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One-Dimensional Rectifiable Sets

Almost all of the theory of one-dimensional rectifiable sets in the plane was
developed by Besicovitch in the three papers [62], [63] and [64]. Some gen-
eralizations are due to Morse and Randolph [352] and Moore [350]. For most
of the proofs of the results in this chapter, see [158, 190]. Several ideas
extend to higher dimensions, and in the next chapter we shall mainly discuss
the new ideas needed. We consider here only subsets of the plane although
essentially everything holds for one-dimensional rectifiable subsets of Rn.

3.1 Definitions and Tangents

One-dimensional rectifiable sets generalize rectifiable curves and they have
many properties that make this class flexible in a measure-theoretic sense and
useful in many applications. In particular,
- Every rectifiable curve is a rectifiable set.
- Countable unions of rectifiable sets are rectifiable.
- Subsets of rectifiable sets are rectifiable.
- Sets of zeroH1 measure are rectifiable.
- If for every ε > 0 there is a rectifiable set F ⊂ E withH1(E \ F) < ε, then E
is rectifiable.

These properties offer an immediate definition: E is 1-rectifiable if H1 al-
most all of it can be covered with rectifiable curves. We state it a bit differently:

Definition 3.1 A set E ⊂ R2 is 1-rectifiable if there are Lipschitz maps fi :
R→ R2, i = 1, 2, . . . such that

H1

⎛
⎜⎜⎜⎜⎜⎝E \

∞⋃

i=1

fi(R)

⎞
⎟⎟⎟⎟⎟⎠ = 0.
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10 One-Dimensional Rectifiable Sets

Next we shall see that rectifiable sets have, in an appropriate sense, the prop-
erties of rectifiable curves which we presented in Chapter 2. This is
actually rather easy, but more essentially only rectifiable sets have these prop-
erties. That is, each of the properties allows a converse statement.

We shall begin with tangents. Consider the following example. Let qi, i =
1, 2, . . . be all the points of the plane with rational coordinates and set E =
⋃∞

i=1 S i with S i = {x ∈ R2 : |x−qi| = 2−i}. Then E is 1-rectifiable andH1(E) <
∞. But it is dense in R2. So how can it have any tangents? Obviously it cannot
in the ordinary sense and we have to give a measure-theoretic definition of a
tangent. For a ∈ R2, s > 0, L ∈ G(2, 1), define the cone (angular sector)

X(a, L, s) =
{

x ∈ R2 : d(x, L + a) < s|x − a|
}

.

Definition 3.2 A line L ∈ G(2, 1) is an approximate tangent line of a set
E ⊂ R2 at a point a ∈ R2 if Θ∗1(E, a) > 0 and for every s > 0,

lim
r→0

r−1H1
(

E ∩ B(a, r) \ X(a, L, s)
)

= 0.

It is convenient to define the approximate tangents as lines through the ori-
gin. Then the geometric approximate tangent at a is the translate by a.

Now we immediately have that the above union E of the circles Si has an
approximate tangent at almost all of its points: each Si has an ordinary tangent
at all of its points and at almost all points it is an approximate tangent of E by
the density theorem, Theorem 1.1. Since rectifiable curves have tangents almost
everywhere, essentially the same argument shows that every 1-rectifiable set
with finiteH1 measure has an approximate tangent at almost all of its points.

The converse is not very difficult either. I give the idea assuming that E
has ordinary tangents almost everywhere. Then we can write E as a countable
union of a set of measure zero and sets F for which there exist s > 0 and
L ∈ G(2, 1) such that F \ X(a, L, s) = ∅ for a ∈ F. The set F is such that the
tangents in its points are close to a fixed line L. This implies that the restriction
of the projection PL to F is one-to-one with a Lipschitz inverse. Hence F =
(PL|F)−1(PL(F)) is rectifiable.

The case of approximate tangents causes technical difficulties, but the main
idea is the same. So we have

Theorem 3.3 If E isH1 measurable andH1(E) < ∞, then E is 1-rectifiable
if and only if it has an approximate tangent line at almost all of its points.

Definition 3.4 A set E ⊂ R2 is purely 1-unrectifiable if H1(E ∩ F) = 0
for every 1-rectifiable set F ⊂ R2 (or, equivalently, H1(E ∩ C) = 0 for every
rectifiable curve C).
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3.2 Densities 11

The proof of the following proposition is an easy exercise.

Proposition 3.5 If E is H1 measurable and H1(E) < ∞, then E = R ∪ P
where R is 1-rectifiable and P is purely 1-unrectifiable.

Example 3.6 A standard example of a purely 1-unrectifiable compact subset
of the plane is the self-similar Cantor set C obtained by choosing the squares
of side-length 1/4 in the corners of the unit square and continuing indefinitely.
That is, C = C1 × C1 where C1 is a symmetric Cantor set on the line of Haus-
dorff dimension 1/2. Then 0 < H1(C) < ∞. It is easy to check that C has no
approximate tangents.

Obviously all properties of rectifiable sets correspond to properties of purely
unrectifiable sets, and vice versa. In particular, E is purely unrectifiable if and
only if it has no approximate tangent at almost all of its points. But looking at
the above argument we can say more. We did not need large sectors B(a, r) \
X(a, L, s) in the complement of F; arbitrarily narrow ones were enough. This
leads to, although not quite trivially, [190], Theorem 3.29, or [321], Corollary
15.16,

Theorem 3.7 If E isH1 measurable and purely 1-unrectifiable andH1(E) <
∞, then for every L ∈ G(2, 1) and every s > 0,

lim sup
r→0

r−1H1(E ∩ B(a, r) ∩ X(a, L, s)) � s

forH1 almost all a ∈ E.

3.2 Densities

Next we look at density properties of rectifiable sets. We again get easily from
the area formula for Lipschitz maps that rectifiable sets have density 1 almost
everywhere. Also the converse holds:

Theorem 3.8 If E isH1 measurable andH1(E) < ∞, then E is 1-rectifiable
if and only if Θ1(E, x) = 1 forH1 almost all x ∈ E.

This is where Besicovitch used connectivity and Theorem 2.1 essentially.
He did it in terms of circle pair regions

U(x, y) = U(x, |x − y|) ∩ U(y, |x − y|), x, y ∈ R2.

To see how they appear, notice that if C ⊂ R2 is compact and U(x, y) ∩ C � ∅
for x, y ∈ C, then C is connected. If not, C is the union of two disjoint compact
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12 One-Dimensional Rectifiable Sets

sets C1 and C2. Let xi ∈ Ci with |x1 − x2| = d(C1,C2). Then C ∩U(x1, x2) = ∅,
which contradicts our assumption.

Besicovitch took the density 1 property as the starting point and defined a
set to be regular if the conclusion of Theorem 3.8 holds. The term ‘rectifiable’
was introduced by Federer in [199], although his terminology too is somewhat
different from mine, see [203, 3.2.14].

With some more work one can then prove, see [190, Lemma 3.22],

Lemma 3.9 Let E be H1 measurable and H1(E) < ∞. Suppose that α > 0
and F ⊂ E is compact for whichH1(F) > 0 andH1(E∩U(x, y)) > α|x−y| for
x, y ∈ F. Then there is a continuum C such that 0 < H1(C ∩E) ≤ H1(C) < ∞.
In particular, E is not purely 1-unrectifiable.

Theorem 3.8 follows from

Theorem 3.10 If E is H1 measurable, H1(E) < ∞ and Θ1
∗(E, x) > 3/4 for

H1 almost all x ∈ E, then E is 1-rectifiable.

Once we have Lemma 3.9 available, the proof of Theorem 3.10 is simple: if
it is false, we can find, using also Theorem 1.2, a compact subset F of E with
H1(F) > 0 and positive numbers α and r0 such that

H1(E ∩ U(x, r)) >
(

3
4 + α

)

2r for x ∈ F, 0 < r < r0,

and

H1(E ∩ B) ≤ (1 + α)d(B) whenever F ∩ B � ∅ and d(B) < r0.

If d(F) < r0/3, then for x, y ∈ F with r = |x − y|,

H1(E ∩ U(x, y))

= H1(E ∩ U(x, r)) +H1(E ∩ U(y, r)) −H1(E ∩ (U(x, r) ∪ U(y, r)))

> 2 ·
(

3
4 + α

)

2r − (1 + α)3r = αr = α|x − y|.

This shows by Lemma 3.9 that E is not purely unrectifiable, which is enough.
The bound 3/4 is not sharp; Preiss and Tiser [384] improved it by small

ε > 0. They did it in general metric spaces, and we shall return to this in
Chapter 7. The best bound is not known but it is expected to be 1/2. This is the
famous Besicovitch 1/2-problem:

Conjecture 3.11 If E is H1 measurable, H1(E) < ∞ and E is purely 1-
unrectifiable, then Θ1

∗(E, x) ≤ 1/2 forH1 almost all x ∈ E.

Partial results, with some extra conditions on E, were obtained by Farag
in [192] and [194].
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Besicovitch used circle pairs to prove a stronger form of Theorem 3.8: rec-
tifiability follows from the existence of density. So we have

Theorem 3.12 Let E beH1 measurable withH1(E) < ∞. Then the following
are equivalent:

(1) E is 1-rectifiable.
(2) Θ1(E, x) = 1 forH1 almost all x ∈ E.
(3) Θ1(E, x) exists forH1 almost all x ∈ E.

3.3 Projections

When discussing tangents, we saw that rectifiable sets have projections of pos-
itive length on tangent lines. A closer look at that argument shows that if E is
1-rectifiable with H1(E) > 0, then there is at most one line L ∈ G(2, 1) such
thatH1(PL(E)) = 0. We can characterize rectifiable sets via projections, but it
is more natural to state this for purely unrectifiable sets:

Theorem 3.13 If E is H1 measurable and H1(E) < ∞, then E is purely
1-unrectifiable if and only ifH1(PL(E)) = 0 for almost all L ∈ G(2, 1).

What is left to prove is that any purely 1-unrectifiableH1 measurable set E
with H1(E) < ∞ projects to measure zero in almost all directions. This is the
famous Besicovitch projection theorem. Here are some ideas for the proof.

The essence of the proof is to study how E behaves close to lines. Fix first
L∈G(2, 1). Let δ>0 and split E into three parts. The first set E1(δ, L) consists of
points a ∈ E such that only a little measure is approaching a in the direction L:

lim sup
s→0

sup
0<r<δ

(sr)−1H1(E ∩ B(a, r) ∩ X(a, L, s)) = 0.

The second set E2(δ, L) consists of points a ∈ E such that a lot of measure is
approaching a in the direction L:

lim sup
s→0

sup
0<r<δ

(sr)−1H1(E ∩ B(a, r) ∩ X(a, L, s)) = ∞.

It might be that nothing else is needed. Maybe almost all pairs (a, L) must
satisfy one of these properties. But that is not known. What saves us is that it
suffices to add another property. The third set E3(L) consists of points a ∈ E
such that E ∩ (L + a) ∩ B(a, δ) � ∅ for all δ > 0.

The last property is easy to deal with because it is rather simple to show that
for any set F ⊂ R2 with H1(F) < ∞, card(F ∩ (L + x)) < ∞ for almost all
x ∈ L⊥. HenceH1(PL⊥ (E3(L)) = 0.
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14 One-Dimensional Rectifiable Sets

The second case also is fairly easy. It is only slightly more complicated
than the case where the cones X(a, L, s) are replaced by cylinders {x ∈ B(a, r):
d(x, L + a) < sr}. If many of these have big measure as compared to sr, then
applying Vitali’s covering theorem on L⊥, we find thatH1(PL⊥ (E2(δ, L))) = 0.

We have already dealt with the first set: by Theorem 3.7 H1(E1(δ, L)) = 0.
Then after some technicalities we are left to show that for almost all (a, L) if a
is the only point of E on E ∩ B(a, δ) ∩ (L + a), then

lim sup
s→0

sup
0<r<δ

(sr)−1H1(E ∩ B(a, r) ∩ X(a, L, s))

is either 0 or∞.
For this we can use a general lemma due to Mickle and Radó [345]:

Lemma 3.14 If ψ is an outer measure on Rn and A is Lebesgue measurable
with ψ(A) = 0, then for Ln almost all x ∈ A, lim supr→0 r−nψ(B(x, r)) is either
0 or∞.

The proof is a simple covering argument combined with the Lebesgue density
theorem. This lemma is applied on G(2, 1), identified with S 1, and we leave it
to the reader to figure out how ψ is chosen, or see [321, Chapter 18]. Notice
that we do not, and we cannot, assume that Borel sets are ψ measurable.

The proof sketched above is the original Besicovitch proof from [64],
but modified and polished by several people. No essentially different proof
is known. Tao [406] proved a quantitative multiscale version of Besicovitch’s
projection theorem, but he did this quantizing Besicovitch’s proof. Davey and
Taylor [132] proved a non-linear version of Tao’s result.

As mentioned above, the third alternative E3(L) may not be needed at all;
the following might be true:

Conjecture 3.15 If E isH1 measurable, purely 1-unrectifiable andH1(E) <
∞, then forH1 almost all a ∈ E almost all lines through a meet E only at a.

Although this is not known, Csörnyei and Preiss [122] disproved a related
conjecture which asked whether it is true that for everyH1 measurable E with
H1(E) < ∞ almost all lines through almost all points of E meet E in a finite
set. Their set contains non-trivial rectifiable and purely unrectifiable parts.

The analogue of Crofton’s formula (2.4) extends from rectifiable curves to
1-rectifiable sets with routine arguments.

3.4 Analyst’s Travelling Salesman Problem

This topic is discussed in the books [67], [378] and [415].

https://doi.org/10.1017/9781009288057.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009288057.004


3.4 Analyst’s Travelling Salesman Problem 15

An analogue of the classical travelling salesman problem for general compact
planar sets is: when can all points of a compact set F ⊂ R2 be traversed via a
rectifiable curve and how long must such a curve be? Jones proved in [263] the
following theorem. Let F ⊂ R2 be compact. For any square Q set

βF(Q) = inf
L a line

sup{d(x, L)/d(Q) : x ∈ F ∩ Q},

meaning that βF(Q) = 0 if F∩Q = ∅. LetD be the family of all dyadic squares
in the plane.

Theorem 3.16 A compact set F ⊂ R2 is contained in a rectifiable curve if
and only if the Jones square function

β(F) :=
∑

Q∈D
βF(3Q)2d(Q) < ∞.

The length of the shortest such curve is comparable to β(F) + d(F).

If β(F)<∞, the key to the construction of the curve is the Pythagoras theo-
rem. Suppose that a line segment I is a good approximation of F inside a rect-
angle of side lengths d and βd. To get good approximations in the next smaller
scale, we might need to replace I by two line segments I1 and I2 with one
common endpoint and the other endpoints common with those of I. Then the
increase of length is roughly d(

√

1 + β2−1) ∼ β2d. The complete construction
is not easy, but it is easier than the proof of the converse statement.

Theorem 3.16 was extended to Rn by Okikiolu [370]. Schul generalized it
in [394] to infinite-dimensional Hilbert spaces. This means that he showed that
the constants are independent of n. A different proof of Theorem 3.16 and a
nice treatment of this topic can be found in the book by Bishop and Peres [67].
They use arguments involving Crofton’s formula.

Jones’s theorem can easily be stated in integral form which leads to the
following characterization of 1-rectifiable sets. Since sets of measure zero can
affect greatly the β numbers, it is better to state it for purely unrectifiable sets.
Let

βE(x, r) = inf
L

sup{d(x, L)/r : x ∈ E ∩ B(x, r)}. (3.1)

Theorem 3.17 If E ⊂ R2 isH1 measurable andH1(E) < ∞, then E is purely
1-unrectifiable if and only if

∫

R2

∫ ∞

0
βF(x, r)2r−2 dr dx = ∞

for every Borel set F ⊂ E withH1(F) > 0.
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16 One-Dimensional Rectifiable Sets

For a pointwise characterization in higher dimensions, see Theorem 4.20.
We shall briefly mention another related way to characterize rectifiability in

terms of Menger curvature c(x, y, z), which also measures approximation by
lines. For three points x, y, z in the plane, it is defined as the reciprocal of the
radius of the circle passing through these points. Thus c(x, y, z) = 0 if and only
if the points are collinear. More quantitatively by elementary geometry,

c(x, y, z) =
2d(x, Ly,z)

|x − y||x − z| =
4A(x, y, z)

|x − y||x − z||y − z| , (3.2)

where Ly,z is the line through y and z and A(x, y, z) is the area of the triangle
with vertices x, y and z.

Theorem 3.18 If E ⊂ R2 isH1 measurable,H1(E) < ∞ and
∫

E

∫

E

∫

E
c(x, y, z)2 dH1x dH1y dH1z < ∞, (3.3)

then E is 1-rectifiable

This was first proved by David (unpublished) and then by Léger in [288].
In [410], Tolsa gave a different proof based on the analytic capacity.

The main problem for proving Theorem 3.18 is that we do not have AD-
regularity, or even positive lower density. With such assumptions the proof
would be much easier. To get a vague idea, suppose that E is AD-1-regular,
xi ∈ E, i = 1, 2, 3, |xi − x j| = 2r, when i � j, and βE(xi, r) ∼ 1. Then with some
c > 0 and Ai = E ∩ B(xi, r) \ B(xi, cr),

∫

A1

∫

A2

∫

A3

c(x, y, z)2 dH1x dH1y dH1z ∼ r.

Clearly this cannot happen too often if (3.3) holds.
Lerman and Whitehouse [290] and Meurer [344] proved higher-dimensional

versions.
We shall return to this concept in several later chapters.
Here is another related square function: Let Γ be a Jordan curve in the plane

and let Ω+ and Ω− be its interior and exterior domains. For x ∈ Γ, r > 0, let
I+(x, r) and I−(x, r) be the longest arcs of ∂B(x, r) contained in Ω+ and Ω−,
respectively. Set

ε(x, r) = max{|πr −H1(I+(x, r))|, |πr −H1(I−(x, r))|}/r

and define

E(x)2 =

∫ 1

0
ε(x, r)2/r dr.
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3.4 Analyst’s Travelling Salesman Problem 17

Jaye, Tolsa and Villa [260] proved the following theorem (and more) solving
an old ε2 conjecture of Carleson:

Theorem 3.19 Let Γ be a Jordan curve. Then forH1 almost all x ∈ Γ, Γ has
a tangent at x if and only if E(x) < ∞.

That E(x) < ∞ at almost every tangential point x of Γ is classical, so these
authors proved the converse. The proof uses methods developed in connection
with Theorems 3.16 and 3.18, but a lot of new ideas and techniques are also
required.
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