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Fragmentation of a fluid body into droplets underlies many contamination and disease
transmission processes where pathogens are transported in a liquid phase. An important
class of such processes involves formation of a fluid ligament and its destabilization into
droplets. Inertial detachment (Gilet & Bourouiba, J. R. Soc. Interface, vol. 12, 2015,
20141092) is one of these modes: upon impact on a sufficiently compliant substrate,
the substrate’s motion can transfer its impulse to a contaminated sessile drop residing
on it. The fragmentation of the sessile drop is efficient at producing contaminated
ejected droplets with little dilution. Inertial detachment, particularly from substrates of
intermediate wetting, is also interesting as a fundamental fragmentation process on its
own merit, involving the asymmetric stretching of the sessile drop under impulsive
axial forcing with one-sided pinning due to the substrate’s intermediate wetting. Our
experiments show that the radius, Rtip, of the tip drop ejected become insensitive to the
Bond number value for Bo > 1. Here, Bo quantifies the inertial effects via the relative
axial impulsive acceleration compared with capillarity. The time, ttip, of tip-drop breakup
is also insensitive to Bo. Combining experiments, theory and validated numerics, we
decipher the selection of Rtip and its sensitivity to the surface-wetting and substrate foot
dynamics. Using asymptotic theory in the large Bo limit for which the thin-film/slender-jet
approximations hold, we derive a reduced physical model that predicts Rtip consistent with
our experiments. Finally, we discuss how pathogen physical properties (e.g. wetting and
buoyancy) within the sessile drop determine their distribution in the tip and secondary
fragmentation droplets.
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1. Introduction

Various modes of fluid fragmentation inherent to foliar disease transmission have been
linked to the average wetting dominating most crop leaves (Gilet & Bourouiba 2014, 2015,
2017). One such mode is the inertial detachment: upon impact from rain, irrigation or dew
drops, the motion of a compliant leaf locally transfers its impulse to a sessile contaminated
drop residing on it. The contaminated drop forms a ligament that detaches from the
leaf, ejecting secondary droplets through end-pinching. Such resulting fragmentation
of the sessile contaminated drop is particularly interesting in this application domain
for its ability to produce highly contaminated ejected droplets that do not undergo
any dilution and typically produce a distinct primary tip drop. Indeed, little to no
mixing between the impacting and the contaminated drop occurs from this process.
Figure 1, adapted from Gilet & Bourouiba (2015), shows an image sequence of drop
inertial detachment driven by the flexural motion of a compliant leaf, upon raindrop-like
impact.

Fragmentation from liquid column disintegration is also relevant for a wide range of
engineering, physical and biological systems and applications involving impacts of drops
on surfaces or films/pools, with end-pinching of ligaments, or their merger shaping, in part
or fully, the distribution of ejected droplets of varying sizes and speeds (Qian & Law 1997;
Villermaux & Bossa 2011; Wang & Bourouiba 2018, 2021; Lejeune, Gilet & Bourouiba
2018). Such applications include spray coating, agricultural irrigation, fuel combustion
(Yarin 2006; Villermaux 2007), microfluidic and electronic systems (Sarobol et al. 2016),
functional materials printing (Derby 2010), bioinks for 3D printing (Gopinathan & Noh
2018) and more generally disease transmission, from mucosalivary fluid fragmentation
relevant for respiratory disease transmission to bursting bubbles for waterborne pathogens
in addition to the fragmentation of sessile pathogen-laden drops on leaves relevant for
foliar disease transmission between plants outlined above (Poulain & Bourouiba 2018,
2019; Bourouiba 2021a,b).

Inertial detachment is also interesting as a fundamental fragmentation process on
its own merit, as the asymmetric stretching under impulsive axial forcing shapes
the fragmentation of the initially sessile drop. It is well known that elongated and
slender liquid ligaments undergo fragmentation due to surface-tension-induced instability.
The normal mode related growth of interface perturbation is typically attributed to a
Rayleigh–Plateau (R–P) type instability (Plateau 1873; Rayleigh 1878; Eggers 1993, 1995).
The R–P instability assumes an infinitely long cylindrical fluid column. On the other
hand, Stone, Bentley & Leal (1986) and Stone & Leal (1989) showed that end-pinching
prior to the manifestation of the R–P instability can be the driver of fragmentation for
contracting viscous filaments of finite length. Such unsteady, non-modal fragmentation
motivated experimental and numerical studies on recoiling filaments and end-pinching
of symmetrical ligament breakup (Schulkes 1996; Notz & Basaran 2004; Castrejón-Pita,
Castrejón-Pita & Hutchings 2012). Moreover, the effect of axial stretching on the stability
of an inertial jet was also first discussed analytically by Frankel & Weihs (1985), and later
extended by Henderson et al. (2000). The breakup of liquid bridges formed in extensional
flows was also further investigated (Slobozhanin & Perales 1993; Gaudet, McKinley &
Stone 1996; Marmottant & Villermaux 2004; Vincent, Duchemin & Villermaux 2014).
These studies established that the strength of inertial acceleration, e.g. gravity, relative
to surface tension, as measured by the Bond number, Bo, and the liquid–solid contact
dynamics determine the stability regimes of an inviscid bridge. However, the findings of
this large body of work is not directly applicable to the end-pinching of elongated drops
we are concerned about herein, where the asymmetry of the stretching imposed by axial
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Fragmentation from inertial detachment of a sessile droplet

Sessile drop

Impacting drop

Leaf

Figure 1. Inertial detachment from a compliant leaf induced by raindrop impact. Images recorded 62.5 to
122.5 ms after drop impact. A scale bar of 5 mm is given. Here, the associated Bond number according to
(2.8a,b) is estimated as Bo ≈ 8. The inset shows a schematic. Images adapted with permission from Gilet &
Bourouiba (2015).

forcing and contact dynamics at the fluid–structure interface are major distinctions from
prior work on ligament breakup.

End pinching was also treated in detail for pendant drops, for example via equilibrium
analysis (e.g. Padday, Pitt & Tabor 1973; Boucher & Kent 1978). Although unsteady
evolution of pendent drops was captured subsequently (e.g. via high-speed imaging,
Peregrine, Shoker & Symon 1990) catalysing numerous non-equilibrium theoretical and
numerical investigations (e.g. Eggers & Dupont 1994; Schulkes 1994; Brenner et al. 1997;
Wilkes, Phillips & Basaran 1999; Ambravaneswaran, Wilkes & Basaran 2002), dripping
flows exiting nozzles remained generally the focus of these studies. Such flows differ from
the end-pinching from inertial detachment of a sessile drop we are concerned about here
where contact-line wetting and limited mass constraint are essential ingredients of the
fragmentation and secondary ejected daughter drop formation.

In this article, we address the following questions:

(i) When does a sessile drop first detach/fragment from its supporting substrate under
inertial forcing? And after fragmentation, what is the amount of the liquid content
released?

(ii) What are the roles of the imposed inertial force, surface tension and surface wetting
in the selection of the fragments? And as the drop deforms, what are the dominant
physical mechanisms that cause primary fragmentation?

(iii) How do these mechanisms determine the detachment time and the size of primary
daughter fragment/droplet release?

(iv) What is the role of the solid–liquid contact line in shaping the fragmentation of the
primary drop?

(v) Finally, returning to our original application of interest, and having validated our
modelling of the inertial detachment end-pinching against experiments, what can
we learn about the distribution of organisms of various wetting properties (e.g.
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hydrophobic spores vs wetting neutrally buoyant bacteria) in the primary ejected
drop vs secondary droplets?

To address these questions, we combine experimental and theoretical approaches also
with direct numerical simulations (DNS) of the liquid–gas two-phase Navier–Stokes
equations incorporating two different dynamic models for the liquid–solid contact. We
begin in § 2 with a reduced experimental set-up that mimics the drop detachment flow
observed on plant leaves. This involves first depositing a sessile drop on stationary plate
substrates of different affinities for water, and then impulsively imposing a constant
acceleration to the plate–drop system in the direction of gravity, while monitoring the
consequent drop deformation and fragmentation and controlling for lateral vibration.

In response to (i) we find that the original sessile drop elongates into a ligament and
subsequently breaks under inertial acceleration; surprisingly, however, the breakup time
and size of the first ejected drop at the ligament tip become insensitive to both the Bond
number and the equilibrium liquid–solid contact angle as the Bond number increases.
In response to (ii) and (iii) using the DNS (introduced in § 2.3), we examine the role of
capillarity and inertia in isolation, revealing the dominant factors that control the chain
of fragmentation (§ 3). We develop asymptotic theories in the large Bond number limit
(§ 3), leveraging the extreme aspect ratios of the drop/ligament during different stages of
the deformation, i.e. thin film vs slender jet. In particular, we capture the effect of surface
tension via geometrical arguments and propose a ‘lollipop’ structure for the ligament at
its pinch-off time. The ‘lollipop’ reduced theoretical model captures the experimental
and DNS results well. In response to (iii) and (iv), we identify (§ 3.5) that the error in
prediction on the primary drop size and breakup time is caused by the contact dynamics,
which has weak, but lasting effects on the end-pinching dynamics. Moreover, correction
to the leading-order theory can be achieved by modifying the simple contact model
used in the DNS and asymptotic theory. Having validated the numerical and theoretical
model against experiments, in response to (v) (§ 4) we examine how reduced analogue
pathogens/contaminants of different wetting properties distribute in the fragments, i.e.
primary drop and satellite droplets. We conclude in § 5.

2. Inertial detachment analogue experiments and physical picture

In its original discovery by Gilet & Bourouiba (2014, 2015, 2017), inertial detachment
fragmentation (e.g. figure 1) was associated with average wetting surfaces leading to
retention of drops on the surface via hysteresis. The initially sessile drops were observed
to be accelerated via the impact of other drops (e.g. rain or dew), imparting inertia to the
leaf that, in turn, accelerates the sessile drops. To simplify the study of this fragmentation
process, we adopt an analogue experimental set-up with a sessile drop on a plate (figure 2)
and imparting axial extension in the same direction as gravity. Our simplification enables
us to derive insights into the fundamental mechanisms driving this fragmentation process.
We first introduce the details of that experimental analogue system, and then discuss the
key results of the inertial detachment.

2.1. Experimental method
The experimental set-up is shown schematically in figure 2(a) where a sessile water
drop of volume V is deposited on a locked, stationary horizontal plate. From below,
the substrate is attached to a spring system in extension. At time t = 0+, the spring is
released, imposing a normal (downward) acceleration a on the plate. The acceleration a is
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Fragmentation from inertial detachment of a sessile droplet
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Figure 2. (a) Experimental schematic. The substrate is impulsively accelerated at t = 0+ by the spring
at constant accelerating a in the same direction as gravity. (b) Axisymmetric drop geometry under
two-dimensional (2-D) cylindrical coordinate system. Here, u, w are the flow velocity components in the
plate-stationary frame; α is the magnitude of inertial acceleration.

Substrate θc a V Bo Re Oh

PMMA 60◦ ± 5 % 29–107 m s−2 4–200 μl 1–11 300–1500 0.002–0.004
Microslide 19◦ ± 5 % 72–119 m s−2 10–100 μl 1.5–12 300–1500 0.002–0.004

Table 1. Experimental parameters. Here, θc is drop equilibrium contact angle, a is the plate acceleration, V is
the drop initial volume (in microlitres) with measurement error of 1 %–5 % for the pipettes and volumes used,
Bo and Re are, respectively, the inertial Bond and the Reynolds numbers defined in (2.8a,b) and Oh = √

Bo/Re
is the Ohnesorge number. Given the large values of Re (and small values of Oh), viscous effects are negligible.

maintained close to constant in each experiment with a sufficiently long extension of the
spring. Its value is calculated and monitored for each experiment through image processing
of the high-speed recordings. The impulsive translation motion of the substrate results
in unsteady, axisymmetric deformation of the drop that is also recorded via high-speed
imaging in side view at 2000 frames per second. The distance between the fixed camera
and the moving drop is O(100) larger than the drop’s observed vertical displacement,
ensuring negligible perspective distortion in imaging.

Focusing on the intermediate wetting conditions described in Gilet & Bourouiba (2015),
this study uses polymethyl methacrylate (PMMA) as a substrate as it is comparatively
hydrophobic. As a comparison and for reference we also add double-frosted microscope
slides (microslides) that are comparatively more hydrophilic. The static contact angle
between the drop and substrate given by PMMA and microslides are θc = 60◦ and
θc = 19◦, respectively (illustrated in figure 2b at t = 0). For each substrate, a series of
experiments is conducted with varying plate acceleration a and sessile drop volume
V in ranges listed in table 1. Standard properties of water under room temperature
and atmospheric pressure are taken for density ρ, surface tension σ and dynamic
viscosity μ.

2.2. Physical picture and non-dimensional characterization
Given the axisymmetric nature of the inertial detachment about the vertical axis parallel
to the acceleration, we consider a two-dimensional cylindrical coordinate system of unit
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vectors r̂ and ẑ co-moving with the substrate. The origin is taken to be at the centre of the
sessile drop–substrate contact circle, as shown in figure 2(b).

2.2.1. Initial shape of the sessile drop
By choosing the length scale

Req =
(

3V
4π

)1/3

, (2.1)

that gives the radius of an equivalent sphere of the same volume V , the initial shape of
the drop can be characterized by the dimensionless Young–Laplace equation (Lubarda &
Talke 2011)

1
h0(1 + h′2

0 )1/2
− h′′

0

(1 + h′2
0 )3/2

= −2h′′
0(L0) + G(L0 − z), (2.2)

where h0(z) ≡ h(z, t = 0−) is the initial profile of the drop radius, h′
0 and h′′

0 are its first
and second derivatives with respect to z, L0 is the initial height with h0(L0) = 0 and

G = ρgR2
eq

σ
(2.3)

is the Bond number based on gravitational acceleration g. The associated boundary
condition

h′
0(0) = − cot θc, (2.4)

involves the equilibrium contact angle θc that is a property of the substrate (table 1). Note
that, in the G → 0 limit, solution to (2.2) for h0(z) yields a spherical cap, as expected.

2.2.2. Drop evolution upon substrate acceleration
For t > 0, in the plate’s reference frame, the drop is subject to both gravity and an inertial
force due to the plate’s acceleration, giving a net body force ραẑ where

α = a − g, (2.5)

is the effective acceleration. We subsequently default to the inertial velocity and time
references

Uα = √
αReq, Tα =

√
Req

α
, (2.6a,b)

so the drop’s flow through quiescent ambient air of negligible density and
viscosity is governed by the non-dimensional Navier–Stokes equations, with pressure
non-dimensionalized by σ/Req, the capillary pressure

⎧⎨
⎩

∇ · u = 0,

∂u
∂t

+ u · ∇u = − 1
Bo

(∇p − κn̂δs
)+ 1

Re
∇2u + ẑ,

(2.7a)

(2.7b)

where u = ur̂ + wẑ is the velocity vector, p is pressure, κ is surface curvature, n̂ is the unit
normal, δs is the surface Dirac δ-distribution concentrated on the interface (Popinet 2018)
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Fragmentation from inertial detachment of a sessile droplet

and

Bo ≡ ραR2
eq

σ
= α

g
G, Re = ρα1/2R3/2

eq

μ
, (2.8a,b)

are the acceleration-based Bond number and Reynolds number, respectively. It is also
convenient here to define the Ohnesorge number Oh ≡ μ/

√
ρσReq = √

Bo/Re that
directly compares viscous and surface tension effects. Finally, evolution of the profile
h(z, t) of the drop radius follows the kinematic condition[

∂h
∂t

+ w
∂h
∂z

]
r=h

= u|r=h. (2.9)

2.2.3. Characteristic scales: inertial vs capillary scales
With an appropriate model for the contact dynamics prescribed at z = 0 (discussed in
§ 2.3), we have obtained a closed description for the drop under inertial acceleration for
all t ≥ 0. This system is governed by four dimensionless parameters: the contact angle
θc, gravitational Bond number G (or equivalently, the acceleration ratio α/g), the inertial
Bond number Bo and the Reynolds number Re. Ranges of Bo used in the experiments are
given in table 1, whereas typical values of Re are of O(102−4). Therefore, the inviscid flow
assumption is reasonable, until ligament pinch-off is approached (Lister & Stone 1998).
We will also focus on results obtained for small G where gravitational effects on the initial
drop shape and thus early-stage motion are small.

The competition between inertial acceleration and capillarity due to surface tension is a
key mechanism that drives the drop deformation, therefore it is instructive to also introduce
the dimensional capillary wavelength Λ, time Tσ and velocity Uσ units

Λ =
√

σ

ρα
, Tσ =

√
ρR3

eq

σ
, Uσ = α

√
ρR3

eq

σ
. (2.10a–c)

Particularly, Uσ measures the change of speed generated by the imposed acceleration α

over the capillary time scale Tσ . Under the inertial references (2.1) and (2.6a,b), these
become

λ ≡ Λ

Req
= 1√

Bo
, tσ ≡ Tσ

Tα

=
√

Bo, uσ ≡ Uσ

Uα

=
√

Bo. (2.11a–c)

We henceforth denote τ = t/
√

Bo for rescaled physical dimensional time in capillary
units, while t is our default time non-dimensionalized by the inertial time scale Tα from
(2.6a,b).

2.3. Methods for direct numerical simulations

2.3.1. Numerical framework and additional non-dimensional parameters
According to the framework given in § 2.2, the drop detachment experiments are also
simulated numerically to further our understanding of the fragmentation mechanism that
is critical for disease transmission applications. The key numerical methods are explained
next.

We adopt Basilisk (Popinet 2009, 2015, 2018) and solve the axisymmetric
incompressible two-phase Navier–Stokes equations with surface tension for the air–liquid
system. Simulations of high density ratios like air–water and non-negligible inertia are
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numerically challenging, hence we employ the momentum-conserving volume-of-fluid
(VoF) scheme (Arrufat et al. 2021). This is particularly necessary for high Bo. Therein,
the equations of motion for air, a counterpart of (2.7), are coupled and introduce ratios for
density and dynamic viscosity: ρa/ρ and μa/μ, between air (subscript a) and water. These
add to existing list of control parameters of the numerical system: θc, Bo, G and Oh.

2.3.2. Numerical model with constant contact-angle model
One challenge on the numerical modelling is the appropriate capture of the liquid–solid
contact line dynamics. This turns out to be important, as discussed hereafter, to capture the
tip and foot breakups. We start with a no-slip boundary condition at the wall along with a
constant grid-scale contact angle as a first-order approximation. We subsequently develop
a different numerical model in Appendix G where the constant angle approximation is
relaxed. Unless otherwise stated, DNS results presented in the rest of this manuscript are
obtained using the constant contact-angle model.

Regarding the first no-slip model, it has a force singularity at the contact line (Huh &
Scriven 1971), which is handled in the VoF formulation using an implicit numerical slip
(Afkhami, Zaleski & Bussmann 2009). Specifically, we consider the standard water and air
conditions, and simulate sessile drops of fixed initial volume 56.5 μl and therefore constant
G = 0.755 and Oh = 2.18 × 10−3 (comparable to the experimental values reported in
table 1). The value of Bo is subsequently varied by changing α/g. The case corresponding
to θc = 60◦ is extensively studied. The range of Bo in simulation is varied from 1.5 to 12.
For θc = 60◦, below the value of Bo = 1.5, fragmentation is suppressed.

2.4. Elongation and fragmentation of the sessile drop

2.4.1. The unstable breakup regime
Upon plate release, the initial sessile drop elongates vertically forming a ligament while
its foot remains in contact with the substrate. For sufficiently large drop volume V and
effective acceleration α, necking occurs near the ligament tip as well as its foot, which
ultimately leads to breakup and partial ejection of the sessile drop volume. A typical
sequence of drop deformation is shown in figure 3(a i–a v), where (a i) gives the initial
shape; (a ii) shows ligament formation; (a iii) and (a iv) respectively depict tip and foot
pinch-off when the ligament breaks, ejecting secondary drops/ligaments from the original
sessile drop; and finally (a v) illustrates that, after the foot pinch-off, the detached ligament
further fragments into multiple satellite droplets. We will show in Appendix A that the
order of tip and foot breakup depends on the Bond number Bo.

As aforementioned, unstable inertial detachment of the drop (figure 3a) occurs only if
Bo exceeds a critical value with a very weak dependence of this value on the substrate
equilibrium contact angle θc. The analogous stability analysis for a pendant drop was
performed by Boucher et al. (1976), and the corresponding stability diagram, adapted to
our (Bo, θc) phase space, is shown in figure 3(b). Here, the ‘stable’ region according to
Boucher et al. (1976) was determined by quasi-static increase of the volume of a pendent
drop until its detachment from a substrate of a given wetting, showing again the very weak
dependence on contact angle. We highlight the (Bo, θc) parameters that yield detachment
in our experiments in figure 3(b). The critical Bo required for our sessile drops to become
unstable matches well with the analysis of Boucher et al. (1976).
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(a) (i) (ii)

(iii)

(iv)

(v)

t = 0

26.5 ms

τ = 1.6

40.5 ms

τ = 2.5

52.5 ms

τ = 3.2

73 ms

τ = 4.5

1 cm

Tip breakup

Ligament formation

Foot breakup

Satellite drop 

formation6

5

4

3

2

1

0 20 40 60 80

Boucher et al.
PMMA

Unstable

Stable

θc (°)

Bo

Microslides

(b)

Figure 3. (a) Successive temporal sequence of a drop undergoing inertial detachment and fragmentation.
Experiment conducted with a PMMA substrate (θc = 60◦), and with acceleration ratio α/g = 4.2 and drop
initial volume V = 80 μl. A dashed line is drawn for each frame to separate the drop and its optical reflection
on the substrate. A scale bar is given in (a v). (b) Stability diagram in (Bo, θc)-space that distinguishes unstable
drops that partially detach from the substrate. The equilibrium theory of Boucher, Evans & Kent (1976)
for pendant drops is compared with our experiments where only unstable cases are plotted. The red square
corresponds to the example sequence given in (a) where θc = 60◦, Bo = 4.

2.4.2. Evolution simulation
Analogous to the image sequence shown in figure 3(a), the simulated evolution of the
drop for Bo = 4 at various stages is shown in figure 4. Following the constant angle
model discussed in § 2.3.2, we capture the experimental features well: tip pinch-off,
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Satellite drop

formation

27.2 ms

τ = 2.0

39.4 ms

τ = 2.9

62.6 ms

τ = 4.6

63.9 ms

τ = 4.7

65.3 ms

τ = 4.8 τ = 4.5

42.2 ms

τ = 3.1

Foot breakup

Secondary fragmentation

Ligament formation

Tip breakup

t = 0

61.2 ms

Figure 4. Direct numerical simulation rendering of evolution of the drop for Bo = 4.0 and θc = 60◦. The
numerical values indicate time with capillary time unit Tσ = 13.6 ms (see (2.10a–c)). A total time span up to
61.2 ms is shown, roughly covering the same range as the experimental results of figure 3 and hence depicting
tip pinch-off, foot pinch-off and formation of satellite drops from secondary fragmentation. The axis ratio in
each image is unity and the scale is the same for all images.

foot pinch-off, secondary fragmentation of the elongated middle fluid mass. Zooming in
on the secondary fragmentation of the elongated structure reveals that the numerics do
capture secondary daughter droplet formation as well. We further discuss the evaluation
of convergence for the tip pinch-off time and volume of the ejected primary tip daughter
droplet in Appendix E.

2.4.3. Primary drop (tip) ejection
We focus primarily here on ejection of a tip drop from the ligament tip undergoing
inertial acceleration, as shown in figure 3(a iii–a v). We characterize the tip drop with
its equivalent radius, Rtip = [3Vtip/(4π)]1/3, where Vtip is the ejected volume and the time
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Fragmentation from inertial detachment of a sessile droplet
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Figure 5. (a) Dimensionless radius R̄tip of ejected tip drop as a function of Bond number Bo, contact angle
θc and acceleration ratio α/g. The dashed lines label the critical Bo over which detachment occurs for the two
given θc. (b) The corresponding tip breakup time τtip is non-dimensionalized using the capillary time scale.
Both R̄tip and τtip converge rapidly to a constant as Bo increases for all parameters used, suggesting a universal
end-pinching process controlled by capillary effects and negligible contact-line dynamics effects on the tip
dynamics. Note that in (b) at Bo = 2.7 two open circles overlap, within measurement error (see table 1).

of its neck pinch-off, τtip, namely its tip breaking time, is non-dimensionalized using the
capillary time scale. Figure 5(a,b) shows first that both Rtip and τtip converge rapidly to
values independent of Bo with sufficiently high Bo, and also close to independent from
θc and acceleration ratio α/g. Second, the figures show that the dependence of Rtip and
τtip on Bo collapse on a master curve for different α/g (or equivalently gravitational Bond
number G).

More specifically, as Bo increases, the dimensionless R̄tip = Rtip/Req rapidly approaches
Rtip ≈ 0.7 (with the over-bar henceforth dropped) for our range of α/g and θc values
explored herein. Further, in figure 5(b) τtip is also nearly independent of Bo as it converges
to τtip ≈ 2.5. Note that it does so less rapidly with Bo than Rtip. Indeed, contrary to
Rtip, where substrate effects are negligible, τtip converges to τtip ≈ 2.5 slightly slower for
smaller θc than it does for larger θc. This suggests that the substrate local contact-line
dynamics can affect both ends of the breakup, not just the foot pinch-off. However, this
local contact dynamics effect is rapidly negligible as Bo increases, as Rtip and τtip become
blind to substrate local wetting.

Given the inviscid nature of this system, the tip detachment mode is closely related to
end-pinching, which can occur for long ligaments as well as unsteady short protuberances
(Stone 1994; Wang & Bourouiba 2021). It was observed both in multiple systems,
for example in numerical studies of contracting liquid filaments (Schulkes 1996), and
experimental studies of unsteady short rim emerging ligaments (Wang & Bourouiba 2021)
that end-pinching releases a tip drop of radius proportional to the average radius of the
filament, in fixed capillary time units. We further discuss the end-pinching dynamics
in § 3.2.
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Figure 6. (a) Drop foot profiles, h(z), at foot breakup times t = tfoot experimentally measured on the substrates
of distinct wetting Results from Bo = 4.2, 4.5, 5.4, 6.9, 7.8, 9.4 are shown for θc = 60◦ (solid), and Bo =
5, 6, 7.9, 10 for θc = 19◦ (dashed). (b) Temporal evolution of the foot angle, θ(t), approximated by a fitted
cone located in the range 0 ≤ z ≤ 0.2 as shown in (a) for 0 ≤ t/ttip ≤ tfoot/ttip. Clearly, θ from different Bo and
θc converge to a common mean receding angle value around 40◦ rapidly before tip breakup. This value is, at
first order, independent of the initial static contact angle. (c) Evolution of the normalized contact radius R(t)/R0
that corresponds to the same drops measured in (b). It shows that, for the more wetting surface, i.e. smaller
initial static contact angle, the Bond number has little effect on the evolution of the contact line. In other words,
the de-pinning dynamics is more independent of Bo than for the less wetting surface.

2.4.4. Evolving contact angle and de-pinning
The apparent contact angle formed between the ligament foot and the substrate does not
maintain its constant equilibrium value over time as elongation occurs. Figure 6 shows
this variation in contact angle over time: figure 6(a) first shows two series of ligament
diameter profiles at foot breakup time t = tfoot but different initial static contact angles
θc = 60◦ and 19◦, and for a range of Bo. The two series converge to a conical shape of
comparable final receding angles at the substrate. To characterize these conical feet, we
estimate a dynamic contact angle at the foot θ(t), obtained from h(z, t) measurements in
the range z ∈ [0, 0.2] for each t up to t = tfoot. This yields again two time series of θ(t)
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Fragmentation from inertial detachment of a sessile droplet

plotted in figure 6(b) for the two different initial θc. We clearly see that both series for
the estimated θ approach a mean value θ̄ around 40◦ as t → ttip rather quickly, before tip
pinch-off occurs, which occurs, roughly, around t ≈ 0.2ttip for θc = 60◦ and t ≈ 0.4ttip for
θc = 19◦. We show in Appendix C that a constant foot angle is indeed expected if the flow
is dominated by inertial acceleration. Note that we observe mild θ(t) oscillations after the
convergence to the final receding angle with approximately 0.5ttip period around the mean
θ̄ that occurs in all experiments.

In parallel, figure 6(c) gives direct measurements of the receding contact radius R(t)/R0,
with R(t) = h(0, t) and R0 = R(0), as a function of time. First, for both wettings, we
see a decrease of R(t)/R0 with a contact line at time of foot breakup, t = tfoot, reaching
essentially less than half of the initial wetting extent. Second, for smaller initial static
contact angle, the Bond number has little effect on the evolution of the contact line
and its de-pinning. In other words the de-pinning dynamics is less dependent on Bo for
more wetting substrates. In fact, for the largest Bo examined, both surfaces show close
to identical and superposable receding contact radius dynamics. Note, that we see more
variation of the evolution of R(t)/R0 with Bo for the larger initial static contact angle,
with faster de-pinning with higher Bo. Third, when the contact-angle value reaches its
final receding angle, further displacement of the contact point becomes negligible. Finally,
recall that fluctuations of the contact angle were seen to be more important for the more
wetting surface. We also see more fluctuation of R(t)/R0 for the more wetting surface.
However, these fluctuations decrease in amplitude with increasing Bo.

2.4.5. Curvature change, necking onset and early-time selection of the volume of
tip drop

Here, we link the tip-drop volume selection to the early dynamics of the deforming sessile
drop. In fact, we find that the volume of the tip drop is essentially already determined,
for the most part, at the very early stage of curvature inflection of the drop contour and
preceding the development of a clear elongated ligament. As we shall show quantitatively
next, in figure 7, plotting h(z, t), that the tip-drop volume is already selected, to ±15 %,
by the time the final receding angle of the foot, θ̄ ≈ 40◦, is reached at the contact line
(figure 6). These times are t/ttip = 0.2 for θc = 60◦ and t/ttip = 0.4 for θc = 19◦. In fact,
by these times, a sign switch of ∂2

z h and κ along z-axis occurs, i.e. a curvature inflection of
h develops. At the time of clear curvature sign change, the volume enclosed between the
point of curvature inflection and the top of the deforming contour can be converted into an
equivalent spherical drop radius of

Requi(ξ, t) =
⎛
⎝3

∫ L(t)
ξ

h(z, t)2 dz

4

⎞
⎠

1/3

, (2.12)

where 0 ≤ ξ ≤ L(t) specifies the volume domain and L(t) is the ligament height at time
t. In figure 7, the locations ξ that respectively yield Requi/Rtip = 0.85, 1, 1.15 are labelled
for all instants. When a clear curvature inflection of the sessile drop contour appears,
Requi at z = ξ , near such an inflection point, recovers the size of the ejected tip drop, Rtip
(shown in figure 5), within ±15 % error of the actual a posteriori post-pinch-off direct Rtip
measurement. In sum, for all Bo and wetting substrates, the convergence of the contact
angle to its final value θ̄ , at the contact line, associated with little variation of apparent
contact-line radius or contact angle subsequently, also coincides with the clear appearance
of a curvature inflection of the drop contour profile. Such conditions impose the geometric
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Figure 7. Evolution of the drop radius contour profile h(z, t) measured for different wettings and for increasing
Bo. Here, the axial z-axis of symmetry is in the horizontal direction. In (a–c), θc = 60◦ and Bo = 3.8, 5.9, 8.7.
Results are shown at three instants t/ttip = 0.05, 0.13, 0.2 for each Bo. In (d–f ), θc = 19◦, Bo = 7.2, 7.9, 10,
and for each panel t/ttip = 0.2, 0.3, 0.4. Along each contour, the portion of the deformed drop whose volume
generates an equivalent radius of Requi/Rtip = 0.85, 1, 1.15 is marked by solving (2.12). We show that the first
time of appearance of a clear inflection point of the curvature coincides, at first order, with the selection of
the final receding contact angle at the foot (figure 6), i.e. ≈0.2ttip and ≈0.4ttip, for θc = 60◦ and θc = 19◦,
respectively. And that at this early time of appearance of the inflection the volume between the z-plane of this
first inflection region and the tip of the deforming sessile drop, the final size of the tip drop ejected, Rtip, is
already selected for the most part to within 15 % error.

constraint that selects already, at this early time, for the most part, the tip-drop volume;
that is even prior to development of a clear ligament. Moreover, we can also conclude that
the end-pinching ultimately leading to the ejection of the primary tip drop is only weakly
influenced by the substrate dynamics/wetting. In § 3 we will further examine this insight
analytically and numerically.

3. Asymptotic theory: large Bond number limit

Given the robust collapse of the data regarding tip-drop size and pinch-off time for all
Bond numbers (Bo � 4) (recall § 2.4), in this section, we develop analytical asymptotic
models in the Bo → ∞ limit for different stages of the drop evolution when approximate
solutions to the governing equations can be facilitated by extreme aspect ratios of the
drop geometry. We validate such theoretical predictions with experiments and further
compare them with numerical results, to further validate the numerical scheme against
both experiments and asymptotic mathematical models.
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Figure 8. Drop tip velocity w(L, τ ) (given in capillary units according to (2.11a–c)) as a function of capillary
time τ , up to tip breaking. (a) Experimental measurements for two different θc, a range of α/g and Bo.
Specifically, Bo = 4.1, 4.5, 4.9, 5.4, 5.9, 6.9, 7.8, 8.7, 9.4, 10.2, 11 for α/g = 9.9; Bo = 4.4, 5.0, 5.5, 6, 6.6, 7
for α/g = 6.3; Bo = 4.4, 4.7 for α/g = 4.2; and Bo = 4.4, 5.1, 6.1, 6.9 for α/g = 6.4. A vertical dashed line at
τ = 0.6 visually separates results into a Bo-independent region (τ � 0.6) and Bo-dependent region (τ � 0.6)
for θc = 60◦. Similarly a dash-dotted line at τ = 0.9 is drawn for θc = 19◦. (Note that the transition times
roughly translate to τ/τtip ≈ 0.2 for θc = 60◦ and τ/τtip ≈ 0.3 for θc = 19◦, with the tip breakup time τtip
associated with both substrates only weakly depending on Bo.) The initial linear growth predicted by TFM (see
(B1a,b)) is also given for comparison. The TFM results after the peak of |F| are inconsistent with the model
and so invalid. As a result they are not shown here. (b) Drop tip velocity obtained by DNS (constant contact
angle) with increasing Bo (and simultaneously increasing α/g = 4.0, 5.3, 6.6, 7.9, 9.3). A comparison with the
experiments is made for Bo ≈ 5. Again, an excellent collapse is seen in the Bo independent region for τ < 0.4,
and a clear shift in regime occurs for τ > 0.6 when the curves start to fan out.

3.1. Early drop deformation dynamics
We first consider the early stage of drop deformation, where an axisymmetric flow field
u = (u, w) is required to form a ligament from the initial sessile drop. For small time t 

1, we expect u to be irrotational, and thus in Appendix B we derive an analytical theory
for the velocity components, u = u(r, t) and w = w(z, t), that assumes a one-dimensional
(1-D) spatial dependency. We term this theory the thin-film model (TFM) based on its
required thin aspect-ratio condition, L 
 R, with R being the contact radius.

Next, we examine the early stage of drop deformation, combining experimental, DNS
and TFM results. Figure 8 shows the time evolution of the drop tip velocity w(L, τ ),
re-normalized by the capillary speed uσ defined in (2.11a–c), in both (a) experiments and
(b) DNS of constant angle model for a range of Bo. In the comparison between w(L, t)
given by TFM and experimental measurements, we see that the slopes of the predicted
w match well with the measured initial accelerations at early times when results collapse
for all Bo in figure 8(a). Such a Bo-independent inertial regime is also clearly established
by DNS in figure 8(b) for θc = 60◦. The numerical results obtained for increasing Bo
are compared with the measurement sequence of α/g = 6.3 and Bo = 5. In DNS, a
second transition regime with faster linear growth of w(L, τ ) is also resolved in the range
0.4 � τ � 0.6. Beyond this point, the collapse of the w curves is lost. This is induced
by surface tension effects captured by the finite Bo. The significance of these changes of
regime is further discussed in § 3.2. Also, the observation in figure 8(a) that TFM performs
better for the originally flatter drops of θc = 19◦ than for the elongated drops of θc = 60◦
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is consistent with the thin-film assumption, which deteriorates faster over time for larger
θc. Note that the linear growth given by TFM, although not far off, does not fully capture
w(L, τ ) in the entire inertial regime before end-pinching.

Importantly, the satisfactory performance of TFM developed in the large Bo and
thin-film limits, i.e. Bo → ∞, L → 0, suggests that the early deformation of sessile drops
with small contact angles is dominated by inertial acceleration. With its validity further
discussed in Appendix B.3, the TFM generates predictions for drop shapes merely based
on the initial conditions. In § 3.3, we will use this initial shape deformation model for
further development of the asymptotic theory for the opposite aspect-ratio limit (jet limit)
to further gain insights into the tip ejection.

3.2. Regime change and the role of inertia
Figure 8 shows the evolution of tip velocity w(L, τ ). The initial growth of w(L, τ )

appears universal for all Bo up to τ ≈ 0.6. Beyond this time, we observe a regime
change. Specifically, the drop elongation process up to detachment can be separated into at
least two regimes: first, an inertia-dominated regime; and second a capillarity-dominated
regime. When comparing the time scales with the contact-angle evolution shown in
figure 6(b), we see that the estimated regime change of drop tip velocity coincides with
the convergence to the final receding angle value at the foot. The observed regime change
signals a shift in the competition between inertia and surface tension governing the drop
motion. To further confirm this and isolate the inertial effects, we here transition to
examine this aspect via a numerical experiment as follows.

We initialize a numerical simulation of the drop elongation with a given imposed
acceleration, here, Bo = 5. At time τ = 0.4 the evolution is paused. Acceleration is
removed and the system is left to evolve again. The drop thereby continues to deform
under capillary effects and the inherited, already developed flow field established prior
to τ = 0.4. The subsequent evolution of the interface shape is shown in figure 9(a): the
drop continues to slightly elongate up to approximately τ = 1.4 and then retracts back to
the substrate, without fragmenting, indicating that the capillary restoring forces overcome
the inertial flow field inherited already by τ = 0.4. Figure 9(b) shows the results from
the same numerical experiment, but now taking the shape and flow field established at
time τ = 0.6 to restart the evolution without acceleration. The drop contour evolution
under the developed velocity field and surface tension without acceleration shows that the
interface continues to elongate and eventually fragments. In other words, by time τ = 0.6,
the deformation and flow field is such that capillary forces are no longer sufficient to
stabilize the interface against the inherited inertia captured by the flow field. Interestingly,
the size of the ejected tip drop in figure 9(b) is Rtip/Req = 0.85, which is close to the full
DNS Rtip/Req = 0.84. This suggests that the inertial effects beyond τ = 0.6 do not affect
the drop size selection in this constant contact-angle physical picture. Instead, inertial
effects mostly contribute to elongating the fluid mass of the emerging ligament to which
the tip drop is attached. Indeed, an explicit comparison of the elongation is shown in
the inset of figure 9(c), where acceleration contributes to the ligament elongation. Since
w(L, τ ) ∼ τ

√
Bo, and therefore L(τ ) ∼ τ 2

√
Bo, is valid in the high Bo limit as shown

in (B12), we observe in the inset of figure 9(c) that acceleration effects contribute to
elongation of the ligament to which the tip drop is attached, while the size of the tip drop
determined as early as τ = 0.6, is not affected. Indeed, we will show in § 3.3.2 that the
elongation process is captured well by a free-fall model, i.e. under constant acceleration,
obtained in the Bo → ∞ limit. There, effects of the end-pinching process dominated by
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Figure 9. To confirm the shift in regime discussed in § 3.2 and suggested by figure 8 from an inertia-dominated
phase to a capillarity-dominated phase, we proceed with a numerical experiment using DNS: we let the
droplet deform under a particular acceleration, for Bo = 5 here. We interrupt the evolution at a transition
time at which we remove acceleration. Thereafter, we restart the evolution from the interface shape and
the inherited established flow field. (a) Evolution of the deforming interface upon initialization from the
shape and flow field established by τ = 0.4. At this time, capillary effects overcome the inertia imparted to
the drop by acceleration. The drop retracts back to the substrate after a brief elongation up to τ ≈ 1.4 and
failure to fragment. (b) Evolution of the interface shape when restarted from the inherited interface shape and
flow field established by τ = 0.6, the time of transition from a Bo-independent to a Bo-dependent regime
(figure 8). At this transition, the drop continues to elongate and fragments. (c) Interface evolution under
constant acceleration, i.e. no interruption/restart. The inset shows the ligament length L as a function of
time τ , consistent with our prediction (B12). The sizes of tip drop Rtip/Req in (b,c) are essentially the same,
≈0.84–0.85, consistent with a primary drop size selection early in the ligament evolution, i.e. as early as
τ = 0.6.
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capillarity are incorporated via geometric constraint: attaching a spherical tip drop to the
free-falling ligament when tip breaking occurs.

3.2.1. Estimating the tip-drop pinch-off time
Building on the insights of the preceding section where the drop detachment process is
two staged with a shift in regime from inertia to capillary dominated, we discuss here an
estimation of the tip breakup time τtip. As seen in figures 8 and 24 already and discussed,
the duration of the inertial regime, τinertia, has a weak dependence on the wetting of
the substrate, a function of equilibrium contact angle θc, i.e. τinertia = τinertia(θc). For
example, from figure 8(a), τinertia(60◦) ≈ 0.6 and τinertia(19◦) ≈ 0.9. Once the system
transitions into the second regime, surface tension dominates the local dynamics of
necking, ultimately leading to the pinch off of the tip drop. This pinch-off dynamics is
analogous to end-pinching for inviscid filaments (e.g. Schulkes 1996), shown numerically
to have a dimensional tip-drop pinch-off time 5Tσ , where Tσ is defined as in (2.10a–c)
taking dimensional R̃eq to be a uniform filament radius R̃f proportional to the dimensional
tip-drop size, with R̃f ≈ R̃tip/1.55. Therefore, combining the insights gained from the two
regimes and using the capillary time scale (2.10a–c) for non-dimensionalization, we obtain

τtip(θc) ≈ τinertia(θc) + 5
(

Rtip

1.55

)3/2

. (3.1)

Approximating Rtip = R̃tip/Req = 0.8, (3.1) evaluates to τtip(60◦) ≈ 2.5 and τtip(19◦) ≈
2.8. These estimations capture the experimental measurements shown in figure 5(b)
very well. Notably, the drop radius-to-ligament width ratio of ≈1.5 was also observed
experimentally to be robust and independent of the impact Weber number for the
continuous end-pinching of ligaments along the rim of canonical unsteady sheet
fragmentation upon drop impact on a substrate of comparable size to that of the drop
(Wang & Bourouiba 2018), reflecting, also there, a robust local capillary-dominated
dynamics.

3.3. Slender-jet model
As the drop deforms into a ligament under inertial acceleration, its length over width
aspect ratio, characterized by L/R, increases, approaching a geometry that may be best
captured by a slender-jet dynamics, hereafter referred to as the slender-jet model (SJM).
As introduced by Eggers & Dupont (1994), the SJM is based on lubrication theory that
simplifies, at a given time, the 2-D flow field of a fluid column into a 1-D extensional flow
field with small radial velocity compared with the axial component such that u 
 w =
w(z, t). This model has been widely used for analysing jet breakup (Eggers & Villermaux
2008; Contò et al. 2019; Pierson et al. 2020). Here, we develop an approximate solution
to the SJM, again for large Bo, where the surface tension effects at both the ligament tip
and foot are modelled accounting for the robust geometrical constraints observed in the
experiments. In particular, such modelling enables us to gain key insights into the physical
picture leading to the robust experimental observations discussed in § 2.4 pertaining to
tip-drop ejection.

3.3.1. The slender-jet model governing equations
Formally derived as the (L/R)−1 → 0 asymptotic limit of the system (2.7) and (2.9), the
inviscid slender-jet equations (Papageorgiou & Orellana 1998) under our default inertial
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scaling (2.10a–c) read

∂th = −w∂zh − h
2
∂zw, (3.2a)

∂tw = −w∂zw − 1
Bo

∂zκ + 1, (3.2b)

where ∂t and ∂z denote partial derivatives with respect to t and z, respectively, and the
curvature κ is

κ = κ(z, t) = 1

h
(
1 + (∂zh)2

)1/2 − ∂2
z h(

1 + (∂zh)2
)3/2 . (3.3)

Equivalently, the slender-jet system (3.2) with boundary condition h(L, t) = 0 ensures
conservation of volume, momentum and energy, respectively, as follows (Eggers & Dupont
1994; Contò et al. 2019):

d
dt

∫ L(t)

zb

h2 dz = d
dt

(
Vjet

π

)
=
[
h2w

]
z=zb

, (3.4a)

d
dt

∫ L(t)

zb

wh2 dz = Vjet

π
+
[

h2w2 − 1
Bo

K1(z, t)
]

z=zb

, (3.4b)

d
dt

∫ L(t)

zb

{(
w2

2
− z

)
h2 + 2h

Bo

(
1 + (∂zh)2

)1/2
}

dz =
[

w3h2

2
− wh2z + 1

Bo
K2(z, t)

]
z=zb

,

(3.4c)

where

K1(z, t) = h(
1 + (∂zh)2

)1/2 + h2∂2
z h(

1 + (∂zh)2
)3/2 ,

K2(z, t) = κh2w − 2(∂zh)(∂th)h(
1 + (∂zh)2

)1/2 .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.5)

Here, the integral terminal zb ∈ (0, L) is a constant parameter that defines a jet’s lower
boundary. Accordingly, Vjet is the jet volume. Note that zb /= 0 because (3.2) does not
account for any solid–liquid stress at the contact plane z = 0. If we choose zb 
 1, a
thin capillary boundary layer is then expected for z ∈ [0, zb), where surface tension and
boundary stresses would govern the drop foot region.

Notably, it is possible to identify the kinetic, potential and surface energies of

the jet domain as Ek = ∫ L
zb

w2h2/2 dz, Ep = ∫ L
zb

−zh2 dz and Es = ∫ L
zb

2h
√

1 + h2
z /Bo dz,

respectively, in the energy conservation law (3.4c). In general, this energy equation is
auxiliary to the already closed system (3.2) for an incompressible jet. However, as we will
see, we utilize this additional equation to enable closure for the jet’s breaking topology
without having to solve the evolution equations over time.

3.3.2. Slender-jet free-fall regime
Having introduced the slender-jet equations (3.2), we now develop an analytical solution
starting with a steady velocity ansatz w for the force balance (3.2b) that also satisfies the
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Figure 10. (a) Central axial velocity w(r = 0, z, t) as a function of z, for Bo = 7, from DNS of constant θc =
40◦ at different times (solid), compared with the steady profile w = √

2z (3.6) (dashed). (b) Time-averaged
DNS velocity profiles w̄ = w̄(z) for different Bo (solid) shown in log–log form in order to more easily show the
range. The inset gives an example of w̄ (black solid line) from various temporal profiles of w (blue and dotted)
for Bo = 5. Panels (c,d) give the corresponding results to (a,b) for θc = 60◦. This DNS benchmark validates
that (3.6) gives the correct universal steady velocity profile for a ligament in its middle region sufficiently far
from its two ends, i.e. z � O(1) and L − z � O(1), at all Bond numbers.

boundary condition limz→0 w = 0. This solution would describe a free-falling ligament in
the Bo → ∞ limit. In this limit and for these conditions, we obtain for all t > 0

w(z, t) = √
2z. (3.6)

Accuracy of such a steady velocity profile is directly assessed in figure 10 with DNS of a
constant contact-angle model using θc = 40◦ (10a,b) and θc = 60◦ (10c,d). For example,
for Bo = 7, figure 10(a,c) gives the central axial velocity w(r = 0, z, t) as a function z
at four different times up to tip-drop pinch off. All the profiles indeed follow the steady
profile (3.6) except for the region near the tip as z → L. Clearly, away from the extremity of
the ligament the steady solution does capture a universal velocity profile that is robust for a
range of Bo, as seen in figure 10(b,d). Indeed, these figures show an ensemble time average
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w̄ taken from w(0, z, t) over all simulated times t for a range of Bo. These observations
support (3.6) to capture the profile of the ligament region away from its two extremities.
Notably, we qualify the success of (3.6) strictly under the conditions that a) the inviscid
flow limit applies, and b) the imposed inertial acceleration is constant (see (3.2b)). This
is because both viscous effects and variable forcing over time can significantly alter the
ligament’s stretching dynamics (Villermaux 2012; Vincent et al. 2014).

Having established support for (3.6), the continuity equation (3.2a) can be further
solved with the general solution h(z, t) = H(t − √

2z)z−1/4, where H(·) ∈ C1 is arbitrary.
To determine H, we first specify the initial condition at time t = ts when the SJM becomes
applicable, by denoting

h̃
(
z, t̃
) ≡ h(z, ts + t̃), h̃0(z) ≡ h̃(z, 0), t̃ ≡ t − ts ≥ 0. (3.7a–c)

Further, since we are interested in the jet domain z ∈ [zb, L], an additional boundary
condition at z = zb is required. By taking zb → 0, so that physically w|z=zb → 0 at the
substrate, we assume (3.2a) evaluated within the capillary layer for z ∈ [0, zb) follows
the dominant balance |w∂zh/∂th| 
 1 and |w∂zh/(h∂zw)| 
 1. As such, we arrive at the
following approximate equation:

∂th + h

2
√

2z
= 0, (3.8)

for h using (3.6), whose solution at z = zb as a boundary condition is given by

h̃(zb, t̃) ≡ h̃b(t̃) = exp
(

− t̃
2
√

2zb

)
h̃0(zb), (3.9)

where the initial value (3.7a–c) is used. Note that the asymptotic conditions that lead to
(3.9) as zb → 0 may be assessed upon direct substitution into (3.2a), yielding∣∣∣∣w∂zh

∂th

∣∣∣∣
z=zb

∼ w
zb

,

∣∣∣∣w∂zh
h∂zw

∣∣∣∣
z=zb

∼ wz−3/2
b

∂zw
. (3.10)

Therefore, an essential singularity of the form w ∼ o(e−1/zb) is needed for the second
term in (3.10) to vanish, while any algebraic profile, e.g. (3.6) derived in the Bo → ∞
limit, leads to divergence. Indeed, we observe in figure 10 that, as z → 0, the simulated
w from DNS approaches zero much faster than the steady profile. Presently, we do not
explore the capillary boundary layer for z ∈ [0, zb) in full detail, but assume that there is a
sharp transition of the flow dominance from surface tension to inertia at the critical slice
z = zb, hence (3.9) is obtained as an approximation. This hypothesis enables the analytical
solution to follow, and is subsequently justified by experiments.

With initial-boundary values specified in (3.7a–c) and (3.9), the 1-D transport equation
(3.2a) can be solved for all z, t following a standard method-of-characteristic procedure.
As a result

h̃(z, t̃) = h̃free-fall ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1 − t̃√

2z
h̃0

(
1
2

(
t̃ − √

2z
)2
)

, ζ(zb, t̃) ≤ z ≤ ζ(L̃0, t̃),

(
zb

z

)1/4

exp

(
− t̃ − √

2
(√

z − √
zb
)

2
√

2zb

)
h̃0(zb), zb ≤ z ≤ ζ(zb, t̃),

(3.11)
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where L̃0 is the ligament length at t̃ = 0, i.e. h̃0(L̃0) = 0, and

ζ(Z, t̃) = 1
2

(
t̃ +

√
2Z
)2

. (3.12)

Here, ζ(Z, t̃) gives the advected position of a Lagrangian slice, parameterized by its
original location z = Z at t̃ = 0, after time t̃ by the uniform axial velocity w. That is, ζ

solves the ordinary differential equation (ODE) system

∂t̃ζ = w(ζ(Z, t̃)), ζ(Z, 0) = Z ∈ [zb, L̃0], (3.13a,b)

with w given by (3.6).
Figure 11 shows experimental evidence that the free-fall solution (3.11) captures the

measurements made for both contact angles well. First, with θc = 60◦ and Bo = 7,
figure 11(a) gives the corresponding drop radius h as a function of capillary time τ

for an increasing sequence of z/λ = 0.5, 1, . . . , 12, where λ is the capillary wavelength
defined in (2.11a–c). Using a logarithmic scale, we observe that, at each fixed z that is
sufficiently large (z/λ � 2), there always exists a transitioning time when h peaks and
exponential thinning occurs afterwards. However, at small distances closer to the substrate,
e.g. z/λ = 0.5, 1, the rate of h thinning appears slower than exponential, indicating the
effect of the capillary boundary layer. Therefore, we can empirically identify a critical
time ts and location zb from measurements such that the approximated boundary condition
(3.9) is reasonable. For example, by choosing τs = ts/

√
Bo = 0.2 and zb = 2λ (labelled

in figure 11a), we compare the h data directly against (3.11) using similarity variables
ξ ≡ [t̃ − √

2(
√

z − √
zb)]/(2

√
2zb) and η ≡ (z/zb)

1/4h̃(z, t̃)/h̃0(zb) in figure 11(b). It is
shown that the roughly parallel curves in figure 11(a), as well as additional data for larger
z/λ = 16, 20, 24, all collapse onto the theoretical solution η = e−ξ . The biggest deviation
is found for z/λ = 2 in this case as ξ (or equivalently, t) increases, again exhibiting
long term capillary influences. Similarly, figure 11(c,d) reveals the same findings using
experimental data for θc = 19◦ and Bo = 6. Compared with the previous case, here,
τs = 1.7 and zb = 4λ are chosen for (ξ, η) in figure 11(d), indicating a thicker boundary
layer with respect to the capillary length for a more wetting surface.

3.3.3. Lollipop model for tip-drop breakage
Although we have successfully modelled the free-falling region of a ligament in § 3.3.2,
the surface tension effects that cause necking near the tip and its ultimate pinch-off are
still fundamentally missing in the infinite Bo theory. In this section, to recover this critical
behaviour, we use the insights gained from the geometrical constraints of the dynamics
to develop a first-order ‘lollipop’ model solution to the SJM for a ligament at the exact
tip breaking instant. We achieve this by solving the conservation form of the SJM given
in (3.4) for infinite Bo over a defined domain that divides a breaking ligament at t = ttip
into four parts: (i) a base cone for 0 ≤ z ≤ zb, (ii) a free-falling region described by (3.11)
for zb < z ≤ zc, (iii) a connecting cone within zc ≤ z ≤ L − 2Rtip where L = L(ttip) is the
breaking jet length and (iv) an ejected spherical tip of radius Rtip between L − 2Rtip ≤
z ≤ L. A schematic of the composite geometry that we use to guide the approach, with a
lollipop shape, is illustrated in figure 12.

Next, we elucidate specific design of the four parts that contribute to the lollipop
model. First, we make the same constant contact-angle assumption as in § 2.3.2 for DNS,
and additionally approximate the drop shape in its foot capillary layer to be conical, as
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Figure 11. (a) Drop radius h(z, τ ) as a function of capillary time τ measured experimentally at different
heights of wavelength z/λ = 0.5, 1, 1.5, 2, 4, 8, 12, using θc = 60◦ and Bo = 7 (α/g = 9.9). (b) Radius
measurements at different heights z/λ = 2, 4, 8, 12, 16, 20, 24 plotted by solid lines in term of similarity
variables ξ ≡ [t̃ − √

2(
√

z − √
zb)]/(2

√
2zb) and η ≡ (z/zb)

1/4h̃(z, t̃)/h̃0(zb), with parameters τs = 0.2
(ts = 0.6) and zb = 2λ (labelled by the dashed line in a). The resulting curves collapse onto the free-fall solution
η = exp(−ξ) given in (3.11) by the dashed line. (c,d) Same as in (a,b) except θc = 19◦ and Bo =7 (α/g = 6.2).
The transition parameters used for (d) are τs = 1.7 (ts = 4.1), zb = 4λ. Panels (a,c) share the same keys.
We demonstrate here that, with an appropriately identified boundary for the capillary layer, the ligament radius
in the inertial regime is well predicted by the free-fall solution derived from the Bo → ∞ limit of the SJM.

generally observed in experiments. This leads to the following shape function h̃base for
z ∈ [0, zb):

h̃(z, t̃) = h̃base(z, t̃; zb, θc) ≡ (zb − z) cot θc + h̃b(t̃; zb), (3.14)

where h̃b is the boundary condition defined in (3.9) of exponential necking. By conserving
the total drop volume, we can then calculate the slender-jet portion of the ligament volume
Vjet (excluding the base cone) as

Vjet(t̃) = 4π

3
−
∫ zb

0
πh̃2

base dz = π

3

[
4 − zc

(
3h̃2

b + 3h̃bzb cot θc + zb
2 cot2 θc

)]
. (3.15)
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Connecting cone Tip sphereBase cone Freefalling ligament

t = ttip

hcone htip
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L – 2Rtip L

wtip
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θc

β

h̃base h̃free-fall

zb0 zc
z

Figure 12. Schematic of the lollipop model for a tip breaking ligament at t = ttip, including a base cone (0 ≤
z ≤ zb), a free-falling ligament (zb ≤ z ≤ zc), a connecting cone (zc ≤ z ≤ L − 2Rtip) and a tip sphere (L −
2Rtip ≤ z ≤ L). Here, θc is the equilibrium contact angle, wb is the boundary flow velocity for the free-fall
solution (3.11), wc is the steady cone velocity (3.20), β = 18◦ is the fixed pinch-off angle, Rtip is the radius of
the ejecting spherical tip of uniform velocity wtip. The h-profiles of the jet radius are labelled for each region
and given in (3.21a,b).

Substituting h̃b and Vjet into (3.4a) thus gives the flow velocity across the critical plane
z = zb based on volume flux

wb(t̃; zb, θc) = z3/2
b et̃/2

√
2zb cot θc

23/2h̃0(zb)
+
(zb

2

)1/2
. (3.16)

Importantly, the boundary velocity w given by (3.16) differs from the steady profile (3.6)
evaluated at z = zb. We demonstrate in Appendix D.1 that the time dependence introduced
in wb necessarily corrects the volumetric flow rate dVjet/dt.

Above z > zb, as discussed in § 3.3.2, we proceed with the assumption that a
discontinuous transition into the free-fall regime occurs, acquiring for the lollipop model
the ligament shape and velocity given by (3.11) and (3.6), respectively. However, to capture
breakup in this model, the tip end of the free-fall solution is replaced by an ejecting drop.
Informed by the experiments as well as the recent self-similar solution derived by Contò
et al. (2019), we propose that at breakup time ttip the ejecting drop is spherical in shape
and uniform in velocity. This gives for z ∈ [L − 2Rtip,L]

h(z, ttip) = htip(z;L, Rtip) ≡
√

R2
tip − (z + Rtip − L)2, w(z) = wtip, (3.17)

where the tip radius Rtip, the total ligament length at breakup L = L(ttip) and the tip
velocity wtip are to be determined in the next section. Note that a spatially uniform wtip
ensures the tip drop remains spherical after breakup.

To link the free-falling ligament and the ejecting tip, we further devise a connecting
cone in between so that the combined lollipop model reasonably emulates an end-pinching
filament, e.g. Day, Hinch & Lister (1998). Specifically, Day et al. (1998) obtained a
self-similar solution to the Euler equations for axisymmetric inviscid drop breakup, and
revealed a double-cone structure at breaking point with an inner angle of 18◦ made by the
ligament and an outer angle of 113 ◦ by the breaking tip. These angles were numerically
confirmed again by Leppinen & Lister (2003). Here, we adopt the inner cone of fixed angle
β = 18◦ for z ∈ [zc,L − 2Rtip] as follows:

h(z, ttip) = hcone(z;L, Rtip) ≡ −(z − L + 2Rtip) cot β + δ, (3.18)

where the matching point z = zc is determined by requiring

h̃free-fall(zc, ttip − ts) = hcone(zc), (3.19)
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with h̃free-fall given in (3.11). A minimum neck radius δ ∼ O(10−3) at z = L − 2Rtip is
formally introduced in (3.18) to indicate the end of inviscid pinch off before a viscous
solution takes over (Eggers & Villermaux 2008). However, because δ is small, its effect
on the cone shape and momentum is negligible. We consider the velocity field within this
connecting cone steady for simplicity, hence computed using (3.2a), i.e. ∂z(wh2) = 0, as

w(z) = wc(z;L, Rtip) ≡ 2zchcone(zc)
2

hcone(z)2 . (3.20)

Markedly, having δ → 0 introduces a singularity of wc as z → L − 2Rtip, which is
acceptable for calculating momentum because wh2 remains constant throughout the cone,
but is problematic for the energy estimation if δ = 0. We address this point in detail in
Appendix D.2.

In summary, using (3.14), (3.11), (3.18), (3.17), (3.16) and (3.20), we have approximated
the breaking jet’s shape and velocity at t = ttip, (equivalently, t̃ = t̃tip = ttip − ts) by

h(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h̃base(z, t̃tip), z ∈ [0, zb],
h̃free-fall(z, t̃tip), z ∈ [zb, zc],
hcone(z), z ∈ [zc,L − 2Rtip],
htip(z), z ∈ [L − 2Rtip,L]

w(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wb(z, ttip), z = zb,√
2z, z ∈ [zb, zc],

wc(z), z ∈ [zc,L − 2Rtip],
wtip, z ∈ [L − 2Rtip,L],

(3.21a,b)

where ttip, Rtip, L and wtip are the four unknown variables to be calculated next. Note that
we assumed in the lollipop model that tip ejection always precedes foot breaking, which
is not always experimentally observed for large Bo. Nonetheless, we will show in § 3.4
and Appendix D.1 that, if foot breaking should occur first at t = tfoot < ttip, because wb
decays rapidly in our lollipop model, only negligible mass, momentum or energy can be
transported from the foot into the slender jet during tfoot < t < ttip.

3.3.4. Solution process
Here, we determine the four SJM lollipop parameters, ttip, Rtip, L and wtip, using the
weak form equations (3.4). However, without solving the evolution system as a continuous
function of time, closure relies on additional access to at least one of the four unknowns.
We choose to estimate tip breakup time ttip based on the empirical relation (3.1) and show
in the following that the resulting lollipop structure, particularly the tip size Rtip, depends
weakly on ttip within a reasonable range of its values.

To proceed, the Bo → ∞ limit of (3.4) is integrated over 0 ≤ t̃ ≤ t̃tip, generating

π

∫ L

zb

h2 dz = Vjet(t̃tip), (3.22a)

π

∫ L

zb

wh2 dz = P(t̃tip) = P(0) +
∫ t̃tip

0

(
Vjet + πh̃2

bw2
b

)
dt̃, (3.22b)

π

∫ L

zb

(
w2

2
− z

)
h2 dz = E(t̃tip) = E(0) + π

∫ t̃tip

0

[(
w2

b
2

− z

)
h̃2

bwb

]
dt̃, (3.22c)

where h and w are piecewise and given by the lollipop model (3.21a,b); h̃b and wb are
respectively found in (3.9) and (3.16); the slender-jet volume Vjet is defined in (3.15), and
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its shifted initial momentum P and net mechanical energy E follow as

P(0) = π

∫ L̃0

zb

w(z)h̃0(z)2 dz, E(0) = π

∫ L̃0

zb

(
w(z)2

2
− z

)
h̃0(z)2 dz = 0, (3.23a,b)

where w(z) = √
2z from (3.6) is used, and h̃0 is the shifted initial shape (3.7a–c) of length

L̃0. All integrals involved in (3.22) can be carried out exactly. The resulting expressions
are lengthy and therefore omitted for brevity. Nevertheless, for any given initial drop shape
h̃0 and estimate of the break time ttip, (3.22) forms an explicit algebraic system from which
Rtip, L and wtip can be solved, under the physical constraints that 0 < Rtip < 1, L̃0 < L <

ζ(L̃0, t̃tip). With ζ given by (3.12), the latter condition forbids the ligament tip to travel at
free fall for all time without capillary retraction. In Appendix D.2 we further simplify the
energy equation (3.22c) and establish a reduced expression, shown to be highly accurate,
which reads

w2
tip = 2

(L − Rtip
)
, (3.24)

and expresses that the tip drop is ejected at a speed given by its free-falling centre,
as per (3.6). Also, (3.24) eliminates the minimum neck radius δ introduced in (3.20)
and its corresponding energy singularity. Hence, we can safely proceed with δ = 0 for
mathematical convenience.

3.4. Results of the SJM lollipop
In this section we present solutions to the SJM lollipop system with comparisons with
simulations and experiments. Properties of the lollipop theory are discussed.

3.4.1. Comparison with DNS and experiments
The shapes of the ligament at tip breakup time given by DNS of the constant contact-angle
model and the SJM lollipop are shown in figure 13(a) for θc = 60◦ and Bo = 4, 5, 6, 7.
The shifted initial shapes, h̃0, fed into the lollipop model (see (3.7a–c)) are selected
from simulated shapes for each Bo that have clearly developed curvature inflection (see
§ 2.4.5), ensuring the beginning of the free-fall regime discussed in § 3.3.2. These curves
are displayed using dot-dashed lines. The critical boundary plane (dotted vertical line)
is empirically chosen as the capillary wavelength, zb = λ = 1/

√
Bo, for the given 60◦

contact angle as a function of Bo. Effectively, we have estimated the thickness of the foot
capillary boundary layer as zb = λ. Consistently, we use the same breakup time ttip from
DNS in the model for each Bo.

As a result, we find that, for all Bo compared, the free-fall solution h̃free-fall given in (3.11)
and the DNS results are in excellent agreement; the ejecting tip-drop size Rtip predicted by
the lollipop model also aligns closely with the simulation. As Bo increases, the breaking
jet length L approaches the DNS result, producing an overall jet shape (3.21a,b), including
the tip drop and the connecting cone, that matches the simulation well. It is interesting to
note that the match continues to be good for large Bo = 6, 7 even though foot breaking
starts taking place ahead of the tip pinch-off in DNS (figure 22a), hence, we would expect
the base-cone assumption made by (3.14) to no longer be strictly correct. However, because
the boundary radius h̃b(zb, t̃) found in (3.9) vanishes sufficiently fast, as t̃ → t̃tip, the error
in the mass and momentum fluxes associated with (3.14) end up not significantly affecting
the jet solution above z ≥ zb. Further discussion of the error analysis for the base cone is
given in Appendix F.
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Figure 13. (a) Drop shapes for θc = 60◦ at tip breaking times given by DNS (solid lines) and SJM lollipop
(dashed) for increasing Bo = 4, 5, 6, 7. With appropriate shifted initial condition h̃0 chosen from the simulation
(dot-dashed), when ts/ttip = 0.35, 0.31, 0.3, 0.27, as well as the boundary thickness estimate zb = λ (dotted)
for the Bo sequence, the lollipop model shows excellent agreement with DNS as Bo increases, particularly in
terms of the tip-drop size. (b) Breaking shape comparison with experiments for both θc = 60◦ and θc = 19◦,
with Bo = 7 and Bo = 7.9, respectively. The values of h̃0 are chosen from experiments at ts/ttip = 0.16 for
θc = 60◦ and ts/ttip = 0.35 for θc = 19◦; additionally, zb = λ and 1.3λ are respectively used in these two cases.
Again, accuracy of the DNS result and lollipop structure for z ≥ zb is validated by experiments.

Figure 13(b) shows again good agreement between the experimental ligament breaking
shape for the different wetting (θc = 60◦ and θc = 19◦) and the SJM lollipop. The
theoretical solutions are computed similarly using experimental h̃0 at ts/ttip = 0.16 and
ts/ttip = 0.35 for these two cases. The resulting lollipop solutions once again capture
both DNS and experiments, particularly in the slender-jet domain z ≥ zb. To achieve
such consistency, zb = λ is selected again for θc = 60◦, while a larger zb = 1.3λ is
used for the small angle 19 ◦. Thus, between the two drops of different initial wetting,
our choices for h̃0 and zb based on the first development of exponential thinning in an
inertial-acceleration-dominated flow regime suggest a variable depth of the foot capillary
boundary layer that increases with decreasing θc. This is expected: the more hydrophilic
surface exerts a longer range of capillarity influence into the liquid. Further details on the
differences between experiments, simulation and theory in the foot region 0 ≤ z ≤ zb are
discussed in the next section.

The overall success of SJM lollipop demonstrated in figure 13 shows that the role
of surface tension that leads to neck tip pinch-off is adequately captured by a lollipop
structure, where the breaking jet geometry satisfies conservation laws. The key insight is
that our theory supports that the volume fraction of the deformed drop above the curvature
inflection of the neck, at the inflection’s very onset, already determines the volume of the
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final tip-drop size well. This supports our observation made in § 2.4.5. In other words,
the end-pinching tip-drop size selection essentially occurs at the very onset of the necking
of the sessile drop and prior to a ligament formation. Indeed, the fact that the lollipop
model based on a simple base-cone construction gives Rtip predictions of similar error
compared with the early-stage volume fractions given in figure 7 shows that the boundary
mass flux modelled through z = zb contributes mostly to the free-falling jet mass, rather
than the selection of the size of the ejected tip drop. Further, after an inertial flow regime
is established for an elongated jet, a continuous modulation of the foot dynamics that
originates from the substrate and propagates through boundary fluxes is responsible for
the second-order correction of Rtip to its final value. The effects of the flux accumulation
on the second-order corrections of the ejected tip drop are examined in Appendix F.

3.4.2. Sensitivity analysis of the SJM lollipop with respect to its Rtip prediction
Next, we show robustness of the tip radius Rtip predictions given by the SJM lollipop using
a sensitivity analysis in response to the control parameters zb/λ, τtip (both expressed under
capillary scaling) and Bo. Recall that the wavelength λ is a function of Bo as per (2.11a–c).

Unlike § 3.4.1, where we have supplied either simulated or experimental data of the
shifted initial condition h̃0 for the lollipop system, here, we examine its solutions derived
a priori based on the TFM developed in Appendix B. Specifically, the TFM drop shape
(B3) for 0 ≤ t ≤ ts is obtained first, using the initial value h0 given by a single parameter
θc in (B6a,b). The switchover time from TFM to SJM, ts, is chosen to be the time at
which the TFM fails: when its corresponding numerical solution for |F(t)| (B2), reaches
its maximum, i.e. Ḟ(ts) = 0 (discussed in Appendix B.3). Although performance of the
TFM starts deteriorating before such a switchover time, our choice offers a well-defined
parametric drop shape h̃0(z; θc) that can be calculated a priori, without experimental or
DNS data. This leads to controllable initial conditions that we use to assess the sensitivity
of the SJM. With h̃0 determined, we proceed to prescribe, for any given Bo, a range of foot
boundary thickness, zb, and tip breakup time, τtip, to close the lollipop system (3.22) and
assess the effect on Rtip prediction accuracy.

Figure 14(a) shows the drop shapes at t = 0, t = ts = 1.5 for θc = 60◦ and Bo = 6,
and the lollipop structures obtained either using fixed zb/λ = 1 but variable τtip = 2, 3,
or using constant τtip = 2.5 but variable zb/λ = 0.5, 2. This figure shows that the lollipop
prediction of Rtip is consistently 0.8 < Rtip < 0.9 for large Bo and holds for a wide range
of system parameters τtip and zb. This is true, despite the fact that the breaking jet length
L differs significantly between the applied parameters. Similar results hold for the higher
wetting substrate (figure 14b), where again, either τtip = 2.5, 3.5 is changed while fixing
zb/λ = 1, or τtip = 3 is fixed while zb/λ = 0.5, 1.2. We combine the above results in
figure 14(c,d). Figure 14(c) shows the Rtip solutions when varying τtip and fixing zb.
Figure 14(d) shows the Rtip solutions for a fixed τtip and varying zb. Clearly, Rtip depends
weakly on τtip when Bo is large, and all solutions converge to a narrow band of values
around Rtip ≈ 0.82 as Bo increases, for both θc or more broadly 0.8 < Rtip < 0.9 when Bo
increases. The results show that the prediction of Rtip is robust to parameter changes and is
approximately 10 % higher than experimental measurements in comparison with the foot
volume. The foot volume induced error will be explained in the next section.

Note that Rtip is more sensitive to increasing Bo when the wetting contact angle is
small, especially for small Bo. This is expected as zb determines the base-cone volume
in the lollipop model (see (3.15)), whose effect is amplified when θc is small. Indeed,
both (3.15) for the jet volume and (3.16) for the boundary velocity depend on θc via
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Figure 14. (a) A priori SJM lollipop solutions for θc = 60◦ and Bo = 6 obtained using fixed zb = λ, variable
τtip = 2, 3 (dashed lines) and fixed τtip = 2.5, variable zb/λ = 0.5, 2 (solid lines). The SJM initial condition h̃0
at t = ts = 1.5 (dash-dotted) is the TFM solution figure 24 originated from the initial value at t = 0 (dotted).
The inset highlights the foot shapes due to the variable zb solutions (solid). (b) Analogous results for θc = 19◦
and Bo = 6: fixed zb = λ, variable τtip = 2.5, 3.5 (dashed lines) and fixed τtip = 3, variable zb/λ = 0.5, 1.2
(solid lines). (c) Range of Rtip solution of the lollipop system defined by 2 ≤ τtip ≤ 3 for θc = 60◦ (region
labelled by solid triangles), and by 2.5 ≤ τtip ≤ 3.5 for θc = 19◦ (region labelled by empty triangles) as a
function of increasing Bo. Here, zb/λ = 1 is used for both θc. The τtip bounds are chosen here to match
experimental observations made in figure 5(b). Experimentally measured values are given by filled/empty
disks. (d) Similarly, range of Rtip due to 0.5 ≤ zb/λ ≤ 2 for fixed θc = 60◦, and 0.5 ≤ zb/λ ≤ 1.2 for fixed
θc = 19◦. Also τtip = 2.5 and 3 are used respectively for these two constant angles. Boundary values of zb
are labelled in the legends. It is established that the lollipop model Rtip consistently predicts a tip-drop radius
0.8 < Rtip < 0.9 for large Bo and a wide range of system parameters τtip and zb.

zb cot θc, where we chose zb to be of the same order as λ = 1/
√

Bo. Therefore as Bo → ∞,
zb cot θc decreases. However, for a fixed Bo, zb cot θc increases with decreasing θc. This
also explains the apparent increasing trend of SJM results for θc = 19◦ in figure 14(c,d),
where the ratio zb/λ is fixed while λ decreases with Bo. As a result, the volume of the base
cone tends to overestimate the measured foot layer when Bo is small, therefore producing
a smaller tip-drop prediction. Note further that the Rtip convergence observed in figure 14
can similarly be explained recalling that Vjet → 4π/3, wb → 0 as zb → 0 in (3.15), (3.16),
thus dropping the dependence of the lollipop model on Bo.
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3.5. Sensitivity of tip-drop size and pinch-off time on the dynamics of the
free contact line

Combining experiments and simulations, we showed that the selection of the tip-drop size
occurs essentially at the onset of curvature inflection of the interface prior to formation of
the elongated ligament. In the limit of large Bo, our SJM lollipop asymptotic theory for
primary tip-drop ejection (see § 3) provides leading-order estimates for the released drop
size Rtip ≈ 0.8, with 15 % error as seen in figure 5(a) mostly generated by the base-cone
formulation (see (3.14)). We find a similar order of magnitude for the corresponding error,
i.e. 15 %, in DNS (see § 2.3.2) and theory when assuming constant contact angle at the
foot.

Yet, we have already seen (e.g. figure 6) that the foot angle is not constant over time.
In fact, we consistently find (e.g. figure 29a,b) that as t → ttip, the apparent contact angle
θ(t) � 60◦ if θ(0) = θc = 60◦ and θ(t) > 19◦ if θ(0) = θc = 19◦. Hence, maintaining a
fixed θc as we did in both DNS (constant angle model) and SJM lollipop could induce
an increasing error in the foot base-cone volume Vb = ∫ zb

0 πh̃2
base dz, naturally inducing

propagation of error in ligament volume and fluxes via Vjet in (3.15), and wb in (3.16).
In this section and corresponding Appendices F and G, we revisit the experiments,

theory and simulations to examine how a more refined contact-line dynamics at the foot
may change the prediction error on Rtip. We approach this in two ways: (i) leveraging
the experimental observations from the base-cone dynamics, we estimate the change in
foot contact-line angle and evaluate how it would affect the Rtip prediction of the SJM
lollipop. This is discussed in Appendix F; and (ii) introducing a DNS with a free angle
(Appendix G) that allows us to resolve a time-varying contact line using the flow field
extrapolated in the vicinity of the contact line and assessing the shift in Rtip and τtip.
In all cases, accounting for the non-constant contact line shows a tendency for improved
prediction of Rtip (DNS and SJM lollipop) and τtip (DNS).

First, from Appendix F, we confirm that the error on the foot base-cone volume,
introduced by the moving contact line, propagates into the lollipop system through mass
and momentum flux balance (3.22a) and (3.22b), respectively. It is interesting to note,
however, that an error on the base volume of up to a factor of 4, in some cases, from the
constant contact-line angle assumption (e.g. figure 31b), results in a 20 % error in the jet
volume Vjet above z > zb, and translates into a 10 % error in Rtip. This is because, as the
tip breaking is approached, the measured volume fraction of the foot only accounts for less
than 5 % of the total drop volume.

Second, from Appendix G, we introduce the modified DNS with a free angle which has
two parts: (a) an extrapolated angle consistent with the flow at the grid scale and (b) a
slip boundary condition. We summarize the implication in figure 15(a,b) which shows the
comparison between the predictions of τtip and drop size Rtip, respectively, from various
modelling assumptions with experiments. Interestingly, as with the asymptotic theory
(see figure 14), although the DNS of constant contact angle captures τtip well and only
over-predicts Rtip by ≈15 % and with a decreasing error as Bo increases, reaching ≈10 %
in the high Bo limit, the DNS with free contact angle improves such predictions with: (i) a
vanishing error in τtip; and (ii) a decrease in the error on Rtip by about ≈5 % for Bo ≥ 4.

3.6. Summary
In summary, by taking the infinite Bond number Bo and inviscid flow limit, we developed
asymptotic theories for the accelerating drop’s geometry of extreme aspect ratios L/R
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Figure 15. Comparisons of (a) the tip breakup time τtip and (b) the ejected drop radius Rtip between
experiments (disks) and DNS results (lines) for θc = 60◦ as a function of Bo. Both the constant and free-angle
models (CA vs FA in the legend) are shown. All data for direct numerical simulation-constant angle (DNS-CA)
correspond to the resolved slip length ε = 29.3 μm and ε/Δ = 4. We show that for both τtip and Rtip the
simulations with the constant angle model reasonably capture the experimental measurements across all Bo
with a slight overestimation of the order of ≈10 % at high Bo. Using a free contact angle model can reduce this
error further down to ≈5 % for Rtip and essentially to zero for τtip.

that occur at different stages of the drop deformation. For small L/R at early times, the
drop motion can be uniformly described by the TFM (with detailed discussion given in
Appendix B), and when L/R becomes large the SJM (§ 3.3) starts to apply. Based on the
SJM, we modelled the drop’s tip breakup using a lollipop system that incorporates surface
tension effects using geometrical arguments (§ 3.3.3). With this combined modelling,
we obtain robust predictions for the size of the ejected tip drop at high Bo, which
match the experiments well. Moreover, these predictions are remarkably insensitive
to uncertainties in the model parameters. Notably, the prediction is achieved without
numerically solving the slender-jet equations. Instead, our treatment of the integrated
equations over the lollipop domain allows an isolated approximation of the substrate
contact effects. Therefore, we can assess directly the relative importance between the
axial stretching due to acceleration and the interfacial effects near both the foot and tip
region ends of the ligament, thereby shedding light on impulsive, asymmetric filament
fragmentation.

The success of this framework, and its validation against simulations and
experiments, establishes the following key novel findings about the drop elongation and
fragmentation:

(i) The initial drop motion is dominated by inertial acceleration (stage one), since it
takes time for interfacial effects to manifest. We obtain as a result a universal drop
dynamics in the limit Bo → ∞. This early time drop dynamics is captured by (B11)
in Appendix B.

(ii) As the drop extends axially, capillary effects grow dominant locally near the drop tip
and foot, thereby affecting the shape in these regions where interface stress becomes
comparable to inertia. At the foot, this necessarily creates a low-speed capillary
boundary region immediately above the substrate. The thickness of this boundary
region is empirically reflected by interface curvature inflection at the onset of
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neck formation. We show that the height of this neck is of the order of the capillary
wavelength in experiments (see figures 24 and 11). We also showed analytically that
this neck, and its subsequent exponential thinning, are necessary consequences of
flow continuity (see the derivation of (3.9)). Upon formation of a such neck that
separates the extending drop into foot and top regions, we found that the volume of
the eventual tip drop can already be predicted well by the volume of the top region at
the time of necking onset, indicating an early onset of pinching dynamics dominated
by surface tension that selects the tip-drop size.

(iii) Above the foot layer, the liquid stretches into a ligament that is still acceleration
dominated. Presently, without a detailed flow structure that matches the two
asymptotic theories, we assume that the transition into the SJM occurs at time ts and
location zb where necking begins. A free-fall regime thus follows, producing (3.11)
that accurately captures the ligament shape away from its foot and tip. Therefore,
we concluded that the liquid mass transported away from the foot layer through
boundary flux is mostly absorbed by the free-falling ligament, not affecting its
pinching tip. Meanwhile, the inertial acceleration, responsible for the ligament
elongation during this time (stage two), plays an insignificant role in determining
the tip-drop size.

(iv) For the tip end, the capillary pinch-off mechanism ultimately leads to the release
of a tip drop. We build this geometry into the lollipop structure that we propose,
together with conical shapes for the foot layer and a connecting layer between the
free-falling ligament and the tip sphere. By conserving mass, momentum and energy
across the defined lollipop domains at an estimated breakup time τtip, we solve
(3.22) and obtain an approximation of the breaking jet that predicts the ejecting
tip size Rtip accurately. This confirms that, once necking initiates at the foot, the
tip evolution gradually decouples from the foot contact dynamics, and becomes
increasingly dominated by capillary end-pinching.

(v) We performed a sensitivity analysis on the estimated parameters τtip and zb and
to the contact-line dynamics. These results are shown in figure 14 and show that
our Rtip predictions are robust and insensitive to the uncertainty of the parameters
when Bo increases. We also introduced a DNS with dynamic contact line to examine
the error introduced by the static contact-line assumption, which helps reduce error
prediction of the drop size by approximately 5 %. We find that the robustness of
the lollipop solutions suggests that the effects of the contact dynamics propagating
through boundary fluxes entering the foot of the slender jet are in fact buffered by the
free-fall regime. Hence, they do not significantly contribute to the local end-pinching
process near the tip and do not significantly shift the size of the tip-drop selected,
for the most part and within 15 %, prior to the formation of the ligament.

4. Applications to pathogen transmission

Pathogens on contaminated surfaces, such as leaves, which motivated this initial
investigation (Gilet & Bourouiba 2014, 2015, 2017) are typically responsible for new
lesions on infected leaves and are typically trapped in a sticky mucilage. Upon rainfall or
condensation, such mucilage is dissolved into sessile droplets on the infected/contaminated
leaves/surfaces. Pathogens in such sessile droplets can include viruses, bacteria and spores,
in increasing size range from O(100 nm) (e.g. Tomato spotted wilt virus), to O(1–10 μm)
(e.g. Xanthomonas citri subsp. citri causative agent of citrus canker) to O(10–100 μm)
(e.g. Septoria nodorum causative agent of cereal rust). Such organisms by the virtue of
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Fragmentation from inertial detachment of a sessile droplet

their different characteristic scales and composition differ in their sedimentation times.
They also can differ greatly in their typical buoyancy and wetting properties. Spores, for
example, are typically more hydrophobic and thus expected to gather at the interface of the
sessile contaminated drop (e.g. Faulwetter 1917; Gregory, Guthrie & Bunce 1959; Gregory
1973; Fitt, McCartney & Walklate 1989; Paul et al. 2004; Bourouiba 2021a).

Having developed a comprehensive understanding of the drop inertial detachment and
the validation of the numerical model against data and theoretical asymptotic predictions,
we proceed in using the model to answer the following questions regarding contamination
and transmission via inertial detachment: What fraction of pathogens would the tip
primary daughter drop, and its following secondary smaller droplets, carry away from
the contaminated sessile mother drop source? The corollary of that question is: How
much initial pathogen remains on the contaminated substrate post-fragmentation? And
how would such fraction change depending on the properties, for example wetting and
buoyancy, of the pathogens involved?

Next, we discuss two illustrative examples to gain insight into the aforementioned
questions: (i) the case of pathogen-mimic tracer that would be hydrophobic, such as
spores, and so be concentrated on the interface of the sessile drop; and (ii) the case of
pathogen-mimic tracer that would be wetting, with possible variation in the buoyancy or
settling speed of the pathogen-mimic tracers, which would lead to possible stratification
in their distribution in the sessile drop.

With access to the entire flow field in DNS, here, we examine trajectory of fluid parcels
inside the drop from a Lagrangian perspective. We seed tracer particles, denoted as p
in the initial sessile drop according to predefined spatial distributions, and track each
particle’s movement as inertial detachment progresses by means of the velocity vector
dpi/dt = upi . We first seed hydrophobic particles that would be concentrated on the sessile
drop’s interface. Figure 16(a) shows the evolution of the hydrophobic tracers. Clearly, most
pathogens would be transported by the tip drop. Indeed, figure 16(b) confirms that, with a
quantitative analysis of the fraction of pathogen in the tip drop vs foot vs middle ligament
from which secondary droplets form (figure 16a), ≈5 %–10 % of the original pathogens
remaining in in the secondary droplets emerge from the stretched middle ligament. This
fraction increases as Bo increases. Interestingly, however, almost none remain at the foot.
Thus, the inertial detachment can be thought of as a cleaning process for the contaminated
surface in the case of these superhydrophobic pathogens. This is interestingly true for the
full range of Bond numbers we examined, including the lowest ranges. Figure 17 shows the
motion close to the foot and contact line for the example of Bo = 1.5 and suggests a lifting
of the hydrophobic pathogens reminiscent of the rolling motion interfaces, for example
observed in Dussan V. & Davis (1974).

In contrast to hydrophobic pathogens, we examine wetting pathogens and the effect of
their distribution in various stratification layers of the sessile drop in figure 18. Note that
we chose a layering such that the volume of the bottom blue region corresponds to the
volume of the fluid left in the secondary ligament and the foot in the high Bo limit. We
find that only the upper two layers of red and green tracers always end up in the ejected tip
daughter droplet and that the lower blue tracer layer also enters the ejected tip drop when
Bo is low. Another important conclusion from the simulations is that the layers roughly
remain stratified throughout the drop deformation, supporting an extensional flow expected
in the limit of large Bo, thus serving as further post hoc confirmation of our asymptotic
1-D theory in § 3.3. Hence, there is little to no mixing among stratified pathogens seeded
in the initial sessile drop. An important implication of our results is that, for particles
that are wetting and homogeneously distributed in the initial sessile drop, it is correct to
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τ = 0

Bo = 2.0

τ = 3.9

Bo = 1.5
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Figure 16. (a) Evolution of the hydrophobic VoF tracer particles for various Bond numbers. The simulations
are full three-dimensional with no slip and constant, 60◦, contact angle § 2.3.2, leveraging symmetry to compute
only a quarter of the drop. The initial distribution of hydrophobic pathogens on the interface of the spherical
cap is shown in the τ = 0 image. (b) Corresponding concentration of the hydrophobic tracers in the tip drop,
extensional ligament and the foot shown in (a). Interestingly, more than 90 % of the tracer is carried in the tip
drop and none remains in the foot for Bo ≥ 3.

assume that the pathogen load ejected in the tip drop is proportional to the tip-drop volume.
This insight serves as a good estimation for risk assessment, although it neglects
polydispersity of pathogen/spore size and clustering of realistic spores/bacteria that may
take place for some pathogen classes. These effects would affect the distribution and
stratification of pathogens in the sessile mother drop and are the subject of follow-up
investigation.

In conjunction with the tip and foot pinch-off, the extensional middle jet also undergoes
fragmentation, resulting in the formation of a range of satellite droplets. Figure 19(a)
shows examples of sequences of ligament breakup for a range of Bo. Note that, upon
fragmentation of the extended ligament, occasional mergers occur, with a time-varying
secondary droplet size distribution that eventually converges. We focus on the final droplet
size after such mergers have concluded. Snapshots of fragments at the time of such
conclusion are shown for example in figure 19(b). The quantification of the converged
secondary droplet size distribution of the fragments with respect to their location is
shown in figure 19(c) and their corresponding volume fraction contribution is given in
(d). Notably, at higher Bo, for the no-slip DNS with a constant contact angle of 60◦,
not only does the tip daughter drop size approach a constant value of Rtip = 0.78, but
the second largest daughter drop also converges to R2 = 0.6. In fact, the entire droplet
spectrum collapses onto a curve that is independent of Bo, when rescaled by the length
of the ligament (and excluding the tip and foot size) (figure 20a). Figure 20(b) gives the
corresponding droplet size spectrum.
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τ = 4.9

τ = 0.5 τ = 1.0

τ = 1.5 τ = 2.0

τ = 2.5 τ = 3.0

τ = 3.5 τ = 4.5 τ = 5.1
τ = 5.2

τ = 5.3
τ = 5.4

τ = 5.4

Foot tracers

Figure 17. Sequence of images showing the hydrophobic tracer evolution for the low Bo example of Bo = 1.5.
The hydrophobic pathogen analogue moves away from the contact line as the interface is deformed and the foot
tracers end up near the top of the foot drop, with a decreasing fraction remaining in the foot as Bo increases
(see figure 16b).

Finally, the range of pathogen transmission involves both the speed and size of the
carrying pathogen-laden droplet (Bourouiba 2021a) and trajectories of ejected droplets
are shaped by their initial Weber number. We estimate the Weber number of the primary
tip daughter drop next. Informed by (3.6), the satellite droplets also have a distribution
of ejection velocities depending on their sizes and pinch-off location. For the primary
daughter tip drop, substituting the jet length approximation L ≈ τ 2

tip

√
Bo discussed in

§ 3.2 into (3.24) gives the estimate wtip ∼ τtip
√

2Bo1/4, which is in agreement with the
measurement range of O(1 m s−1) in our inertial detachment experiments (e.g. figure 8).
As the ejected diameter is of the order of millimetres, this implies that the Weber number
of the ejected tip daughter droplet is of O(102). Figure 21 shows the speed of the ejected
daughter tip drop, right at the instant of the pinch-off and the Weber number based on it as
obtained in the DNS. The Weber number, We, shown takes into account three effects: the
weak decrease of the radius of the ejected tip daughter drop with Bo; the weak decrease
of τtip with Bo; and the strong increase of the ejected speed with Bo. From DNS, we
see that this combination results in an approximately linear dependence of the speed, and
associated We, of the ejected primary tip daughter drop on Bo.

5. Conclusions

We study inertial detachment via experiments where sessile liquid drops resting on
substrates of different average wettability are impulsively exposed to a constant axial
acceleration. Elongation of the drop follows, ultimately leading to a sequence of
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Figure 18. (a) Evolution of the stratified VoF tracked pathogen for various Bo. The simulations are full
three-dimensional with no slip and constant, 60◦, contact angle § 2.3.2. The initial distribution of the modelled
pathogens of stratified wetting is shown in the τ = 0 snapshot. Note that we chose a layering such that the
height of the blue region corresponds to the volume of the fluid left in the secondary ligament and the foot in
the high Bo limit. Interestingly, and consistent with the SJM, we confirm little mixing across layers. Moreover,
as Bo increases, we find that the foot is increasingly depleted in favour of a larger fraction of pathogens in
the ligament, consistent with a decrease of relative foot volume examine in figure 19(d). (b) The percentage
distribution of the blue tracers corresponding to (a) the tip drop, the, middle extensional ligament and the foot.
The percentage represents the amount with respect to the initial blue tracer amount in the droplet. Consistent
with our observation, we find more blue tracers in the extensional ligament than in the foot region and tip
droplet. Remarkably, showing again that the inertial detachment is an effective cleaning mechanism, with little
contamination remaining in the foot, i.e. on the surface, as Bo increases.
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Figure 19. Sequence showing formation of satellite droplets in a range of Bo from axisymmetric simulations
with no slip and constant contact angle 60◦ § 2.3.2 analogous to figures 16 and 18. (a) Evolution of the ligament
for Bo = 2 and 8. After the tip and foot pinch off, the extensional ligament fragments selecting a spectrum of
droplet sizes. (b) Sequence showing the stage at which the secondary droplets reach their final size distribution
for various Bo. Note that all snapshots have isometric scales, and some are scaled to fit the window. (c) Droplet
volumes with respect to their position from the substrate, for Bo = 2–10 at the instant corresponding to (b).
(d) Relative volume of the tip drop, second tip drop, secondary droplets excluding the second tip drop and the
foot, as a function of Bo. As Bo increases the relative volume of all these fragments approaches constant values.
Here, V0 is the initial sessile drop volume and it is here also compared with the corresponding radius on the
right-side twin axis, R/Req = (V/V0)

1/3, revealing that the radius of the second tip daughter drop approaches
a constant value of 0.6Req.
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Figure 20. Secondary droplet sizes at the times shown in figure 19(b), upon convergence to a final distribution
post-coalescence. These are shown normalized by the ligament equivalent length at breakup, �sec for various
Bo, enabling close collapse onto one curve for all Bo, with increase of droplet relative size with proximity to
the tip drop. (b) The equivalent discrete probability density function of secondary droplet sizes, corresponding
to the sizes shown in (a). Note that this figure focuses on the middle ligament and so excludes the tip-drop and
foot regions (shown in volume fractions in figure 19).
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Figure 21. Example of ejected tip daughter drop speed, w, scaled by the inertial velocity (red) and associated
Weber number, We, (blue) showing that both scale with Bo (blue). This example is based of the primary
daughter droplet of the DNS with constant θc = 60◦, with speed and size values taken at pinch-off time of
the tip drop. Note that, in DNS, the ejected speed is calculated taking the average velocity over all the cells
contained inside the droplet.

fragmentation events, as illustrated in figures 1 and 3. This phenomenon can be key in
the transmission steps of infectious diseases. Although fragmentation of slender ligaments
through Rayleigh-type instabilities or the end-pinching mechanism has been studied
extensively in the past, the novelty of our problem lies in its geometrical asymmetry and
a response to imposed forcing that is coupled with the solid–liquid contact dynamics at
the substrate. This dynamics is particularly relevant for surfaces of intermediate wetting,
which are ubiquitous and highly relevant to agricultural plants (Gilet & Bourouiba 2015,
2014; Bourouiba 2021a).

To gain a deeper understanding of end-pinching, we complemented experiments
with the modelling of various components of the fragmentation and combining theory
(asymptotics and a capillary-induced geometry constrained system) and numerics
(multiphase Navier–Stokes DNS, VoF, Basilisk). The asymptotic theories in the infinite
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Bo limit were based on small and large aspect ratios of the drop/ligament. For sessile
drops, the thin-film approximation applies at small times, and consequently we obtained
a potential flow solution, termed the TFM, that predicts a receding contact line that only
depends on θc. The initial drop evolution given by TFM was validated by both DNS and
experimental results. After the drop extends sufficiently into a ligament of slender aspect
ratio, the 1-D SJM becomes valid while the TFM no longer is. As such, we derived a steady
solution for a jet under free fall except in regions away from its two ends where significant
capillarity applies. To compensate for the surface tension effects governing tip breakup,
we then reformulated the slender-jet equations in weak form over a lollipop domain that
approximates the ligament shape at the exact tip breakup time. This structure, shown in
figure 12, comprises a base cone, a free-falling jet, a spherical tip and a connecting cone in
between. We solved the time-integrated algebraic SJM lollipop system for the breaking jet
length L, tip velocity wtip and radius Rtip. The resulting theoretical predictions are robust
and consistent with the experimental values, as well as the DNS, with agreement to within
10 %–15 % error in their Rtip predictions, compared with experiments (figure 13). More
specifically, returning to our original motivating questions:

(i) When does a sessile drop first detach from its supporting substrate under inertial
forcing? And after fragmentation, what is the amount of the liquid content released?

For a large range of Bond numbers, the sessile drop fragments first near its
tip, releasing a tip drop with radius close to 70 % of the equivalent radius of the
original mother sessile drop. This detachment occurs at a time that is approximately
2–3 times the capillary time reference. Our focus is on the primary daughter drop
released from the extended ligament’s free tip. Interestingly, we found that the radius
of the ejected primary drop, Rtip, is nearly insensitive to the Bond number Bo, as long
as Bo ≥ 2. Moreover, the time of the primary drop ejection, τtip, is also insensitive
to increasing Bo and equilibrium contact angle θc on the substrate (figure 5).

(ii) What are the roles of the imposed inertial force, surface tension and surface wetting
in the detachment process? And as the drop deforms, what are the dominant physical
mechanisms that cause primary fragmentation?

The success of the lollipop approximation and DNS enabled a number of insights
about the inertial detachment, as detailed in § 3.6. Mainly, we established that the
drop elongation up to detachment can be separated into (a) an inertia-dominated
initial stage when the sessile drop extends axially and recedes radially, and (b) a
capillarity dominated end-pinching stage. The duration of the inertial stage is
θc-dependent, a result of the substrate wetting property. Specifically, surface tension
creates a capillary boundary layer of conical shape above the substrate, at the
ligament foot and a spherical drop at the tip. The thickness of the foot layer is of
the order of the capillary wavelength. We found that the initial inertia-dominated
process selects the drop’s shape and flow profiles which are inherited by the second
stage. The second, capillarity-dominated stage, governs the end-pinching, ultimately
producing the primary fragmentation of the tip drop. During this second stage,
the role of inertial acceleration essentially reduces to generating an elongating and
free-falling ligament between the foot layer and the tip drop. In this free-falling
ligament, we find that a free-falling jet solution given by the infinite Bo limit is
valid, where axial stretching leads to exponential thinning of the jet radius over
time. Overall, given these imposed geometric constraints, we can leverage 1-D
conservation laws (mass, momentum and energy) to predict a unique value of the
final tip-drop size.
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(iii) How do these mechanisms determine the detachment time and the size of primary
release?

The primary daughter drop selection and ejection is a surface-tension-dominated
end-pinching mechanism initiated very early during the flow extension. It is also
only weakly influenced by the ligament foot capillarity near the substrate. However,
the selection of the size of the tip drop occurs early on in the sessile drop deformation
and prior to formation of the slender ligament (second stage). In fact, the selection of
the tip-drop size is determined, at leading order, at the end of the first (inertial) stage.
Beyond this period, the inertial and substrate contact dynamics effects are absorbed
by the elongating ligament and do not penetrate into the tip region where the second
stage end-pinching mechanism driven by surface tension acts. Therefore, the total
fragmentation time can be estimated by the sum of duration of these two stages.

Furthermore, we find the tip-drop size selection to be essentially concurrent with
the very first development of a clear curvature inflection along the drop profile,
which takes place in the early stage of the drop deformation, τ/τtip ≈ 0.2 (see
figure 7). Prior to the formation of a clear slender ligament, a fractional ligament
emerges that spans, axially, the region from the inflection point to the free tip. The
volume of such a nascent fractional ligament already reflects the equivalent radius of
the final tip daughter drop, having a volume equivalent to Rtip within ±15 %. While
the exact timing of this size selection can vary, at second order, with the wetting
dynamics at the surface θc, we show that the variation only influences the prediction
of Rtip to within 10 %–15 %. Coincidentally, this early dynamics at τ/τtip ≈ 0.2
is concurrent with the convergence of a final locked receding contact angle θ(t),
θ ≈ 40◦. And this is true whether one starts from a surface with initial contact angles
that are larger or smaller than 40 ◦ (here θc = 60◦ and 19 ◦, for example).

(iv) What is the role of the solid–liquid contact-line dynamics in shaping the
fragmentation of the primary drop?

We find that the solid–liquid contact dynamics dictates the development of
the foot layer, thereby affecting the mass and momentum fluxes entering the tip.
However, due to its relative small volume at moderate to high Bond numbers, the
foot capillarity propagating through the elongating ligament has a lasting but very
weak influence on the end-pinching dynamics.

We established the above with a sensitivity analysis that demonstrated that the Rtip
predictions based on initial values provided by TFM are robust against parameter
change, including the base-cone height and tip breakup time. Given our observation
that the experimental contact angle substantially varies from the start to the end
of the inertial fragmentation, we also evaluated the sensitivity of our predictions
specifically to the details of the contact-line dynamics modelling. Using DNS
validated against theory and experiments, we compared two formulations of the
solid–liquid contact: a constant contact-angle model and a novel free-angle model
that consists of a flow extrapolated grid-scale angle and a Navier slip length. We
showed that the constant angle DNS is already capable of capturing the experimental
observations to within 15 %, and can be refined by the inclusion of the free-angle
model (see figure 15), with a reduction of error down to 10 %. Similarly, by varying
the base-cone angle closer to the θ(t) measurements, we showed improvement in
accuracy of the updated theoretical lollipop solutions.

(v) Finally, returning to our original application of interest, and having validated our
modelling of the inertial detachment end-pinching against experiments, what can we
learn about the speed of ejection and distribution of organisms of various wetting
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properties (e.g. hydrophobic spores vs wetting neutrally buoyant bacteria) in the
ejected daughter drops?

Using our validated numerical model we showed the following: first, for
hydrophobic pathogens, akin to spores that concentrate along the water–air interface,
the majority of the hydrophobic pathogens are transported in the primary tip
daughter drop. Second, for wetting pathogens, akin to most bacteria or viruses,
which can vary in buoyancy and stratify, we find that the initial stratification of
wetting pathogens in the sessile mother drop is mostly conserved. In other words,
little mixing between settled wetting pathogens and buoyant ones would be expected
for example.

In all wetting cases considered, we find that the inertial detachment is a remarkable
cleaning process, with few to no pathogens remaining post-fragmentation on the
substrate and the remaining foot liquid, even for small Bo just above one. We also
examined how the speed and Weber number of ejection of the primary tip daughter
drop vary with local substrate acceleration, via the Bond number, and found a close
to linear increase, with ranges of We from 400 to 1200 for the range of Bo considered
here from orders 2 to 10. Further examination of the consequence of such inertia
transfer in the context of pathogen propagation is warranted.

Finally, we examined secondary atomization of the ligament below the primary
tip drop, observing that the size of satellite droplets increases along the axial
direction toward the tip drop, independent of Bo. We find that few to no hydrophobic
pathogens are transported by these secondary droplets. However, in the case
of wetting pathogens, the most negatively buoyant pathogens would be mostly
transported by these secondary droplets. Absent cross-flow, and everything else
being equal, the primary tip drop would have most inertia, in which case, our
findings suggest that hydrophilic/wetting pathogens of various buoyancy values
could be segregated in their transport by different drop sizes and speeds, while
superhydrophobic pathogens would mostly be transported in the primary tip drop
of maximum inertia.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.874.
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Figure 22. Ligament foot breakup times measured in (a) capillary and (b) inertial scaling. The τfoot and tfoot
results are given for increasing Bo and different θc, α/g parameters. The legends are the same as figure 5 except
that in (a) the τtip shown with stars is overlaid to demonstrate the switch in order of the tip and foot breaking
times. Comparing (a,b), the constant value of τfoot is dependent on the wetting dynamics of the foot, whereas
ttip collapses rapidly with Bo increase. This distinction confirms that, for a given wetting, the foot breakup is
inertia dominated with second order wetting effect.

Appendix A. Foot breakup measurements

In this section, we present experimental measurements of the drop foot breakup time, in
comparison with those given in figure 5 for the drop tip.

Similar to the tip dynamics, the breakup time of the ligament foot near the substrate (e.g.
figure 3a iv) is also rapidly independent of Bo. However, here, at second order, the values
of the constants toward which the tip breakup time converge have stronger dependence on
the wetting dynamics on the substrate. We reveal this in the following manner: figure 22
shows τfoot scaled with the capillary time scale compared with tfoot scaled with inertial
time scale. Recall that the conversion between these two scales is given in (2.11a–c). This
comparison reveals that τfoot decreases weakly with Bo whereas tfoot converges rapidly to
a θc-dependent constant as Bo increases: tfoot ≈ 6 for θc = 60◦ and tfoot ≈ 8 for θc = 19◦.
Therefore, foot pinch off is an inertial process modulated by a local deformation geometry
imposed by the acceleration.

The distinction between tip and foot breakups, governed by capillarity and inertial time
scales, respectively, is also demonstrated in figure 22(a), where τfoot is compared with the
corresponding τtip given in figure 5(b) for θc = 60◦ and α/g = 9.9. We also note that the
breakup time of the foot and the tip drop switch in order around Bo = 6: for Bo < 6, the
foot neck breaks up earlier than that of the tip, while for Bo > 6, it is the tip-drop neck that
breaks up earlier than that of the foot.

Appendix B. The thin-film model

In this section we derive the TFM presented in § 3.1 that reasonably captures the early
dynamics of the sessile drops. We seek velocity components of 1-D spatial dependency,
i.e. u = u(r, t) and w = w(z, t), such that ∇ × u = 0. The validity of this model when the
drop is thin in the z-direction is discussed below.
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Fragmentation from inertial detachment of a sessile droplet

B.1. Drop kinematics
The continuity equation (2.7a), together with the boundary condition w(0, t) = 0, gives
the following 1-D velocity components:

u(r, t) = r F(t), w(z, t) = −2z F(t), (B1a,b)

where F(t) is a function of time that can be identified from applying the kinematic
condition (2.9) at z = 0. With the contact radius denoted R(t) ≡ h(0, t) as shown in
figure 2(b), we obtain

F(t) = Ṙ(t)
R(t)

= ḟ (t)
f (t)

, (B2)

where R, Ṙ = dR/dt, and therefore normalized f (t) ≡ R(t)/R(0), ḟ = df /dt are generally
specified by a dynamic contact model. Substituting (B1a,b) into (2.9) then leads to a 1-D
transport equation for the drop radius profile h(z, t), which we solve by

h(z, t) = h0

(
zf (t)2

)
f (t), (B3)

over the moving domain 0 ≤ z ≤ L(t). Here, h0(z) = h(z, 0−) is the initial drop radius
profile and L(t) is the associated drop height, defined through h(L, t) = 0. By integrating
L̇ = w(L, t) from (B1a,b) and initial length L0 = L(0), we obtain

L(t) = L0f (t)−2. (B4)

Because the drop is initially at rest (u = w = 0), evaluating (B1a,b) and (B2) at t = 0−
gives the following initial values for f :

f (0) = 1, ḟ (0) = 0. (B5a,b)

Also for simplicity, we consider the initial drop radius profile h0 given by the G → 0 limit
of (2.2), yielding a spherical cap of contact angle θc with

h0(z) = R0 csc θc

√
1 −

(
cos θc + z sin θc

R0

)2

, L0 = R0 tan
θc

2
, (B6a,b)

where R0 ≡ R(0) and θc are linked noting the drop initial non-dimensional volume 4π/3
and

R0 = 2
[
(2 + cos θc) sec2 θc

2
tan

θc

2

]−1/3

. (B7)

B.2. Drop dynamics
Next, following the potential flow assumption, the equation of boundary motion in (2.7b)
is equivalent to the following unsteady Bernoulli equation for a dynamic boundary (Day
et al. 1998):

∂φ

∂t
+ 1

2
|∇φ|2 − z + κ

Bo
= C(t), (B8)

where κ is curvature, C(t) is an arbitrary function of t and

φ = r u(r, t)
2

+ z w(z, t)
2

, (B9)

such that u = ∇φ and ∇2φ = 0 linking u, w (B1a,b) to a potential φ. In the Bo → ∞
limit, surface tension effects are neglected. Consequently, equating (B8) evaluated at
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(z = L, r = 0) (using (B4) and (B6a,b)) and any other boundary location (z, h) with
0 ≤ z < L thus requires

f̈ = d2f
dt2

=
6ḟ 2

(
zf 2 + R0 tan

θc

2

)
− 2f 4

f
[
R0
(

f 6 − 2
)

cot θc + (
f 6 + 2

) (
zf 2 + R0 csc θc

)] , (B10)

where the substitutions (B9), (B1a,b), (B2) and (B3) are used. It appears in (B10) that f̈ ,
parameterized by θc, depends on the location z where (B8) is enforced, which is a condition
inconsistent with the 1-D velocity ansatz (B1a,b). However, for z < L 
 1, we can expand
(B10) asymptotically as

f̈ (t; θc) =
sin θc

[
6R0 tan

(
θc

2

)
ḟ 2 − 2f 4

]
R0
[
(cos θc + 1)f 6 − 2 cos θc + 2

]
f

+ O(L), (B11)

where R0(θc) is given by (B7). The leading order of (B11), together with its initial values
(B5a,b), yields an ODE for f (t) that can be solved numerically independent of z. With f (t)
determined, we obtain the 2-D potential flow field in (B1a,b) and the evolution of the drop
shape in (B3) as solutions compatible with the Bernoulli equation (B8) in the large Bo
limit. Additionally, a dynamic description for the contact radius R0 automatically follows
from (B2). We note that a more realistic contact-line dynamics dependent on the substrate
material properties cannot enter here because all surface tension effects are dropped in the
strict limit of Bo → ∞. We term this theory the TFM because of its root in the small limit
L expansion (B11). We expect the TFM to be valid only for early times t 
 1 when the
inertia dominated potential flow assumption is expected to be reasonable. In this early-time
limit, we predict the initial drop elongation speed given by (B1a,b) and (B4) as follows:

w(L, t) ∼ −2L0 f̈ (0)t ∼ 8 sin2(θc/2)

3 − cos θc
t, (B12)

where (B4), (B5a,b), (B7) and (B11) are used. Scaling both w and t using
capillary reference given by (2.11a–c) shows that w/

√
Bo ∼ K(θc)τ , with K(θc) =

8 sin2(θc/2)/(3 − cos θc) being the same acceleration constant found in (B12).

B.3. Results and validation of TFM
Solutions to (B11), and therefore the flow velocity (B1a,b) and drop shape (B3), for
different initial contact angles θc are obtained using a variable time-step fourth-order
Runge–Kutta scheme. Figure 23(a) shows the normalized contact radius f (t) for increasing
θc = 10◦, 20◦, 40◦, 60◦. Receding contact lines are established since f (t) monotonically
decreases in all cases. And the rate of recession appears to converge rapidly as θc increases.
Correspondingly, the velocity time dependency F(t) is given in figure 23(b), where similar
converging curves are found. Importantly, |F(t)| has a non-monotonic evolution: it first
increases for a finite period of time and then decays, meaning that, as the drop elongates in
the z-direction, its axial velocity w, given by (B1a,b), stops growing and starts decreasing
at one point. The transition to a decreasing trend occurs at times that are smaller as θc
increases (figure 23b). Since TFM is obtained for Bo → ∞ where the imposed inertial
acceleration dominates, a decreasing w is unphysical in this limit, indicating that the TFM
solution fails beyond |F(t)| peaks.
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Figure 23. Numerical solutions for f (t) and F(t) obtained from (B11) using θc = 10◦, 20◦, 40◦, 60◦ in (a,b),
respectively. Here, f (t) gives recession of the contact radius and −F(t) shows the velocity temporal profile.
Both results appear to converge as the contact angle θc increases. The TFM fails for times beyond the peak of
|F(t)| because the velocity decay is incompatible with the infinite Bo assumption. The decay occurs at times
that are decreasing with increasing θc as seen in (b).
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Figure 24. Successive drop radius profiles h(z, t) with axial z-axis plotted horizontally. Time increases from
t = 0.2 to t = 1.2 in (a–d). The DNS results obtained for a moderate θc = 40◦ with 3 ≤ Bo ≤ 7 are given by
solid lines, and the TFM predictions are shown in dashed lines. The drop shapes collapse for all Bo at early
times (a,b), and are correctly captured by the TFM. As elongation continues, numerical profiles for different Bo
increasingly diverge from each other, with emerging curvature inflection along the ligament boundary, which
is missed by the TFM which does not account for surface tension effects (c,d).

In figure 24, we validate the TFM by comparing its predictions for the evolving drop
radius profile h(z, t) against DNS. The numerical results are obtained using a constant
angle contact model of moderate θc = 40◦, and increasing 3 ≤ Bo ≤ 7. Figure 24(a,b)
shows that, for small times, drops deform in a universal manner for all Bo, and this is well
captured by the TFM theory. As drops extend with higher aspect ratios L/R � O(1), the
effects of finite Bo increasingly manifest in the simulations. Different ligament profiles
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develop for different Bo values and the drop profile develops inflection in curvature
(figure 24c,d), similar to what we observed experimentally in § 2.4.5. In fact, lacking
surface tension, the validity of the TFM asymptotic model deteriorates: it is naturally
incapable of recovering these surface-tension-induced features. Note that Bo is varied in
DNS by changing α/g while fixing G, and therefore the inertial time units differ between
Bo (see (2.10a–c)). Therefore, a convergence of DNS results of increasing Bo towards
the TFM limit in figure 24(c,d) is not expected. Instead, because t = √

Boτ , drop shapes
captured by increasing Bo at a fixed t correspond to earlier stages of the evolution in
capillary units, retarding curvature inflection.

Appendix C. Dimensional analysis of the foot layer

In this section we give similarity arguments for the size and shape of the conical foot layer
modelled in § 3.3. We begin with the key assumption that, after the separation of a foot
layer (0 < z < zb) and an extending jet (zb < z < L), as seen experimentally in figure 7
and numerically in figure 24, the foot layer follows a self-similar solution under inertial
scaling in the Bo → ∞ and Re → ∞ limits. In this regime, the imposed acceleration is
expected to dominate surface tension and viscous stress throughout the foot layer, as the
latter forces remain small in such developed region. We further hypothesize a critical time
of singularity, expressed using dimensional variables as

tc = c

√
R0

α
, (C1)

when a similarity solution collapses. Here, R0 is the initial contact radius (B7), α is the
effective acceleration (2.5) and c is an unknown dimensionless constant. Denoting the
shifted time s = tc − t, the contact radius R = h(0, t) therefore must scale as

R = R(s) = c0αs2, (C2)

with constant c0. Similarly, the radial profile of the foot layer height y(r, s), defined through
h( y(r, s), t) = r, scales as

y(r, s) = αs2ϕ(x), x = r
αs2 , (C3)

where ϕ(x) is a dimensionless shape function of similarity variable x. Note that, by
definition, ϕ(Rα−1s−2) = 0. Also using (C2) and (C3), the dynamic contact angle θ

immediately follows as

− tan−1 θ = lim
r→R

∂y
∂r

= ϕ′
(

R
αs2

)
= ϕ′(c0), (C4)

suggesting that θ is independent of time. This is consistent with the experimental
observation made in figure 6(b) where θ locks, taking an approximately constant receding
angle value, as foot breaking is approached. In other words, we showed that the condition
of inertia dominance leads to (C4). However, whether or not the implication of constant
contact angle necessarily depends on such condition remains an open question.

Further, the thickness of the foot layer zb and the corresponding neck radius hs in this
inertial regime can be scaled respectively as

zb = y(hs, s) = c1αs2, hs = h(zb, t) = c2αs2, (C5)

where c1 and c2 are again constants. Based on the free-fall solution for the extending jet
immediately above the foot layer (see § 3.3.2), it is possible to estimate the constants using
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the dimensional form of (3.8)

∂th + h
2

√
α

2z
= 0. (C6)

Substituting (C5) into (C6) thus gives c1 = 1/32, and as result of evaluating (C3) at the
neck point where the slope of y diverges, the shape function ϕ must satisfy

ϕ(c2) = c1, ϕ′(c2) = ∞. (C7a,b)

Together with (C4), ϕ(x) is therefore expected to be a compact and monotonically
decreasing function of x. To estimate the overall size of such a roughly conical foot
layer, we assume that (C2) and (C5) apply over s that matches capillary time scale, i.e.

s ∼
√

ρz3
b/σ . This yields

R ∼ zb ∼
√

σ

ρα
= Λ, (C8)

where Λ is the capillary wavelength defined in (2.10a–c). Correspondingly, the
dimensionless results, R/R0 ∼ zb ∼ 1/

√
Bo up to foot breaking, again, agree with the

observations made in figure 6, and justify the empirical choice for zb made for the SJM
lollipop model in § 3.3.3.

Appendix D. Velocity profile properties for the lollipop model

In this section we discuss some elements of the axial velocity profile w specified for the
lollipop model (3.21a,b). Particularly, the significance of the boundary velocity wb for
conserving volume in (3.22a) and the insignificance of the cone velocity wc for computing
energy in (3.22a) are demonstrated.

D.1. Volume adjusted boundary velocity
To give an example with θc = 60◦ and Bo = 7, figure 25(a) compares the volume adjusted
velocity wb(t̃) given in (3.16) with the steady, free-fall solution (3.6) evaluated z = zb = λ,
where the foot layer boundary is chosen at one capillary wavelength. As a result, the
slender-jet volume, calculated using (3.15) and (3.11) as Vf = ∫

z≥λ πh̃2
free-fall dz, is shown

in figure 25(b) as a function of time t̃ up to tip breaking. For comparison, the corresponding
DNS result of constant contact angle is also given. Clearly, the DNS data are overestimated
by Vf , generated by the constant mass flux through z = λ; whereas Vjet agrees with
the simulation better, except near t̃ = 0 where an error is introduced by the base-cone
assumption. Therefore, wb is the preferred choice for mass and momentum calculations at
tip breaking in (3.22) to improve the accuracy of the lollipop structure.

D.2. Energy equation simplification
Here, we derive the analytical result given in (3.24), and evaluate its associated error. First,
expanding E(t̃tip) in the lollipop energy equation (3.22c) and substituting (3.21a,b) gives

E(ttip) = Ec +
4πR2

tip

3

(
w2

tip

2
− (L − Rtip

)) = Iφ, (D1)
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Figure 25. (a) Comparing wb in (3.16) with w = √
λ in (3.6) at the critical boundary chosen at z = zb = λ

for θc = 60◦ and Bo = 7. (b) Drop volume in the slender-jet domain Vz≥λ given by Vf , the free-fall solution in
(3.11) (dashed), Vjet in (3.15) (solid) and DNS (circles).

where

Ec = π

∫ L−2Rtip

zc

(
w2

c

2
− z

)
h2

cone dz, Iφ = π

∫ t̃tip

0

[(
w2

b
2

− z

)
h̃2

bwb

]
dt̃, (D2a,b)

are the net mechanical energy of the connecting cone and the time-integrated energy flux
into the jet (z ≥ zb), respectively. It is immediately observed that substituting wc from
(3.20) into Ec leads to divergent kinetic energy of the cone, π/2

∫
w2

ch2
cone dz, if δ = 0

is taken. Clearly, this is an artefact of the steady cone assumption that leads to (3.20),
since, although w is observed to increase approaching the tip neck in simulations (see
figure 10a,c), the rise is moderate, and because h decreases near the neck region Ec must
remain finite. Also, this issue does not exist for the momentum equation (3.22b) because
wchcone is constant throughout the cone. Nevertheless, extending the steady free-fall
velocity profile (3.6) into the cone region (zc ≤ z ≤ L − 2Rtip) as well as the jet boundary
(z = zb), i.e. substituting w = √

2z for wc and wb in (D2a,b), yields

Ec = Iφ = 0, (D3)

and thus (D1) produces the desired result, (3.24). Hence, (D1) implies that the kinetic and
potential energies of the breaking tip have the same magnitude but opposite signs, so that
its net mechanical energy is zero. We demonstrate next that the error associated with such
a simplification, caused by non-zero Ec and Iφ , is realistically small.

First, we consider the relative magnitude of Iφ , obtained using (3.16), compared with the
tip drop’s kinetic energy, Ek = 2πR3

tipw2
tip/3, according to the lollipop model. It follows

from the approximation (3.24) that the ratio Iφ/Ek ∼ O(h̃2
b/L) for large L and small h̃b.

Therefore, based on the SJM premise, the contribution of this non-zero energy flux to the
final solution of L in the lollipop model must be small. Similarly, for the connecting cone,
provided that deviation of wc from the steady profile (3.6) remains finite, as we observe
from the simulations in figure 10, it is expected that Ec/Ek ∼ o(hcone/L). Together, (D3)
gives a reasonable approximation, not significantly affecting the tip-drop size prediction.

Further, numerical evidence is shown in figure 26, where figure 26(a) compares Iφ ,
obtained using (3.16) with Ek computed from the solution of the lollipop system (3.22),
and for θc = 60◦, with results shown as a function of different ttip estimates and Bo. Across
a sufficiently large range of ttip and Bo we find that Iφ/Ek � O(0.01), decreasing with
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Figure 26. Relative size of (a) the integrated energy flux Iφ and (b) the net mechanical energy of a connecting
cone Ec (see (D2a,b)), compared with the kinetic energy of the breaking tip drop Ek. In (a), Iφ and Ek are
calculated using the lollipop system (3.22), where h̃0 is taken from the TFM solution and zc = λ, as discussed
in § 3.4.2. In (b), the DNS results for w|r=0 and h are used to evaluate Ec/Ek numerically. The inset gives an
example for Bo = 7 of the analogous cone domain (shaded) and the w, h profiles, with tenfold amplification
for h to visualize locations of the neck and velocity bump. Together, these results demonstrate that the error
incurred from the assumption of Iφ = Ec = 0 is small for the purpose of determining L and Rtext using the
lollipop model. Thus, (3.24) is an accurate approximation.

Bo and becoming orders smaller near the simulated and experimental ttip ≈ 4. Similarly,
figure 26(b) addresses the potential issue of divergent Ec. The central axial velocity w and
drop shape h from DNS using constant θc = 60◦ are used to evaluate Ec given by (D2a,b)
numerically at t = ttip for a range of Bo. An example of the integral domain (shaded), as
well as the h, w profiles are given in the figure 26(b) inset for Bo = 7. There, the shaded
area serves as a proxy for the connecting cone in the lollipop model; Ek of the ejecting
tip in this case is obtained by the numerical integral Ek = π/2

∫
w2h2 dz. Again, the

resulting energy ratio Ec/Ek is smaller than 1 % across all Bo considered, suggesting that
the net mechanical energy of the cone is realistically negligible compared with what the
lollipop model is designed to estimate, e.g. the magnitude of energy components, kinetic
or potential, of the breaking drop. And thus the simplifications of (D3) are justified.

Appendix E. Direct numerical simulation convergence and volume conservation

Numerical convergence for the tip pinch-off time and the volume of the ejected tip droplet
is shown in figure 27. We see that second-order convergence is reached for the pinch-off
time and first-order convergence is seen for the ejected tip volume. All the axisymmetric
results presented throughout the paper are done with a resolution of 409.6 grid points per
initial radius, except for the sensitivity analysis shown here in figure 27. It is clear that the
numerical scheme conserves volume with high accuracy throughout the evolution of the
drop (figure 28).
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Figure 27. Convergence study of the DNS for the θc = 60◦ case. The y-axis shows the percentage error
α − αref /αref × 100 for the (a) tip pinch-off time and the (b) volume of the ejected tip daughter drop.
Second-order convergence is reached for (a) while (b) shows first-order convergence. Here, N gives the number
of grid points per initial radius. This figure shows results for Bo = 4.0 with the reference solution corresponding
to 819.2 grid points per initial radius, that is, R/Δ = 819.2.
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Figure 28. Evolution of the percentage error in volume �Verr(%) = (V(τ ) − V0)/V0 × 100 for DNS-CA.
Here, V(τ ) represents the total liquid volume at a given time τ , that is, the sum of all the liquid volume
including the atomized drop and deformed liquid structure, and V0 is the initial drop volume. The data in the
plot include the time selected to showcase data in figures 19 and 20. This implies that the data of figures 19 and
20 conserve at least 99.9 % of the initial volume.

Appendix F. Base-cone error estimation for SJM theory

As discussed in § 3.5, we assess the error of the SJM prediction with respect to the
base-cone dynamics. To do so, we focus on the ligament foot region in figure 29(a,b),
where close-up views correspond to figure 13(b) in the range z ∈ [0, zb] for θc = 60◦, 19◦,
respectively, are given at three different instants from t̃ = 0 to t̃tip. In both θc cases,
two observations are made: (i) the evolution of the slender-jet boundary radius h|z=zb is
approximated by h̃b in (3.9) to an acceptable error; (ii) however, this error is amplified if
the constant equilibrium contact-angle assumption breaks down over time.

To further demonstrate the change in Rtip predictions upon accounting of the change in
contact angle, θc, figure 29(c) shows Rtip solutions to the lollipop system (3.22) when
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Figure 29. (a) Zoomed-in view of the ligament feet in the range 0 ≤ z ≤ zb that corresponds to the experiment
specified in figure 13(b), where θc = 60◦. Foot shapes at three different times t̃/t̃tip = 0, 0.2, 1 are given
by the solid lines, while the lollipop base-cone model h̃base at the same instants is shown by dashed lines.
(b) Analogous results for the second experiment given in figure 13(b) where θc = 19◦. In the first case (a), the
foot contact angle appears to be less than 60◦ for t̃ > 0 and therefore Vexp is underestimated by Vb. Contrarily, in
the second case (b), the angle is measured to be greater than 19◦, causing an overestimation of Vexp. Note that t̃
defined in (3.7a–c) is the SJM initialization time, therefore it is possible that at t̃ = 0 the base-cone assumption
is no longer strictly correct. Panel (c) shows the Rtip solutions generated by the SJM lollipop system (3.22)
with varying θc for the base cone (3.14). Two cases are shown using a solid line for Bo = 7 and a dashed line
for Bo = 7.9. The corresponding initial h̃0 in (3.7a–c) is taken from measurements at ts/ttip = 0.2 and 0.35
for Bo = 7 and Bo = 7.9, respectively. Also, zc = λ is used in both cases. The experimental Rtip values are
labelled with solid markers. The two arrows here show the direction of Rtip changing as θc in SJM decreases
(or increases) from the equilibrium values 60◦ and 19◦, respectively, approaching their experimental values.

taking a range of values of the base-cone angle θc in (3.14). Note that this remains a
static analysis assessing the change of initial contact angle. With Bo, initial conditions
h̃0 and cone height zb taken to be those of figure 13(b) for both substrates, we confirm
that decreasing the contact angle from θc = 60◦, and increasing it from 19 ◦, respectively,
improve the match between the Rtip prediction and corresponding experimental value (as
indicated by the arrows). Note that it is both the Rtip and the breaking jet length L that
change as θc varies. Thus, we could correct the lollipop estimation with a more accurate
geometry of the base cone, with a known evolution of the contact angle θ(t), for example.
Such refinement incorporating a dynamic contact angle at the foot in the theoretical SJM
model is left to ongoing work outside the scope of this paper.
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Figure 30. (a) The DNS free-angle model Rtip prediction as an increasing function of the implicit slip lengths,
ε = Δ/2. We see that, as ε decreases, the prediction of Rtip is increasingly closer to experiments, for all Bond
numbers, e.g. Bo = 3, 7.8 shown here. (b) Evolution of the wetting diameter with time. The vertical lines
represent the foot pinch-off times. Free-angle simulations are seen to match the experiments better than no slip
for the most part: the initial agreement is excellent with the free-angle model. Beyond τ = 1.2, the wetting
diameter continues to decrease in the free-angle DNS, thus injecting more volume into the ligament. Here, the
experimental data correspond to a contact angle of 60◦ (θc = 60◦). Moreover, all simulations were based on an
initial spherical cap shape with that same 60◦ contact angle.
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Figure 31. History of the relative volume difference between the base-cone volume Vb = ∫ λ
0 πh̃2

base dz against
its measurement, Vexp, during the experiment. This is obtained building on figure 29 showing the zoomed-in
view of the ligament feet in the range 0 ≤ z ≤ zb which corresponds to the experiment specified in figure 13(b),
where for panel (a) here, θc = 60◦. Panel (b) is analogous to the second experiment given in figure 13(b) where
θc = 19◦. In the first case (a), where the foot contact angle appears to be less than 60◦ for t̃ > 0, Vexp is
underestimated. Contrarily, in the second case (b), for which the angle measured is greater than 19◦, Vexp is
overestimated.

Appendix G. Direct numerical simulation model with free angle and sensitivity of
pinch-off and Rtip predictions to contact-line slip and dynamics

We here propose a novel free-angle model that allows a time-varying microscopic
contact angle determined by the flow field. In the free-angle model we calculate θgrid,
that is the grid-scale contact angle based on extrapolation from the flow field in the
vicinity of the contact line. As our problem involves dominant inertial forces and a high
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Figure 32. Interface shapes of the deformed droplet at various instants of time τ for Bo = 7.8. The purple
squares are the experiments. The solid black line is for the no-slip boundary condition with a constant contact
angle of 60◦ with a grid size of 14.6 μm. The other lines correspond to the free-angle model the same as in
figure 30(a). The horizontal axis is the axial axis and the vertical axis is radial. All simulations are axisymmetric
and the resolution is ε/Δ = 4. Note that the slip length influences the movement of the contact line at the foot
and, in turn, influences the liquid flow from the base cone.

contact-line capillary number, Ca ≡ μuCL/σ ∼ O(1) with uCL being the contact-line
velocity, this approach is reasonable in capturing contact-angle oscillations originating
from the macro-scale inertial effects, thus remaining consistent with the flow field. Further
details of the extrapolated angle can be found in Fullana (2022). Additionally, we impose a
slip boundary condition, where the fluid velocity at the fluid–solid surface boundary, uf /s,
is allowed to slip, i.e. to have a small value, with

uf /s = ε
∂u
∂y

, (G1)

where ε is the slip length. Hence, our free-angle model has two parts: (a) an extrapolated
angle consistent with the flow at the grid scale and (b) a slip boundary condition. We
proceed with the implicit slip of the VoF formulation, where ε ∼ Δ/2, where Δ is the
grid size, which is computationally achievable/accessible as opposed to the physical slip
length, which is much smaller, below a micron, and not computationally accessible. In
other words, the slip length here is a numerical quantity.

Figure 30(a) shows that, as we reduce the slip length, with increasing resolution of
the contact-line dynamics, the ejected tip volume prediction improves with respect to
experimental measurements. Figure 30(b) shows the relative movement of the contact
line as a function of time, comparing numerical results with experimental and comparing
the no-slip with the free-slip model outcomes. We find a reasonable agreement between
the DNS and experiments for time values where τ < 1.2, with again, the smallest
free-slip parameter enabling improved capture of the contact-line dynamics early on.
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Beyond τ < 1.2 the plateau in R/R0 in the experiment shows that the partial pinning of
the contact line is not well captured by the DNS. Effects of contact-line hysteresis are well
know to be the likely culprit (e.g. Bostwick & Steen 2015; Xia & Steen 2018).

Finally, figure 31 shows how the non-constant angle can introduce error in the
measurements or estimation of the foot region volume, which can propagate to the
extensional region of the ligament in the SJM model. Indeed, the free-angle model changes
the contact-line motion in the early phase of rapid acceleration. As the contact line recedes,
the contact angle decreases from its initial value of 60◦ and its initial wetting diameter
(figure 32).
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