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1. Introduction

Leibniz never tired of stressing the fundamental importance of the
concept of continuity for philosophy, nor was he shy of attributing
major importance to his own struggle through "the labyrinth of the
continuum" for the subsequent development of his whole system of
thought. Unfortunately, however, his own thought on the subject is
something of a labyrinth itself, and from a modern point of view many of
his pronouncements are apt to seem blatantly contradictory.

Certain quotations seem to commit him unambiguously to atomism. Thus
to de Voider he writes: "Matter is not continuous, but discrete.... The
same holds for changes, which are not truly continuous." (To de Voider,
11th October 1705: G.II.279).2

"Continuous quantity is something ideal, which pertains to
possibles... . In Actuals there is only discrete Quantity...." (To de
Voider, 19th January 1706 G.II.282). Here he appears to be saying that,
in space and time, which are continuous but ideal, reality always
consists in a strictly discrete ordering.

Yet juxtaposed with these remarks, often in the very same passages,
are other remarks which appear to directly contradict them. Thus in the
same breath Leibniz describes matter as discrete, he also describes it
as being "actually divided to infinity", and thus dense, and further
maintains that "no assignable part of fcontinuous 1 space is devoid of
matter." (G.II.279). And although changes are likewise "not truly
continuous", nevertheless according to Leibniz's much vaunted Law of
Continuity, "no transition in nature ever occurs by a leap" (Initia
Rerum Metaphvsica Mathematicarum: GM.VII.25).

Russell's judgement on all this was characteristically extreme: "In
spite of the law of continuity, Leibniz's philosohy may be described as
a complete denial of the continuous." (Russell 1900, p. 111). I take the
opposite view, and shall attempt to show how Leibniz's conception of
continuity was not only non-contradictory, but actually quite profound.
A measure of the depth of his conception, I shall maintain, is found in
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the fact that much the same approach to continuity was reinvented in the
20th century by the founders of modern Combinatorial Topology.

2. Leibniz's account of continuity

As a first step towards establishing this, I shall attempt to
reconstruct the context in which Leibniz developed his views. I shall
lay particular stress on the physics of fluids, because I think the
problem of the continuity of the flow of matter in a plenum was a
decisive factor in the development of Leibniz's views, and one that has
been unduly overlooked.

There is a passage in Descartes' Principles (1644) that Leibniz
alludes to again and again in his writings. It concerns the possibility
of motion in a plenum. The problem is this. Suppose matter is flowing
in a confined receptacle, but from a smaller space into a larger one;
how is this possible without rarefaction, that is, without the creation
of void spaces? The answer to this objection, according to Descartes,
is easy: "We have only to notice the way that all the inequalities of
place can be compensated by inequalities of velocity" (Principles. II,
33; 1644, p. 59) --in other words, the matter must travel faster
through the narrower spaces, and vice versa. This is a rudimentary --
and as far as I know, the first formulation of what is now called the
Law of Continuity of Matter: Sp/flt+Vj - 0. But, as Descartes
recognized, it is an immediate consequence of this that there must be at
least some part of the fluid matter that adjusts its shape by infinitely
gradual degrees: "and for this to happen, all imaginable parts of this
piece of matter --in fact, innumerable parts-- must be to some degree
displaced from their positions relative to one another; and this
displacement is actual division."

There is, therefore, an "infinite or indefinite division of matter",
so that however small a part we conceive "we must conceive it as
undergoing actual division into still smaller parts".

"What Descartes says here", says Leibniz in his Critical Thoughts on
the General Part of the Principles of Descartes of 1692, "is most
beautiful and worthy of his genius... . Yet he does not seem to have
weighed sufficiently the importance of this last conclusion." (G.IV.354-
392: Loemker 1969, p. 393). But what is the importance of this
conclusion of Descartes' that matter must be infinitely divided, why
does Leibniz see it as being so significant? Because, as I shall try to
show, in the context of his own thought on continuity it is precisely
this actual division of matter at any given instant that precludes its
being truly continuous: if matter is actually infinitely divided, then
it cannot be constituted by a continuum of physical points.

As it stands, this seems a very enigmatic conclusion to draw from
Descartes' argument. For at first sight the more obvious conclusion
would appear to be that, if matter is indefinitely divided by the
differing motions of its parts, it must be actually infinitely divided
all the way down into indivisible points. In fact, this is the
conclusion Leibniz himself originally adopts. In July of 1676, in his
Paris notes, he writes: "It seems to follow from a solid in a liquid
that perfectly fluid matter is nothing but a multitude of infinitely
small points or bodies*less than any assignable ones, or that there is
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necessarily an interspersed metaphysical vacuum." (Loemker 1969, p.
158).

Here Leibniz appears to be espousing the theory of continuity that
Galilei had proposed in his Two New Sciences according to which a
continuous line is composed of an infinity of "unquantlfiable parts"
(parti non quante), separated by "unquantifiable voids" (Drake 1974, p.
33) - corresponding here to Leibniz's "bodies less than any assignable
ones" separated by what he calls "inassignable metaphysical voids". But
there is a subtle yet important difference, one that is seminal for the
later development of Leibniz's views. This is Leibniz's denial that the
physical plenum formed by these inassignably small bodies and voids does
in fact constitute a continuum:

A physical plenum is consistent with an inassignable, metaphysical
vacuum... . No absurdity follows from this, for it would follow that
a perfect fluid is not a continuum, but discrete or multitude of
points. From this it does not further follow that the continuum is
composed of points, since liquid matter will not be a true
continuum, though space will be. Hence it is clear, further, how
great the difference between space and matter. Matter alone can be
explained by a plurality without continuity... . Matter therefore is
discrete being, not continuous. It is merely contiguous and is
united by motion or by some mind. (Loemker 1969, p. 158).

Let me draw your attention to the way Leibniz uses the word
'discrete' in this passage. Matter is said to be discrete because its
parts--here, its infinitesimal parts--are actually discriminated from
each other by their individual motions, and being discriminable these
parts are therefore accountable. But since the voids that separate them
are themselves "inassignable" or infinitesimally small, the parts of
matter may be said to be next to each other; that is, matter is
contiguous, rather than truly continuous.

We can already discern in this early position the basis for Leibniz's
mature statements that matter is discrete--in the sense that it is
divided into actual, discriminable parts, each contiguous to the next--
and yet that no assignable part of space is devoid of matter. But the
position depends on an interpretation of "inasslgnables" as actually
infinitely small parts; that is, on an interpretation of the
infinitesimals of his newly discovered differential calculus as
infinitely small actuals. But within the next three months of the same
year, Leibniz was to change his mind on this interpretation. He
realized that his infinitesimal differences are very different from the
indivisibles of Galilei and Cavalieri. For hereas Cavalieri's
indivisibles had a constant (though zero!) thickness, Leibniz's
infinitesimal "differences" dx themselves varied with x, and thus also
had infinitesimal differences (the second order differentials d x), and
so on down to infinity. Moreover, the same finite line could be
expressed by many different but equivalent infinite "progressions" of
differences. Thus these infinitely small elements of the continuum,
being themselves infinitely divisible, could not be unities or first
elements out of which the continuum could be constituted. Indeed, the
fact that it is possible to effect many different resolutions of the
same line into different progressions of infinitesimals strongly
suggests the fictional character of infinitesimals; and, in fact, this
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was Leibniz's intepretation of them for the rest of his career. But let
us return to the problem of the physical continuum of matter.

In the Pacldius Philalethi. written on his voyage from England to
Holland in October of the same year, Leibniz upholds his former
distinction between merely contiguous matter and the continuous space
that it fills. But now he rejects the idea of a "perfect fluid", matter
that can be "resolved into a powder (so to speak) consisting of
points". Now the actually infinite division, instead of reaching a
limit in indivisible points, is reinterpreted by him as an open-ended
division, coming to no limit. Thus the particular motions of the
infinity of parts of a body of matter at a given instant result in a
particular infinite division (partition) of that body. At a subsequent
instant, different instantaneous motions result in a different infinite
partition.

But if matter were simply divided into an infinity of rigid, extended
parts, motion in plenum would still be impossible. What Leibniz
proposes instead is a conception of a matter that is "everywhere
pliant", but which has "a certain unequal resistance to bending". Thus
even though matter is divided to infinity at any given moment, its parts
or cells resist such division with a kind of inherent elasticity--they
are "merely formed for a while and then transformed"-- resulting in a
different infinite partition at each assignable instant:

If a perfectly fluid body is assumed, a finest division or division
into minima cannot be denied; but a body that is indeed everywhere
pliant, though not without a certain unequal resistance to bending,
still has cohering parts, although these are variously opened up and
folded together. Accordingly the division of the continuuum must
not be considered to be like the division of sand into grains, but
like that of a sheet of paper or tunic into folds, so that even if
the folds are infinite in number, there are [still] some smaller
than others, and for this reason a body is never dissolved into
points or minima... . Although some folds are smaller than others
down to infinity, bodies are always extended and points never become
parts, but always remain mere extremities. (Leibniz 1676, p. 615).

I should mention in passing here that Leibniz derived further
motivation for his reappraisal of the actual infinite from his work on
infinite series. Any converging infinite series, such as 1/2 + 1/4 +
1/8 + 1/16 ..., is an example of a finite whole made up of an infinite
number of finite parts. But for Leibniz the series is open-ended and
comes to no limit: it has no limiting or infinitieth term. It is a
distributive rather than a collective whole, whose unity is determined
by the series' law. To say that it has a sum of 1 is to say that it can
be made as close as desired to 1 by taking a sufficient number of
(always finite) terms. Similarly, the physical continuum is also
conceived byhim as a distributively infinite whole, rather than an
infinite collection of points. The same whole can of course be divided
in different ways, just as unity is also the sum of the series 2/3 + 2/9
+ 2/27 + .... Thus "The continuum is not divided into points, nor is
it divided in all possible ways. Not into points, because points are
not parts, but limits; not in all possible ways, because not all
creatures are present ̂ in the same thing, but only a certain infinite
progression of them--just as a man who supposes a straight line and any
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bisected part of it is establishing other divisions than a man who
supposes a trisected part." ("Primary Truths", Parkinson 1973, p. 91)

The fact that a continuum can be divided in all possible ways,
however, is exactly what make it continuous according to Leibniz. He
defines the abstract property of continuity as the potentiality for
infinite division in arbitrary many ways: there is an arbitrary number
of different possible infinite partitions of a continuous whole.

This construal of continuity as an abstract property is the key to
understanding some of the apparently conflicting statements about
continuity I quoted to begin this paper. For it helps explain a
different way Leibniz has of discussing continuity, in which he
apparently denies the very idea of a physical continuum. This is when
Leibniz characterizes a continuous whole --one that comprises all
possibilities of infinite division in its very concept-- as a merely
abstract and thus ideal object: "Continuity is only an ideal thing. In
ideal or continuous things, the whole is prior to the parts, just as
arithmetical unity is prior to the fractions which divide it, and which
can be assigned to it arbitrarily; the parts are only potential... ."
(Letter to Remond, July 1714: G.II.622).

Any actual object, on the other hand, is divided in only one way, and
is consequently "not truly continuous" in this sense, even though it
may, of course, be approximated arbitrarily closely by continuous
magnitudes: "But in real things, that is, bodies, the parts are not
indefinite, ... but are actually assigned in a determinate way, in
accordance with the divisions and subdivisions corresponding to the
varieties of motions which nature has actually established, even though
these divisions proceed to infinity... ." (Letter to de Voider, June
30th, 1704 G.II.268)

Such an actual thing; however, may nevertheless be regarded as
continuous over time. in that it will successively take on a series of
different possible infinite partitions. It is in this latter sense that
Leibniz writes of the "physical continuum".

Let me now advance a couple of centuries in an effort to make good my
claim that Leibniz's approach to continuity has a modern counterpart
that is in many respects strikingly similar.

3. Combinatorial Topology

Topology, generally speaking, deals with the properties of
geometrical objects that remain invariant under (bi-)continuous
transformations. But, depending on how we construe continuity, we can
get quite distinct approaches to the subject.' There are essentially
two main ways of construing continuity, resulting in the two more or
less distinct strains of topology recognized today, point set topology
and combinatorial topology. The point set definition construes
continuity in terms of one-one mappings between uncountably infinite
sets of points. It is essentially a generalization of the e-S
definition familiar from elementary calculus, so I shall not go into the
details of that here. The other approach, pioneered particularly by
Weyl, Brouwer, Veblen and Alexander, is unfamiliar to philosophers, and
will require some elaboration.
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Combinatorial topology (hereafter CT) had its beginnings in what is
now acknowledged to be the oldest recognizably topological problem: the
attempt in the theory of polyhedra to prove the empirical formula
connecting the number of vertices, edges and faces of any closed convex
polyhedron: V - E + F - 2. Although Descartes had first discovered
this law, it is named after Euler, since he was the first to publish it
(in 1750), and the first to offer a proof of it (1751). But it is with
Cauchy's proof (1813) that some of the essential features of modern CT
first emerge. Cauchy proceeded by removing the interior of one face of
a polyhedron, and stretching the remaining figure out in a plane,
yielding a polyhedron for which V - E + F should equal 1. This he then
proved by first decomposing the figure into constituent adjoining
triangular regions, and then successively deleting triangular regions of
the figure until there remains only one triangle. It is shown that the
removal of each triangle leaves the number V - E + F unchanged, and the
last triangle has V - E + F - 1. Now since this technique of
triangulation could be applied to any plane figure with the same result,
this shows that V - E + F, the Euler characteristic, is the same for all
plane figures, including even those with curved edges, namely 1.
Likewise any closed convex polyhedron --for instance, a sphere-- will
have the same Euler characteristic as the cube, 2. Thus the Euler
characteristic is a topological invariant, discoverable by the purely
combinatorial process of triangulation. Other invariance properties of
importance can be obtained by similar purely combinatorial techniques.

This idea of triangulation plays a central role in the development of
CT in the late 19th and early 20th centuries by Mobius, Riemann and
,Poincare. As we have seen, to triangulate a figure or surface is to
decompose it into, or cover it with, a finite number of triangles (or
objects topologically identical to them), in such a way that each
triangle is connected with another, that is, shares an edge or vertex
with it. A generalization of this idea leads to the conception of a
space (or manifold) as something determined by a partition, composed of
a finite (or at least countable) number of connected n-dimensional cells
or n-simplexes. Here an n-simplex is an n-dimensional analogue of the
triangle (including boundary) a, containing n+1 vertices. Thus the
triangle itself is a 2-simplex, whilst a 0-simplex is a vertex or point,
a 1-simplex is a line with endpoints, a 3-simplex is a tetrahedral
region with.surfaces, edges and vertices, and so forth for higher
dimensions. Now on the version of CT we have been discussing so far,
Flat CT. all these lines, vertices etc. are embedded in Euclidean
space. But it is possible to adopt a more abstract approach, that of
Symbolic CT. where simplexes are treated as abstract objects and no
Euclidean structure is presupposed.

If we now take any locally finite set of simplexes, not necessarily
of the same dimension, and fit them together in such a way that any two
intersect if at all in a common subsimplex or component, then the result
is an n-complex. where n is the dimension of the greatest constituent
simplex. Now a space, on this approach, is essentially a collection of
connected complexes, which can be replaced by a single complex or
partition in the same way that a collection of connected simplexes can
be replaced by a complex.

Continuity is now spelled out in terms of transformations which
preserve the equivalence *of these partitions. Two different complexes
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are equivalent if they are transformable one into the other by some
finite sequence of simple transformations. Such a sequence of
transformations is the purely algebraic counterpart of the "cut and
paste" operations of flat CT, replacing cells by partitions and vice
versa.

4. Conclusion

I hope that by now you can see something of the similarity between
Leibniz's approach to continuity and that of CT. The basis of this
similarity is the rejection in each case of the interpretation of space
as somehow composed of its points. Instead there is a return to a more
Euclidean, finitistic approach. In CT, space is partitioned into a
possibly infinite number of simplexes or cells and continuity is
represented in terms of equivalence between partitions under certain
elementary operations. Likewise, Leibniz regards matter as divided into
an actual (though merely countable) infinity of contiguous cells at any
instant; he too characterized its continuity in terms of transitions
from one such partition to the next in such a way that the cells --his
"natural machines" or "organic bodies"-- fill the same space. In both
cases, moreover, the infinite partitioning subdivision is conceived to
be continued without any limit. Points, so far as they occur, are
always boundaries of lines (or the abstract equivalent thereof), but
never the end results of some limit process.

There is a good deal more I would like to say here about how all of
this relates to Leibniz's theories of space and time, and also his
introduction of monads. But now I am out of space, so I shall leave
these remarks to use in my replies to comments.

The latter part of this paper is based on joint research on the
relation between Leibniz's work and Combinatorial Topology, which I have
been undertaking with Graham Solomon (Philosophy, University of Western
Ontario) over the last several months.

2My abbreviations are G.II.279 for Gerhardt (1875-90), vol. II, p.
279; and GM. for Gerhardt (1849-55).

Leibniz writes: "there must be infinite number if a liquid is really
divided into parts infinite in number. But if this is impossible, it
will follow too that a (perfect) liquid is impossible. Since we see
that the hypothesis of infinites and infinitesimals turns out to be
consistent in geometry, this also increases the probability that it is
true." (Loemker 1969, p. 159).

4As H.J.M. Bos has explained in his excellent (1974/5), this was at
once both the weakness and the strength of his calculus; although from a
modern standpoint the idea of second order differentials is regarded as
a mistake, it was the fact that Leibniz's differentials themselves
varied in magnitude with x that allowed him to correctly derive his rule
for transforming integrals (what we now call integration by
substitution).
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For Leibniz it is axiomatic that for anything to qualify as a simple
substance--l.e.. one of the building blocks of the world it must, "like
Gassendi's atoms or St. Thomas' souls", be indivisible. (See, e.g.,
"New System", Parkinson 1973, p. 117.)

Quotations from this dialogue on continuity, the Pacidius Philalethi
(Leibniz 1676), are taken from my projected forthcoming book, The
Labyrinth of the Continuum, which is a compilation of translations of
Leibniz's views on the continuum, together with introduction and
commentary.

7Cf. Alexander (1932), p. 249. The following discussion is based
mainly on this paper of Alexander's, and to a lesser extent on the same
author's (1930), on M.H.A. Newman (1962), and on Oswald Veblen (1925).

o

A succinct account of the origins of topology, both point set and
combinatorial, is given by Morris Kline (1972, pp. 1158-1181).

9Cauchy gave his proof in his (1813). As Kline points out (1972, p.
1163), this proof is not generally valid, since it assumes that any
close convex polyhedron is homeomorphic with a sphere.

10Cf. Veblen (1925), p. 137: "Such a treatment would put in evidence
the properties of space which have to do with continuous deformations
and indefinite subdivision, without carrying the process to any limit."
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