..., A, be (possibly not everywhere defined) oper-
ators in a locally convex topological vector space E . Since we do not assume
that the operators 4,, ..., A; commute, we have to take care of the or-
der in which the operators occur. To this end we introduce the concept of
multi-index.

Let V' be a non-empty finite set. We define the set M (V) of multi-indices
over V by M(V) = UmEN0 V" . Here V° denotes the set with one element,
called the empty sequence, which is denoted by (). For a = (j,, ..., j,) €
M(V) define the length ||a|| of a by |la|| := n and for v € V define the
v-length |jal|, of a by \(j,,..., j,)l, = card{i € {1, ..., n}:j, = v}.
For veV let 4, >0. For a € M(V) define

A A
af’ := [ lledl,\™ .

veV

In a natural way we define an operation on M(V): for a, f§ € M(V)

define the concatenation (a, B) of a and § by -
(Uyseeesdg)s Rys oo s KD i=Uys oo s Jos kys vvn 5 k)

forall n,m e Ny and all j,,...,Jj,,k,...,k, € V. So M(V) is a
monoid with identity ( ). Define similarly the concatenation (o, ..., a,)
of a,..., a, e M(V).

Finally, for a € M(V) define the reverse o' of o by (j,,...,Jj,) =
(Jys---»J;). In Section 4 we introduce some more operations on M(V).

Now let V := {1,...,d}. For a € M(V) define the operator 4_ by
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A( )= I and
A(J'.’--uf..):=Aj.°"'°Af,. (neN, j,...,Jj,€V).
Then the joint C*°-domain of the operators A4,,..., 4, equals
D¥(A,, ..., A= [] D(4,).
aEM(V)

Now we define our Gevrey spaces. Let 4,,...,4, >0. A vector u€ E
is called a Gevrey vector of order (4,, ..., A;) relative to (4, ..., A;) if
u € D°°(A1, ..., A;) and for every continuous seminorm p on E there

exist constants ¢, ¢t > 0 such that for all a« € M(V') we have

p(Au) < "ot

The space of all Gevrey vectors of order (4,,...,4,) relative to (4, ...,
A,;) is denoted by S)., ).d(Al »...»A,). Note that if E is a normed space,
then

SA,,...,).d(AI seees Ag)
0o all A
={ueD™(4,, ..., 4) 3, s Voerrlldaull < cd'at']y.

In case the operators A,,..., 4, are skew-Hermitian operators in a
Hilbert space, we have the following important characterization of
S}.,,...,J.,,(Al soeeAy).

LEMMA L. Let A, ..., A; be skew-Hermitian operators in a Hilbert space
H.LetA,...,A;>0. Let uc H. Then u eSll"_',ld(Al, ooy Ay) ifand

only if u € D°°(A1 s.-.» A;) and there exist ¢, t > 0 such that for all
aeM({1,...,d}) wehave |(Adu, u)| < ct"™lat*.

PrOOF. We only prove the “if” part. Let a € M({1, ..., d}). Then
2 2 A A
A, ul’ = (A e, W)l < N2l 1 - 2laf )
< [\/E(zll+m+ldt)llalla!l]Z .

We finish this section with some examples.

ExAMPLE 2. Let U be an open subset of RY. Let C(U) be the lo-
cally convex topological vector space of all continuous functions on U with
the topology of uniform convergence on compacta. Let D,,..., D, be
the partial differentiation operators in C(U) with domain C l(U ). Then
S3,....2,(Dy» -+ » Dy) is the space of Gevrey functions of order (4, ..., 4;).
(See [6].)
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EXAMPLE 3. Let 4 be an operator in a Hilbert space H. Then Sy(4) is
the set of all bounded vectors for A. (See [3, Section 26].)
EXAMPLE 4. Let A4,,..., 4, be d operators in a Hilbert space H and

let A>0. Then S, ...,}.(Al , ..., Ay) is equal to the set of Gevrey vectors of

order A relative to ’{Al »-.-»Ay}. (See [10, Section 1}].) In particular, for
A =1, the set §, (4,, ..., 4;) is equal to the set of analytic vectors for
{A,,..., 4;}. (See [11, Section 2].)

ExAMPLE 5. Let (X, %, m) be a measure space and let # be a measur-
able function. Let H := L2(X , m) and let 4 be the multiplication operator
by 4. Let 1> 0. Then S,(d) = {e™"" f: fe L*(X, m)}.

ExXAMPLE 6. Let Q be the multiplication operator by the function x — x
in LZ(R). Let D be the skew-adjoint differentiation operator in LZ(R).
Then D*(Q, D) is equal to Schwartz’ space S(R), that is, the space of all

infinitely differentiable functions ¢ defined on R such that sup{lxk qp(’) (x)]:
x €R} < oo forall k, I eN;. (See [7, p. 65].) Let o, B >0 and suppose
that a+ 8 > 1. By [2, Theorem 4.3] we obtain that

S,.5(Q, D)= {9 € D(Q, D) := 3, % 1en, [1€“D'0ll < ety

(See also the proof of Theorem 11.) So the Gevrey space S, ﬂ(Q, D) is
equal to the Gelfand-Shilov space Sf , which is defined by

Sf ={peSMR):3, .y sup |xk¢(’)(x)|n_k_1k_k°l_1ﬁ < o©}.
k,leN,
x€R

(See [5, Section IV.3.3] and [16, Section 29.5].)
EXAMPLE 7. Let H := [>(N) with standard basis e,e,.... Let 4 be
the continuous shift operator, determined by 4e, := ¢, , forall n € N and

let B be the self-adjoint multiplication operator determined by Be, := n!zen
forall n € N. Then e, € S,(4)NS;(B). But ¢ ¢ S, (4, B) since

|BA" 'e,|| = n?* forall neN.

3. Gevrey spaces relative to coupled sets
of skew-Hermitian operators

As said in the introduction, the main step in the proof of equality (1) is
equality (2). The following theorem is the first of such intersection theorems.

THEOREM 8. Let d,,d, e N andlet X,..., X, ,Y,..., de be skew-
1
hermitian operators in a Hilbert space defined on a common invariant domain.
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Suppose
[x;, Yj]espan({Xl, e Xdl, Y,,..., de})
forall ie{l,...,d} and je{l,...,d,}. Let A, u>1. Then
S}.,...,l,n,...,y(Xl 2eve Xd, s Yiseens de)
=8, X Xdl)nS”’m’M(Y1 Y eres de).

This theorem yields three extensions of a result, [4, Theorem 2}, of Flato
and Simon at once. Indeed, they proved the above intersection theorem in the
following very special case: A = = 1; g :=span({X,, ..., Xd. » Y,
de}) is an integrable Lie algebra and both span ({X,, ..., X dl}) and span
Y, ..., de}) are subalgebras of g. However, the theorem of Flato and
Simon is also valid for representations in a Banach space The essence of the
proof in [4] is that for each elementof S, (X, ..., )nS Ry
de) a function is constructed, which is separately real analytlc in a uniform
sense and because of a result of Browder ([1]) this function can be shown to
be jointly real analytic. The proof of our more general intersection theorem
is based on totally different techniques.

PROOF OF THEOREM 8. Let V] := {1, . d} V,={l,...,d,} and

={l,...,d}, whered—d+d LetZ X Zd =Xy
Zd+1 Y s Zy —Y . Forall k, meN, wedeﬁnethesubset Ui m
of M(V) by

mi={rEMYV): Zuyn =k and Z 7]l = m}.

i=d +1
By assumption, forall i € V| and j € ¥, there exist c[ o c?,' j ,b,l jreees
bi ?; € R such that

dl dl
i )
X, Yjl= Zci,le + Zbi,le'

LetM—l+max{|c i lev, jeV}+max{|b eV, j, e},
Let u € S, A(X cees dl)nS,.__, Y,,..., de). Then there exist

¢, t >0 such that IX,ull < c'Mjaft* and Y ull < V| for all
a € M(V)) and B € M(V,). We may assume that ¢t > Md. For N € N, let
hypothesis P(N) state:
2 a i
3) 1Yz, X,u, w)| < 3 Gy 81 -+ myr
foralk, meNy,ae M(V}), peM(V,)and y€ U, ,
suchthat k + m = N.
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For a € M(V|) and B € M(V,) we obtain by Schwarz’ inequality
(¥, Z, \ X,u, )| = (X u, Ypeur)| < X ull | Yol < ")t ee ™y g1

So hypothesis P(0) holds, because U, , = {()}.

Let N € N and suppose hypothe51s P(N — 1) holds. Let k, m € N,
aeM(V), Be M(V,), ye U, , and suppose k +m = N. If k=0 or
m = 0, inequality (3) follows by hypothesis P(0). So we may assume that
k#0 and m#0.

Suppose k > m . By pushing the rightmost operator X in Zy to the right
and taking in account all possible commutators, we see that there exist x €
Vis0€Ui i m>€CsevrsCqm€C, 05030 €U by by,.... by, €
Candn,...,n, €U, , such that

dm d,m
(4) Z,=ZX, +) c,Zy +) b7,
p=1 g=1

and |cp| < M and |bq| < M for all p, g. Now by induction hypothesis
P(N — 1) and the inequality dM <t we obtain that:

|(YpZ, X u, u)|

dm d,m
<YpZs X, o> W)+ Zl e, [(YsZg X, 0)] + Z} 16,11(Y,Z, X,u, )
p= q=

< AWML MBI o VR B+ )
+d M B o R IBY + m— DY
() +d,mMEIN I MBI o R84+ )
< 231 B o A8 )t

(iom . m  (el+k)

BN+ m)® ~ (llell + k) (o + k)*

S 623"7"l”“"‘*‘"ﬂ”“'“?’"(”a" + k)'l("ﬁ” + m)|l‘ .
In case k < m a similar argument can be used by decomposing Zy =

Y, Z,+ “small terms”. This proves hypothesis P(N).
In particular, forall k, m € Nyand ye U, , we obtain that |(Zyu, u)| <

Z(3t)M g mi* . Now by Lemma 1 we derive that u € S, VA
Z,).

seees sty s

COROLLARY 9. Let g be a solvable real Lie algebra of skew-Hermitian oper-
ators defined on a common invariant domain. Let X, ..., X,; bea basis in g
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such that £, :=span({X,, ..., X;}) is a subalgebra of g and Z, is an ideal
in % forall i€ {l,...,d}. Let A> 1. Then Sy X, Xy =

Moy S3(Xe) -

We apply the arguments of the proof of the above theorem for two oper-
ators which satisfy the Heisenberg commutation relations.

LEMMA 10. Let X, Y be skew-Hermitian operators in a Hilbert space de-
fined on a common invariant domain. Suppose [X,Y)=il. Let A, u>0
and suppose that A+p>1. Then S; (X, Y)=S,(X)nS,(Y).

ProOF. The proof of this theorem is similar to the proof of the previous
theorem, except that now we can take Gp €U,_| m_y and bq = 0 for all
D, q in the equality (4). Hence in inequality (5) we now obtain the factor

14 K m” 1’1
m*E (|la)l + k) 1B+ m)F kA )

which is less than or equal to 2.

Now we obtain easily the following theorem, which has been proved firstly
by Van Eijndhoven, ([2, Theorem 4.5]),in case « >0 and § > 0.

THEOREM 11. Let Q, D be the operators in LZ(R) as in Example 6. Let
a, p >0 and suppose a+ B > 1. Then Sf =S, 4@, D)= Sa(Q)nSﬂ(D).

PrOOF. Let X and Y be the restrictions of the operators —iQ and D
to Schwartz’ space S(R) respectively. Then S, g X, Y) = S (X)n Sp(Y)
by Lemma 10. Since D(X, Y) = D®(Q, D) = S(R) = D=(Q) n D™(D),
by [7, Section 6], we obtain that Sa,ﬁ(Q, D) =S5,(0Q)n Sﬁ(D). So Sf C
S (@)n Sﬂ(D) = Sa’ﬂ(Q, D)c Sf , and the theorem is proved.

The following theorem can be proved in the same spirit as Theorem 8.

THEOREM 12. Let X, ..., Xd, Y, ..., de be operators in a Hilbert
space defined on a common invariant domain. Suppose all operators X, ...,
X, Y., de are Hermitian or skew-Hermitian and suppose [X i Yj] =0

1
forall ie{l,...,d} and je{l,...,d)}. Let 4, ... ,/Idl,ul, cees g
> 0. Then Sl., 2 g X,..., Xd,’ Y,,..., de) =Slp-~ L (X

e g By s g e

X008, 4 Tiss Y.
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PROOF. Now we can take the constants ¢, = bq = 0 in equality (4) and
s0 the factor in inequality (5) becomes 1.

Using Lemma 10 and Theorem 12 the following version of Theorem 11
for Gelfand-Shilov spaces in several variables can be proved: let d € N,
for k € {1,...,d} let Q, be the multiplication operator in Lz(Rd) by
the function x — x, and let P, be the Fourier transform of Q, , that is,
P = F"leﬁ‘. Let a;,...,a4, B),..., B; > 0 and suppose a; + B, > 1
for all k. Then

p ’""ﬂ —
Sa:,...,a: _Sal,...,ad,ﬂl,...,ﬂd(Ql’ s Qg Py s By)

d d
=) S, (@) N N Sp (P)-
k=1

k=1

CoROLLARY 13. Let X,, ..., X; be commuting operators in a Hilbert
space defined on a common invariant domain. Suppose all operators
X,,..., X; are Hermitian or skew-Hermitian. Let A,,...,4; > 0. Then

d
Sty Ko oo Xg) = My 53, (K3) -

COROLLARY 14. Let A, ..., A, be strongly commuting self-adjoint oper-
ators in a Hilbert space, that is, self-adjoint operators whose spectral projec-
tions commute, or equivalently, self-adjoint operators whose Cayley transforms
commute. Let A, ...,4;>0. Then

d
Sy, i oo 4 = (18, (4,).
k=1

L2

ProoF. For k € {1, ..., d} let X, be the restriction of 4, to D*(4,,
..., 4,). By Corollary 13 we obtain Sim-,ld(Xl ey Xy) = ﬂ‘,f=l Slk(Xk).
Since D¥(4,, ..., A;) =i, D™(4,) , the corollary follows.

REMARK 15. Theorems 8, 12 and Corollary 13 and their proofs are as well
valid with anticommutators instead of commutators.

4. Gevrey spaces, Lie algebras of operators
and their ideals

In this section we present several conditions such that equality (1) holds
in case there are sufficiently many ideals. (cf. Corollary 9.) Let d,,d, € N
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andlet X,,..., X 4 Y,,..., de be skew-Hermitian operators in a Hilbert
space defined on a common invariant domain. Suppose

[X;, Yj] € span({Y,, ..., de})

forall ieV,:={1,...,d;} and jeV,:={1,...,d,}. In the proofs of
intersection theorems of the form
ll,...,ldl,ul,...,ydz(xl SRR Xd, 1 SERTR de)
=S}.‘,...,141(X1’ cees Xdl)nSu\’_._’”dz(Yl, cees de),

we want to write X Yﬁ as a sum of terms of the form cY;X y To this end,
for a, o' € M(V,) define o' < a if o' is obtained by deleting indices from

the multi-index a. Let a\a' be the complementary part in . Moreover,
for a = (j;, ..., Jj,) € M(V,) define D* by

D = adel...ade".

The following lemma is due to Nelson ([11, Lemma 2.1]).

LEMMA 16. Let o € M(V)) and B € M(V,). Then

a\a'
XY= > D (YpX,.
o' eM(V,)
a'Sa

If [X;, Y;]1€span({Y,, ..., Y;}) forall k, j, we obtain that D"‘(YB) is
a sum of Yy . In order to determine which y occur, we introduce the concept
of positive mutation. A positive mutation is a function t: ¥, x ¥, = N, such
that
(v, w)=0 forallv,weV, withv<w.
Let a, p € M(V,) and k € N,. We say that o is connected with B via
a positive mutation of length k if there exists a positive mutation 7 on ¥,

such that
lexll,, + Z T(w,v) - Z (v, w)=|Bl, forallvelV,,
w>v w<y
Z (v, w)=k.
v, wel,

REMARK. If « is connected with # via a positive mutation of length
k , then in general it is not true that B is connected with a via a positive
mutation of length k. Also the positive mutation 7 need not be unique and
it is well possible that « is connected with B via a positive mutation of
length ! with /e N, [ #k.
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LeEmMA 17. L Let o, B € M(V,) and let k € N,. Suppose o is connected
with B via a positive mutation of length k. Then || = |8]l.

ILLetneN, oy,...,a,,B,..., B, € M(V,) andlet k, ... , k, € N;.
Suppose «; is connected with B; via a positive mutation of length k; for all
ie{l,...,n}. Then {a,,...,a,) is connected with (B,, ..., B,) viaa

positive mutation of length Y;_ k; .

IL Let o, B,y € M(V,) and let k,l € N,. Suppose o (respectively
B) is connected with B (respectively y) via a positive mutation of length k
(respectively 1). Then « is connected with y via a positive mutation of length
k + 1. (Transitivity.)

ProoF. I: trivial, II: induction, III: trivial. (Take 1 =1, +1,.)

LeEMMA 18. 1. There exist constants M > 1 and cz,y € R, where a €
M(V,) and B, y € M(V,), 18Il =iyl such that

(6) D(Yp) = S ¢ Y, forallae M(V))and B € M(V,),
g
trli=

(7)
5 1 < (MBI for all a € M(V;) and B, y € M(V,) with ||B]| = |17]|.
IL. Suppose [X,, Y] € span Y, .. Yj}) forall i e{1,...,d,} and
je{l,...,d)}. T hen the constants cﬂ y, in I can be chosen such that in
addition: for all o€ M(V)) and B,y € M(V,) with cﬂ # 0 we have that
B is connected with y via a positive mutation of length ||a||

ProOOF. There exist (possibly non-unique) constants ¢; ik € R, where
i€V, and j, k € ¥, such that

d,
(8) [Xi’ lezzci,j,kyk
k=1

forall ie V| and j€V,. Let M0:=1+max{|ci,j’k|:ieVl, J,keV}.
Forall ,7€M(V,) take ¢}’ :=1if B =7y and ¢}, :=0 if §#y. Take
C?),( =0 forall a € M(Vl)\V," . Then (6) and (7) hold for all a € M(V))
and f,y € M(V,) suchthat a=() or f=() or y=().

Let m € N. Now we want to choose suitable constants c"’y such that
(6) and (7) hold for all a« € M(V]) with a # () and B,y € M(V,) with

Bl = llyl =m. Let i e V;, p € {l,...,m} and let k € V,. For
8=(s..sJ,) €EVy C M(V,) define
.&,k(a)::(jla-“ajp_l’k9jp+17'~-:jm)
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and
&.p, k((S) =Gk

Let n€N, ae V] andlet B €V,". Let a-(z ..., 1,). It follows by
induction to n that

m dz
Da(Yﬂ) Z Z Z gl »Pp> k (ﬂ).gin—l’pn—l’kn—](f‘pn’kn(ﬂ)).“
p=lk=1 p=1lk=1
,l,pl, (fp2 k, o- f;’n»"n(ﬂ))yfp,,k.°"'°ﬂ,..k,.(ﬂ)'
Now the definitions of ¢; ,, with y € V," speak for themselves. For y € V,"

we define

oy = D 8 o kB & ok k(B
il,pl,k,(fpz,k2 f;;",kn(ﬂ))

where the sum is over all p,,...,p, € {1,...,m} and k, ... ,k, €
such that y = f;’pkl 0.--0 fp"’k"(ﬂ). This proves (6), and clearly |c;’y|
m"d; My = (d, M| BI)'" .

IL. Now suppose that [X;, Xle({Y;,...,Y;}) forall ieV, and j€V,.
Then the constants in (8) can be chosen such that ¢ jx=0 forall j,k eV,
with k > j. We define c; , asin L Let a € M(V}), B,y € M(V,) and
suppose cﬂ # 0. We may as well assume that a # (), f#() and y # ().
Let m:= l|ﬂ|| = |7l andlet i ,...,i, €V, besuchthat a=(i,...,1,).
Letf andgpkbeasml

Letd (Jys-orsJm) € V)" letie Vi,pe{l,...,m}, k €V, and sup-
pose g; , ;(6) # 0. Then Cij, ok # 0. This implies that k < j, and so J =
(Jys+eesJps ooy Jp) is connected with f ,(6) = (i, ..o’ Jpuys Ky dpyys

.. J,,) Vvia a positive mutation of length 1. (Take as mutation (v, w):=1
if v=j, and w =k and (v, w) := 0 otherwise.)

Since cp # 0 there exists p,,...,p, €{l,..., m} and k,,... , k, €
V, such that

[pk(ﬂ)g

and

£
<

P> (f k(ﬂ)) & pl,kl(f;,z,kz°'”°f;,",kn(ﬂ))960

v=f, w0 o dy o (B

Then g, , ,(8) # 0 and...and g , \ (fy 4 oo f ¢ (B) # O
Because | 8. ., .k, (B) # 0 we obtain that B is connected with f & (B
via a pos1t1ve mutation of length 1. Because g, bk _1( f (,B)) # 0
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we obtain that f, , (B) is connected with f, Lk _,(fp . (B)) via a pos-
itive mutation of length 1. Then by Lemma 17.III, 8 is connected with

j; . l( j; k (B) via a positive mutation of length 2. By induction, f§ is
connected w1th j;,“ k, -0 j;, k (B) = y via a positive mutation of length
n=lalf.

LEMMA 19. Let B, ye M(V,), let j €N, andlet 0 < p, < p, <--- <
Ky, - Suppose B is connected with y via a positive mutation of length j.
Then

y!/‘ < (zdzu,,z)llﬂllﬁﬂ!u .

ProoF. In this lemma we write d := d,. Let 7 be a positive mutation on
¥V, such that

81, + z Ty~ Z T, » =1I?ll, forallvel,

w>v w<v

Z Ty,w™

v,wev,

and

where 7, , = t(v,w), for all v, w € V,. Then by the inequalities
(n+m) <2™"nim! and (n —m)! < n'm!~" we obtain
u u u
= (I8l + Tyttt T OV I8l + T30t +T; 5~ T, )0

7
. ("ﬂ“d —Tg1— Td,d—l)! ‘

< @) VIR L) g, (g 1
uN(d=2) (| Bl 475 34414 5) 7 u u
(2 l) 27%3,2 d2"ﬂ"2| 213 2' “'Td’z! 2.12,1' 2,
By 1—Ha -k
RN V-] Flas FIPLSE N PR AL
1w

< (244yA0BI 1Bl D o Torw) | )

T
v,wey, vV,
v>w

< (2dﬂd)"p"+lﬂ'ﬂ .

Note that the ordering of the u’s is essentially used in the last inequality
only.

LEMMA 20. Let p € N and kl,...,kp,j,,...,jp €Ny. Let j,:=0.
Let k:=k,+---+k,. Suppose j, <k, +j,_, forall ie{l,...,p}. Then

) B (0 S —
-]l .lp (k +Jo Jl)! (kp+]p_1—]p)!
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PROOF.

(kl +jo) (kp+jp—1)
_ PARRA: <k2+j1)m(kp+jp_l)'i
(ky =tk + G, = 3N\ Ky ky )y}
< ' kl!'“kp!. . (k2+k1)...(kp+"'+k1)L
= (k, _11)!"'(kp +Jp1 "‘Jp)! k
_k 1 1

This proves the lemma.

We now prove the main theorem of this section.

THEOREM 21. Let d,,d, €N andlet X, ..., Xd, Y, oo, de be skew-
Hermitian operators in a Hilbert space defined on a common invariant domain.
Suppose

[X;,Y]Je span({Y,, ..., de})
forall ie{1,...,d} and je{1,...,d,}. Let 4, ... ,Adl > 1 and let
05#1 SS#dz Then

S, (X s Xg s Yy Y )

Ueres Ay s By ses gy VLT
=S/11,‘-~,14,(X1 yaens Xdl)nsum-,#dz(yl’ cees de)
in the following two cases:
L Hy=-=Hg.
IL [X;,Y] € span({Y, ,...,Yj}) fJorall i € {1,...,d,} and j €
{1,...,d,}.

Note that u ; may be taken smaller than 1.

ProoF. Let V) :={1,...,d,}, V,:={1,...,d,} andlet M > 1 and let
a .
g be asin Lemma 18. Let u € Sl.,-wlal(Xl e Xdl)ﬂSﬂl,_._,”dz(Y y eres

Y
de) . Then there exist ¢, ¢t > 0 such that

X ul|l <ct’™o® forallae M(V),
a 1
IYgull < ct"?g*  for all 6 € M(V,).

Let peN, o,...,a, € M(V}) and B,..., B, € M(V}). Let Z :=
Xa, Y,,,l o.--0X Y, . We will consider (Zu, u). By Lemmas 16 and 18 we
P 4
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obtain

xy,= ¥ ¥ &g9rx,

o' eEM(V,) YEM(V))
o'<a =141

forall a € M(V)) and B € M(V,). So Z is the sum of

3\o; a\ap
Cﬂ] 71 ﬂ Y ~~:7p)X;
where the sum is over all (51 € M(V,) with 6; < 4, and 4, := a, and
all y, € M(V,) with ||,]| = [IB,]l, over all &, € M(V,) with J, < 6,
and J, := (J,, a,), and all 7, € M(V) with |lp,|| = [IB,ll, ..., over all
8, € M(V,) with & <4, and 8, := (5, ,, @,), and all y, € M(V,) with

||yp|| =1B,ll. Consxder one term of the sum
5 \o 5,\9,
ﬂl w68, Y(yl,.--,}',)X,’,

which is not zero and which corresponds to the tuple J;, 7, ..., 51', s Yy
Let j, := ||6;|l, k; := loyll and m; := ||B;|| = |Iy,|| forall i e {1,...,p}.
Let j, := 0. Let k := k1+~~+kp and m:=m; +---+m,. Let a:=
(@, ...,a,), B:=(B,.... B,) and y:=(y;,...,7,). Then j, <|5,) =
ki+j,_,,forall ie{l,...,p}. Moreover, k = |lo|| and m = ||B|| = ||7||.
By Schwarz’ inequality we obtain that

Yy, .....p 0 Xartt> 0] = (Xt Yyett)| < | Xgoull | Vel

< c2t||¢$ ||+m§ !A . }’!ﬂ 2 k+m5 ' }}!#.

Let [(v) := |lall, — ||6;|| for all v € V. Then I/(v) > 0 and ZUGV =
k- Jp- So

st <ot I (1(d )
<ottt )
< ol 28R e — j

This is the only place where we use that 4,,..., 4 d, >1.

Next we estimate the factor ! in the cases I and IL

Case I Suppose p; = --- = p,; . Then o< Iple = 1B <
2Hahm gk

Case II. Suppose [X;, Yj] € span({Y,, ..., Yj}) andall i€V, and j €
V,. This case needs more care. Now we can use Lemma 18.1I and so we
may assume that the constants c;’ , are as in Lemma 18.II. Recall that we
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5\S,
are considering a non-zero term of a large sum. So the coefficients cﬂ'\ ,

are not zero for all ;i € {1,...,p}. Hence by Lemma 18.1I we obtain
that B, is connected with y; via a positive mutation of length ||6,.\J,.||
k,+ j;_; — Jj;- Therefore by Lemma 17.11, 8 = (B, ..., B,) 1s connected
with y = (y,, ..., yp) via a positive mutation of length k — jp . But then by
Lemma 19, .
y!u < (2dzydz)m+k—;pﬂ!p < (2d2”dz)m+kﬂ!”_

Having estimated y!* in the two cases we obtain that y!* < (2%#4)ktm g1k |

Then

1

(Y, a!l-ﬂ!”,

(Pysees %
where b, := 291 |

We count the number of terms in the sum. There are ( multi-
indices &, with &' < &, and |8/} = j, for all i € {1,...,p}. There
are d,* multi-indices y; € M(¥,) with ||| = [|8,]| = m;. Furthermore,
|c5\6 | < (Mm, )"‘5\‘S h= = (Mm, )k“' )i forall i €{1,...,p}. Hence we
obtam by the triangle inequality and Lemma 20:

yXgiu, u)| < Cz(blt)k+m(k /2

ki*’ji—l )

k+jy ki

(Zu, u)| < Z Z (k +]0) (kpﬂ;jp_l)dzmﬁ...mp
J =0

4
. (Mm,)"'”o"l s (Mmoo T2 (b e - - gt
< & (bydy, M) "ot - g1

kl+j0 k+jp 1 k' k+]o Ji N mkp+lp_|—jp
,.g;, ’ jZO Jpltk =) (K, +Jo Jot -k, + gy y = Jp)!

< Qeb,d,Mt)**"at* - p1* .

Since |{{a;, ..., e )|+ (B, ..., Bl = k + m, this proves the theorem by
Lemma 1.

COROLLARY 22. Let g be a real Lie algebra of skew-hermitian operators
in a Hilbert space defined on a common invariant domain. Let d,, d, € N and
lee X, ..., Xdl, Y,,..., de € g. Suppose g = span({X,, ..., Xdl, Y,
de}) and suppose that span({Y,, ..., de}) isanidealin g. Let 4, ..., ldl
>1 andlet u>0. Then

NURTRINC TP A% AP A
—Sl,,...,adl(Xv R Xdl)nsu,...,u(Yl’ » ¥g)
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Let g be a Lie algebra and let X,, ..., X, be a basis in g. The basis
X,,..., X, is called an ordered basis in g if

[X,, X;] € span({X,, ..., Xpui; »})

for all i,j € {1,...,d}. Not every solvable Lie algebra has an ordered
basis; but every Lie algebra which has an ordered basis is solvable. Every
nilpotent Lie algebra has an ordered basis. (For example, any Jordan-Hdélder
basis.)

COROLLARY 23. Let g be a real Lie algebra of skew-Hermitian operators

in a Hilbert space defined on a common invariant domain. Let X, ..., X,
be an ordered basis in g andlet A; > 1 and A;_| >---> A, > max(4;, 1) >
A, >0. Then

S

1

d
...,ld(Xl’ s Xg) = ﬂ S}.k(Xk)'
k=1

5. Non-triviality of certain Gevrey spaces

In this section we present several Gevrey spaces which are dense in the
corresponding Banach space. Let n be a representation of a Lie group G
in a Banach space E. For each X in the Lie algebra g of G let dn(X)
denote the infinitesimal generator of the one parameter group ¢ — Texpix -
We emphasize that for X, Y € g the operators dn(X) and dn(Y) need not
have the same domain. In this connection there is the following theorem.

THEOREM 24. Let n be a representation of a Lie group G in a Banach
space E. Let X, ..., X, be a basis in the Lie algebra g of G. Then
Sy ..., (dr(X,), ... ,dn(X,)) is dense in E. Moreover, for all > 1 the
space S, (dr(X)), ..., dr(X,)) consists of all u€ E such that the map
x v m u is a Gevrey function of order A from G into E.

Prookr. See [11, Theorem 4] and [10, Proposition 1.5].
Now suppose the Lie group G is nilpotent. A basis X, ..., X, in g is
called a Jordan-Hélder basis in g if
[x;, Xj] € span({X,, ..., Xmin(i,j)_l})

for all i, j < d. Corollary 23 has the following form for unitary representa-
tions.
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THEOREM 25. Let m be a unitary representation of a nilpotent Lie group
G. Let X, ..., X, beaJordan-Hélder basis in g. Let ;> 1 and %,_, >
oo 2 A, 2 max(d,,1) > A, > 0. Then SA,,...,AJ(d”(Xl)’ s, dr(Xy) =

Mot S, (@n(X).

PROOF. Since D¥(dn(X,), ..., dn(X,)) = Ns_, D*(dn(X,)) by[7, The-
orem 1.1], the theorem follows immediately from Corollary 23.

The Gevrey spaces considered in the above theorem are dense in the
Hilbert space if 4; > 1 according to Theorem 24. In this section we prove
that these spaces are dense in the Hilbert space if 4,,...,4;>1 and 4, > 0.

In case the representation 7z is irreducible, we can even take 4, = 0.
Indeed, because X, belongs to the center of g and dn(X,) is closed, it
follows by Taylor, [14, Chapter 0 Propositions 4.3 and 4.5] that there ex-
ists o € C such that dn(X|) =al. So S, | (dn(X)),...,dn(X,)) =
Sy 1, .1dr(X)), ..., dn(X,;)) which is dense. In general, for non-
irreducible representations 7, the operator dz(X,) is not bounded.

Now let X,, ..., X; be a fixed Jordan-Holder basis in g and let = be a
(not necessarily irreducible) unitary representation of G in a Hilbert space
H. Let g, be the complexification of g and let G, be a connected sim-
ply connected complex Lie group with Lie algebra g.. (See [15, Theorem
3.15.1].) Let exp denote the exponential map from g, onto G,. Without
loss of generality we may assume that G = exp(g). For all k € {1,...,d}
define g, : C — G, by

8(z) := exp(zX,) (z€C).
Define g: c! - G. by

8(zy, .., z5) = g(z))---84(z,) (zy5...,2;,€C).

By [15, Theorem 3.18.11], the map g is an analytic diffeomorphism from

¢’ onto G, and the map g|g. is an analytic diffeomorphism from R’ into
G.

LEMMA 26. Let k € {1, ..., d}. Then there exists polynomials P, ;: ck/
— C, where j€{l,...,k=2},suchthatforall ze Candall t ,...,1,€C
we have

&(2)g(ty, ..., 1) =855 ..., 5,)
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with

S=U4+P (2,8, ) fi<k-1,

Sg—1 =4y
Sp=4 +2z,
5;=1; ifj>k.

ProoF. See [8, Lemma 5.1].

THEOREM 27. Let G be a nilpotent Lie group with Lie algebra g. Let ©

be a unitary representation of G in a Hilbert space H andlet X, ..., X,

be a Jordan-Holder basis in g. Let A€ (0, 1). Then S, |, (dn(X)),...,
dn(X,)) is a dense subspace of H .

PrRoOOF. We may suppose that G is connected and simply connected. Let
8., G., g and g be as above. Let the polynomials P, ; be as in Lemma
26. Let m be the maximum of the degrees of these polynomlals P, ;. Let

Py=p_, =0 and for k € {1,...,d} let p, == (1+m)*'(1 - ,1)“, let
q, := max(p,, mp,_,),and let 4, :=1-— qk_l . Observe that 4, = A. Then
4G > p > (1 —A)_' > 1 forall k € {2,,...,d}, hence 4, > 0. We
shall prove that ﬂ‘,;lSlk(dn(Xk)) is dense in H. Since all 4, < 1, then
also Sll(dn(X N ﬂz=2 S,(dn(X,)) is dense in H . Hence by Theorems 24

and 25, S, | (dn(X)),...,dn(X,))= (dn(Xl))nﬂk ,S,(dr(X,)) is
dense in H.

Consider the following assertion.

There exists a dense set Z, of LI(G) such that

d
n(f)(H) c ) S, (dn(X,)) forall feZ,.
=1

Because the representation 7 is continuous, .. z, n(f)(H) is dense in
H and having proved this assertion, the proof of the theorem is completed.

Let Z be the set of all entire functions F on C° for which there exist
constants A, B, C > 0 (depending on F) such that

d d
|F(zy, ..., z,)| < Cexp[-4) |Rez, [ + B [Imz,|*]
k=1 k=1

forall (z,..., z,) € C? . Since Pys--->,P;>1,theset {Flga:FeZ} is
dense in Ll(Rd) according to [5, Section IV.9]. Let Z, := {f € C%: foge
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Z} and Z,:={fl;: f€Z,}. By[13, page 90], the map f — [o. f(g(2))dz
is a Haar integral on G, hence the set Z, is dense in LI(G) . Similarly, Z,

is dense in LI(GC) and in particular, a subset of Ll(Gc) .

Let fe€Z, ,let F:=fog andlet 4, B, C be constants corresponding
to F. Let k € {1,...,d}. There exists C; > 0 such that for all j €
{1,...,d} with j<k—-1,all t;,...,1; €R and all z€ C we have

k=1
| Ims;| < C (1 + Z |zl|'" + |z|’") )

I=j+1

I=j+1

k-1
|Res;| > |t,| - C, (1 + |t1|m+|z|m>

with s, := ¢, + P, (z,t;,,,..., t_;). Using the inequalities |a + b|® <
2°(lal® +|b®) and —|a—bff < -277|a’ +|b|® forall a, bR and p>1,
and using the fact that 1 < p, < --- < p,, we obtain by Lemma 26 and a

straightforward calculation that for all 7,,...,7,€R andall z€C,

d d
(@ (D)8t ..., 1)) < Cyemp [—Al Y1t + B S I+ C;|z1"k] ,
j=1 j=1

where 4, , B,, C,, C; are positive constants which depend onlyon 4, B, C,
C, and p,,...,p;. For z€C define T,f: G— C by

(T,f)(x) = f(g(2)x) (x€G).

Since mp;_, <p; forall je{l,...,d},wehave T,f € LI(G) forall z €
C. Hence the map ¢~ T,f from R into L (G) extends holomorphically
to an entire function from C into LI(G) of exponential order < g, . So the
map ¢+ L o(t Xk)( flg) =T_,f from R into LI(G) extends holomorphically
to an entire function from C into LI(G) of exponential order < g, =
(1-4,)~". Then by [9, Corollary 4.1], n(f|;)u € S, (dn(X,)) forall ue H.
This proves the assertion.

COROLLARY 28. Let n be a unitary representation of a nilpotent Lie group
G ina Hilbert space H. Let X, ..., X,; be a Jordan-Holder basis in the Lie
algebra of G. Let ,,...,4;> 1 andlet A, > 0. Then SAI,___,Ad(dn(Xl),
..., dn(X,)) is densein H.
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6. Example: the ax + b group

The ax+b group is the topological space G := (0, oo) x R endowed with
the multiplication (a, b):(c, d):=(ac,ad +b), (a,b),(c,d)eG. So G
is a Lie group which is isomorphic with the group of matrices of the form
(%) with a > 0 and b € R. Let y denote the embedding from G into

R By e:= (1, 0) we denote the identity in G. Define
I e
ayl e ayZ e

Then X, Y is a basis in the Lie algebra g of G and [X, Y] =Y. So by
Theorem 21.1I and [7, Theorem 1.1] we obtain for every unitary representa-
tion z in a Hilbert space, all A > 1 and all u > 0 that

S, (dn(X), dn(Y)) = S,(dn(X)) (S, (dn(Y)).

X:

The ax + b group has up to unitary equivalence two irreducible infinite
dimensional representations. For (a, b) € G there exists a unique unitary

map U(::, b) from LZ(R) onto L2(]R) such that

[U(f,b)f](x) = e f(x +loga) ae. x€R
for all f € C,(R). Then (a, b) — U; b) is a (continuous unitary) irre-
ducible representation of G in LZ(R). Let D be the skew-adjoint differen-
tiation operator in L’ (R). Let E be the multiplication operator in LZ(R)
of multiplication by the function x +— e, x € R. Then dU i(X y=D and
dU*(Y) = +iE.
For 4, st > 0 we shall consider the Gevrey space S; ,(dU™(X), dU*(Y))

=S, D, E). Since S; (D,E)C D*(D, E) c D*(D), every element of
S, ”(D, E) is infinitely differentiable.

LEMMA29. Let A, £ >0. Let f € SL#(D, E). Then thereexist C,t >0
such that for all k,l € N,:

IE*D' 11|, < &Rk,
PrOOF. By a classical Sobolev inequality we obtain for all k,/ € N :

\E¥D' £ < ¥/z/2|E*D' 1\, + V= ]2|DE*D' 1|,
< Y21 + )2 e

where ¢, t > 0 are some constants.
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Paley and Wiener ({12, Theorems I and IV]) have given a characterization
of the space S,(D) in terms of analytic functions. Because of our intersection
theorems, the characterizations of the spaces S, (D) as derived by Paley and
Wiener is useful in the characterization of the spaces S, X ”(D , E) where
u>0.

THEOREM 30. Let f € LZ(R). Then f € S,(D) is and only if there exist
t > 0 such that f can be extended to an analytic function F on the strip
{zeC:|Imz| <2t} and

o0
sup / |F(x + iy)lzdx < 00.
yE(—t,t) J -0

THEOREM 31. Let u > 0 and f € L*(R). The following conditions are
equivalent:

L fesS, (D, E),

II. f € S,(D) and there exist C,o,t > 0 such that f can be extended
to an analytic function F on the strip {z € C: |Im z| < 2t} and
|F(x+iy)| < Ce ™

forall xeR andall y € (—t, t).
Proor. I = II. This can be proved in the same manner as in [5, Section

IV.2] a characterization has been given for the space S{i .
II = 1. Let ke N. Then

JIeR ot x < VERIS I+ € [ e
R

<V2r|If I + uClo ™kt <

So f € S,(|E|'/*) = §,(E). (See Example 5.) Hence, by assumption, f €
Sy(D)n S#(E ). Now we use the intersection theorem in order to conclude
that f €S, (D, E).

x/n

COROLLARY 32. Let u > 0. Define W from LZ(R) onto LZ(R) by

W fi(x) := %f (%) ae. xeR

forall f e L*(R). Then W isa unitary map in L*(R) which maps S, (D, E)
onto S; ,(D,E).

COROLLARY 33. Let u > 0. Then the Gevrey space S, ”(D, E) is dense
in L}(R).
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LeMMA 34. The space S, (D, E) is trivial.

PRrROOF. Let f € Sl’o(D, E). By Lemma 29 there exist C, ¢ > 0 such

that |E*D'f)| < C/*'I' forall k,/ € N,. So f can be extended to an
analytic function F on the strip {z € C: |Im z| < t‘l}. Let x € R be such
that e* > . Then for all k € N, : €**|f(x)| < C{*, so |F(x)| = |f(x)| <
inf{C(te™™)*: ke N,} =0. Hence F=0 and f=0.

LEMMA 35. Let A € [0,1) and u > 0. Then the space S, u(D, E) is
trivial.

ProOF. Let f € S, ”(D, E). By Lemma 29 there exist C, ¢ > 0 such

that [|[E*D'f|| < C&Y ki1 for all k, [ € N,. As in [5, Section IV.2.2],
it follows that f can be extended to an entire function F for which there
exist 7, C; > 0 such that

; —ae*ltyely| T
|F(x +iy)| < Ce” %

forall x,yeR. Let z=x+iyeC. Then

. _ 1
Ik _ge™*It 4 27|x| T=X e——ae”/"—ae YK 2|y T2

|F(2)-F(iz)-F(~z)-F(~iz)| < Cle
Hence lim F(z)-F(iz)-F(—z)-F(—iz) = 0. By the Liouville theorem,

[z[—o0

F(z)-F(iz)-F(-z)-F(-iz) = 0 for all z € C. Then also F = 0 and
f=0.

At this point it is not known whether the spaces S, o(D, E) are trivial if
A > 1. This problem will be solved in the following lemma.

LEMMA 36. Let A > 1. Then the space S, (D, E) is dense in L:R). In
particular, the Gelfand-Shilov space Sé is a subspace of S, (D, E).

ProOOF. Let f € Sg. Then there exist ¢ > 0 such that f(x) =0 for all
x €R, |x|>t. Therefore, forall k € N;:

/n (€ fx0 P dx < (&) VamlfI?,

hence f € Sy(E). Obviously, f € Sg C S;(D). Therefore f € S,(D)N
So(E) . Using again the intersection theorem, we obtain that f € S, ’ oD, E).

We summarize the results of the previous lemmas and corollary.
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THEOREM 37. Let A, u > 0. Then the space S, u(D, E) is dense in LZ(R)
if and only if

A>land u>0 or A=1landu>0.
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