
CHAPTER ONE

Introduction
Tim Roughgarden

Abstract: One of the primary goals of the mathematical analysis of
algorithms is to provide guidance about which algorithm is the “best”
for solving a given computational problem. Worst-case analysis
summarizes the performance profile of an algorithm by its worst
performance on any input of a given size, implicitly advocating for
the algorithm with the best-possible worst-case performance. Strong
worst-case guarantees are the holy grail of algorithm design, provid-
ing an application-agnostic certification of an algorithm’s robustly
good performance. However, for many fundamental problems and
performance measures, such guarantees are impossible and a more
nuanced analysis approach is called for. This chapter surveys several
alternatives to worst-case analysis that are discussed in detail later in
the book.

1.1 The Worst-Case Analysis of Algorithms

1.1.1 Comparing Incomparable Algorithms

Comparing different algorithms is hard. For almost any pair of algorithms and
measure of algorithm performance, each algorithm will perform better than the other
on some inputs. For example, the MergeSort algorithm takes �(n log n) time to sort
length-n arrays, whether the input is already sorted or not, while the running time of
the InsertionSort algorithm is �(n) on already-sorted arrays but �(n2) in general.1

The difficulty is not specific to running time analysis. In general, consider a com-
putational problem � and a performance measure PERF, with PERF(A,z) quantifying
the “performance” of an algorithm A for � on an input z ∈ �. For example, � could
be the Traveling Salesman Problem (TSP), A could be a polynomial-time heuristic for
the problem, and PERF(A,z) could be the approximation ratio of A – i.e., the ratio
of the lengths of A’s output tour and an optimal tour – on the TSP instance z.2

1 A quick reminder about asymptotic notation in the analysis of algorithms: for nonnegative real-valued
functions T(n) and f (n) defined on the natural numbers, we write T(n) = O(f (n)) if there are positive constants c
and n0 such that T(n) ≤ c · f (n) for all n ≥ n0; T(n) = �(f (n)) if there exist positive c and n0 with T(n) ≥ c · f (n)
for all n ≥ n0; and T(n) = �(f (n)) if T(n) is both O(f (n)) and �(f (n)).

2 In the Traveling Salesman Problem, the input is a complete undirected graph (V,E) with a nonnegative
cost c(v,w) for each edge (v,w) ∈ E, and the goal is to compute an ordering v1,v2, . . . ,vn of the vertices V that
minimizes the length

∑n
i=1 c(vi,vi+1) of the corresponding tour (with vn+1 interpreted as v1).

1

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Or � could be the problem of testing primality, A a randomized polynomial-
time primality-testing algorithm, and PERF(A,z) the probability (over A’s internal
randomness) that the algorithm correctly decides if the positive integer z is prime. In
general, when two algorithms have incomparable performance, how can we deem one
of them “better than” the other?

Worst-case analysis is a specific modeling choice in the analysis of algorithms,
in which the performance profile {PERF(A,z)}z∈� of an algorithm is summarized
by its worst performance on any input of a given size (i.e., minz : |z|=n PERF(A,z) or
maxz : |z|=n PERF(A,z), depending on the measure, where |z| denotes the size of the
input z). The “better”algorithm is then the one with superior worst-case performance.
MergeSort, with its worst-case asymptotic running time of �(n log n) for length-n
arrays, is better in this sense than InsertionSort, which has a worst-case running time
of �(n2).

1.1.2 Benefits of Worst-Case Analysis

While crude, worst-case analysis can be tremendously useful and, for several reasons,
it has been the dominant paradigm for algorithm analysis in theoretical computer
science.

1. A good worst-case guarantee is the best-case scenario for an algorithm, certifying
its general-purpose utility and absolving its users from understanding which inputs
are most relevant to their applications. Thus worst-case analysis is particularly
well suited for “general-purpose” algorithms that are expected to work well
across a range of application domains (such as the default sorting routine of a
programming language).

2. Worst-case analysis is often more analytically tractable to carry out than its
alternatives, such as average-case analysis with respect to a probability distribution
over inputs.

3. For a remarkable number of fundamental computational problems, there are
algorithms with excellent worst-case performance guarantees. For example, the
lion’s share of an undergraduate algorithms course comprises algorithms that run
in linear or near-linear time in the worst case.3

1.1.3 Goals of the Analysis of Algorithms

Before critiquing the worst-case analysis approach, it’s worth taking a step back to
clarify why we want rigorous methods to reason about algorithm performance. There
are at least three possible goals:

1. Performance prediction. The first goal is to explain or predict the empirical perfor-
mance of algorithms. In some cases, the analyst acts as a natural scientist, taking
an observed phenomenon such as “the simplex method for linear programming is
fast” as ground truth, and seeking a transparent mathematical model that explains
it. In others, the analyst plays the role of an engineer, seeking a theory that

3 Worst-case analysis is also the dominant paradigm in complexity theory, where it has led to the develop-
ment of NP-completeness and many other fundamental concepts.

2

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

gives accurate advice about whether or not an algorithm will perform well in an
application of interest.

2. Identify optimal algorithms. The second goal is to rank different algorithms accord-
ing to their performance, and ideally to single out one algorithm as “optimal.” At
the very least, given two algorithms A and B for the same problem, a method for
algorithmic analysis should offer an opinion about which one is “better.”

3. Develop new algorithms. The third goal is to provide a well-defined framework in
which to brainstorm new algorithms. Once a measure of algorithm performance
has been declared, the Pavlovian response of most computer scientists is to
seek out new algorithms that improve on the state-of-the-art with respect to
this measure. The focusing effect catalyzed by such yardsticks should not be
underestimated.

When proving or interpreting results in algorithm design and analysis, it’s impor-
tant to be clear in one’s mind about which of these goals the work is trying to
achieve.

What’s the report card for worst-case analysis with respect to these three goals?

1. Worst-case analysis gives an accurate performance prediction only for algorithms
that exhibit little variation in performance across inputs of a given size. This is
the case for many of the greatest hits of algorithms covered in an undergraduate
course, including the running times of near-linear-time algorithms and of many
canonical dynamic programming algorithms. For many more complex prob-
lems, however, the predictions of worst-case analysis are overly pessimistic (see
Section 1.2).

2. For the second goal, worst-case analysis earns a middling grade – it gives good
advice about which algorithm to use for some important problems (such as many
of those in an undergraduate course) and bad advice for others (see Section 1.2).

3. Worst-case analysis has served as a tremendously useful brainstorming organizer.
For more than a half-century, researchers striving to optimize worst-case algo-
rithm performance have been led to thousands of new algorithms, many of them
practically useful.

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the
downside of worst-case analysis rears its ugly head. This section reviews four
famous examples in which worst-case analysis gives misleading or useless advice
about how to solve a problem. These examples motivate the alternatives to worst-
case analysis that are surveyed in Section 1.4 and described in detail in later chapters
of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the most famous failure of worst-case analysis concerns linear programming,
the problem of optimizing a linear function subject to linear constraints (Figure 1.1).
Dantzig proposed in the 1940s an algorithm for solving linear programs called
the simplex method. The simplex method solves linear programs using greedy local

3

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Figure 1.1 A two-dimensional linear programming problem.

search on the vertices of the solution set boundary, and variants of it remain
in wide use to this day. The enduring appeal of the simplex method stems from
its consistently superb performance in practice. Its running time typically scales
modestly with the input size, and it routinely solves linear programs with millions of
decision variables and constraints. This robust empirical performance suggested that
the simplex method might well solve every linear program in a polynomial amount
of time.

Klee and Minty (1972) showed by example that there are contrived linear programs
that force the simplex method to run in time exponential in the number of decision
variables (for all of the common “pivot rules” for choosing the next vertex). This
illustrates the first potential pitfall of worst-case analysis: overly pessimistic perfor-
mance predictions that cannot be taken at face value. The running time of the simplex
method is polynomial for all practical purposes, despite the exponential prediction of
worst-case analysis.

To add insult to injury, the first worst-case polynomial-time algorithm for linear
programming, the ellipsoid method, is not competitive with the simplex method in
practice.4 Taken at face value, worst-case analysis recommends the ellipsoid method
over the empirically superior simplex method. One framework for narrowing the gap
between these theoretical predictions and empirical observations is smoothed analysis,
the subject of Part Four of this book; see Section 1.4.4 for an overview.

1.2.2 Clustering and NP-Hard Optimization Problems

Clustering is a form of unsupervised learning (finding patterns in unlabeled data),
where the informal goal is to partition a set of points into “coherent groups”
(Figure 1.2). One popular way to coax this goal into a well-defined computational
problem is to posit a numerical objective function over clusterings of the point set,
and then seek the clustering with the best objective function value. For example, the
goal could be to choose k cluster centers to minimize the sum of the distances between
points and their nearest centers (the k-median objective) or the sum of the squared

4 Interior-point methods, developed five years later, led to algorithms that both run in worst-case polynomial
time and are competitive with the simplex method in practice.

4

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

Figure 1.2 A sensible clustering of a set of points.

such distances (the k-means objective). Almost all natural optimization problems that
are defined over clusterings are NP-hard.5

In practice, clustering is not viewed as a particularly difficult problem. Lightweight
clustering algorithms, such as Lloyd’s algorithm for k-means and its variants, regu-
larly return the intuitively “correct” clusterings of real-world point sets. How can
we reconcile the worst-case intractability of clustering problems with the empirical
success of relatively simple algorithms?6

One possible explanation is that clustering is hard only when it doesn’t matter.
For example, if the difficult instances of an NP-hard clustering problem look like
a bunch of random unstructured points, who cares? The common use case for a
clustering algorithm is for points that represent images, or documents, or proteins, or
some other objects where a “meaningful clustering” is likely to exist. Could instances
with a meaningful clustering be easier than worst-case instances? Part Three of this
book covers recent theoretical developments that support an affirmative answer; see
Section 1.4.2 for an overview.

1.2.3 The Unreasonable Effectiveness of Machine Learning

The unreasonable effectiveness of modern machine learning algorithms has thrown
the gauntlet down to researchers in algorithm analysis, and there is perhaps no other
problem domain that calls out as loudly for a “beyond worst-case” approach.

To illustrate some of the challenges, consider a canonical supervised learning
problem, where a learning algorithm is given a data set of object-label pairs and the
goal is to produce a classifier that accurately predicts the label of as-yet-unseen objects

5 Recall that a polynomial-time algorithm for an NP-hard problem would yield a polynomial-time algorithm
for every problem in NP – for every problem with efficiently verifiable solutions. Assuming the widely believed
P �= NP conjecture, every algorithm for an NP-hard problem either returns an incorrect answer for some inputs
or runs in super-polynomial time for some inputs (or both).

6 More generally, optimization problems are more likely to be NP-hard than polynomial-time solvable. In
many cases, even computing an approximately optimal solution is an NP-hard problem. Whenever an efficient
algorithm for such a problem performs better on real-world instances than (worst-case) complexity theory would
suggest, there’s an opportunity for a refined and more accurate theoretical analysis.

5

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

(e.g., whether or not an image contains a cat). Over the past decade, aided by massive
data sets and computational power, neural networks have achieved impressive levels
of performance across a range of prediction tasks. Their empirical success flies in
the face of conventional wisdom in multiple ways. First, there is a computational
mystery: Neural network training usually boils down to fitting parameters (weights
and biases) to minimize a nonconvex loss function, for example, to minimize the
number of classification errors the model makes on the training set. In the past such
problems were written off as computationally intractable, but first-order methods
(i.e., variants of gradient descent) often converge quickly to a local optimum or even
to a global optimum. Why?

Second, there is a statistical mystery: Modern neural networks are typically over-
parameterized, meaning that the number of parameters to fit is considerably larger
than the size of the training data set. Overparameterized models are vulnerable
to large generalization error (i.e., overfitting), since they can effectively memorize
the training data without learning anything that helps classify as-yet-unseen data
points. Nevertheless, state-of-the-art neural networks generalize shockingly well –
why? The answer likely hinges on special properties of both real-world data sets and
the optimization algorithms used for neural network training (principally stochastic
gradient descent). Part Five of this book covers the state-of-the-art explanations
of these and other mysteries in the empirical performance of machine learning
algorithms.

The beyond worst-case viewpoint can also contribute to machine learning by
“stress-testing” the existing theory and providing a road map for more robust
guarantees. While work in beyond worst-case analysis makes strong assumptions
relative to the norm in theoretical computer science, these assumptions are usually
weaker than the norm in statistical machine learning. Research in the latter field
often resembles average-case analysis, for example, when data points are modeled
as independent and identically distributed samples from some underlying structured
distribution. The semirandom models described in Parts Three and Four of this book
serve as role models for blending adversarial and average-case modeling to encourage
the design of algorithms with robustly good performance.

1.2.4 Analysis of Online Algorithms

Online algorithms are algorithms that must process their input as it arrives over time.
For example, consider the online paging problem, where there is a system with a small
fast memory (the cache) and a big slow memory. Data are organized into blocks called
pages, with up to k different pages fitting in the cache at once. A page request results
in either a cache hit (if the page is already in the cache) or a cache miss (if not). On a
cache miss, the requested page must be brought into the cache. If the cache is already
full, then some page in it must be evicted. A cache replacement policy is an algorithm
for making these eviction decisions. Any systems textbook will recommend aspiring
to the Least Recently Used (LRU) policy, which evicts the page whose most recent
reference is furthest in the past. The same textbook will explain why: Real-world
page request sequences tend to exhibit locality of reference, meaning that recently
requested pages are likely to be requested again soon. The LRU policy uses the recent
past as a prediction for the near future. Empirically, it typically suffers fewer cache
misses than competing policies like First-In First-Out (FIFO).

6

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

Worst-case analysis, straightforwardly applied, provides no useful insights about
the performance of different cache replacement policies. For every deterministic
policy and cache size k, there is a pathological page request sequence that triggers
a page fault rate of 100%, even though the optimal clairvoyant replacement policy
(known as Bélády’s furthest-in-the-future algorithm) would have a page fault rate of
at most 1/k (Exercise 1.1). This observation is troublesome both for its absurdly pes-
simistic performance prediction and for its failure to differentiate between competing
replacement policies (such as LRU vs. FIFO). One solution, described in Section 1.3,
is to choose an appropriately fine-grained parameterization of the input space and to
assess and compare algorithms using parameterized guarantees.

1.2.5 The Cons of Worst-Case Analysis

We should celebrate the fact that worst-case analysis works so well for so many
fundamental computational problems, while at the same time recognizing that
the cherrypicked successes highlighted in undergraduate algorithms can paint a
potentially misleading picture about the range of its practical relevance. The
preceding four examples highlight the chief weaknesses of the worst-case analysis
framework.

1. Overly pessimistic performance predictions. By design, worst-case analysis gives a
pessimistic estimate of an algorithm’s empirical performance. In the preceding
four examples, the gap between the two is embarrassingly large.

2. Can rank algorithms inaccurately. Overly pessimistic performance summaries can
derail worst-case analysis from identifying the right algorithm to use in practice.
In the online paging problem, it cannot distinguish between the FIFO and LRU
policies; for linear programming, it implicitly suggests that the ellipsoid method is
superior to the simplex method.

3. No data model. If worst-case analysis has an implicit model of data, then it’s the
“Murphy’s Law” data model, where the instance to be solved is an adversarially
selected function of the chosen algorithm.7 Outside of security applications, this
algorithm-dependent model of data is a rather paranoid and incoherent way to
think about a computational problem.

In many applications, the algorithm of choice is superior precisely because
of properties of data in the application domain, such as meaningful solutions
in clustering problems or locality of reference in online paging. Pure worst-case
analysis provides no language for articulating such domain-specific properties of
data. In this sense, the strength of worst-case analysis is also its weakness.

These drawbacks show the importance of alternatives to worst-case analysis, in
the form of models that articulate properties of “relevant” inputs and algorithms
that possess rigorous and meaningful algorithmic guarantees for inputs with these
properties. Research in “beyond worst-case analysis” is a conversation between
models and algorithms, with each informing the development of the other. It has
both a scientific dimension, where the goal is to formulate transparent mathematical

7 Murphy’s Law: If anything can go wrong, it will.

7

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

models that explain empirically observed phenomena about algorithm performance,
and an engineering dimension, where the goals are to provide accurate guidance about
which algorithm to use for a problem and to design new algorithms that perform
particularly well on the relevant inputs.

Concretely, what might a result that goes “beyond worst-case analysis” look like?
The next section covers in detail an exemplary result by Albers et al. (2005) for the
online paging problem introduced in Section 1.2.4. The rest of the book offers dozens
of further examples.

1.3 Example: Parameterized Bounds in Online Paging

1.3.1 Parameterizing by Locality of Reference

Returning to the online paging example in Section 1.2.4, perhaps we shouldn’t be
surprised that worst-case analysis fails to advocate LRU over FIFO. The empirical
superiority of LRU is due to the special structure in real-world page request sequences
(locality of reference), which is outside the language of pure worst-case analysis.

The key idea for obtaining meaningful performance guarantees for and compar-
isons between online paging algorithms is to parameterize page request sequences
according to how much locality of reference they exhibit, and then prove param-
eterized worst-case guarantees. Refining worst-case analysis in this way leads to
dramatically more informative results. Part One of the book describes many other
applications of such fine-grained input parameterizations; see Section 1.4.1 for an
overview.

How should we measure locality in a page request sequence? One tried and true
method is the working set model, which is parameterized by a function f from the
positive integers N to N that describes how many different page requests are possible
in a window of a given length. Formally, we say that a page sequence σ conforms to f if
for every positive integer n and every set of n consecutive page requests in σ , there are
requests for at most f (n) distinct pages. For example, the identity function f (n) = n
imposes no restrictions on the page request sequence. A sequence can only conform
to a sublinear function like f (n) = �√n� or f (n) = �1 + log2 n� if it exhibits locality
of reference.8 We can assume without loss of generality that f (1) = 1, f (2) = 2, and
f (n + 1) ∈ {f (n),f (n) + 1} for all n (Exercise 1.2).

We adopt as our performance measure PERF(A,z) the fault rate of an online
algorithm A on the page request sequence z – the fraction of requests in z on which A
suffers a page fault. We next state a performance guarantee for the fault rate of the
LRU policy with a cache size of k that is parameterized by a number αf (k) ∈ [0,1].
The parameter αf (k) is defined below in (1.1); intuitively, it will be close to 0 for
slow-growing functions f (i.e., functions that impose strong locality of reference) and
close to 1 for functions f that grow quickly (e.g., near-linearly). This performance
guarantee requires that the function f is approximately concave in the sense that the
number my of inputs with value y under f (that is, | f −1(y)|) is nondecreasing in y
(Figure 1.3).

8 The notation �x� means the number x, rounded up to the nearest integer.

8

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

f (n) 1 2 3 3 4 4 4 5 · · ·

n 1 2 3 4 5 6 7 8 · · ·
Figure 1.3 An approximately concave function, with m1 = 1, m2 = 1, m3 = 2, m4 = 3, . . .

Theorem 1.1 (Albers et al., 2005) With αf (k) defined as in (1.1) below:

(a) For every approximately concave function f , cache size k ≥ 2, and deterministic
cache replacement policy, there are arbitrarily long page request sequences
conforming to f for which the policy’s page fault rate is at least αf (k).

(b) For every approximately concave function f , cache size k ≥ 2, and page request
sequence that conforms to f , the page fault rate of the LRU policy is at most
αf (k) plus an additive term that goes to 0 with the sequence length.

(c) There exists a choice of an approximately concave function f , a cache size k ≥ 2,
and an arbitrarily long page request sequence that conforms to f , such that the
page fault rate of the FIFO policy is bounded away from αf (k).

Parts (a) and (b) prove the worst-case optimality of the LRU policy in a strong
and fine-grained sense, f -by-f and k-by-k. Part (c) differentiates LRU from FIFO, as
the latter is suboptimal for some (in fact, many) choices of f and k.

The guarantees in Theorem 1.1 are so good that they are meaningful even when
taken at face value – for strongly sublinear f ’s, αf (k) goes to 0 reasonably quickly
with k. The precise definition of αf (k) for k ≥ 2 is

αf (k) = k − 1
f −1(k + 1) − 2

, (1.1)

where we abuse notation and interpret f −1(y) as the smallest value of x such that
f (x) = y. That is, f −1(y) denotes the smallest window length in which page requests
for y distinct pages might appear. As expected, for the function f (n) = n we have
αf (k) = 1 for all k. (With no restriction on the input sequence, an adversary can force
a 100% fault rate.) If f (n) = �√n�, however, then αf (k) scales with 1/

√
k. Thus with

a cache size of 10,000, the page fault rate is always at most 1%. If f (n) = �1+ log2 n�,
then αf (k) goes to 0 even faster with k, roughly as k/2k.

1.3.2 Proof of Theorem 1.1

This section proves the first two parts of Theorem 1.1; part (c) is left as Exercise 1.4.

Part (a). To prove the lower bound in part (a), fix an approximately concave function
f and a cache size k ≥ 2. Fix a deterministic cache replacement policy A.

We construct a page sequence σ that uses only k + 1 distinct pages, so at any given
time step there is exactly one page missing from the algorithm’s cache. (Assume that
the algorithm begins with the first k pages in its cache.) The sequence comprises k−1
blocks, where the jth block consists of mj+1 consecutive requests for the same page
pj, where pj is the unique page missing from the algorithm A’s cache at the start of the

9

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Figure 1.4 Blocks of k − 1 faults, for k = 3.

block. (Recall that my is the number of values of x such that f (x) = y.) This sequence
conforms to f (Exercise 1.3).

By the choice of the pj’s, A incurs a page fault on the first request of a block, and
not on any of the other (duplicate) requests of that block. Thus, algorithm A suffers
exactly k − 1 page faults.

The length of the page request sequence is m2 + m3 + · · · + mk. Because m1 = 1,
this sum equals (

∑k
j=1 mj)−1 which, using the definition of the mj’s, equals (f −1(k+

1)−1)−1 = f −1(k+1)−2. The algorithm’s page fault rate on this sequence matches
the definition (1.1) of αf (k), as required. More generally, repeating the construction
over and over again produces arbitrarily long page request sequences for which the
algorithm has page fault rate αf (k).

Part (b). To prove a matching upper bound for the LRU policy, fix an approximately
concave function f , a cache size k ≥ 2, and a sequence σ that conforms to f . Our
fault rate target αf (k) is a major clue to the proof (recall (1.1)): we should be looking
to partition the sequence σ into blocks of length at least f −1(k+1)−2 such that each
block has at most k − 1 faults. So consider groups of k − 1 consecutive faults of the
LRU policy on σ . Each such group defines a block, beginning with the first fault of
the group, and ending with the page request that immediately precedes the beginning
of the next group of faults (see Figure 1.4).

Claim Consider a block other than the first or last. Consider the page requests
in this block, together with the requests immediately before and after this block.
These requests are for at least k + 1 distinct pages.

The claim immediately implies that every block contains at least f −1(k + 1) − 2
requests. Because there are k−1 faults per block, this shows that the page fault rate is
at most αf (k) (ignoring the vanishing additive error due to the first and last blocks),
proving Theorem 1.1(b).

We proceed to the proof of the claim. Note that, in light of Theorem 1.1(c), it is
essential that the proof uses properties of the LRU policy not shared by FIFO. Fix
a block other than the first or last, and let p be the page requested immediately prior
to this block. This request could have been a page fault, or not (cf., Figure 1.4). In
any case, p is in the cache when this block begins. Consider the k − 1 faults contained
in the block, together with the kth fault that occurs immediately after the block. We
consider three cases.

First, if the k faults occurred on distinct pages that are all different from p, we have
identified our k+1 distinct requests (p and the k faults). For the second case, suppose
that two of the k faults were for the same page q �= p. How could this have happened?
The page q was brought into the cache after the first fault on q and was not evicted
until there were k requests for distinct pages other than q after this page fault. This
gives k + 1 distinct page requests (q and the k other distinct requests between the two

10

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

faults on q). Finally, suppose that one of these k faults was on the page p. Because p
was requested just before the first of these faults, the LRU algorithm, subsequent to
this request and prior to evicting p, must have received requests for k distinct pages
other than p. These requests, together with that for p, give the desired k + 1 distinct
page requests.9

1.3.3 Discussion

Theorem 1.1 is an example of a “parameterized analysis” of an algorithm, where
the performance guarantee is expressed as a function of parameters of the input
other than its size. A parameter like αf (k) measures the “easiness” of an input, much
like matrix condition numbers in linear algebra. We will see many more examples of
parameterized analyses later in the book.

There are several reasons to aspire toward parameterized performance guarantees.

1. A parameterized guarantee is a mathematically stronger statement, containing
strictly more information about an algorithm’s performance than a worst-case
guarantee parameterized solely by the input size.

2. A parameterized analysis can explain why an algorithm has good “real-world”
performance even when its worst-case performance is poor. The approach is to
first show that the algorithm performs well for “easy” values of the parameter
(e.g., for f and k such that αf (k) is close to 0), and then make a case that “real-
world” instances are “easy” in this sense (e.g., have enough locality of reference
to conform to a function f with a small value of αf (k)). The latter argument can
be made empirically (e.g., by computing the parameter on representative bench-
marks) or mathematically (e.g., by positing a generative model and proving that
it typically generates easy inputs). Results in smoothed analysis (see Section 1.4.4
and Part Four) typically follow this two-step approach.

3. A parameterized performance guarantee suggests when – for which inputs, and
which application domains – a given algorithm should be used. (Namely, on the
inputs where the performance of the algorithm is good!) Such advice is useful
to someone who has no time or interest in developing their own algorithm from
scratch, and merely wishes to be an educated client of existing algorithms.10

4. Fine-grained performance characterizations can differentiate algorithms when
worst-case analysis cannot (as with LRU vs. FIFO).

5. Formulating a good parameter often forces the analyst to articulate a form of
structure in data, like the “amount of locality” in a page request sequence.
Ideas for new algorithms that explicitly exploit such structure often follow soon
thereafter.11

9 The first two arguments apply also to the FIFO policy, but the third does not. Suppose p was already in
the cache when it was requested just prior to the block. Under FIFO, this request does not “reset p’s clock”; if
it was originally brought into the cache long ago, FIFO might well evict p on the block’s very first fault.

10 For a familiar example, parameterizing the running time of graph algorithms by both the number of
vertices and the number of edges provides guidance about which algorithms should be used for sparse graphs
and which ones for dense graphs.

11 The parameter αf (k) showed up only in our analysis of the LRU policy; in other applications, the chosen
parameter also guides the design of algorithms for the problem.

11

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Useful parameters come in several flavors. The parameter αf (k) in Theorem 1.1
is derived directly from the input to the problem, and later chapters contain many
more examples of such input-based parameters. It is also common to parameterize
algorithm performance by properties of an optimal solution. In parameterized
algorithms (Chapter 2), the most well-studied such parameter is the size of an optimal
solution. Another solution-based parameterization, popular in machine learning
applications, is by the “margin,” meaning the extent to which the optimal solution is
particularly “pronounced”; see Exercise 1.7 for the canonical example of the analysis
of the perceptron algorithm.

“Input size” is well defined for every computational problem, and this is one of the
reasons why performance guarantees parameterized by input size are so ubiquitous.
By contrast, the parameter αf (k) used in Theorem 1.1 is specifically tailored to the
online paging problem; in exchange, the performance guarantee is unusually accurate
and meaningful. Alas, there are no silver bullets in parameterized analysis, or in
algorithm analysis more generally, and the most enlightening analysis approach is
often problem specific. Worst-case analysis can inform the choice of an appropriate
analysis framework for a problem by highlighting the problem’s most difficult (and
often unrealistic) instances.

1.4 Overview of the Book

This book has six parts, four on “core theory” and two on “applications.” Each of
the following sections summarizes the chapters in one of the parts.

1.4.1 Refinements of Worst-Case Analysis

Part One of the book hews closest to traditional worst-case analysis. No assumptions
are imposed on the input; as in worst-case analysis, there is no commitment to a
“model of data.” The innovative ideas in these chapters concern novel and problem-
specific ways of expressing algorithm performance. Our online paging example
(Section 1.3) falls squarely in this domain.

Chapter 2, by Fomin, Lokshtanov, Saurabh, and Zehavi, provides an overview of
the relatively mature field of parameterized algorithms. The goal here is to understand
how the running time of algorithms and the complexity of computational problems
depend on parameters other than the input size. For example, for which NP-hard
problems � and parameters k is � “fixed-parameter tractable” with respect to k,
meaning solvable in time f (k) · nO(1) for some function f that is independent of the
input size n? The field has developed a number of powerful approaches to designing
fixed-parameter tractable algorithms, as well as lower bound techniques for ruling
out the existence of such algorithms (under appropriate complexity assumptions).

Chapter 3, by Barbay, searches for instance-optimal algorithms that for every
input perform better than every other algorithm (up to a constant factor). Such
an input-by-input guarantee is essentially the strongest notion of optimality one
could hope for. Remarkably, there are several fundamental problems, for example, in
low-dimensional computational geometry, that admit instance-optimal algorithms.
Proofs of instance optimality involve input-by-input matching upper and lower
bounds, and this typically requires a very fine-grained parameterization of the
input space.

12

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

Chapter 4, by Roughgarden, concerns resource augmentation. This concept makes
sense for problems that have a natural notion of a “resource,” with the performance
of an algorithm improving as it is given more resources. Examples include the size
of a cache (with larger caches leading to fewer faults), the capacity of a network
(with higher-capacity networks leading to less congestion), and the speed of a
processor (with faster processors leading to earlier job completion times). A resource
augmentation guarantee then states that the performance of an algorithm of interest
is always close to that achieved by an all-powerful algorithm that is handicapped by
slightly less resources.

1.4.2 Deterministic Models of Data

Part Two of the book proposes deterministic models of data for several NP-hard
clustering and sparse recovery problems, which effectively posit conditions that are
conceivably satisfied by “real-world” inputs. This work fits into the long-standing
tradition of identifying “islands of tractability,” meaning polynomial-time solvable
special cases of NP-hard problems. Twentieth-century research on tractable special
cases focused primarily on syntactic and easily checked restrictions (e.g., graph
planarity or Horn satisfiability). The chapters in Part Two and some of the related
application chapters consider conditions that are not necessarily easy to check, but
for which there is a plausible narrative about why “real-world instances” might satisfy
them, at least approximately.

Chapter 5, by Makarychev and Makarychev, studies perturbation stability in
several different computational problems. A perturbation-stable instance satisfies a
property that is effectively a uniqueness condition on steroids, stating that the optimal
solution remains invariant to sufficiently small perturbations of the numbers in the
input. The larger the perturbations that are tolerated, the stronger the condition
on the instance and the easier the computational problem. Many problems have
“stability thresholds,” an allowable perturbation size at which the complexity of
the problem switches suddenly from NP-hard to polynomial-time solvable. To the
extent that we’re comfortable identifying “instances with a meaningful clustering”
with perturbation-stable instances, the positive results in this chapter give a precise
sense in which clustering is hard only when it doesn’t matter (cf. Section 1.2.2). As
a bonus, many of these positive results are achieved by algorithms that resemble
popular approaches in practice, such as single-linkage clustering and local search.

Chapter 6, by Blum, proposes an alternative condition called approximation sta-
bility, stating that every solution with a near-optimal objective function value closely
resembles the optimal solution. That is, any solution that is structurally different from
the optimal solution has significantly worse objective function value. This condition is
particularly appropriate for problems like clustering, in which the objective function
is only means to an end and the real goal is to recover some type of “ground-truth”
clustering. This chapter demonstrates that many NP-hard problems become provably
easier for approximation-stable instances.

Chapter 7, by Price, provides a glimpse of the vast literature on sparse recovery,
where the goal is to reverse engineer a “sparse” object from a small number of
clues about it. This area is more strongly associated with applied mathematics than
with theoretical computer science and algorithms, but there are compelling parallels
between it and the topics of the preceding two chapters. For example, consider the

13

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

canonical problem in compressive sensing, in which the goal is to recover an unknown
sparse signal z (a vector of length n) from a small number m of linear measurements
of it. If z can be arbitrary, then the problem is hopeless unless m = n. But many
real-world signals have most of their mass concentrated on k coordinates for small k
(for an appropriate basis), and the results surveyed in this chapter show that, for such
“natural” signals, the problem can be solved efficiently even when m is only modestly
bigger than k (and much smaller than n).

1.4.3 Semirandom Models

Part Three of the book is about semirandom models – hybrids of worst- and average-
case analysis in which nature and an adversary collaborate to produce an instance
of a problem. For many problems, such hybrid frameworks are a “sweet spot” for
algorithm analysis, with the worst-case dimension encouraging the design of robustly
good algorithms and the average-case dimension allowing for strong provable guar-
antees.

Chapter 8, by Roughgarden, sets the stage with a review of pure average-case or
distributional analysis, along with some of its killer applications and biggest weak-
nesses. Work in this area adopts a specific probability distribution over the inputs of
a problem, and analyzes the expectation (or some other statistic) of the performance
of an algorithm with respect to this distribution. One use of distributional analysis is
to show that a general-purpose algorithm has good performance on non-pathological
inputs (e.g., deterministic QuickSort on randomly ordered arrays). One key drawback
of distributional analysis is that it can encourage the design of algorithms that are
brittle and overly tailored to the assumed input distribution. The semirandom models
of the subsequent chapters are designed to ameliorate this issue.

Chapter 9, by Feige, introduces several planted models and their semirandom coun-
terparts. For example, in the planted clique problem, a clique of size k is planted in
an otherwise uniformly random graph. How large does k need to be, as a function of
the number of vertices, before the planted clique can be recovered in polynomial time
(with high probability)? In a semi-random version of a planted model, an adversary
can modify the random input in a restricted way. For example, in the clique problem,
an adversary might be allowed to remove edges not in the clique; such changes
intuitively make the planted clique only “more obviously optimal,” but nevertheless
can foil overly simplistic algorithms. One rule of thumb that emerges from this line of
work, and also recurs in the next chapter, is that spectral algorithms tend to work well
for planted models but the heavier machinery of semidefinite programming seems
required for their semirandom counterparts. This chapter also investigates random
and semirandom models for Boolean formulas, including refutation algorithms that
certify that a given input formula is not satisfiable.

Chapter 10, by Moitra, drills down on a specific and extensively studied planted
model, the stochastic block model. The vertices of a graph are partitioned into groups,
and each potential edge of the graph is present independently with a probability
that depends only on the groups that contain its endpoints. The algorithmic goal
is to recover the groups from the (unlabeled) graph. One important special case is
the planted bisection problem, where the vertices are split into two equal-size sets A
and B and each edge is present independently with probability p (if both endpoints
are in the same group) or q< p (otherwise). How big does the gap p − q need to

14

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

be before the planted bisection (A,B) can be recovered, either statistically (i.e., with
unbounded computational power) or with a polynomial-time algorithm? When p
and q are sufficiently small, the relevant goal becomes partial recovery, meaning a
proposed classification of the vertices with accuracy better than random guessing.
In the semirandom version of the model, an adversary can remove edges crossing
the bisection and add edges internal to each of the groups. For partial recovery, this
semirandom version is provably more difficult than the original model.

Chapter 11, by Gupta and Singla, describes results for a number of online algo-
rithms in random-order models. These are semirandom models in which an adversary
decides on an input, and nature then presents this input to an online algorithm, one
piece at a time and in random order. The canonical example here is the secretary
problem, where an arbitrary finite set of numbers is presented to an algorithm in
random order, and the goal is to design a stopping rule with the maximum-possible
probability of stopping on the largest number of the sequence. Analogous random-
order models have proved useful for overcoming worst-case lower bounds for the
online versions of a number of combinatorial optimization problems, including bin
packing, facility location, and network design.

Chapter 12, by Seshadhri, is a survey of the field of self-improving algorithms.
The goal here is to design an algorithm that, when presented with a sequence of
independent samples drawn from an unknown input distribution, quickly converges
to the optimal algorithm for that distribution. For example, for many distributions
over length-n arrays, there are sorting algorithms that make less than �(n log n)
comparisons on average. Could there be a “master algorithm” that replicates the
performance of a distribution-optimal sorter from only a limited number of samples
from the distribution? This chapter gives a positive answer under the assumption that
array entries are drawn independently (from possibly different distributions), along
with analogous positive results for several fundamental problems in low-dimensional
computational geometry.

1.4.4 Smoothed Analysis

Part Four of the book focuses on the semirandom models studied in smoothed
analysis. In smoothed analysis, an adversary chooses an arbitrary input, and this
input is then perturbed slightly by nature. The performance of an algorithm is
then assessed by its worst-case expected performance, where the worst case is over
the adversary’s input choice and the expectation is over the random perturbation.
This analysis framework can be applied to any problem where “small random
perturbations” make sense, including most problems with real-valued inputs. It can
be applied to any measure of algorithm performance, but has proven most effective
for running time analyses of algorithms that seem to run in super-polynomial time
only on highly contrived inputs (like the simplex method). As with other semirandom
models, smoothed analysis has the benefit of potentially escaping worst-case inputs,
especially if they are “isolated” in the input space, while avoiding overfitting a solution
to a specific distributional assumption. There is also a plausible narrative about why
“real-world” inputs are captured by this framework: Whatever problem you’d like to
solve, there are inevitable inaccuracies in its formulation from measurement errors,
uncertainty, and so on.

15

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Chapter 13, by Manthey, details several applications of smoothed analysis to
the analysis of local search algorithms for combinatorial optimization problems. For
example, the 2-opt heuristic for the Traveling Salesman Problem is a local search
algorithm that begins with an arbitrary tour and repeatedly improves the current
solution using local moves that swap one pair of edges for another. In practice, local
search algorithms such as the 2-opt heuristic almost always converge to a locally
optimal solution in a small number of steps. Delicate constructions show that the
2-opt heuristic, and many other local search algorithms, require an exponential
number of steps to converge in the worst case. The results in this chapter use smoothed
analysis to narrow the gap between worst-case analysis and empirically observed
performance, establishing that many local search algorithms (including the 2-opt
heuristic) have polynomial smoothed complexity.

Chapter 14, by Dadush and Huiberts, surveys the first and most famous killer
application of smoothed analysis, the Spielman–Teng analysis of the running time
of the simplex method for linear programming. As discussed in Section 1.2.1, the
running time of the simplex method is exponential in the worst case but almost always
polynomial in practice. This chapter develops intuition for and outlines a proof of
the fact that the simplex method, implemented with the shadow vertex pivot rule,
has polynomial smoothed complexity with respect to small Gaussian perturbations
of the entries of the constraint matrix. The chapter also shows how to interpret the
successive shortest-path algorithm for the minimum-cost maximum-flow problem as
an instantiation of this version of the simplex method.

Chapter 15, by Röglin, presents a third application of smoothed analysis, to the
size of Pareto curves for multiobjective optimization problems. For example, consider
the knapsack problem, where the input consists of n items with values and sizes.
One subset of the items dominates another if it has both a larger overall value and
a smaller overall size, and the Pareto curve is defined as the set of undominated
solutions. Pareto curves matter for algorithm design because many algorithms for
multiobjective optimization problems (such as the Nemhauser–Ullmann knapsack
algorithm) run in time polynomial in the size of the Pareto curve. For many problems,
the Pareto curve has exponential size in the worst case but expected polynomial size
in a smoothed analysis model. This chapter also presents a satisfyingly strong con-
nection between smoothed polynomial complexity and worst-case pseudopolynomial
complexity for linear binary optimization problems.

1.4.5 Applications in Machine Learning and Statistics

Part Five of the book gives a number of examples of how the paradigms in Parts One–
Four have been applied to problems in machine learning and statistics.

Chapter 16, by Balcan and Haghtalab, considers one of the most basic problems in
supervised learning, that of learning an unknown halfspace. This problem is relatively
easy in the noiseless case but becomes notoriously difficult in the worst case in the
presence of adversarial noise. This chapter surveys a number of positive statistical
and computational results for the problem under additional assumptions on the
data-generating distribution. One type of assumption imposes structure, such as log-
concavity, on the marginal distribution over data points (i.e., ignoring their labels).
A second type restricts the power of the adversary that introduces the noise, for

16

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

example, by allowing the adversary to mislabel a point only with a probability that is
bounded away from 1/2.

Chapter 17, by Diakonikolas and Kane, provides an overview of recent progress
in robust high-dimensional statistics, where the goal is to design learning algorithms
that have provable guarantees even when a small constant fraction of the data points
has been adversarially corrupted. For example, consider the problem of estimating
the mean μ of an unknown one-dimensional Gaussian distribution N (μ,σ 2), where
the input consists of (1 − ε)n samples from the distribution and εn additional points
defined by an adversary. The empirical mean of the data points is a good estimator
of the true mean when there is no adversary, but adversarial outliers can distort
the empirical mean arbitrarily. The median of the input points, however, remains
a good estimator of the true mean even with a small fraction of corrupted data
points. What about in more than one dimension? Among other results, this chapter
describes a robust and efficiently computable estimator for learning the mean of a
high-dimensional Gaussian distribution.

Chapter 18, by Dasgupta and Kpotufe, investigates the twin topics of nearest
neighbor search and classification. The former is algorithmic, and the goal is to
design a data structure that enables fast nearest neighbor queries. The latter is
statistical, and the goal is to understand the amount of data required before the
nearest neighbor classifier enjoys provable accuracy guarantees. In both cases, novel
parameterizations are the key to narrowing the gap between worst-case analysis and
empirically observed performance – for search, a parameterization of the data set;
for classification, of the allowable target functions.

Chapter 19, by Vijayaraghavan, is about computing a low-rank tensor decompo-
sition. For example, given an m × n × p 3-tensor with entries {Ti,j,k}, the goal is
to express T as a linear combination of the minimum-possible number of rank-one
tensors (where a rank-one tensor has entries of the form {ui · vj · wk} for some vectors
u ∈ R

m, v ∈ R
n, and w ∈ R

p). Efficient algorithms for this problem are an increasingly
important tool in the design of learning algorithms; see also Chapters 20 and 21.
This problem is NP-hard in general. Jennrich’s algorithm solves in polynomial time
the special case of the problem in which the three sets of vectors in the low-rank
decomposition (the u’s, the v’s, and the w’s) are linearly independent. This result does
not address the overcomplete regime, meaning tensors that have rank larger than
dimension. (Unlike matrices, the rank of a tensor can be much larger than its smallest
dimension.) For this regime, the chapter shows that a generalization of Jennrich’s
algorithm has smoothed polynomial complexity.

Chapter 20, by Ge and Moitra, concerns topic modeling, which is a basic problem
in unsupervised learning. The goal here is to process a large unlabeled corpus of
documents and produce a list of meaningful topics and an assignment of each
document to a mixture of topics. One approach to the problem is to reduce it
to nonnegative matrix factorization (NMF) – the analogue of a singular value
decomposition of a matrix, with the additional constraint that both matrix factors
are nonnegative. The NMF problem is hard in general, but this chapter proposes a
condition on inputs, which is reasonable in a topic modeling context, under which the
problem can be solved quickly in both theory and practice. The key assumption is that
each topic has at least one “anchor word,” the presence of which strongly indicates
that the document is at least partly about that topic.

17

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

Chapter 21, by Ma, studies the computational mystery outlined in Section 1.2.3:
Why are local methods such as stochastic gradient descent so effective in solving the
nonconvex optimization problems that arise in supervised learning, such as computing
the loss-minimizing parameters for a given neural network architecture? This chapter
surveys the quickly evolving state-of-the-art on this topic, including a number of
different restrictions on problems under which local methods have provable guar-
antees. For example, some natural problems have a nonconvex objective function
that satisfies the “strict saddle condition,” which asserts that at every saddle point
(i.e., a point with zero gradient that is neither a minimum nor a maximum) there is a
direction with strictly negative curvature. Under this condition, variants of gradient
descent provably converge to a local minimum (and, for some problems, a global
minimum).

Chapter 22, by Hardt, tackles the statistical mystery discussed in Section 1.2.3:
Why do overparameterized models such as deep neural networks, which have many
more parameters than training data points, so often generalize well in practice? While
the jury is still out, this chapter surveys several of the leading explanations for this
phenomenon, ranging from properties of optimization algorithms such as stochas-
tic gradient descent (including algorithmic stability and implicit regularization) to
properties of data sets (such as margin-based guarantees).

Chapter 23, by G. Valiant and P. Valiant, presents two instance optimality results
for distribution testing and learning. The chapter first considers the problem of
learning a discretely supported distribution from independent samples, and describes
an algorithm that learns the distribution nearly as accurately as would an optimal
algorithm with advance knowledge of the true multiset of (unlabeled) probabilities
of the distribution. This algorithm is instance optimal in the sense that, whatever
the structure of the distribution, the learning algorithm will perform almost as well
as an algorithm specifically tailored for that structure. The chapter then explores
the problem of identity testing: Given the description of a reference probability
distribution, p, supported on a countable set, and sample access to an unknown
distribution, q, the goal is to distinguish whether p = q versus the case that p and
q have total variation distance at least ε. This chapter presents a testing algorithm
that has optimal sample complexity simultaneously for every distribution p and ε, up
to constant factors.

1.4.6 Further Applications

The final part of the book, Part Six, gathers a number of additional applications of
the ideas and techniques introduced in Parts One–Three.

Chapter 24, by Karlin and Koutsoupias, surveys alternatives to worst-case analysis
in the competitive analysis of online algorithms. There is a long tradition in online
algorithms of exploring alternative analysis frameworks, and accordingly this chapter
connects to many of the themes of Parts One–Three.12 For example, the chapter
includes results on deterministic models of data (e.g., the access graph model for
restricting the allowable page request sequences) and semirandom models (e.g., the
diffuse adversary model to blend worst- and average-case analysis).

12 Indeed, the title of this book is a riff on that of a paper in the competitive analysis of online algorithms
(Koutsoupias and Papadimitriou, 2000).

18

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

Chapter 25, by Ganesh and Vardi, explores the mysteries posed by the empirical
performance of Boolean satisfiability (SAT) solvers. Solvers based on backtracking
algorithms such as the Davis–Putnam–Logemann–Loveland (DPLL) algorithm fre-
quently solve SAT instances with millions of variables and clauses in a reasonable
amount of time. This chapter provides an introduction to conflict-driven clause-
learning (CDCL) solvers and their connections to proof systems, followed by a high-
level overview of the state-of-the-art parameterizations of SAT formulas, including
input-based parameters (such as parameters derived from the variable-incidence
graph of an instance) and output-based parameters (such as the proof complexity
in the proof system associated with CDCL solvers).

Chapter 26, by Chung, Mitzenmacher, and Vadhan, uses ideas from pseudoran-
domness to explain why simple hash functions work so well in practice. Well-designed
hash functions are practical proxies for random functions – simple enough to be
efficiently implementable, but complex enough to “look random.” In the theoretical
analysis of hash functions and their applications, one generally assumes that a hash
function is chosen at random from a restricted family, such as a set of universal or
k-wise independent functions for small k. For some statistics, such as the expected
number of collisions under a random hash function, small families of hash functions
provably perform as well as completely random functions. For others, such as the
expected insertion time in a hash table with linear probing, simple hash functions are
provably worse than random functions (for worst-case data). The running theme of
this chapter is that a little randomness in the data, in the form of a lower bound on
the entropy of the (otherwise adversarial) data-generating distribution, compensates
for any missing randomness in a universal family of hash functions.

Chapter 27, by Talgam-Cohen, presents an application of the beyond worst-case
viewpoint in algorithmic game theory, to prior-independent auctions. For example,
consider the problem of designing a single-item auction, which solicits bids from
bidders and then decides which bidder (if any) wins the item and what everybody pays.
The traditional approach in economics to designing revenue-maximizing auctions
is average-case, meaning that the setup includes a commonly known distribution
over each bidder’s willingness to pay for the item. An auction designer can then
implement an auction that maximizes the expected revenue with respect to the
assumed distributions (e.g., by setting a distribution-dependent reserve price). As
with many average-case frameworks, this approach can lead to impractical solutions
that are overly tailored to the assumed distributions. A semirandom variant of the
model allows an adversary to pick its favorite distribution out of a rich class, from
which nature chooses a random sample for each bidder. This chapter presents prior-
independent auctions, both with and without a type of resource augmentation,
that achieve near-optimal expected revenue simultaneously across all distributions
in the class.

Chapter 28, by Roughgarden and Seshadhri, takes a beyond worst-case approach
to the analysis of social networks. Most research in social network analysis revolves
around a collection of competing generative models – probability distributions over
graphs designed to replicate the most common features observed in such networks.
The results in this chapter dispense with generative models and instead provide
algorithmic or structural guarantees under deterministic combinatorial restrictions
on a graph – that is, for restricted classes of graphs. The restrictions are motivated
by the most uncontroversial properties of social and information networks, such as

19

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

heavy-tailed degree distributions and strong triadic closure properties. Results for
these graph classes effectively apply to all “plausible” generative models of social
networks.

Chapter 29, by Balcan, reports on the emerging area of data-driven algorithm
design. The idea here is to model the problem of selecting the best-in-class algorithm
for a given application domain as an offline or online learning problem, in the spirit
of the aforementioned work on self-improving algorithms. For example, in the offline
version of the problem, there is an unknown distribution D over inputs, a class C of
allowable algorithms, and the goal is to identify from samples the algorithm in C with
the best expected performance with respect to D. The distribution D captures the
details of the application domain, the samples correspond to benchmark instances
representative of the domain, and the restriction to the class C is a concession to the
reality that it is often more practical to be an educated client of already-implemented
algorithms than to design a new algorithm from scratch. For many computational
problems and algorithm classes C, it is possible to learn an (almost) best-in-class
algorithm from a modest number of representative instances.

Chapter 30, by Mitzenmacher and Vassilvitskii, is an introduction to algorithms
with predictions. For example, in the online paging problem (Section 1.2.4), the
LRU policy makes predictions about future page requests based on the recent past.
If its predictions were perfect, the algorithm would be optimal. What if a good
but imperfect predictor is available, such as one computed by a machine learning
algorithm using past data? An ideal solution would be a generic online algorithm
that, given a predictor as a “black box”: (i) is optimal when predictions are perfect;
(ii) has gracefully degrading performance as the predictor error increases; and (iii)
with an arbitrarily poor predictor, defaults to the optimal worst-case guarantee.
This chapter investigates the extent to which properties (i)–(iii) can be achieved by
predictor-augmented data structures and algorithms for several different problems.

1.5 Notes

This chapter is based in part on Roughgarden (2019).
The simplex method (Section 1.2.1) is described, for example, in Dantzig (1963);

Khachiyan (1979) proved that the ellipsoid method solves linear programming
problems in polynomial time; and the first polynomial-time interior-point method
was developed by Karmarkar (1984). Lloyd’s algorithm for k-means (Section 1.2.2)
appears in Lloyd (1962). The phrase “clustering is hard only when it doesn’t matter”
(Section 1.2.2) is credited to Naftali Tishby by Daniely et al. (2012). The competitive
analysis of online algorithms (Section 1.2.4) was pioneered by Sleator and Tarjan
(1985). Bélády’s algorithm (Section 1.2.4) appears in Bélády (1967). The working set
model in Section 1.3.1 was formulated by Denning (1968). Theorem 1.1 is due to
Albers et al. (2005), as is Exercise 1.5. Exercise 1.6 is folklore. The result in Exercise 1.7
is due to Block (1962) and Novikoff (1962).

Acknowledgments

I thank Jérémy Barbay, Daniel Kane, and Salil Vadhan for helpful comments on a
preliminary draft of this chapter.

20

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

References

Albers, S., Favrholdt, L. M., and Giel, O. 2005. On paging with locality of reference. Journal
of Computer and System Sciences, 70(2), 145–175.

Bélády, L. A. 1967. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5(2), 78–101.

Block, H. D. 1962. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34, 123–135.

Daniely, A., Linial, N., and Saks, M. 2012. Clustering is difficult only when it does not matter.
arXiv:1205.4891.

Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University Press.
Denning, P. J. 1968. The working set model for program behavior. Commuications of the ACM,

11(5), 323–333.
Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinator-

ica, 4, 373–395.
Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Soviet Mathematics

Doklady, 20(1), 191–194.
Klee, V., and Minty, G. J. 1972. How good is the simplex algorithm? In Shisha, O. (ed.),

Inequalities III, pp. 159–175. New York: Academic Press.
Koutsoupias, E., and Papadimitriou, C. H. 2000. Beyond competitive analysis. SIAM Journal

on Computing, 30(1), 300–317.
Lloyd, S. P. 1962. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–136.
Novikoff, A. 1962. On convergence proofs for perceptrons. Proceedings of the Symposium on

Mathematical Theory of Automata, vol. 12, pp. 615–622.
Roughgarden, T. 2019. Beyond worst-case analysis. Communications of the ACM, 62(3),

88–96.
Sleator, D. D., and Tarjan, R. E. 1985. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2), 202–208.

Exercises

Exercise 1.1 Prove that for every deterministic cache replacement policy and cache
size k, there is an adversarial page request sequence such that the policy faults on
every request, and such that an optimal clairvoyant policy would fault on at most
a 1/k fraction of the requests.

[Hint: use only k + 1 distinct pages, and the fact that the optimal policy always
evicts the page that will be requested furthest in the future.]

Exercise 1.2 Let f : N → N be a function of the type described in Section 1.3,
with f (n) denoting the maximum allowable number of distinct page requests in
any window of length n.

(a) Prove that there is a nondecreasing function f ′ : N → N with f ′(1) = 1
and f ′(n + 1) ∈ {f ′(n),f ′(n + 1)} for all n such that a page request sequence
conforms to f ′ if and only if it conforms to f .

(b) Prove that parts (a) and (b) of Theorem 1.1 hold trivially if f ′(2) = 1.

Exercise 1.3 Prove that the page request sequence constructed in the proof of
Theorem 1.1(a) conforms to the given approximately concave function f .

21

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

T. ROUGHGARDEN

f (n) 1 2 3 3 4 4 5 5

n 1 2 3 4 5 6 7 · · ·
Figure 1.5 Function used to construct a bad page request sequence for FIFO (Exercise 1.4).

Input: n unit vectors x1, . . . ,xn ∈ R
d with labels b1, . . . ,bn ∈ {−1, + 1}.

1. Initialize t to 1 and w1 to the all-zero vector.
2. While there is a point xi such that sgn(wt · xi) �= bi, set wt+1 = wt + bixi and increment t.13

Figure 1.6 The perceptron algorithm.

Exercise 1.4 Prove Theorem 1.1(c).

(Hint: Many different choices of f and k work. For example, take k = 4, a set
{0,1,2,3,4} of five pages, the function f shown in Figure 1.5, and a page request
sequence consisting of an arbitrarily large number of identical blocks of the eight
page requests 10203040.)

Exercise 1.5 Prove the following analogue of Theorem 1.1(b) for the FIFO replace-
ment policy: for every k ≥ 2 and approximately concave function f with f (1) = 1,
f (2) = 2, and f (n + 1) ∈ {f (n),f (n + 1)} for all n ≥ 2, the page fault rate of the
FIFO policy on every request sequence that conforms to f is at most

k
f −1(k + 1) − 1

. (1.2)

[Hint: Make minor modifications to the proof of Theorem 1.1(b). The expression
in (1.2) suggests defining phases such that (i) the FIFO policy makes at most k
faults per phase; and (ii) a phase plus one additional request comprises requests
for at least k + 1 distinct pages.]

Exercise 1.6 An instance of the knapsack problem consists of n items with nonneg-
ative values v1, . . . ,vn and sizes s1, . . . ,sn, and a knapsack capacity C. The goal is
to compute a subset S ⊆ {1,2, . . . ,n} of items that fits in the knapsack (i.e., with∑

i∈S si ≤ C) and, subject to this, has the maximum total value
∑

i∈S vi.
One simple greedy algorithm for the problem reindexes the items in nonincreas-

ing order of density vi
si

and then returns the largest prefix {1,2, . . . ,j} of items that

fits in the knapsack (i.e., with
∑j

i=1 si ≤ C). Parameterize a knapsack instance by
the ratio α of the largest size of an item and the knapsack capacity, and prove a
parameterized guarantee for the greedy algorithm: The total value of its solution
is at least 1 − α times that of an optimal solution.

Exercise 1.7 The perceptron algorithm is one of the most classical machine learning
algorithms (Figure 1.6). The input to the algorithm is n points in R

d , with a label

13 Intuitively, this update step forces the next vector to be “more correct” on xi, by increasing w · xi by
bi(xi · xi) = bi.

22

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

INTRODUCTION

bi ∈ {−1, + 1} for each point xi. The goal is to compute a separating hyperplane:
a hyperplane with all of the positively labeled points on one side, and all of
the negatively labeled points on the other. Assume that there exists a separating
hyperplane, and moreover that some such hyperplane passes through the origin.14

We are then free to scale each data point xi so that ‖xi‖2 = 1 – this does not change
which side of a hyperplane xi is on.

Parameterize the input by its margin μ, defined as

μ = max
w : ‖w‖=1

n
min
i=1

|w · xi|,

where w ranges over the unit normal vectors of all separating hyperplanes. Let w∗
attain the maximum. Geometrically, the parameter μ is the smallest cosine of an
angle defined by a point xi and the normal vector w∗.

(a) Prove that the squared norm of wt grows slowly with the number of iterations t:
‖wt+1‖2 ≤ ‖wt‖2 + 1 for every t ≥ 1.

(b) Prove that the projection of wt onto w∗ grows significantly with every iteration:
wt+1 · w∗ ≥ wt · w∗ + μ for every t ≥ 1.

(c) Conclude that the iteration count t never exceeds 1/μ2.

14 The second assumption is without loss of generality, as it can be enforced by adding an extra “dummy
coordinate” to the data points.

23

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

https://doi.org/10.1017/9781108637435.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108637435.002

