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Abstract We take a second look at two basic topics in the study of weighted convolution algebras L1(ω)
on R

+. An early result showed that one could replace the weight ω with a very well-behaved weight
without changing the space L1(ω) as long as L1(ω) was an algebra. We prove the analogous result for
measure algebras when M(ω) is an algebra. This allows us to preserve not only the norm topology but also
the relative weak∗ topology on L1(ω). A homomorphism between weighted convolution algebras is said to
be standard if it preserves generators of dense principal ideals. The original proofs of standardness and its
variants are all based on finding the generator of a particular strongly continuous convolution semigroup.
In this paper we give much simpler direct proofs of these results. We also improve the statement and
proof of the theorem, giving useful properties equivalent to the standardness of a homomorphism.
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1. Introduction

The modern study of weighted convolution algebras on R
+ = [0,∞) began in the mid

1970s with the fundamental paper of Allan [1], which circulated for several years before
its publication. In the present paper, we return to two early topics in the theory and
give improvements of the basic results in the light of subsequent developments. In § 2
we study equivalence of weights, and in § 3 we study the most important question about
homomorphisms.

At first only continuous weights were studied [1, 5], but eventually the appropriate
class of measurable weights was found [10,11,14]. For us, a weight is a positive Borel
function ω(x) on R

+ = [0,∞) for which both ω and 1/ω are locally bounded. When ω(x)
is a weight, then L1(ω) is the Banach space of (equivalence classes of) locally integrable
functions for which the norm ‖f‖ = ‖f‖ω =

∫ ∞
0 f(t)ω(t) dt is finite. We define Lp(ω) in

a similar way, and we let M(ω) be the Banach space of locally finite complex measures
µ for which the norm

‖µ‖ = ‖µ‖ω =
∫

R+
ω(t) d|µ|
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is finite. We usually identify the locally integrable function f with the measure f(t) dt,
so that L1(ω) ⊆ M(ω). We will also need the space C0(1/ω), which is the subspace of
L∞(1/ω) of continuous functions h for which

lim
x→∞

h(x)
ω(x)

= 0.

We are particularly interested in the case where L1(ω) is an algebra under the usual
convolution product

f ∗ g(x) =
∫

R+
f(x − t)g(t) dt.

In [5, § 1] Ghahramani shows that if ω(x) is continuous, submultiplicative (that is,
ω(x + y) � ω(x)ω(y)) and has ω(0) = 1, then M(ω) is an algebra with the same relation
to spaces of continuous functions and to multipliers that M(G) has for a locally compact
abelian group. Building on Willis’s isomorphic theory [14, Lemma 1.2 and Theorem 1.3,
pp. 303–306], we proved the same thing in the case when ω(x) is just right continuous [11,
Theorem 2.2, p. 592]. More precisely, we say that the weight ω(x) is an algebra weight if it
is submultiplicative, right continuous and has ω(0) = 1 (these are the strongly algebraic
weights of [11, Definition 1.1, p. 590.]). Then, as we showed in [11, Theorem 2.2, p. 592],
the following holds.

Theorem 1.1. If ω(x) is an algebra weight, then both L1(ω) and M(ω) are Banach
algebras and we have the following.

(i) M(ω) is isometric to the dual space of C0(1/ω) when we identify the measure µ

with the linear functional 〈µ, h〉 =
∫

R+ h(x) dµ.

(ii) M(ω) is isometrically isomorphic to the multiplier algebra of L1(ω) when we iden-
tify the measure µ with the operator f �→ µ ∗ f on L1(ω).

Theorem 1.1 is important because whenever L1(ω) is an algebra we can construct an
algebra weight ω′(x) with L1(ω) = L1(ω′) [10,11]. For a precise statement of this result,
see Theorem 2.4. However, we cannot guarantee that M(ω) = M(ω′). As the theory
developed from its early days, the algebra M(ω), and in particular the weak∗ topology
on M(ω) and on L1(ω) ⊆ M(ω), became more important. In Theorem 2.5, we show that
if M(ω) is an algebra, then there is an algebra weight ω′ with M(ω) = M(ω′).

Starting with [5, 11], one of the main parts of the study of weighted convolution
algebras on R

+ has been the study of homomorphisms between these algebras. Following
[9], we say that the continuous homomorphism φ : L1(ω1) → L1(ω2) is standard if
L1(ω2) ∗ φ(f) is dense in L1(ω2) whenever L1(ω1) ∗ f is dense in L1(ω1). This property
is partly motivated by the problem of identifying dense principal ideals in radical L1(ω),
for which the key counter-example has recently been constructed [13]. It turns out that
being standard is equivalent to a number of desirable properties of homomorphisms [9,
Theorem 2.2, p. 280].

In [9, Theorem 3.4, p. 284], we showed that φ was standard whenever ω2(x) was a
regulated weight in the sense of Bade and Dales [2]. Various variants of this result were
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proved later. For instance, L1(ω2) ∗ φ(f) is always weakly∗ dense when L1(ω) ∗ f is
norm dense [12]. The proof of the original result and its variants included proving that
a particular semigroup in M(ω2) was strongly continuous, and invoking some variant
of [11, pp. 600–601] which identifies the domain of the generator of the semigroup with a
particular principal ideal. In § 3 we give a simple direct proof of the original standardness
theorem and its variants. We also give an improved version of the equivalence theorem.

2. Equivalent weights

We say that two weights ω1(x) and ω2(x) are equivalent if both of the ratios ω1/ω2 and
ω2/ω1 are bounded on R

+. We say that ω1 and ω2 are essentially equivalent if both
ratios are essentially bounded. The following, essentially known, results make clear the
importance of these concepts.

Lemma 2.1. Suppose that ω1 and ω2 are two weights on R
+ = [0,∞); then we have

the following.

(i) The weights ω1 and ω2 are essentially equivalent if and only if L1(ω1) = L1(ω2).
Moreover, when L1(ω1) = L1(ω2), the norms ‖f‖ω1 and ‖f‖ω2 are equivalent.

(ii) The weights ω1 and ω2 are equivalent if and only if M(ω1) = M(ω2). Moreover,
when M(ω1) = M(ω2), the norms ‖µ‖ω1 and ‖µ‖ω2 are equivalent.

Proof. Everything is straightforward and elementary except for the statements about
equivalent norms. But for any weight ω, the Banach space L1(ω) is continuously embed-
ded in the Fréchet space L1

loc(R
+) and M(ω) is continuously embedded in Mloc(R+).

Hence, the statements about equivalent norms follow easily from the closed graph
theorem. �

Since we will allow changes to equivalent norms, the condition for L1(ω) and M(ω)
becoming algebras is weaker than the usual submultiplicative conditions. The sufficient
conditions are given in the following definition.

Definition 2.2. Suppose that ω is a weight and K is a positive number. We say that
ω is K-submultiplicative if ω(x + y) � Kω(x)ω(y) for all x and y in R

+, and that ω is
essentially K-submultiplicative if ω(x + y) � Kω(x)ω(y) for almost every (x, y) in the
closed first quadrant of R

+. When K = 1, we say ω is submultiplicative or essentially
submultiplicative.

For right continuous weights, we have the following useful observation.

Lemma 2.3. Suppose that ω1 and ω2 are right continuous weights. Then ω1 is K-
submultiplicative if and only if it is essentially K-submultiplicative. Similarly, ω1 and ω2

are equivalent if and only if they are essentially equivalent.

For stronger versions of the two parts of the above lemma, which involve Lebesgue
points, see [10, Lemma 2.4 (c), p. 534] and [10, pp. 533–534], respectively.
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We now determine when a given weight ω(x) is essentially equivalent to an algebra
weight, and when it is equivalent. The result for essential equivalence extracts what now
seem the most important points, from the more general results of [10,11].

Theorem 2.4. If ω(x) is a weight on R
+, then the following are equivalent:

(i) ω is essentially K-submultiplicative for some K;

(ii) L1(ω) is an algebra;

(iii) there is an algebra weight ω′ which is essentially equivalent to ω.

Moreover, ω is essentially K-submultiplicative for a given K if and only if ‖f ∗ g‖ω �
K‖f‖ω‖g‖ω for all f and g in L1(ω).

The equivalence of (i) and (ii) and the ‘moreover’ statement are in [10, Lemma 2.4,
p. 534]. If (iii) holds, it follows from Theorem 1.1 and Lemma 2.1 (i) that L1(ω) = L1(ω′)
is an algebra, so (ii) holds. We will outline a simplified proof that the equivalent conditions
(i) and (ii) imply (iii) after we prove the following analogous result for M(ω).

Theorem 2.5. If ω(x) is a weight on R
+, then the following are equivalent:

(i) ω is K-submultiplicative for some K;

(ii) M(ω) is an algebra;

(iii) there is an algebra weight ω′ which is equivalent to ω.

Moreover, ω is K-submultiplicative for a given K if and only if ‖µ ∗ ν‖ω � K‖µ‖ω‖ν‖ω

for all µ and ν in M(ω).

The importance of the above theorem is that it tells us that as long as the weights are
submultiplicative, or even just K-submultiplicative for some K, all the results proved for
the special case of what we call algebra weights remain true isomorphically, though not
isometrically. For instance, a continuous non-zero homomorphism φ : L1(ω1) → L1(ω2)
has a unique continuous extension to the corresponding measure algebras, but, unlike in
the algebra weights case [11, Theorem 8.4, p. 596], the extension need not have the same
norm. In particular, Theorems 1.1 and 2.5 give us the following result.

Corollary 2.6. If M(ω) is an algebra (equivalently, if ω(x) is a K-submultiplicative
weight), then M(ω) is naturally isomorphic to the dual space of C0(1/ω) and to the
multiplier algebra of L1(ω).

We will now prove Theorem 2.5. For (i) ⇒ (ii), the standard proof for the submulti-
plicative case where K = 1 works for general K and shows that ‖µ ∗ ν‖ω � K‖µ‖ω‖ν‖ω.
For (ii) ⇒ (i), first recall that Mloc(R+) is a Fréchet algebra under the seminorms
|µ|[0, a) for a positive. Since M(ω) is an algebra continuously embedded in Mloc(R+),
it follows from the closed graph theorem that convolution by a fixed µ in M(ω) is a
bounded linear operator on M(ω). Thus, multiplication in M(ω) is separately continu-
ous. A standard argument, using the uniform boundedness theorem, then shows that
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convolution in M(ω) is a bounded bilinear operator. That is, there is a positive K

with all ‖µ ∗ ν‖ω � K‖µ‖ω‖ν‖ω. Applying this to the point masses δx and δy yields
ω(x + y) = ‖δx+y‖ω � K‖δx‖ω‖δy‖ω = Kω(x)ω(y). If (iii) holds, then ω′(x) is submulti-
plicative, so M(ω′) is an algebra. But Lemma 2.1 shows that M(ω) = M(ω′), so (ii)
must hold.

Finally, we assume (i) and (ii) and prove (iii). Since ω(x) is K-submultiplicative, Kω(x)
is a submultiplicative weight, so limx→∞ ω(x)1/x = limx→∞(Kω(x))1/x exists and is
finite. Hence, when r is large enough, ω(x)/erx is bounded and K-submultiplicative; so
we can assume without loss of generality that ω(x) is a bounded weight satisfying (i)
and (ii).

We define ω1(x) = sup{ω(t) : t � x}. It is clear that ω(x) is (weakly) decreasing and
right continuous. We now show that ω and ω1 are equivalent weights. By our definition,
ω(x) � ω1(x). For the reverse inequality, let M be an upper bound for ω(x). We fix x

and consider h � 0. Then we have ω(x + h) � Kω(h)ω(x) � KMω(x). Hence, ω1(x) =
suph�0 ω(x + h) � KMω(x). So ω and ω1 are equivalent weights, and hence M(ω1) =
M(ω) is an algebra.

We conclude the proof with the following lemma, which we will also use in our discus-
sion of Theorem 2.4.

Lemma 2.7. Suppose that ω1(x) is a right continuous decreasing weight. If M(ω1) is
an algebra, then ω1 is equivalent to a decreasing algebra weight.

Proof of lemma 2.7. Since M(ω1) is an algebra, ω1 must be K-submultiplicative for
some K. Then Kω(x) is submultiplicative. Let ω′(x) = min(1, Kω(x)). It is clear that
ω′(x) is a decreasing, right continuous, submultiplicative weight equivalent to ω1(x). By
construction, ω1(x) � 1. Since ω′(x) is submultiplicative, we also have ω′(0) � 1. Hence,
ω′(0) = 1, and therefore ω′(x) is an algebra weight equivalent to ω1(x). This completes
the proof of the lemma and of Theorem 2.5. �

We will now outline how to extract a proof that (i) and (ii) imply (iii) in Theorem 2.4
from the more general results of [10]. One first shows that L1(ω) is invariant under
right translations and that the right translations are bounded operators. This is [10,
Lemma 3.3, p. 539] and the discussion in the following paragraph (or see [4, p. 390]). If
we let Mω(x) be the norm of right translation by x, we can show that

ess lim
x→∞

ω(x)1/x � lim
x→∞

Mω(x)1/x < ∞

(see [10, Lemma 2.8 (E), p. 537]). So we can find an r > 0 for which ω(x)/erx is essentially
bounded. Hence, one can assume without loss of generality that ω(x) is bounded. One
then defines ω1(x) as the essential supremum of {ω(t) : t � x}. As in the proof of
Theorem 2.5, we see that ω(x) is decreasing and right continuous and that ω1 is essentially
equivalent to ω (cf. the proof of Theorem 3.1 in [10, pp. 537–538]). Then L1(ω) = L1(ω1),
which is an algebra, and hence ω1 is essentially K-submultiplicative. Since ω1 is also
right continuous, it follows from Lemma 2.3 that ω1 is actually K-submultiplicative so
that M(ω1) is an algebra. Finally, one uses Lemma 2.7 to find an algebra weight ω′(x)
equivalent to ω1(x), and hence essentially equivalent to ω(x).
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3. Standard homomorphisms

Throughout this section, ω1 and ω2 are algebra weights and φ is a continuous non-zero
homomorphism from L1(ω1) to L1(ω2). We also use φ to designate the unique extension
of φ : L1(ω1) → L1(ω2) to the corresponding measure algebras [11, Theorem 3.4, p. 596].
It will follow from Theorem 2.5 that our results remain valid as long as ω1 and ω2 are
submultiplicative weights or, more generally, if M(ω1) and M(ω2) are algebras. Results
that do not mention the measure algebras or the weak∗ topologies remain true in the
more general case that L1(ω1) and L1(ω2) are algebras.

If f is a locally integrable function on R
+, we let α(f) be the inf of the support of f ,

with α(0) = ∞. If ω is a weight and a � 0, then L1(ω)a = {f ∈ L1(ω) : α(f) � a}. When
L1(ω) is an algebra, the spaces L1(ω)a are the standard ideals of L1(ω). The function f

in L1(ω) is standard if the closure of L1(ω) ∗ f is a standard ideal. Thus, if α(f) = 0, the
f is standard if and only if the principal ideal L1(ω) ∗ f is dense in L1(ω). Recall that
the homomorphism φ : L1(ω1) → L1(ω2) is standard if whenever L1(ω1) ∗ f is dense in
L1(ω1), then L1(ω2) ∗ φ(f) is dense in L1(ω2).

Following Bade and Dales (see [2, Definition 1.3, p. 81]), we say that the algebra weight
ω is regulated at a � 0 if

lim
x→∞

ω(x + b)
ω(x)

= 0 for all b > a.

Bade and Dales characterize compactness of convolution in terms of regulated weights
[2, Theorem 2.7, p. 90]. We will need the interpretation of their results in terms of
convergence (see [9, Theorem 3.2, p. 284] and [6, Theorem 2.3, p. 509]). We now give
simple direct proofs of the fundamental standard homomorphism results of [9,12].

Theorem 3.1. Suppose that φ : L1(ω1) → L1(ω2) is a continuous non-zero homomor-
phism. Suppose that f in L1(ω1) has L1(ω1) ∗ f norm dense in L1(ω1). Then we have
the following.

(i) L1(ω2) ∗ φ(f) is dense in the (relative) weak∗ topology on L1(ω2).

(ii) If ω2 is regulated at some a � 0, then L1(ω2) ∗ φ(f) is norm dense (so that φ is
standard).

Notice that the hypothesis in (ii) just says that

lim
x→∞

ω2(x + b)
ω2(x)

= 0 for some b > 0.

We will need the following simple result from [12, Lemma 3.2, p. 1678].

Lemma 3.2. If L1(ω1)∗f is norm dense, then cl(L1(ω2)∗φ(f)) contains L1(ω2)∗φ(g)
for all g in L1(ω1).

Proof of Theorem 3.1. Let h be an arbitrary element of L1(ω2). Choose a bounded
approximate identity {en} in L1(ω1). Then limφ(en)∗φ(f) = limφ(en∗f) = φ(f). Hence,
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φ(en) ∗ φ(f) converges weak∗ to φ(f) = δ0 ∗ φ(f) �= 0, where δ0 is the point mass at 0
and the identity of M(ω2). It then follows from [11, Lemma 3.2, p. 595] that φ(en) → δ0

weakly∗ in M(ω2) and φ(en) ∗ h converges weakly∗ to δ0 ∗ h = h. But each φ(en) ∗ h

belongs to cl(L1(ω2) ∗ φ(f)) by Lemma 3.2. Thus, h belongs to the weak∗ closure of
L1(ω2) ∗ φ(f), and (i) is proved.

Now suppose that ω2 is regulated at a. Since φ(en) converges to δ0, it follows from [9,
Theorem 3.2, p. 284] that φ(en) ∗ h converges in norm to h for all h in L1(ω2)a. If a = 0,
this proves (ii). For the general case, let J = {g ∈ L1(ω2) : φ(en) ∗ g → g}, which is a
closed ideal in L1(ω2). Since the closed ideal J contains a standard ideal, it must also
be a standard ideal (see [10, Lemma 6.2, p. 548], [3, Theorem 4.7.66, p. 552] or [1]).
Since φ(f) belongs to J and has α(φ(f)) = 0, it then follows that J is all of L1(ω2). This
completes the proof of the theorem. �

Using essentially the same proof as in Theorem 3.1 (i), we can give a short proof of the
Lp version of the standard homomorphism theorem [7, Theorem 3.1, p. 53].

Theorem 3.3. Suppose that φ : L1(ω1) → L1(ω2) is a continuous non-zero homomor-
phism and that 1 < p < ∞. If L1(ω1) ∗ f is norm dense in L1(ω1), then Lp(ω2) ∗ φ(f) is
norm dense in Lp(ω2).

Proof. Let h be an arbitrary element of Lp(ω2), and choose an approximate identity
{en} in L1(ω1). As in the proof of Theorem 3.1, φ(en) converges weakly∗ to δ0 in M(ω2).
Then, by [7, Lemma 2.1, p. 51], φ(en) ∗ h converges weakly in Lp(ω2) to δ0 ∗ h = h. The
Lp version of Lemma 3.2 holds, with essentially the same proof, so all φ(en) ∗ h belong
to the norm closure of Lp(ω2) ∗ φ(f). Hence, Lp(ω2) ∗ φ(f) is weakly dense in Lp(ω2).
But every weakly dense subspace is also norm dense, so this completes the proof of the
theorem. �

There is another general standard homomorphism result [8, Theorem 5.12, p. 317].
Like the original proofs of Theorems 3.1 and 3.3, its proof rests on showing a particular
semigroup to be strongly continuous. We give a direct proof of this result.

Suppose that ω3(x) is a weight on R
+. Following [8, definition 1.2, p. 305], we say

that ω3/ω2 is a convergence factor for ω2 provided that ω3/ω2 is bounded (so that
L1(ω2) ⊆ L1(ω3)), and that λn → λ weakly∗ in M(ω2) implies that for all h in L1(ω2)
we have λn ∗h → λ ∗h in the norm of L1(ω3). For necessary and sufficient conditions for
ω3/ω2 to be a convergence factor, see [8, Theorem 3.1, p. 310] and [8, Theorem 4.1, p. 312].
It is sufficient for ω3/ω2 to be integrable (see [6, Theorem 3.2, p. 512], [8, Theorem 4.1,
p. 312]) or for

lim
x→∞

ω3(x + b)
ω2(x)

= 0 for all b > 0

(see [8, Theorem 3.1 (c), p. 310], [8, Theorem 3.2, p. 311]). With these preliminaries,
we can state and prove our final standard homomorphism result, which is a variant
of [8, Theorem 5.12, p. 317].
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Theorem 3.4. Suppose that φ : L1(ω1) → L1(ω2) is a continuous non-zero homomor-
phism. If ω3/ω2 is a convergence factor for ω2, then for all f in L1(ω1) with L1(ω1) ∗ f

norm dense in L1(ω1), we have that L1(ω2) ∗ φ(f) is norm dense in L1(ω3).

Proof. Choose an element h in L1(ω2) and a bounded approximate identity {en} in
L1(ω1). As in the proof of Theorem 3.1, φ(en) → δ0 weak∗ in M(ω2), and all φ(en) ∗ f

belong to the L1(ω2) closure of L1(ω2) ∗ φ(f). Since ω3/ω2 is a convergence factor for
ω2, we have that φ(en) ∗ h → δ0 ∗ h = h in the norm of L1(ω3). Hence, the closure of
L1(ω2) ∗φ(f) in L1(ω3) contains L1(ω2). Since L1(ω2) is dense in L1(ω3), this completes
the proof of the theorem. �

When ω3 is an algebra weight, Theorem 3.4 says that φ is standard as a homomorphism
from L1(ω1) to L1(ω3). In this case it is enough for ω3/ω2 to be a convergence factor
at some a � 0 [8, Definition 1.2, p. 305]. The proof for a > 0 is similar to the proof of
Theorem 3.1 (ii) when a > 0 (cf. [8, Theorem 5.11, p. 317]).

One reason that standardness is a useful property for a homomorphism is that it
is equivalent to many other desirable properties [10, Theorem 2.2, p. 280]. Because of
Lemma 3.2, we can add to this list of equivalences that it is enough for L1(ω2) ∗ φ(f) to
be dense in L1(ω2) for a single f in L1(ω1).

A stronger form of the equivalence theorem [10, Theorem 2.4, pp. 281–282] identifies
a single subspace I of L1(ω1), with multiple descriptions, which is the ‘largest’ subspace
of L1(ω2) on which φ acts like a standard homomorphism. Standardness then occurs
precisely when I = L1(ω2), so that each of the different descriptions of I yields a differ-
ent property equivalent to standardness. The following result is an improvement of the
formulation in [10].

Theorem 3.5. Suppose that φ : L1(ω1) → L1(ω2) is a continuous non-zero homo-
morphism, where ω1 and ω2 are algebra weights, and that f is an element of L1(ω1) for
which L1(ω1) ∗ f is norm dense in L1(ω1). Let {en} be a bounded approximate identity
in L1(ω1). Let I = cl[L1(ω2) ∗ φ(f)], and let µt = φ(δt) for each t � 0. Then I is a weak∗

dense ideal equal to each of the following subspaces of L1(ω2).

(i) IA = L1(ω2) ∗ φ(f ′), where f ′ is any element of L1(ω2) for which L1(ω1) ∗ f ′ is
dense.

(ii) IB = {h ∈ L1(ω2) : φ(en) ∗ h → h}.

(iii) IC = {h ∈ L1(ω2) : limt→0+ µt ∗ h = h}. That is, IC is the largest subspace on
which {µt} acts as a strongly continuous semigroup.

(iv) ID is the collection of all elements h in L1(ω2) for which φ(λn) ∗ h → φ(λ) ∗ h

whenever {λn} is a bounded sequence in M(ω1) for which λn → λ in the strong
operator topology; that is, λn ∗ g → λ ∗ g for all g in L1(ω1).

(v) IE is the collection of all h in L1(ω1) for which φ(λn) ∗ h → φ(λ) ∗ h for all nets
{λn} in M(ω1) which converge to λ in the strong operator topology.
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(vi) IF = {φ(g) ∗ h : g ∈ L1(ω1) and h ∈ L1(ω2)}.

(vii) IG = {φ(g) ∗ µ : g ∈ L1(ω1) and µ ∈ M(ω2)}.

Proof. It follows from Theorem 3.1 (i) that I is weak∗ dense, and it follows from
Lemma 3.2 that I = IA. Also, it is clear that ID is a subset of IB and also of IC . We
complete the proof by proving the following three assertions:

(a) each of I, ID, IE , IF and IG contains IF and is contained in ID;

(b) IB ⊆ IF ;

(c) there is an f ′ with L1(ω1) ∗ f ′ dense for which v = φ(f ′) satisfies cl(IC ∗ v) = IC ,
so that IC ⊆ cl(L1(ω2) ∗ φ(f ′)) = I.

We now prove (a). It is clear that IF ⊆ IG and IE ⊆ ID. Suppose that h belongs to
IG, and let {λn} be a net in M(ω1) which converges in the strong operator topology to
λ in M(ω1).

We let h = φ(g) ∗ µ and then have φ(λn) ∗ h = φ(λn) ∗ φ(g) ∗ µ = φ(λn ∗ g) ∗ µ →
φ(λ ∗ g) ∗ µ = φ(λ) ∗ h. Hence, IG ⊆ IE .

Clearly, L1(ω2) ∗ φ(f) ⊆ IF ⊆ ID. But for any bounded sequence {νn} and element ν

in M(ω2), the set {h ∈ L1(ω2) : νn ∗ h → ν ∗ h} is a closed subspace. Hence, I ⊆ ID.
On the other hand, it follows from Lemma 3.2 that IF ⊆ ID. This completes the proof
of (a).

The set IB is a closed ideal in L1(ω2), so IB is a L1(ω1) Banach module under the
multiplication g · h = φ(g) ∗ h. It then follows from the Cohen factorization theorem
for modules that each element of IB has an expression of the form φ(g) ∗ h for some
g ∈ L1(ω1), and, therefore, that h ∈ IB ⊆ L1(ω2). Hence, IB ⊆ IF . This proves (b).

To prove (c), we adapt the proof in [9, pp. 281–282]. Notice that µt acts as a strongly
continuous semigroup on IC . We first consider the case when u(t) ≡ 1 belongs to L1(ω1),
and we let f ′ = u. In this case we can show that convolution by −v, where v = φ(f ′), is the
inverse of the generator of the semigroup µt on IC (for the details, see [9] and its references
to [11]). Since the generator of a strongly continuous semigroup has dense domain, this
shows that IC ∗ v is dense in IC as required. In the general case, choose some e−rt in
L1(ω1). Since multiplication by e−rt is an isometric isomorphism from L1(e−rtω1(t))
onto L1(ω1), we can apply the first case to ψ : L1(e−rtω1(t)) → L1(ω2) defined by
ψ(g) = φ(e−rtg). We then let f ′ = e−rt = e−rtu(t), and let v = φ(f ′) = ψ(u), and use
the first case on ψ. This completes the proof of (c), and therefore of the theorem. �

There are a number of other equivalent descriptions of I. For instance, it is easy to see
that I is the smallest closed ideal containing the range of φ. Also, standard semigroup
arguments show that I = IC = cl[

⋃
t>0 µt ∗ L1(ω2)] (see the proof of [11, corollary 3.14,

p. 602]).
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