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Abstract. Let m1 > my > 2 be integers. We consider subsets of the product symbolic
sequence space ({0,...,m; —1} x{0,...,my — 1})N* that are invariant under the
action of the semigroup of multiplicative integers. These sets are defined following
Kenyon, Peres, and Solomyak and using a fixed integer ¢ > 2. We compute the Hausdorff
and Minkowski dimensions of the projection of these sets onto an affine grid of the unit
square. The proof of our Hausdorff dimension formula proceeds via a variational principle
over some class of Borel probability measures on the studied sets. This extends well-known
results on self-affine Sierpiriski carpets. However, the combinatoric arguments we use in
our proofs are more elaborate than in the self-similar case and involve a new parameter,
namely j = Llogq (log(m1)/log(m3))]. We then generalize our results to the same subsets
defined in dimension d > 2. There, the situation is even more delicate and our formulas
involve a collection of 2d — 3 parameters.

Key words: Hausdorff dimension, Minkowski dimension, symbolic dynamics, self-affine
carpets, self-affine sponges
2020 Mathematics Subject Classification: 28A80, 37C45

1. Introduction
For the reader’s convenience we summarize a list of commonly used symbols in
Appendix A. Let m; > my > 2 and g > 2 be integers. Let 2 be a closed subset of

Sy = (Al x AV,
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418 G. Brunet

where A1 = {0, ...,m; — 1} and Ay = {0, . . ., mp — 1}. We can associate to €2 a closed
subset of the torus T by considering v (£2), where 1 is the coding map defined as
o o
¢ : ()Ck, yk)/?il € Eml,mz i (Z x_’;, Z y_];(> S Tz-
k=1 "1 k=1 "2

Let o be the standard shift map on X, ,,, and = be the projection on the second
coordinate. Closed subsets of X,,, ,,, that are o-invariant are sent through v to closed
subsets of T? that are invariant under the diagonal endomorphism of T?;

(x,y) € T? —> (mx, myx).
Classical examples of such subsets are Sierpinski carpets. Given
B+AC{0,...,m — 1} x{0,...,my— 1},
consider
Q={(x,y) = (X, YKo € Zpnym, = forallk > 1, (xg, yi) € A}

Then ¥ (£2) is a Sierpiniski carpet. In this case, ¥ (£2) is the attractor of the iterated function
system made of the contractions f; j) : (x,y) € T2 —~ ((x + i)/my, (y + j)/m3) with
(i, j) € A. When m| = my = m, we obtain a self-similar fractal and it is well-known that

log(#A)
log(m) °
where dimyg and dimy; denote the Hausdorff and Minkowski (also called box-counting)

dimensions, respectively. See, for example, [3, Ch. 2]. More generally, as proved in [7], if
Q2 is a closed shift-invariant subset of %, ,,, then we have

h(olQ)

log(m)’

where A stands for the topological entropy. McMullen [10] and Bedford [1] independently
computed the Hausdorff and Minkowski dimensions of general Sierpiniski carpets when
m1 > my, which we assume from now on. Furthermore, the Hausdorff and Minkowski
dimensions of Sierpinski sponges, defined as the generalization of Sierpinski carpets in all
dimensions, were later computed in [8].

dimy (¥ (£2)) = dimm (¥ (£2)) =

dimy (¥ (R2)) = dimm (¥ (2)) =

Let
y = log(m>)
log(m1)
and
L:neN'r— ’72—‘
14

We need the following metric on X, ;,: for (x, y) and (u, v) in Xy, 1, let

d((xr, y)ge1s Wi, vi)g=y)

_ maX(m; min{k203(xk+l,yk+1)7é(uk+lka+l)}, m;}’ min{kEO:ka#ka}).
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Dimensions of ‘self-affine sponges’ 419

This metric allows us to consider ‘quasi-squares’ as defined by McMullen when computing
the dimensions of Sierpifiski carpets. It is easy to see that for (x, y) € X,,, , the balls
centered at (x, y) are

B,(x,y) = ern (x,y) ={,v) € Zpyym, cux =x foralll <k <n
and vy = yr forall 1 <k < L(n)}.

Using this metric on X,,, ,, the Hausdorff and Minkowski dimensions of €2 are then equal
to those of ¥ (£2). Thus, from now on we only work on the symbolic space. In this paper,
our goal is to compute the Hausdorff and Minkowski dimensions of more general carpets
that are not shift invariant. More precisely, given an arbitrary closed subset € of %, ;u,
we consider

Xa = {0k YORL| € Simpamy * (Kigts igt) 7o € Qforalli, g 1i}.

Such sets were studied in [9], where the authors restricted their work to the
one-dimensional case: they computed the Hausdorff and Minkowski dimensions of sets
defined by

{02 € {0, om — 1N 1 (6,052 € Qforalli, g fil,

where €2 is an arbitrary closed subset of {0, ..., m — 1}N*. It is easily seen that this case
covers the situation where m| = m in our setting. Their interest in these sets was prompted
by the computation of the Minkowski dimension of the ‘multiplicative golden mean shift’

o
X
{x = Z 2—2 : x; € {0, 1} and xgxo; = O for all k > 1}
k=1
done in [4]. We aim to give formulas for dimyg(Xq) and dimpy (X o) in the two-dimensional
case, and then in all dimensions. Note that if 2 is shift-invariant, then X is invariant under
the action of any integer r € N*

(ks Y po g > (ks Yrk) g -

For example, as in the case of dimension one, we can consider subshifts of finite type on
2 my- To do so, let D ={(0,0),(0,1),...,0,my—1),(1,0),(,1),...,1,my—
D,...,m —1,0,m —1,1),...,(m; —1,my— 1)} and let A be an mmy-sized
square matrix indexed by D x D with entries in {0, 1}. Then we define

T4 ={(k Y ie 1 € Zimpmy ¢ Ak, Y kg1, ye1) = 1, k> 1},
and
XA = XZA = {(.Xk, yk)]ii] € Zml,mz : A((-xk7 )’k), (qu’ qu)) = 17 k Z 1}

See Figures | and 2 for some illutration of an example of such sets. Note that further
generalizations of the sets considered in [9] were studied in [12], in the one-dimensional
case as well.

This paper is organized as follows. In §2, we focus on the two-dimensional situation.
We first introduce in §2.1 a particular class of measures on Xq. We show that these
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FIGURE 1. Approximation of order four

of the set X 4 form| =

3,my=2,g=2,andAa

first row is (1, 0, 0, 1, 0, 0).
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FIGURE 2. Approximation of order six

of the set X4 form| =

3,my=2,g=2andAa

first row is (1, 0, 0, 1, 0, 0).

measures are exact dimensional and we compute their Hausdorff dimensions. This class
of measures is the same as that considered in [9], but in our case the parameter
J = llog,(log(m1)/log(m>))] comes into play when studying their local dimension.
Indeed, this parameter plays a crucial role in the definition of generalized cylinders whose
masses are used to study the mass of balls under the metric d. In §2.2, out of curiosity,
we study under which condition the Ledrappier—Young formula (where the entropies of
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invariant measures are replaced by their entropy dimensions) can hold for these measures,
which are not shift-invariant in general.

In §§2.3-2.5, we compute the Hausdorff and Minkowski dimensions of Xg, using a
variational principle over the class of measures we studied earlier. We show that there
exists a unique Borel probability measure which allows us to bound dimy(Xgq) both from
below and from above.

Then, in §3, we extend our results to the general multidimensional case. The com-
binatorics involved there become significantly more complex, as the study of the local
dimension of the measures of interest invokes some generalized cylinders which depend in
a subtle way on a collection of 2d — 3 parameters.

Finally, Appendix B introduces several lemmas used throughout our proofs.

2. The two-dimensional case
2.1. The measures P, and their dimensions. Throughout the paper we use the notation
[m,n] = {m,...,n}if m < n are integers.

To compute dimyg(Xg), we use the classical strategy of stating a variational principle
over a certain class of Borel probability measures P, on Xq defined below, that is, we
show that

dimyg(Xq) = r%ax dimyg (P,).
n

To do so, we use the following classical facts (for a proof, see [3, Proposition 2.3]).

THEOREM 2.1. Let u be a finite Borel measure on X, m, and let A C Xy, m, such that
w(A) > 0.

e Ifliminf,_ o —(log, (u(By(x)))/n) > D for p-almost all x, then dimy () > D.

e Ifliminf,_ o —(log,, (u(By(x)))/n) < D for p-almost all x, then dimpy(n) < D.

e Ifliminf, o —(og, (u(Bn(x)))/n) < D forall x € A, then dimy(A) < D.

For p,¢eN and u e ({0,...,m —1} x{0,...,myr—1)HP x {0, ..., ms — 1},
define the generalized cylinder

[l = {Cx, ¥) € Zpymy 2 (G, )p, w(@P((x, Y))e)) = u},
where (x, y)Ip = (x1, y1) - -+ (xp, yp) and 7 ((x, y)|p) = ylp, and set
Pref, () ={u € ({0,...,m; — 1}
x{0,...,my— 1P x{0,...,msr— 1}*: QN [u] # 2).
For (x, y) € ¥,,,m,, n > 1 and i an integer such that ¢ 1 i, we define
My = (xis i) Xgis Vi) -+ - (Xgris Ygri)

if g"i <n < q"Tli. Let u be a Borel probability measure on 2. Following [9] we define
P, on the semi-algebra of cylinder sets of X, ,u, by

P (e WD) = [ | w(x, )1y

qti
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This is a well-defined pre-measure. Indeed it is easy to see that P, ([(k, D]) = n([(k, D)])
for (k,1) € A} x Ay, andforn + 1 = ¢"i with g 11,

Pu (L1, y1) - - (s o) et 1 Yur D)) _ w([(xis y1)(Xgis Ygi) -+ - (Xgris Ygri)])
P ([(xt, y1) - - - (Xns YD (s Y1) gis Ygi) = -+ (gr=175 Ygr-1)1)

whence
P (1, y1) - - - o, y)) = Z Py ([Cxe1, ¥1) -+ oy y) G D).
(i,j) €A x Ay

Denote also by PP, the extension of P, to a Borel probability measure on (%,,, ,, 8
(2m,m,)). By construction, P, is supported on Xgq, since 2 is a closed subset of X, »,
and, hence,

00
Q= ﬂ U [ue].
k=1 uePrefy ()

Let us now introduce some further notation. For all £ > 1, we consider the finite
partitions of 2 defined by

af = {QN[ul : u € Prefor(Q))
and
a} = {Q2N[u] : u € Prefn(Q)).

For a Borel probability measure p on €2 and a finite measurable partition # on €2, denote
by H,’,fz (P) the p-entropy of the partition, with the base-my logarithm:

Hjj,(P) = = ) w(C) log,,, u(C).
CeP
Let j be the unique non-negative integer such that
1 _ log(m) gt
y  log(my)

Note that for all n > 1 large enough, we have

g’ <

an < L(n) < qj+1n.

THEOREM 2.2. Let u be a Borel probability measure on Q. Then P, is exact dimensional
and we have

I HY (@) . © Hpy, (a3 valb)
dimg(P) = (g — 1> ) ——+ @ - D@y - Y —LL
p=1 1 p=j+1 1
) o0 H,’,,‘z(oﬂ_._1 val)
+@—DU=q'y) Y S

p=j+1

Proof. Our method is inspired by the calculation of dimy(P,,) in [9]. The strategy of the
proof is the same, nevertheless the computations will be more involved, owing to the fact
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that the P, -mass of a ball for the metric d is a product of j1-masses of generalized cylinders
rather than standard ones as in [9].
Let £ > j 4 1. We first show that for P;,-almost all (x, y) € Xq we have

. —1og,, (P (Bu(x, ¥)) 5 Hiny (@)
lim inf . =g -1 ) —
p=1
4 14 2 1
. H, (¢7_ .Va,)
+@-D@ty-n Yy —LL
p=j+l1 4
L 1 2 1
. Hp,(as_ .| Va,)
+@-DU—q’y) Y R
p=j+l1 1
and
— log,, (Pu(By(x, y))) L\ Hiy(ah)
lim su ! < (g —1)? _mipl
n»oop n - (q ) ; qP'H

14

+@-D@My -1 Y

H,’,fz (ai_j \% ozllj)

p+1
p=jrt 1
14 [ 2 1
. Hp,(a;,_,_ | Va,)
+g-D—gly) Y —= L
p=jt 1
(£ +1) log,,, (mim2)
+ = :

Letting £ — oo will yield the desired equality (cf. Theorem 2.1). To check these, we can
restrict ourselves to n = qﬁr, r € N. Indeed, if q’dr <n< qﬁ(r + 1), then

- logml (PM(Bn(x’ )7))) - - logml (P/,L(qur(x? )’))) - r - 1Ogm| (]P)[,L(qur(xv )’)))

n qe(r~|—1) “r+1 qer
which gives

—1 P, (B, (x, —1lo P,(B, . (x,
lim inf 08y, (P (Bn(x, ¥))) — lim inf S, P (Bye,( y))).

n—00 n r—00 qﬁr

The lim sup is dealt with similarly.
As proved in [9] we have

— log,,, (Pu(I(x. Y)[a])

lim
n—oo n
00 HI»L (a2)
2 mi\*p
=(@-1 Z W for P, — almost all (x, y) € Xgq.
p=1
Note that
Pu(Bax, )= D Pun, y0) - -+ G Ya) X s Yat1) - (s YLD
x;/l+1 ----- X/L(n)
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/

AR ,x/L(n) such that

the sum being taken over all x

[(x19 }’1) e (-xl’h )’n)(x,/H_], }’n+1) e (-xi(n)’ )’L(n))] n XQ # @.

14
e L) L(n)
'c } q* ’LO”] -l } ’q”‘l}

pm14 97

Let

such that g {i. Note that if i € |L(n)/q”, L(n)/q?~"'] then the word (x, W, Lo is of

length p. Recall that j is defined by ¢/ < 1/y < ¢/+!. Suppose j > 1.If 1 < p < j, then
L(n)/qP > n, so

}L(n) L(n)

g " gpr7!

j| C In, L(n)].

If j + 1 < p < £and ¢ is large enough, then n/q?~ /= € |L(n)/q?, L(n)/q"~"], thus we

can partition
L(n) L(n) _ L(n) n n L(n)
qP ’ qp_l - qP ’ qp_j_l |—| qP_j_l’ qp_l ’

In the case where i € [n/q?~/~', L(n)/q”~"] we have

q" % <n < qP 77l <qP7li < L) < q"i,
and ifi € |L(n)/q”, n/qP~/~1], then

g" i <n<qP i <qP7 i < L@n) < q”i.

If j = 0, then
L
€ L:_—v qp(—ﬂ = g7 % <n<q" i <L) < g"
L
e}(?,gﬂ}zquwgnng)<ft
a’ " q

Thus, for any j we have

J
Py (Bu(x, y)) = [ IT I wwi.... yqp-l,-])}
p=1

qti

[ I1 ( I u([(xi,yi»~~(xqp-_f-z,-,yq,,-_f-zi>yqp-_/-.,-,...,yqp-l,-]))
=j+1 . n n
Pt le],,p—j—l’fp(—)l]
qti

. < l_[ w([(xi, yi) - - - (xqp—.i—li, yqp—j—li)yqpfji, cee yqp—li]))i| * Dy(x, y),

. L(n) n ]
ze] qP ’gp—j—1

qti
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with D, (x, y) being the product of the remaining quotients (words beginning with (x;, y;)
with i < L(n)/q"). Here we used the notion of generalized cylinders we defined earlier:

w(is s ygrr D= D O ) - & Y1),

:u’([(xl" yl) e (-xqp—j—Zi, qu—./—zi)qu’—./—li’ e ey yqf’_li])
= Yo UGy Egri2s Y2 X 1 Vgr-i-11) (K] pVgr1)Ds

([ xiy yi) - - - (xqpfjflis yqpfjfli)yqp—./i, e yqpfli])
= Z M([(xl's yl) v (xqp—.f—li9 yql’—f—li)(x;p—ji> yqp*j,') e (x;p—ll'> qu—li)])a

! ’
X PR
gP—Ji" 7 gp=

the sums being taken over the cylinders that intersect Q2. If (u,), (v,) € RHY, we say
that u,, ~ v, if (u,/v,) — 1 asn — oo. Here we have

L L) ] —1)?
#{ie] L ] R Aok 31”,
q?  qP7 | vqP
L) — (1 =g/
ST A £ B R
q qP= | vq
L T —D(g/ty -1
ali e (n)’ LI P L =Dy =1
qP qP=i—1 ] yqP+!

Note that fori € 1n/q?~/=1, L(n)/q”~"1, q 1 i the random variables

Yi,n,p : (x’ y) € XQ > —10gm1(,“«([(xi’ yl) te
(xqp—./—Zi, yqp—j—Zi)yqp—./—li, cees yqp—li]))
are independent and identically distributed and uniformly bounded, with expectation

being Hy,, (oz;_j_l \ tx[l,). Fixing j + 1 < p <l and letting n = ¢%r, r — 00, we can use
Lemma B.2 to obtain that for P,,-almost all (x, y) € Xq

vq? 2 1
. Y; ,y) — HF LV .
nig—1){1—q'y) ) ,lz L(n) laﬂ,p(x Y) r—00 ml(apfffl Olp)
le]qp—j—l’qp—l]
qti
Thus,
Z .
Z (g— DA —q'y) Z YaPYinp(x,y)
Pt yq? Iy n(g—1D0—-qly)
N b R
qti
¢ mo2 1
. Hpyy (o _ . Vay,)
— @-DU-q'y) Y e~
p=j+l i
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Similarly, if we define

Zi,n,p : (x7 y) > — logml(ﬂ([)’i, AR ) yqpfli]))v

the expectation of which is H, ) (a},), for P, -almost all (x, y) € X we have

v’ wo
na T X D@y o Hi@).
et Lo
qP ’qpfl
qti

hence,

L Hp, (@)

J 2 +1
(¢g—-1 Yq"" Zinp(x, y)
D D= Rl DR
p=1 ie ] L(n) L(n) ] p=1

qP ’qpfl

qti

The third term is treated in a similar manner. We have, thus, proved the first inequality.
Now it remains to prove the second inequality using D, (x, y). It is easily seen that there
exists C > O such that forallb >a > 0

‘#{i eNAla,bl:qti}— L - )| <.
q

Thus, the number of letters in A; x Ay appearing in the words of the developed

D, (x,y)is
I4
L L
d, = L(n)—z#{i € Nﬂi| q(:)’ q;?} :q{i}p
p=1
¢ 2
(g—D"L(n)p L +1)
§L<n)—2; e ;—C
p:
_ L(Z) [(KJF . q N z(z+1)c
q q 2
< (€+12L(n) N z(e+1)c_ 0
q 2
On the other hand
¢ 2
(g—D°Ln)p LL+1) ¢ L+ 1)
dnzun)—[; T car[(un_ﬂ_ e,

s0 Y%, 27%" < 400, Define
Sp = {(x,y) € Xq : Dp(x,y) < @mymp)~}.

Clearly P, (S,) <27, so Pu(Ny= Urey S4¢») = 0, using Borel-Cantelli lemma.
Hence, for P;,-almost all (x, y) € Xq there exists N(x, y) such that (x, y) ¢ S, for all
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n= qer > N(x, y). For such (x, y) and n > N (x, y), using (1), we have
— logy, (Du(x. y)) _ dn log,, 2mim2)

n n
- (¢ + 1)L(n) log,, (2mima) N L€+ 1) log, (2mima)
- ngt 2n '
Thus,
: —log,, (Dye,(x,y))  (£+1)]log,, (2mims)
lim sup 7 < 7 .
r—00 qr q
Finally, for such (x, y) we get the second desired inequality. O

2.2. Study of the validity of the Ledrappier—Young formula. Here, we discuss the validity
of the Ledrappier—Young formula in our context. Recall that for a shift-invariant ergodic
measure (L on X, m,, the Ledrappier—Young formula is (see [8, Lemma 3.1] for a proof)
1 1
log(mz)  log(my)

dimyg(u) = hy (o) + ( )hnm(&),

log(m 1)

where ¢ is the standard shift map on %,,,, 7 is the projection on the second coordinate,
and h (o) is the entropy of  with respect to o. This can be rewritten as

1
log(my)  log(m)

dime (1) + ( ) dime (74 1), (2)

1
og(my)

where for any Borel probability measure v on X, »,, dime(v) denotes, whenever it exists,
its entropy dimension defined by

dimy(u) = 1

. ]
dime(v) = lim ——  } ([ log(v(u]),

n— 00
ue(A x A"

and where dime (V) is defined similarly. We show that this fails to hold for P, in general.
This is expected because [P, is not shift-invariant in general. However, we give a sufficient
condition on p for P, to satisfy (2.4).

Let (v))yer (S, m,) be the myv-almost everywhere uniquely determined disintegration
of the Borel probability measure v on X, ,, with respect to . Each v? is a Borel
probability measure on X, ,», supported on 771 ({y}), which can be computed using the
formula

vY([x[a] x {y})
_ V(X1 ¥1) - G Y)Y 1+« -5 Ypl)
= lim
p—>00 TV ([yis - -5 ypD)

for myv-almost all y € 7 (X, n,)-

For some basics on the notion of disintegrated measure we advise [11] to the reader.

PROPOSITION 2.3. Let | be a Borel probability measure on Q. Then mw.(P,) is exact
dimensional. Moreover, IP’{L is exact dimensional for w.(P,)-almostall y € n(Xgq), and
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we have

essinf d1me(IP’y ) = esssup dlme(]P’V)
ywn*(]P)/L) y\/n*(]PM)

Finally,

dime (. (P,)) + essinf dlme(]P’y) < dim¢(P,),

y~7x(Py)

with equality if and only if for all p > 1, for all I € a%, the map y € w(I) — p>(I) is
T u-almost surely constant.

Proof. First note that for (x, y) € X,

TP ([Y1s - - s yal) = Z ]‘[u( @, WD

—]_[ > nd, WD = Pryp (1, - - - ya D).

Thus, . (IP,,) is a Borel probability measure supported on w (Xq) = Xz (@), which is equal
to P, .. Thus, using the one-dimensional case studied in [9] we easily obtain that . (P,,)
is exact dimensional with

ad ”(Ol )
dlme(ﬂ*(Pu)) = q - 1) Z p+l :

Now we study }P’,yL. First observe that for i such that g { i, the map
$i 1y € m(Xq) > Iy = Oyei)imy € T(R)

is measure-preserving, that is, (¢;)«(Pr,) = meu. Let p > n > 1. For (x,y) € Xq we
have

P}L([(-xl’ yl) e (xn, yn))’n+l, IR )’p])
]P)n*,u([yl, cees yp])
1—1 Z //L([()Ci, yl) tt (qu_1i9 qu_li)(x‘;ki’ qui) tee (xt/lli’ yqzi)])

ISpx', ,..x
k.v »” e
oghi T

1_[ Z l/«([(xl’ yi) oo (xéz,-’ Ygti))

/

_ 1—[ WLCxis yi) -+ - Cegh=tjs Ygk=1)Ygkis - - - Ygtil)
- JT*,U«([)’h e yqli])

b
i<n
qti
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where ¢*1i < n < gki < ¢% < p < ¢"*i. Using the remark above and letting p — oo

we deduce that for . (P, )-almost all y

() (Ixl x {yh = [T s el gn] x (15D
quhn

We use the P, -almost everywhere defined independent and identically distributed random
variables

Xin: (x,y) € Xg —> —log(wVi (Ix| 2] x {y|;}) for g ti

whose expectation is

—/ (f log(p? Vi ([xl el < {315 d(P)) (x, y)) d(m(P))(y)
n(Xq) -1
_ f H (8 p(@25),)) A (B)) )
(Xq)
= H" (Ap(R2y)) d(met) (),
(2)

where Q) = 7 '{y) N and A, is the partition of 2, into cylinders of length
p on the first coordinate x, if x| n is of length p. Using again the same reasoning
as in the one-dimensional case when computing dimyg(P,) (see [9]), we get that for
7, (P,)-almost all y, P}, is exact dimensional and

- _ 2N H" (8p(2y)
dime(P}) = (¢ — 1) ; /ﬂ o gr A 0).

Now we have

HW (A p(22,)) d () ()
7(S2)

u* (1) log(” (1)) d (1) ()

| |
\

(€D rep, (sz )

== 2. / o PN W) o (TN (D) ) ()

Iea? T
=-> / 17 (1) Tog (12 (1)) d (1) ()

Iea 2 m(

w¥(I) / w (1) )
= Gl L ST I D o
- gzn e ))</n(1) ronGe(y) O )> ot ( vty TanGe(y 0
u(l) >

=— D) lo

,Z wo g( 7ea (D)

— HM (2]
_H (ap|ap)’
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using Jensen’s inequality. The function x € [0, 1] — —x log(x) being strictly concave,
this is a strict inequality unless for all p > 1, for all I € al%, themapy e w(I) — p’(I)
is 7, pu-almost surely constant. O

Using Lemma B.4 we obtain the following result.
COROLLARY 2.4. If, forall p > 1, forall I € 0512,, the map y € w(I) — w”(I) is almost
surely constant, then P, satisfies the Ledrappier-Young formula:

1 1

dimg(P,,) = log(mz)  log(my)

dime(P,) + ( ) dime (4 (Py)).

1
log(m)

This sufficient condition is equivalent to saying that for all p > 1, for all
I =[(x1,y1) - (xp, yp)] € otlz,, for . pu-almost all y € (1) we have

pwd) — _ pdGyD) - (s yp)D)
T ( (1)) w(yis - yp)
For instance, this is clearly satisfied when p is an inhomogeneous Bernoulli product on €.

In this case P, is not shift-invariant in general. However, we can easily build examples
where the equality in Corollary 2.4 does not hold.

ur () =

Example 2.5. Suppose that j = 0. Then there exists €2 and n a Borel probability measure
on €2 such that

1 B 1 )
log(mz)  log(m)

Indeed, using the property H“(oz2 Vo ) = H*(a! |Otp D+ H“(a _1) we have

dimy (P,,) < dim.(P,,) + ( dime (. (P,)).

1
log(m1)

m1< 2) < Hy (@hlo?_ )
dimy(P,) = (g — 1)? Z +@-DA-»Y q—’”
p=1 p=1

and

dime(P,) + ( ) dime (7, (B,.))

log(m1) log(ma)  log(m))

m( 2) 1 1 > HH(al)
S L (TP
p=1

log(mz)  log(my)

It is then enough to choose 2 and u such that:
e HM(])=0;
° H“(Ol,l,|0l,2,_1) =O0forall p > 2;
o Hﬂ(a},) > 0 for p > 2.
Such 2 and p yield the desired example.

2.3. Lower bound for dimy(Xgq). We are now interested in maximizing dimy (P,,) over

all Borel probability measures p on 2. We define first the jth tree of prefixes of €2, which is
adirected graph I'; (2) whose set of vertices is U,fio Prefy ; (£2), where Prefy ; (Q2) = {T}.
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There is a directed edge from a prefix

w=(x1,y1) -+ k> YOYVkt1s - - - » Yktj

to another one v if

V= (x1, ¥1) -+ (ks Vi) Xkt 1> V1) Yk425 + + - » Vit j Vit j+1

for some xx41 € {0,...,my — 1} and yryj41 € {0, ..., mo — 1}. Moreover there is an
edge from & to every u € Prefy ;(2). Then I';(£2) is a tree with its outdegree being
bounded by mm; (except the first edges from &, which can be more numerous). The
following result is an analog of [9, Lemma 2.1].

LEMMA 2.6. Let u € Prefy j(2) and I', j(2) be the tree of followers of u in T";(S2).
Let 'V, j(Q2) be its set of vertices. Then there exists a unique vector t=t(u) €

2 —1 .
(1, m3 YWV @ such that for all (x1,y1) - - - Xk Y)Ykt 1s - - > Yitj € Vi j(R)

J
gty Ty
t(xl,y1)"'(xk’)’k))'k+1»--<,Yk+j - Z Zt(xl,y1)-~~(xk,yk)(x£,+1,yk+1)sz ~~~~~ Yk+jyl/c+j+1 ’

/ ’
Vitj+1 T

3)

the sums being taken over the followers of (x1, y1) - -+ Xk, YK) Yk+1» « - - » Yk+j in Ty j (S2).
Proof. Let Z =1, m%/(y(q—l))]vu,j(g) and F : Z — Z be given by

F(Z(x),y0) (o yo) v 10mem }'k+j)
aly\ 1/¢/ 1y
= ( Z (Z Z(Xl,yl)'~~(Xk,yk)(x1’(+l,yk+1)yk+2,--~,yk+jy,:+j+1> ) :
y//<+_/+1 sl
We can see that F' is monotone for the pointwise partial order <, defined as
7<7 % forallv eV, ;(Q), z, <7,
for z, 7/ € Z. Indeed, because g7y, 1/g7T'y > 0 we have
1<7 = F(z) < F(Z).

Denote by 1 the constant function equal to 1 over Z. Then 1 < F(1) < F 2(1) <...,80
by compactness (F"(1)),>1 has a pointwise limit ¢, which is a fixed point of F. Let us
now verify the uniqueness. Suppose that 7 and " are two fixed points of F and that ¢ is not
smaller than ¢’ for < (without loss of generality). Let

o =inf{€ > 1, t < &t'}.

g/y(qfl), and by continuity we have t < wt’, so @ > 1. Now

Clearly, w < m
t=F() < F(ot") = o1F({) = 07,

contradicting the definition of w. O
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Furthermore, we define

qjy 1/q 1/g\ 1/q
IQ=Z<Z(-..<Z(Zl‘(ﬁ’)’i)yé ..... y}+l> ) ) ) .
x

’ / v

1 Y2 Yjt1

PROPOSITION 2.7. Foru = (x1, ¥1) - - - (Xk» Yk)Yk+1s - - - » Ykt € Prefy j(Q) define

q/y—1
CTIR DA IS }'j+1(zxi t(xi,yl)yz ,,,,, }'j+1)
w(ul) =
Iy
J=l aly\1/a N\ 1/a\/ay\ (-)/q
T Z (Z (A Z(Zwomminsia) ) o))
p=0 "y, . v V" X}
Jtl-p Jj+2—p j+1 1
k qjyfl
]—[ t(x1~yl)"'(xp’yp),"p+1 ----- y,;+_/(2x;, t(xl,yl)u-(x;,,yp)ypﬂ,...,yp+j)
tqj+1y
p=2 CLYD (X p—1:Yp— DY pseesYp—1+j

where there are p + 2 sums and p exponents 1/q in each term of the first product. This
defines a Borel probability measure on Q such that P, is the unique optimal measure, that
is, such that dimy(IP,,) is maximal over all Borel probability measures |1 on Q. Moreover,
we have dimy(P,) = (¢ — 1)/q log,,, (tz). Using Theorem 2.1 we deduce that

. —1
dimu(Xo) > 1= log,,, (t2).
Proof. Let
J H (0[1) © gt (az ) \/(Xl)
— (g — 1?2 _miTpl _ _ i M2\ p—j—1 p
S ) =(q—1 Zl g T @D —g'y) z;l pr
p= p=j

00 HN' 2 . 1
fa-D@ty-n Y Ay (@), v @)

1
p=j+1 qp+

We try to optimize S(£2, u) over all Borel probability measures u on Q2. Let S(2) =
max, S(£2, u). Recall that for some measurable partitions $, Q of Q we have

HEPIQ =) (— > u(P1Q) logm2<u<P|Q>)>u<Q>.
0eQ PeP

Let p > j + 2. We have
o2 Iy _ i (2 11,2\ ol B2\ o]
Hy (o, Va,)=Hy (o, ; (Vaylai Ve )+ Hy (@f Va;,)

and

2 1 2 1,.2 1 2 1
H,jfz(ozp_j Vozp) = H,ﬁfz(oep_j \/Otp|oel \/oeJ-_H) + H,jfz(al VO‘/—H)'
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Moreover,

1.2 1
mz((x 1Vozp|oz1 Va,i-&-l)

KGepyDypssyjpl 2 1
= E : Oty y2ees ,Vj-HHmZ (O‘p—j—z vO‘p—l(Q(X],Y1)y2,--4,)‘_1+|))
X1V1:Y2000Y jt1

and
% 2 1,2 1
Hy (o, Vaylay Vo)

RGpypyzeyjst o 2
= E : Oty y20yjs1 Hma (o, lvap 120y y20yj1))s
XLY1Y25esY 41

where
e(xl,yl)yg ..... Yi+1 = /,L([(Xl, )’1))’27 ceey )’j+1]),

Ky )Yy
and Hm;l D2 u+l(a§ i zvap 1082 ,y)y2....y;41)) 18 the entropy of the partition

the follower set of (x1,y1) in Q with y, ..., y;41 being fixed,
which is the normalized measure induced by p on

of Q(X]a})l)yz’---’,\’j+]’
with respect t0 LU(x;,y)ys,.... Vit

Q(xhyl)yZ ----- Yj+1* Then

Héf(a)
S(Q, 1) = (q—l)Z :

(q—D(—q'y)
PYAR

y(g—1)

Hyy, (@) + Hyy (@ Vo)

1
+ 6_1 Z 9(X1,y1)y2,--~,yj+1 S(Q(xl,yl))’Z’--w)’jJrl’ Hx1,y1) 250000 yj+1)-

X1Y1Y2500Y j+1
Observe that the measure is completely determined by the knowledge of 0(x, y,)y,....yj
and  f(x; .y it for all (x1,y1)y2,...,yj+1. The optimization problems on
€(x1,y1)y2,...yj+1 being independent, we obtain

JOHE (@) (g -1 =g

m g—Dd—q'y)

S(Q):Q max (¢ — 1)? E ;+1p + T Hh (« ]H)
FLYDY2sesYj41 p=1 q q

+V@—U

" 2 1
p Hy, (e V)

1
+ - Z 01y 2. yj+1S(Q(X1,)’1)Y2 ----- yj+1)'

XLY1:Y2seYj 41
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After factorizing, we have

—1 1 G 0,
S(2) = max q—(Hnlfz(lgl)+_Zgyl<_Z V1y2 logmz ( )1y2)
q q 1 h) eyl 0)’1

1Ly G (g O g (O
9 9 GQIYZ

975 n v Yain
1 Oy vy . 7] .
Y1)y2)3 Vs YVj+1
+_ZQ— ...+q.1y29—f
95 Ynn vigt Vi

T D Vj+1 le ----- Yj+1

9(X1,)'1)y2,~~,yj+1 | 9(X1,>’1)y2,~~.,yj+1
- ——log,, | —(————
P Vi

1 Ox1y)y20y it
Z - S(Q(Xla)’l))?wwyfrl) T :

+
7/(‘1 -1 X1 9y1»--~»)’_1’+|

We can now recursively optimize these quantities. First fix yq, . . .

, ¥j+1. To optimize the

last part of the above expression of S(£2), we use Lemma B.1 and we obtain

9(x1,y1)Y2,--.,yj+1 L)

Vit - S(Q
----- J+

m
xp 2

(YDY2Y 41

and

X1 QY1,-~.,}’/+1

O, V1) Y2505 Y 1 1 Oxr.y1)y2,mee Yj+1
ny 9
V1o Vj+1

)/ v(g=1

1 G(XI’YI),VZ ,,,,, Vi+1
- S(Q(Xh)’])yz ){/+1)

+
V(q -1 X1 9}’1 ,,,,, Yj+1

= log,,, < Z m, T

x|

Using again Lemma B.1, we obtain 9y1,...,yj+

O(x1,y1)y2.....yj+1» Which are equal to

qly—1
Z(Xl,yl)m,-u,yjH(Zx; Z(xi,yl)yz ..... y_,-+|)
i
j_l< < <
— ’ ’
P=0 " Yini, Vi

aly\ /g
(X (X cttommsni) )

/ ’
Vi1 X1
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WHETE Z(ay ) yz.evjr = mj(gmyyl)yzwyj+l)/Y(q_l) and zg = mgS(Q)/(q_l), In particular,
we obtain
qjy 1/q 1/g\ 1/q
Z®=Z(Z(~..<Z(ZZ(Xivyi)yé,...,y}H) ) ) ) _
y; }’£ ,/i+l X;

Now let us consider £2,, for fixed u = (x1, y1)y2, ..., yj+1 € Prefy ;(£2). The optimiza-
tion problem is now analogous on this tree, but simpler: we now have to optimize the
quantity

g—DbA - qj)/) H“(XM'IWZ ----- 5’j+1(
q/! "
)/(q —_ 1) I'L(Xls."'l)wawijrl

2 1
+ THYM (of v O‘j+1(Q(X1,yl))’2,~~,y]'+1))

1 Z e(xlJl)(x27y2)y3w-,_"j+2

1
®j+1 (Q0e1y0)y2m3j41))

+ —
q

9 S(Q(X1’yl)(m,yz)m,m,yﬂz)’
X2.3742 (KLY Y25005Y 41

which is after factorization

qg-—1 (_ 0(X1,y1)y2,~~,yj+2 lo (0(X1,y1)y2,m,yj+2)
CIJ—H : 9(X1,y1)y2,--~,yj+1

6 .
Vit (X1,Y1) Y2505 Y j+1

+qly Y

6 )
Vit (K1Y Y2505V j+1

log (G(ﬂ,yl)(X2,y2)y3,»--,yj+2 )
my
O(XI V1) Y2eeesYj42

1 01,y (2. 32)y39j 12
+ Z = S(Q0e1 31 (k2323500 vis2) | )

9(X1,y1)Y2,~-.,yj+2 (_ 9()61,yl)(X2,y2)y3,m,yj+2

X G(Xlsyl)yz,uw)’jJrZ

y(@—1 - 0131 y2000 Vj+2
This gives the weights
qly-1
6)()q,y])(xz,yz)y3 ..... Yit2 Z(xl7y1)(x2,y2))’3»m7)’j+2(Zxé Z(xl,y])(xé,yz)y_% ----- y_,-+2)
O , N qitly '
1Y) Y2505V j41
* L@y Y20 Yj+1
with
S(Q(xl,yl)(x2,y2)y3,...,yj+2)/V(q_l)
Z(xy)(02.y2)¥35myjp2 = My g
S(Q(xl,yl)yz ..... )'j+1)/)/(‘l_1)
Z(X1,y0)Y25yj41 — My
and

J
gty 9y
< Z Z L1,y (¥5,32) ! :
(LY Y2500V jt1 1Y) (X3:2)Y3500¥ ;10

/ /

Yivo X

This is exactly (3) at the root of the graph I', ;(€2). The problem being the same at
each vertex for I', ;(£2), for all u € Pref; ;(£2), we can repeat the argument for the entire
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graphs. We also obtain the given formula for the optimal measure from the form of all
optimal probability vectors that we found. The solutions z = z(u) of the systems (3) which
we obtain in this way are in [, mé/y(q_l)]vu’/(m, thus we have z(u) = t(u) for all u
(indeed, for all k > 1, for all v € Prefy ; (£2), for all 1 on €, we have dimg(IP;,) < 2, thus

S(R2y) <2). O
2.4. Upper bound for dimg(Xq).

THEOREM 2.8. Let 1 be the Borel probability measure on 2 defined in the last theorem,
and let P, be the corresponding Borel probability measure on Xq. Let (x,y) € Xq. Then

—1 P, (B, (x, —
lim inf 08, Py (Bu(x, y))) - qg—1
n—00 L(n)

from which we deduce that dimy(Xgq) = ((g — 1)/q) logm2 (tz).

log,,, (1%),

Proof. Recall that
- logmz (]P);L (Bn(x,¥)))

= - Z logmz(u([(xia )’i)(xqi, )’qi) tee (qu_]i9 qu_]i)qui9 e e ey yqzi]))s
i, qti
i<L(n)
where k and ¢ are determined by i <gqi <---<g*li<n<gqgki<---<qli<
L(n) < ¢**'i in each term of the sum.
Suppose first that j = 1 for the sake of simplicity. We have

w((x1, y1) - -« ks Vi) Yi+11)

_ 1—
_ t(xl,yl)m(in Z‘(xi,y|)yz)qy (Zyé(in t(xj,)q)yé)qy)( D/a

197]

k -1
1 ey Gy (g Ly —Cpypyps) T

Y ’
p=2 (x1,y1) (X p—1,Yp—1)Yp
w(lCxr, y1) - - k=15 Yk=1) Yk Yk+11)
_ t(xl,J’l)yz(Zx; t(xi,y|)y2)qy (Z}Q(Zx{ t(xi,yq)yé)qy)( D/a

197}

k—1 -1
I(X] Y1) (XpsYp)Yp+1 (Zx;, t(Xl,yl)m(X},,yp)ypH )(1)/

(Y
p=2 X1,y (X p—1,Yp—1)Yp
qy
(Zx;( t(Xl,yl)"-(x/i,yk)ka)

tqzy
x1,y1) Xk —1,Y6—1) Yk

fork > 2,

1—
il = Ot 1) T g (et tag )0/
1([y1y2 - :
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and
(Z}é (in t(xi,yl)%)qy) t/a

197

w(nD =

For each positive integer k < L(n), we can write k = ¢"i with g 1 i for some unique (r, i).
Now, developing the product P, (B, (x, y)), we pick up:

e 1/ty foreachi < L(n) suchthatq ti;

& L) iy DY e foreach x = ¢"i < n;

7y

° ]/t(xi,yi)~-(x,,r,-,yqri)qui for each k < |L(n)/q?], that is, because for these ¥ we have
g%k = q" % < L(n), and for k > |L(n)/q*] we have ¢’k > q*|L(n)/q*| + ¢* >
L(n);

-1 .

hd (Zx(;rl- t(xis)’i)"'(x;riquri)yqr+l~)qy for each « < n;

1

b (th/l"i t(xia)’i)"'(X;ri’yq’i)yqr+li)qy foreachn <« < [L(n)/q];
o (S (Tt )10/ for each i < |L(n)/q] such that g 173
. (Zy;ﬂ. DI z(x;’yi)y;i)qy)l/q for each |L(n)/q] <i < L(n) such thatq {i.
Thus, if we define
R(k) = log,, (t(xisyi)(xqisyqi)“‘(xq’iayq’i)yqr+l,~)
for k = ¢"i withgq 11,
R(k) = log,,, < Z t(xisyi)(xqis)’qi)"'(x;r,-qu’i)yqurl,-)
Xy
q'i

for k = ¢"i with g 1 i, and

l & l — -

1 _ - 2 _ 2

un—n E R(x), un_n E R(x),
k=1 k=1

i<n, qti y(;i

| qy
“=n 2 logm(z(Z’“l"’””@l‘) )
x;

we obtain

L(n) L(n)
10g,,, (P (B (x, y))) = nuy, — 7612{7}&(,1)/& +rq LTJ”%L@)MJ

1 L(n)
2 3 3
—nu, + gL(”)”Lm) - { p J”LL(n)/qJ

—#{i € [1, Lm)]. q1i}log,, ().

Getting back to the general case, let us define j + 2 sequences as follows. At first, set

1 <& J
1 _ 2 _
ty =~ RO,y =~ R,
k=1 k=1
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where
R(x) = logm2 (t(xisyi)(xqisYqi)"'(xq"i’yqri)yqr+1,’""’yq""ji)

ifk =¢"i withg 1i, and

R(K) logmz ( Z t(xt y:)(xqt qu) (x ri Yq’i)yqurlia---ayqr-Fj,-)

q i

ifk =¢q"i withg 1i.Then, for3 <k < j+2let

g T T (T (-

i=n, qfi /+3 —k; }q/+4 k;

aiy\ 1/4 1/g\ 1/q
(E(Zmi) ) ) 7))
)’q]l

where there are exactly k — 1 sums and kK — 3 exponents 1/g in each log,,, term. It is easy

to see that all these sequences are non-negative, bounded, with
. . k k _
foralll <k <j+2, ,,ll?;o”nﬂ_”n_o'

Let € > 0. Using the definition of u we can obtain the following expression for n large
enough, which will be justified when studying the case d > 2

— logmz (P;,L (Bn(x, y)))
L(n)

g’ L(n) no no, q’ L(n)
=Y L j+1 u, + u, —vy L j
L(n) qj+l L m/gi+'] L(n) L(n) L(n) L (m)/q7]

T Im ]; qu—kJ“i(m/qMJ B Zlqj—k—lJ L a1+ 1J>
#ie [l L], q1i)
L(n)

1 1 2 2
=Yy giery — ) TV W= UGy 00 )

log,,, (tz)

1 k+3 k+3
+k2(:) 27k L) T Y L1y

+(q — 1)/q log,,, (iz) + €.
To conclude we now use Lemma B.3 and then let ¢ — 0. O]
Example 2.9. If Q is a Sierpifiski carpet, then clearly Xq = Q. Using uniqueness in

Theorem 2.6 we deduce that the values #(y, y;)y».... do not depend on x; and y;. We
call them ty, . Equation (3) now reduces to

g/*! 'y
Iy,.... y1+1 = N(y2) Ztm ,,,,, Yjt+2°

Yj+2

SYj+1

----- Yji+1
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where N (y2) = #{x2, (x2, y2) € A}. Thus,

. ; 1/q
J j—1 J
Z tgzj/--,ij =N@)T 7 Z ( Z t;13,-y~,yj+2> >
Yi+1 Yj+l1 YVj+2
and so on. After having summed on the different coordinates we obtain
Wy 1/q\ 1/q 1/g\ 1/4 q/(q—1)
(S (R(S) ) ) - (Sher) ™
2 3 Yio N Yj+l »

Thus, finally, 1 = (3, N(y2)?)?/~" and dimy(Xq) = log,,, (3", N(y2)?), which is
as expected in the McMullen formula. In addition, we check that the maximizing measure
is the Bernoulli product measure used by McMullen.

Example 2.10. Letq =2,my =3, my =2, and D = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0),
(2, D}. We have j = 0. Let

—_— o - 0o oo
—_ e e e e e
—_— e = = e e
O = O = =
— e e e e e
O = O = =

be a 0—1 matrix indexed by D x D. Let

Xa ={(xx, yirey € 232, A((x, yi), (2, yar)) = 1, k> 1}

We look for the solutions ¢ of the systems of equations described in Lemma 2.6. Using
uniqueness we know that

10,00 = Lo,n = 11,00 = 12,0, 1,1 = {2,1)-
Moreover

1op) = (.0 +12.0)" + (o + a1 +ten)” =271 + (00 + 21117,
1y = (o) + ta.0) +120)" + 1, = G + Dij ),
1 .
thus, t(}z)?()) =27 t():),O) + (t0,0) + 237 + 1)1/Vqt(({g))y. Finally, we have

te = (ta,0) + t1,0) + 120)” + (to,1) + ta,1) + tan)”
1
= 3Vt(}z),0) + (t0,0) + 237 + 1)1/yq t(o/’((l)))y.

Using Scilab we obtain # 9y =~ 7.1446, thus dimg y(X4) = 1 log, (tz) ~ 1.878.
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2.5. The Minkowski dimension of Xgq.

THEOREM 2.11. We have

/_ log,,, (|Prefo ,(2)])
dimy(Xq) = (¢ = 1)* ) —*—

p=1

+ (g — (1 - qJ ) i log,,,, ([Prefy—j—1,j+1(§2)])

p
p=j+1 1
‘ < log,  (|Pref (Q)|)
_ J-H ny P—JJ
+@-D@My -1 Y e
p=j+1

Proof. Recall that, by definition,

logml (Prefn,L(n)fn (X@))
" .

dimy;(Xq) = lim inf
n—o0

We can again fix £ > j + 1 and take n = ¢*r with r — oo in this lim inf. Now using the
computations used in the proof of Theorem 2.2 we obtain

1Ogml (Prefn,L(n)—n (XQ))

> Z#{i e ]L(”), L(”)] :qJ(i} log,y, (IPrefo,, (2)])

p=1 9’ g

¢ n L(n)
+ Y #{z € ]— —] :qJ(i} log,,, (IPref,—j_1,j4+1(2)])

qp—J—l’ gP-1

p=j+1
¢
. L(n) n .
+ #li e T m 1 q tiglog,, (|Pref,_; ;(Q2)]).
p=j+l1
On the other hand,

1Ogm1 (Prefn,L(n)—n (Xa))

j
=y #{i = ]L("), L”)] :qw} log,, (IPrefo,, (2)])

= q? " qr!

¢ n L(n)
+ > #{i € ]— —] :qw}1ogm1(|Pref,,_j_1,j+1(sz)|)

gp—i-1 ’ gh-1

p=j+1

L
+ Z { ] (n)’qpfj—l}:61“}10gm1(|l’refp—j,j(9)|)
p=j+l

+log,,, (mym2)dy
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by putting arbitrary digits in the remaining places (d,, being defined in (1)). Remember
thatd, < (€ + 1)L(n)/q* + CLEL + 1)/2). By letting r — oo we obtain

. 7 log,,, (|Prefo ,(2)])
dimy (Xe) 2 (¢ = 1)* ) —=—

p=1

L Pref,_ i1 i11(Q
F-D—gy Y Do Pl D

P
p=j+1 q
¢
) log,,, (|Pref,_; i (2)])
_ jl., o P—j.Jj
+@ =Dty -1 Y e
p=j+l1
and
_ ’_ log,,, (|Prefo_,(2))
B 2 m P
dimp(Xe) < (¢ — D> ) pres
p=1
¢
; log,,, (IPref, 1 j+1(€2)])
_ o mo p—j—Lj
+@-DU=g'y) Y pr
p=j+l1
¢
) log,,. (|Pref,_; i (2)])
_ jl, o p=j.j
+@-D@y -1 ) e
p=j+l1
£+
+ log,,, (mymy) o
As £ is arbitrary, the proof is complete. O

PROPOSITION 2.12. We have dimm(Xq) = dimp(Xq) if and only if the following four
conditions are satisfied:
o the tree I' j () is spherically symmetric;

o H#{x1:(x1,y)y2,...,yj+1 € Prefy ;(2)} does not depend on yi,...,yj+1 €
Pref,j11(€2);

o for 1<p=<j, #yps1:¥1>-..,Yp+1 € Prefyp11(R)} does not depend on
Vi, ..., Yp € Prefg ,(R2);

o for p=2, #xp:(x1,y1) - Xp, Yp)Yptls ..., Ypyj € Pref, ; ()} does not
depend on (x1, ¥1) - - (Xp—1, Yp—1)Vps - - - » Yp+j € Prefp_1 j(2).

Proof. Compare the formulas in Theorems 2.2 and 2.11. We have
Hyy (e v ap) < log,, ([Pref,_; ; (Q))).

with equality if and only if every [u] for u € Pref),_; ;(£2) has equal measure y, and similar
results for Hy, (ozll,) and Hy,, (oz[%_ Ve ;,). Now, the expression of j in Proposition 2.7
and uniqueness in Lemma 2.6 give the conditions we stated. O
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3. Generalization to the higher dimensional cases
We are now trying to compute dimy y(P,) in any dimension d > 2. Here 2 is now a
closed subset of

Sy = (AL X - x ANV
where m; > --->mg >2and A; = {0, ..., m; — 1}. We define
- log(m;)
" log(mi—1)
and
n
Li:neNH— ’7——‘
Vi
for 2 <i <d (L being the identity on N). We can again define the Borel probability
measures P, on Xgq as in the two-dimensional case. For (xl, A ,xd) € Xq we need to
compute P, (B, (x', ..., x%), where
B,(x' . oxh =@, .. u?) € Sy my foralll <k <d,

foralll <i < (Lyo---oLy)(n), uf =xk}.
3.1. Computation of dimy(IP,,) for three-dimensional sponges.  First suppose thatd = 3,
as the computation of dimy(P,) in this case helps to better understand the general
one. Let jy, j3 be the unique non-negative integers such that ¢/2 < (1/y,) < ¢/”2! and
g’ < (1/y3) < ¢73*!. Now we obtain two cases: either g2t < (1/y2y3) < g2+ or
g3t < (1/y2y3) < ¢277312 Suppose we are in the first case. In this case, for all n
large enough, we have ¢”2n < Lo(n) < ¢2*n, ¢/*n < Li(n) < ¢/3*'n, and g2 30 <
L3(La(n)) < g/2t53+1 . In order to compute dimy y(P,) we now use the same method
as in Proposition 2.2. For n = ¢‘r with ¢ fixed we can write

l
L3(La(n)) L3(La(n) L3(La(n))
}T,Ls(m(n»}:U} g ]

p=1
We now have, for all r large enough:

e 1<p<jzs=1L3(L2(n))/q”, L3(L2(n))/q"~"1 C1L2(n), L3(L2(n)];
o j3+1s=p<jz+jp=1L3(Lam)/q”, L3(La(n)/q"~ '] Cln, L3(La(m))];  we
have Ly (n)/qP =571 € 1L3(L2(n))/q”, L3(L2(n))/qP~'] and

c ]Lz(Lz(n)) Lo (n) }

ql’ ’ qP*hfl

—=n<i<q’ PN < Lyn) < q" Big" i < Ly(La(n)) < q7i,

e] L(n) L3(L2(n)):|

qP_j3_1 ’ qp_l

= n<i<q" 7% < Lyn) < q" Pl < ¢P7Ni < La(La(n) < g7
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o for s+ jo+1<p <t wehave Lo(n)/qP~ 571, n/qgP= 727571 € 1L3(Lo(n))/q?,
L3(L2(n))/qP~"1 and n/qP~ 2=~ < Ly(n)/qP~5~", thus if i € 1L3(La(n))/q?,
n/qP~72=7371] then

qp—jz—j3—1i <n< qP—jz—j3l- < qP—j3—1i <L(n) < q"_j3i
< g < Ly(La(n)) < q”i,
ifi € ln/qP=27571, Ly(n)/qP~7>~1], then
qp—jz—ja—Zi <n< qp—jz—js—li < qp_j3_1i < Lyn) < q”_j3i
< g7 < Ly(La(n)) < q”i,
and if i € 1La(n)/qP~57, L3(La(n))/q”~ "1, then
qp—jz—j3—2l- <n< qp—jz—js—li < qp_j3_2i <Lyn) < qp_j3_1i
< qP7 i < L3(La(n)) < qPi.

Denote by oz p, and a the partitions of €2 into cylinders of length p along all three
coordinates, the second and the third coordinates, and the third coordinate, respectively.
Using the same approach as in the two-dimensional case, we can obtain

( l) Rt gt (a Val)
dimy (P,,) = (¢ — 1)? Z Bont0y) g — 1) P
p=1 C] p=j3+1 4
+tj3 H’/n‘ (a \/al)
_ _ J3 3V p—j3—1 14
+@ =D =y Y] p
p=j3+1
00 I 2 1
+(q — 1)(V2)/361j2+j3+1 -1 Z Hm3(ap =iz ¥ %p-is Vo)
p+1
p=jr+js+l 4
00 13 2 1
+(q — 1)(V36]j3 _ y27,3q,i2+j3) Z Hmy (O[P j—i=1 YV %—js v p)
p
17*/'2+/'z+1 1
00 M 2 1
+@-DU-yg?) iyt ¥ Hpmt ¥ )
> :
p=intistl 1

If we suppose now that g2+l < 1/py3 < g2t5+2 we have Lo(n)/qP~ 537! <
n/qP~72=75=2 for n large enough and we obtain

1 J2+j3+1 HM ( \/Oll)
. _ 2 m3( ) Jj3+1 OlP J3 )4
dimp(Py) = (g — 1) Z i T @ =D =D > g
p=1 p=j3+1
Rt gl el val)
+@—DA—yg?) Y ponl b
, q?
p=j3+l1

https://doi.org/10.1017/etds.2021.155 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.155

444 G. Brunet

00 HM (Ol \/052 ) \/0(1)
—_ B+l _ M3V p—ja—j3—1 pP—J3 p
+(a = D(rq Do o
p=j+j3+2
° H’L \V4 2 . Vi 1
+ (g — DOayg” TPt —y3g%) Z m*(ap ja=js=1 Y %p—js—1 ¥ %p)
p
p=ja+j3+2 )
00 7 |
Vv \%
+(q = D = payagPtithy ¥ Hins @) jpu2 VG VO
p
p=i+is+2 q

In the next subsection we adopt a more general point of view to avoid this dichotomy case.

3.2. Results in any dimension. We now return to the general case, by first introducing
some notation and making a few observations before stating the theorems. Let / C N* and
K C [1, d] be finite sets. If x € Q and (x ) 16 1 is a finite set of coordinates of x (the upper

index corresponding to the ‘geometric’ coordmate and the lower index being the digit), we
define the generalized cylinder

(D) ier1={y e Q:yf =xkforalli € I, forallk € K}.
keK

For some arbitrary coordinate functions xi, ..., xy € {{x € Q — xik} tke[l,d]), i =1}
we also define

Pref,, () ={0a(x), ..., xn(x)) :x € Q}.

For all 7 € [2, d], let j; € N such that

qjt < i < q]'r-H‘
Vi

There is a unique sequence of integers (7;)2<;<4 such that

forall t € [1, d — 1], g/dHa—1FFirritnn < v < gttt

YdVd—1 -+ Vi+1
Let

Dt = Ja+ ja—1+ -+ jrr1 + 01

The sequence (n;) takes its values in [0, d — 2] and is non-decreasing; moreover, ng = 0
and n; € {n;y1,np41 + 1} for 2 <t <d — 1. The integers j;, t € [2,d], and ny, t €
[2, d — 1], are the 2d — 3 parameters mentioned in the introduction. Thus, we obtain that
for all n large enough, for s € [1,d — 1],

forallt € [[s, d—1], forall p € [ps + 1, ps—1].

Lio-- oLl(n) Ljo---oLi(n) Ljo---0Lji(n)
qp pi—1 qP ’ qp_l
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and
Laor ol Ly oo Ly,
qar -
with po = £ and Lo(n) = 0.1f p € [1, pa_1], then
Lao 0l S 1y ooy,
q’ -

For s € [1,d — 1] let o, € &([s,d — 1]) be the unique permutation such that the

Sequence
(Las(t) o---0 Ll(”))
gP~Pes~] refs.d—1]

is non-decreasing for all n large enough and all p. We define

Jos—1 _:|Ld0"'0L1(n) Los(s)o"'OLl(n)]
p - b

b}

qP qp—pam)—l

s Loyyo---oLi(n) Leg+1yo---oLi(n)
r qP*Pom)*l ’ qpfpax(rﬂrl

fort € [s,d —2] and

psd—1 _ |Lo@-no---oLin) Lgo---0Li(n)
P qp_[’as(dfl)_l K :

g~

We use the partitions

d—1
Ljo---oLi(n) Lgo---0Li(n) _ |_| 75t

t=s—1

for all p € [ps + 1, ps—1]. Observe that fori € ][Lgo---o Li(n)/q",Lgo---0oLi(n)/
g~ '] such that g { i we have

g P2 <Lyo---oLi(n) <qP P
forall k € [1,d — 1]. Hence, for k € [1, d — 1], either
qP P2 <Lyo---oLi(n) <qP Pl
or
g" Pl <Lio---oLi(n) < qP Pi.

Moreover, if i € I,s,’t, then

Loyo---oLlim) __Lowo---oLi(n)

qP~Pos (n—1 qP~Pos -1

Loyv1yo---oLi(n) - Loja-1yo---oLi(n)
qP*Pax(rH)*l - - qP*Pas(dfl)*] ’
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Forse[l,d—1]andz e s —1,d — 1] let (p]i’l)ke[[x,d—ll] be defined by p’ = pi + 1
if k € o5([s, t]]), and p‘,i’t = py otherwise. Then we have

i€l = forallk € [s.d — 1], ¢" % i <Lyo---oLi(n) < g "
Thus, the IP,-mass of an arbitrary ‘quasi-cube’ is

Jd

Pu(By(a's. .. xh) = ( I1 I1 il - -x;’plib)

p:l . Lgo--oLy(n) Lgo--oLqy(n)
’e] P T 1 ]

qti

d—1 Ps—1 d—1
(T T TT i)

s=2 p=ps+1 t=s—1 ielf,"

qti

4 d—1
( [T TI Hu(c};,i-(x»)-Dn(xl,...,x"), 5)

p=p1+1 t=0 iellg”

qti

where

s, s d s d
Cpi(x)z Xjyoon X Jooo | x sty X si_y.
, gp=rs 1 gPps =l
s+1 d 1 d
m x5+ S,E9 et 0 X p— St c St st 1 LI ] X _ St 1 m cr
L\ gP P i qPrs Ly PSSt
d—1 d d—1 d
N (x st X s ><x st X s )]ﬂ
L qp pd*Zi ql pd—2[' qP Pg_q i ql Py_q i

d d
N|x st cee X p—1j
qpipd—li q

=

and D, (x!, ..., x?) is the residual term. Note that C;’Ii (x) can also be compactly written
as

s . s s+1 ) s+1 .
[7° ()i, ..., @ (x)qpipg,tili] N[w (x)ql’*ﬂ?’[i’ ST (x)ql’*l’iil”,’] N

d d
N7 (x ot e e, (X)), p—15],
LAC @)gr-17]

using the projections 7% : x = (x¥, ..., x?) fork € [1,d].
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Now, for all p > 1, we define

k)

sdd—1 _ i #i€llgo---oLi(n)/qP,Lgo---oLi(n)/q"'1:qti} (q—1)*
P = oo Lgo---oLi(n) el

. . d
#iely qti) _ (@O [Tz 5y i — D@ = 1)

8s,s—1 — =
14 n—o00 Ldo--'OL](n) qp+1 ,
#Hiel) 1qti
8 = lim {lp—qJ“}
p n—o00 Lgo---0Lji(n)
d d
(gPosa+n) T vi —qPso ]2 yi)lg — 1)
_ 1_[1 os(t+1)+1 /1 - l—ll oy (t)+1 71 fort e [[S, d — 2]]
q

and

. . d
ssd—1 _ pipy TUE L gty (A =gP @0 [T gny vi)g =1
p n—o00 LdO"'OLl(n) ql’ ’

Moreover, denote by a’;, the partition of €2 into cylinders of length p along the last k
coordinates for k € [[1, d]. Finally, let

d—1
r~ 1 2 3 d—s+1
HF = Z SSTHM () Va* ., Va Ve vatTT
5.p ] p Hng(@p p—pi  p-py, p—py"
1=s—

fors € [1,d].

THEOREM 3.1. The Borel probability measure P, is exact dimensional and its dimen-
sion is

Jd d—1 Ps—1 [e%)
sen=(Xa)+(X X ay)+ XA,
p=1

s=2 p=ps+1 p=p1+1

Proof. We use exactly the same method as in the proof of Theorem 2.2, using the
computation of P, (B, (x%, ..., x%) above, the different families of independent and
identically distributed random variables

st S,t
{Y;,i xeXqg> — 10g(M(C;,i NI

whose expectations are Hy,, (a}, var o, val V... Vad_st,l>, respectively,
P—Ps

P=P4— P=Pq—»
and Theorem 2.1 and Lemma B.2 repeatedly. We then show again that the residual term

D,(x', ..., x%), which is larger than or equal to the IP,-mass of those points in X which
share the same symbolic coordinates as x for those indices j which do not appear in the
cylinders of the forme C;tl (x) with p < £, is IP;,-almost always negligible. To this end, we
use, as in the proof of Theorem 2.2, the Borel-Cantelli lemma and the set

Sy ={(x', ... xD eXaq: Dyxl . x) < Qmima .. mg) "N,
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where the exponent

)4

Lio---olL Lio---olL
d,,:Ldo...oLl(n)—Z#{ieNﬂ} ao---olin) Lao it 1(”)]:q+i}p
" q? qr"
p=

can likewise easily be controlled. O

We can again optimize this quantity following the method we used in the
two-dimensional case, by conditioning all the entropy terms appearing in the third part of

this expression for p > p; + 2 by the finest partition appearing in the term H1 Pt We
know that for all s we have
t <t' = forallk, p;" < p,’(”t/,
(6)

t <t' = thereexists k, py’ < pk ,

so this partition is that appearing in the r = 0 term, that is,

! 2 3
a=a | Va o Va o V- -Va 1o
P o= =Y, pi+1-py’

_ 1 2 3 v wd

= Ot Y %pit1—py Y Yprl—paa v vay.
If C is a cylinder of this partition in €2, denote by Q¢, ¢, and ¢ the associate rooted set
at C € o in €2, its y-mass and the normalized measure induced on it, respectively. As, for
p>pi+2andt € [0,d — 1], we can write

H* @' va? |, v veeevad )
maiP T Tp—pity p—pyty p—py"
=Hj () + HY (@)ve? |, v | veeval | ja)
P=Pg—1 P=P4_> p—r;
=Hlj @)+ ) OcHS (@, (Vo> ., Ve ., v---val L, (Qc),
Cee P—Pg_1— P—=Pg_r— pP—pr; —
we obtain
- Ps—1
S, m—ZHé‘ﬁZ > Ay,
s=2 p=ps+1
d
+ Zb‘ o v a? V-e-Vao
b ( R pitl- P:t)

=1

+(,,1+1+ Z Za“) (a)+q29c5<szc pe). (N

p=p1+2 =0 CeC

Now we can obtain the unique optimal measure as in the proof of Theorem 2.7 by getting
the gc with a recursive reasoning and repeating the argument for the entire suitable
graphs. To make things clearer and to highlight the fact that the structure of the optimal
measure is similar to that appearingin the two-dimensional case, we introduce now the
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unique sequence of coordinate functions (x;);>1 such that if we reorder the partitions of 2
appearing in the expression of dimy(IP,) above as an increasing sequence f; < fp < - - -
(the symbol < corresponding there to the ‘finer than’ partial order) we have

H"(Bj) = — /Q log,, , (n([x1(x), ..., xi(®)]) dpu(x)

for all i > 1. Here we used a slight generalization of the notion of cylinders we defined
at the beginning of §3.2, allowing ourselves to use any family A C N* x [1,d] of
coordinates of x and not necessarily a product. This order is exactly the following (using
again facts (6)):

1 1

1 2 1
o <---<a <o Vo d-1 S« Vo _1d—2
1 Pd—1 Pd—1+1 Pd—l+1—PZ,}’d 1 pd—-1+1 Pd—1+1—p27}'d
=a +2V052 dmtd1 S0 +2V(¥2 vaa < <oy Va? d—1d-1
Pd-1 Pd—1 +2_[’d_1’ Pd-1 Pd—1 +2_[7d_1' Pd-2 Pd-2—Pg_1
1 2 1 2 d—1
= Vv d*ld*ZS"'Sa Vo 2,1,1\/"'\/(1 =
Pd-2 Pd-2—Py_y’ patl pat+1-py=, pat1—pyt!
SOILHVUZ 2,1 ceved! 215"'5%1,1\/012 2,d71\/"'\/ad_1 2.4-1
2 ptl-py p2t+1-=py P1—DPg_ P1—py
<-.<alver L veeeveld ! <al v Ve Va i
i 1Py, pi—py g pr+1=p;<, pi+l—py
<-..<al vl o Veoovad w=a<ah Vel i V
P pi+l=p,~, pi+l—py P pi+2—p;
1 d
75...§a V o lov...\/a S
pr+2-ppd! P2 T 2 pp? pi+2-p;”

For example, when d = 3 and dimy(IP,,) is given by (4), this sequence is given by

3 3 .3 2 3 2 3 1 .2
(Xi)i=1 = (x7, ... s XGys X X1 X0 K05 oo s X i 00 X Xy g0, - ).
We also denote by (5;);¢[1, 5] the sequence of real factors giving weights to the N entropies
in S(£2, u) (see (7)) when being reordered that way. Let

d—1

N=pi+1+Y (p+1-po)
k=1

be the number of coordinates x; appearing in the partition « distinguished above.
Finally, for (Xi, ..., Xy) € Prefy, .y (2) let I'(x,, . x5 (£2) be the directed graph
whose set of vertices is (X,..., Xy)U U;’;] Prefy,....xnie (§2), and where for all
£ >0 there is a directed edge from u = X1,..., Xy4+¢q to another one v if and
only if v= Xl, ey XN+£dXN+Ed+1, ey XN+(£+1)d for some Xl', i€ [[N +Ed + 1,
N + (£ + D)d].

THEOREM 3.2. Let wy =Y 0,8, or =30, 8/ N, |8 for 2<k<N and
wN+1 = 1/qdn. For all (X1, ..., Xy) € Pref,,

.....
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we have
1/(ON-d+10N+1)
(tX1,...,XN+m)
wWN WON—d+3\ ON—-d+2

t s

S (2 (2 ) )

’ ’ !

Xnieart  XNyeas2 XNtetnyd

where ON_g+1 = 013 . . . ON—q+1. Moreover, if we define

(2 (Zmn) ) ) )

/ / ’
Xl XZ XN 1

the unique Borel probability measure maximizing S(S2, ) is defined for all £ > 0 by

wdXys oo XNyeal)
xq,..., X WON—1 p+2 p+1 wp_l
=S IE(Z (2 (Beenanen) 7)) )
P=2 " Xp X Xy_1

SV oN—dr10N+1)
Xl XN+kd X1 XN4k—1)d

( Z ( . ( Z ZXI.Hx;VHd)wN- . .)wN*dﬂ’“)wN—dﬁ-p_l -

!
P=2 " Xy yap XN tkd

and its Hausdorff dimension is equal to w; log,, (tz).

Proof. The existence and uniqueness of ¢ are checked using a fixed point theorem as in
Lemma 2.6. We obtain with this notation that

N
S(Q7 M):Zal (181)_{_5 Z 9X] ..... XNS(QX| ,,,,, Xys> MXq,..., XN)

i=1 X150 XN
— o[ HE B+ 6 _ZOX;X”O Ox1x,
= w1 | Hy,,(B1 2 X, o iy o
X, X, 1 1
9X1X2< 0X, X, X5 <9X1X2Xg)
+ w3 =2 -y =g, |
; 9X| ; 9X1 QXIXZ

0x,X,X 0x....X 0x;....x
—i—a)42 9123 +wNZ L AN—1 _Ze Lyeeos ngmd
X; X1X2 Xn_i Xl, SXN-2 X X1sees XN-1

0X1 XN ) Xl XN
— + N1 = S(Qxy,. Xy X, X)) .
(9)(1 ,,,,, Xn—1 * Z 9X1, SXN-1 l N 1 N

https://doi.org/10.1017/etds.2021.155 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.155

Dimensions of ‘self-affine sponges’ 451

Optimizing this expression as before, we get that 0y, x, equals

Va7 p=2 X;’ X/p+l
WON\ ON—1 Wpt2\ Opt1\ @p—1
( Z (Z ZX],H‘,XP]X;)"“,X}V) ) . e ) ) ) ,
Xy Xy

oN+18(Qx,,..xy)
where zx, . xy =my * 2N and zg =

conditional measures on the subtrees Qy,
S(2x,....Xys MX,,...xy) Which is equal to

mdS(Q)/ “!_ It remains to optimize the

Xy» by maximizing the expression

.....

N

> SiHuy Y (Bi(Rxy.xy)

i=N—d+1

1 0x,,...x
+ - Z I—MS(QXI,...,XN+d7 MX[,...,XNer)

X100 X
XN41s-XN+d ! N

~ 0x,,..x 0x,,...x
sz_dH(_ Y i o (ﬁ)
1

XN+1

0x,,..x
+ ON-d+2 Z %( -

X1, X

Xyt e XN
OX 1, X Ntdt OX\,... Xn1a 1 0%\, Xnsa
+ oy —9X " - —9x . 0Ly, —9X .
XNya—1 b N+d-2 Xnia Xl N+d—1 e X Nerd—1

0x,,..x
+ oy+1 Z GI—WS(QXI ,,,,, Xyiar MX1,..., XN+d)>"')>
N+

and repeating the argument for the entire graphs. This yields the desired results. O

THEOREM 3.3. Let 4 be the Borel probability measure on Q2 defined in the last theorem,
and let P, be the corresponding probability measure on Xq. Let x € Xq. Then

lim inf — log,,, (P (B (x)))

<ol tz).
n— 00 Ljo---0oLji(n) =@ Ogmd(g)

Using Theorem 2.1, we deduce that

dimg(Xo) = 1 log,,, (tz) = 1 log,,, (t2).
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Proof. Let A(n) = Ule{(Lk o---0Li(n)/q") : r € N}. We can reorder the elements
of A(n) as the following increasing sequence:

Ljo---0Li(n) >“.>Ldo~~~oL1(n)

Ljo---oLji(n) > >Lg10---0Li(n)

q - - ql’d—l
- Ljo---0Li(n) - Ly 10---0Li(n) s Ly 10---0Li(n)
- gPa—1t1 - q - - gPa—2—Pa—1-1
- Ljo---0Li(n) - Lo, 5@@-1y0---0oLi(n) - Lo, 5@-20---0oLi(n)
- gPa-2 = gP4=2"Poaat-n = gl Poaal-2)

- Lijo---oLi(n) . Lo, s@@-1y0---0oLi(n) - Loy ya—2)0---0Li(n)

qu72+1 qu73fpad,2(d71)*1 qu—Sfpad,Z(dfbfl
- Ljo---0oLj(n) - s Ljo---0oLi(n) - Loy@-1yo---0oLj(n) -
- qu—3 - - qu - qplfpal(dfl) -

- Lyyyo---oLi(n) - Lgo---0Li(n) - Lgy@d-1yo---oLi(n) -
- ql’l—l’ol(l) - ql?1+1 - qpl_Pal(d—l)+1 -

- Lojyo---oLi(n) - Lgo---oLi(n) -
- qpl—Pa]<1)+1 - q[’1+2 -

We denote this sequence by
$o(n) =Lgo---oLi(n) = ¢i(n) = ¢a(n) = -+,

which is valid for all n. Observe that ¢y (n) = (Lg o - - - o L (n))/ql"“. We now fixn > 1.
Let S > 0 be the unique integer such that we have

Ps(n) <1 =<¢gs_1(n) <--- =< ¢o(n).

We can write S = N + Md + R, with M >0 and R € [0, d — 1]. Recall formula (5).
With this notation, we obtain that

S
Pu(B,()) =[] [T sl - xtelD. ©)
k=1 ¢k(”)<i?f/’k—l(")
qfi

Now, forall 1 <k < N — 1, we have

mwhxaixly) - - xeOls)D

1 k wN wp—1
=5H< Z ( Z fm(xu,.)mxp_l(xu,.)xp<x|1,.>'---XN(x|j,.)’) )

p=2 “xp(xly) xn (xlg;)

WN Wk+1
Z ( Z tXl(XJl-)'“Xk(x|li)Xk+l(X|J,~)/"'XN(X|Ji)’> ) - (10)
X1 (x1) xn (g

https://doi.org/10.1017/etds.2021.155 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2021.155

Dimensions of ‘self-affine sponges’ 453

If R = 0 then

wxiCxely) = xN+ma(xl)])

M
—(1/&ON-g+10N+1)
=l v &D -] ] |:tX1(X|J,-)"‘XN+rd(X|J,-) LGl s o (x1,)

r=1

d wN ON—dtp+1\ ON—d+p—1
H( Z (( Z txl(xu,.>...xN+,d<x|J,-),> ) ) ]

P=2 " XN+G-d+p(xls) XN+rd (x1g;)

and if R € [1, d — 1], then

wlxaxly) - - XN+Md+R (X1 ;)]

M

_ —(1/&N—g+10N+1)

= pu(x1Cely) - av @D - ] [rm(x‘,ﬁ..%Nﬂd(x\,i) 1 Gl x40 1 Cel )
r=1

d wN ON—dtp+1\ ON—dtp—]
l_[ ( Z ( h < Z IX](lei)“'XNJrrd(XIJ;)/) ; ) ) ]
P=2 XN+ (r—1)d+p &) AN (el

L ~@n—gr1ons) !
X1l xN+ma (xlg;)

R oy ON—d4p+1\ ON—d+p—1
: H ( Z ( o ( Z tXl(X\]i‘}‘XN+(M+l)d(X\Ji)/> o ) >
P=2 " xn+Md+pxly;) AN+(M+1Dd (1)
ON ®ON—d+R+1
Z Y < Z tXl(X|Jl-)"'XN+(M+1)d(X|Jl-)/> . > :
XN+Md+R+1G11) AN+(M+Dd 1)
an

Observe that for k € [0, d] and r € N we have ¢y _g1rq(n) = ¢n—r(n)/q". Thus, for

ke[0,d —1]andr e N
ON—ktra() <i < ON_kyra—1(n) <=dN_r(n) < q"i < Ppn_k—1(n). (12)

Now we can develop the expression (9) of P, (B, (x)) and group together the terms with the
same number of sums. We obtain tél forall 1 <i < ¢o(n) such that g 1 i; using property

(12) we obtain

M
l_[ l_[ DGl xvara(xly) = H DGl ) xvraxly)s

r=0 1<i<¢nira—1() K=q"i<¢n-1(n)

qti qti
and
M } 5
l_[ 1—[ ;~ON-anionDTh l—[ ;~On—anionsD™!
X1l xN+ra(xly) X1 (1) XN +ra(x1;)°
r=0 1<i<¢ntra(n) k=q"i<$n(n)
qfi qti
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we gather the product of terms coming from (10) with k € [1, N — d] to obtain

N—d oy D41
[1 [1 < > ( > IXI(XU[)‘“Xk(x|j[)Xk+l(x\]i)/'“XN(X\J[)/) )

k=1 gm<isdeoi () eqr(cly) vl
N wN WON—p+2
= [ [1 < X < > fm(xu,.>~~xmx|1,.)’> ) ;
p=d+l N _pp1M<i<PN_p) "~ yn_py2(xly;) xn (xlg;)
qfi
and, similarly,
N—1 oy k41
1_[ l_[ < Z o ( Z tXl(XIJI-)“-Xk(XIJI-)XkH(X\J,-)’“'XN(X\J,-)’) o )
k=N—d+1 ¢p(n)<i<dp_1() * xg41(xly,) xN (el ;)
d % ON_p12
=11 [ ( > ( > fx.(xu,.)---x;v(xui)') ) ;
P=2 ON—pr 1M <i<PN—_p(0) " xn_pi2(xly) xn (xlg;)

qfi

that we combine with

111 ON ON—d+R+1
1_[ l—[ 1_[ < Z o < Z ZX'("“fi)‘“XN+<:\4+1)A(X\J,-)/) B )
k=0

R=1 ¢N+lal+R(")<i?_¢N+kd+R—](’l) XN+kd+R+1(x15;) XN+ k+Dd (xX15;)
q1
M+1 d oy ON—p42
-1 11 I Y (X sen) )
r=1 p=2 ¢N+rd—p+l(")??§¢N+rdfp(n) N+rd—p+2(x1;) XN+rd (x];)
q
to obtain
d oN ON—p+2
I I (X (0 semmeny) )
P=2 ¢N—pr1(M)<k=q"i<PN_p (1) * XN+rd—p+2(x]J;) XN+rd (x]5;)
qti

finally, we combine in a similar way, all the remaining terms from the products (11) and
(10) and obtain

d wN oN-—p+2—1
1_[ l_[ ( Z ( Z tXl(X|],-)"'XN+rd(X|J,-)/> )
p=2 k=q"i<PN_p+1(0) * XNtrd—p+2(x1s;) XN+rd(x15;)
qti
N oN oN—p2—1
. 1—[ 1_[ < Z < Z tXl(X|J,-)"'XN(X|J,-)/> ) :
p=d+1 i<¢N_pr1(n) ° xN—p+2(xly;) XN (xlg;)

qti
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Thus,
Pu(Bn(x))
_—#ie[lpom]. qti} —@N—gt10N+D 7!
=1y 1_[ L el XN rd 511 ﬂ DGl xvra )
k=q"i<¢pn_1(n) k=q"i<¢p(n)
qti qfi
d [ ON—pt2—1
' H l_[ ( Z o < Z tXl(X|]i)“'XN+rd(X|]i)/> o )
P=2 k=q"i<pN_pt1(0) " XNtrd—p+2(x1s) XN+rd ®1g;)
qti
d WN ON—p+2
3 I (2 ( Z wempmeaeny) )
P=2 9N pr1(M<k=q"i<¢N_p () " XN4rd—p+2(x15;) AN+rd(x17)
qti
N 2% oN—pt2—1
l_[ l_[ ( Z o ( Z ’Xl(XIJ,-)-“XN(X\J,)/) o )
p=d+1 i<on_pr1(0) " xn—pia(xly) xN (L)
qti
N WON WON—p+2
[1 [1 > < > [X1(X\Jl-)"'XN(X|Ji)/> ) :
p=d+l oN_pp1M<i<PN_p) " xy_pi2(xly) xn (xly;)
qti

Forx = q"i withq 11, let

Ry (k) =10g,,, (L, (xly) -+ xn4ra(x15))>

Rz(K)=10gmd< Z tXl(xJ,-)"'XN+rd(x|],-)/>’

XN+rd (x17;)

and for p € [3, d], let

WN WN—p+3
Rp(K):logmd( Z (( Z fxl(x|f,.>~»-XN+rd<x|.,,.)'> ) )

XN+rd—p+2(xly;) XN+rd (x1g;)

For p € [1,d] andn > 1, let
1 n
p_ _ R ,
Up nl; p(K)

and for p € [d + 1, N]J, let

P 1 WN WON—p+3
ip = n Z log,,, ( Z ( < Z tXl(XIJi)---XN(XIJi)/> o ) )

i<n, qfi N—p+2(x]5;) XN (xlg;)

This gives us N bounded sequences. We can now write

—log,,,, (P (Bu(x))) = (@N—ati1on+1) "' [@n )]y o) — LEN 1D Uy, )

N-2
+ D Ut July ™ ) — oralgem]uly b )
k=0

+#{i € [1, po(n)]} log,,, (tz).
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Furthermore, some basic recursive computations give us the values of the exponents

-1 ps-1 - 00
w1=25"" ‘+Z > Z o'+ X 25”——
s=2 p=ps+1 1=s—1 p=p1+1 t=0
. #i<Lgo---oLi(n):q1i}
= 11m ’
n—>00 Ljo---0Li(n)
w) — 81 . #i<Lgo---oLi(n)/q:qti} 1
w) = = lim . — = —,
1 nsoco #{i <Ljo---oLi(n):qfti} q
w _w1—81—82_l
’ w1 — &1 q
= ... = = l — Pd—1
w4 Wpy_142 7 Wp,_1+3 = Vdq >
. 1 o o = 8 _ L HE < i () g fi)
A= =——Qcia. = - g
Pd—1 YaqPd-1+1 w] — ZLIZ 8 oo #Mi <gpon):iq i}
d _
e — by iz v gPmo
N q d ) N+1 1 d -
Hi:a] @)+1Yi (q — )Ha.(1)+1 Vi
This yields
d
@y—ariont) ' =g T v
i=o1(1)+1

and the asymptotic equivalences
LoN—1(m)] ~ @N—a+10N+D ' [$n ()],

[Dr+1(m)] ~ wrt2 Pk ()]

for all k € [0, N — 2], when n — 4o00. We conclude by again using Lemma B.3.

THEOREM 3.4. Forny,...,ng € Nlet

d
Pref,, ., (Q) = {u e []10. m; — 1] 5 -+ - x [0.mg — 1" - N [u] # 2.

We have
Jd
dimp(Xq) = Y 8447 [Prefy__0,,(R)]
p=l

- Ps—1

s,t
+Z Z Z 8y [Prefy, 0p—pb p = =ty (9]

s=2 p=ps+1 t=s—1

o
sUPref 1, 1 1, o1 (R
* Z+1 X(; p IPret, e ple_ple pte _plt pte (D).
pP=r1 =
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Proof. The proof follows the same path as in the two-dimensional case. We leave it

to the reader, along with the characterization of the equality case with the Hausdorff
dimension. O

A. Appendix. Notation

A Alphabet {0, . .., m; — 1}

Sy my Symbolic space (A; x ﬂz)N*

q Integer > 2

Q Closed subset of X, m,

Xo Closed subset of X, », invariant under the action of multiplicative integers
o Standard shift map on %, ;,

Y y = log(my)/log(my)
(e, My, G My = (g Ygti)) 2

L Mapn € N* i [n/y]

I Borel probability measure on 2

P. Borel probability measure on Xgq, see §2.1

b3 Projection map of X,,, ,», on the second coordinate

Qy Qy =Nz ({y)

[u] Generalized cylinder on X, 1, , see §2.1

Pref), ¢(€2) (p x £)-sized prefixes of €2, see §2.1

af af = {QN[ul:u e Prefo,(Q)}

o} a == {QN[u]: u € Prefy ()}

Hn’fz pu-entropy of a finite partition with the base-my logarithm

Jj The unique non-negative integer such that g/ < y~! < ¢g/*!

Q, Foru = (x1, y1) =+ - (Xks YK Vk+15 - - - » Yetj € Prefy (), 2, is the
follower set of (xy, y1) - - - (X, yx) in  with ygy1, .. ., yk4; being fixed

My The normalized measure induced by p on €2,

dime (v) Entropy dimension of the measure v

vy Disintegration of the measure v with respect to

() Jjth tree of prefixes of €2, see §2.3

[, (2) Tree of followers of u in I'j (2), see §2.3

t=1t(u) The unique vector defined on the set of vertices of I, ;(€2) satisfying equation (3)

to See §2.3

B. Appendix

LEMMA B.1. Let p1, ..., pm > 0with) ;- p1 =1, andletq, ..., qn € R Then

m

> pi(—log(pi) +qi) < log ( > eq"),
i=1

i=1
with equality if and only if p; = e?i /Z;":] eli forall i.
Proof. See [3, Corollary 1.5]. O]

LEMMA B.2. Let (2, F, P) be a probability space, (m,) € (NHN pe g strictly increasing
sequence such that 2311 (l/m%) < +ooand foralln = 1 let (X n)ie[1m,] be afamily of
independent centered random variables on (2, F, P). Assume that there exists K > 0 such
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that

foralin € N*. foralli € [1.m,]. E[X},]<K.
n a.s.
Then (1/my) 7, Xin — 0.

Proof. Fixn > 1. We have
mp 4 mp
e[(Lx) | =] S xt v w2t ]
i=1 i=1 i<j
<muK +3m,(m, — HK
< 3Km%
by using independence and Jensen’s inequality. Now Zn 1 (1 /my) Zm” X n)4 is a

well-defined random variable taking values in R* U {+o00}. Moreover, by the monotone
convergence theorem

TS En) ]Sl ]S b

n=1 n=1

Thus, Y 0 ((1/my) Y1, Xin)* < +oo almost surely and (1/my) Y i X

2.0 O

n—oQ
LEMMA B.3. Let p e N*andfor1 < j < p let (uf;) € RN be p bounded sequences with

lim u’ —ul =0.

n—o0 n+l

For j €[, p]let¢g;, v;: N — N be such that
there exists cj, rj > 0, there exists Aj, B; € N, foralln,
lpj(n) —[rjn]| < A; and |¥j(n) —[c;n]| < Bj.

Then, we have
P
.. j j
i tnf _X;(“%(n) ) =0
j:

Proof. Observe that for all j and n we have [r;n] € {¢;(n) +k, |k| < A;}and [c;n] €
{¢j(n) +k, |k| < Bj}. Thus,

iyl
;) = Wprym | = X 4, 0) = ¢,<n>+k|,:goo

using the hypothesis on u/ above. Similarly, |u1’/-jj m ~ [C n]| —> 0. Now, conclude with
n—oo

[6, Lemma 5.4] or [8, Lemma 4.1]. O]

LEMMA B.4. Let v be a Borel probability measure on Xy, m,. Suppose that [ is exact
dimensional with respect to the metric

Ak YO s (g, vR)F2) = e Mkl () (v}
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with dimension §. Denote by 8, the lower Hausdorff dimension of w,u with respect to the
metric induced by d, and let 81 and 81 be the essential infimum and the essential supremum
of the lower Hausdorff dimensions of the conditional measures u* with respect to d again,
where 1y is obtained from the disintegration of |1 with respect to mwyi. Then, with respect
to the metric d, for p-almost every point z, we have

51 " )
log(m1) ~ log(ma)

5 di_mloc(ﬂz, Z) S di—m]OC(,u“? Z)

8 ( 1 1 )
< - — 4.
log(m>) log(mz)  log(my) /) —

Thus, if 81 = 8 and § = &1 + 82, then w is exact dimensional with respect to d.

Proof. The first inequality follows from the proof of a result of Marstrand (see
[2, Theorem 5.8]), whereas the second inequality can be deduced from the proof of
[5, Theorem 2.11]. O
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