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ON TOPOLOGICAL SEQUENCE ENTROPY OF PIECEWISE
MONOTONIC MAPPINGS

JOSE S. CANOVAS

In this paper a. full classification of piecewise monotonic maps from the point of view
of the topological sequence entropy is established.

1. INTRODUCTION

Let / : [0,1] -* [0,1] be a continuous map. / is said to be chaotic in the sense of
Li-Yorke if there are two points x, y € [0,1], x ^ y, such that

l i rnmf | /"(a:)-r (y) |=0,

limsup|/"(aO-/B(i,) |>0.
n-koo

A useful tool to distinguish between chaotic and non-chaotic maps is the topological
sequence entropy (see definition below), as stated in the following result (see [3]).

THEOREM 1 . 1 . Let f : [0,1] -> [0,1] be continuous. Then f is chaotic if and only
if there exists an increasing sequence of positive integers A such that ft/i(/) > 0.

Theorem 1.1 does not establish apparently any difference between two essentially
different types of chaotic maps: chaotic maps of type 2°° and of type greater than 2°°.
On the other hand, for chaotic maps of type greater than 2°° there is a universal sequence,
A = (i)~0> f°r which hA(f) > 0 [6, Theorem 4.19]. For chaotic maps of type 2°° there is
no such universal sequence (see [5]). However, we shall show that at least for piecewise
monotonic maps a universal property characterises chaotic maps of type 2°°: they have
bounded topological sequence entropy. This property allows us to distinguish among
piecewise monotonic chaotic maps of type 2°° and of type greater than 2°° from the
topological sequence entropy point of view.

Let us introduce some definitions (see [6]). Recall that a point x € [0,1] is periodic
if there exists a positive integer n for which fn(x) = x. The smallest integer satisfying
this condition is called the period of x. For r 6 N, / is said to be of type 2r if it has
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periodic points of period 1,2,... , 2r, but no other periods. / is said to be of type 2°° if
it has periodic points of period 2" for all positive integers n, but no other periods. / is
said to be of type greater than 2°° if it has a periodic point with period n = 2pq, where
q e {2k + 1 : k G N} and p € N U {0}.

Let x € [0,1]. The set of limit points of the sequence (/"(z))°l0, ^fai /)> is called
the co-limit set of x. Thus y € u>{x,f) if and only if there is a sequence of positive
integers {nA^l,, with lim rii = oo, such that lim fni(x) = y. u)(x,f) is closed and

t—KX) i—¥OO

strongly invariant ( / (w(x , / ) = CJ(X, / ) ) ) • Recall that a continuous map / is piecewise
monotonic if there exists a partition of [0,1] into intervals such that / is monotonic in
each interval of the partition.

Now we introduce the notion of topological sequence entropy (see [4]). Let A — (a*)?^
be an increasing sequence of positive integers and let Y C [0,1]. Fix e > 0. A set E C Y is
said to be (A, n, e, Y, /)-separated if for any x,y € E, x / y, there is an i € {1,2, . . . , n}
such that |/ai(a;) — fa'(y)\ > e. Denote by sn(A,e,Y, f) the cardinality of any maximal
(A, n, e, Y, /)-separated set in Y. Define

s(A,e,Y, f) := limsupilogsn(A,e,Y, f).

hA{f,Y):=Um8(A,e,Y,f).

Define the topological entropy of f as

M/)~M/, [0,1]).

When A — (i)~i, hA(f) = h(f) is the standard topological entropy (see [1]).

Let

hco(f) := sup hA(f).

According to [4], we say that / is null if h^f) = 0, / is bounded if /ioo(/) < oo and /
is unbounded if /ioo(/) = oo.

2. PRELIMINARY RESULTS

Before proving our main results, we need some additional notation and known results
concerning w-limit sets of interval maps of type 200. For any infinite w-limit set u(x,f)
of a map of type 2°° there exists a sequence of closed intervals J° D Jl D J2 D ... D
Jn D . . . satisfying the following ([7]):

(Cl) f*(J*) = Jl and P{J{) n Sk{J{) = 0 for 0 s$ j < k < 2i and for all
i = 0 , 1 , . . . .

(C2) wfo/jcn'u'
î 0 j=0
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2 - l

Let Orb/(J i ) = \J p(J{) for all i € N. The set fl Orb/(Jj) is called a solenoid.

For any i 6 N, let J ' be a periodic interval of period 2l with the following additional
condition: if / ' is an interval satisfying the conditions (Cl)-(C2) and / ' n J1 ^ 0, then
Jl = / ' . In this case we say that f] Orbf(J') is a maximal solenoid.

i%0

In order to handle easily each interval /•'(./') with i > 0 and 0 ^ j < 21 - 1 we

shall write them as follows. Consider the set of infinite sequences {0,1}°° = {(«<)"! :

oti e {0,1}}, and the sets {0,1}" = {(0O"=i : #» 6 {0>l}} f°r any n e N. For each

n and 6 = {0i,02,... ,8n) € {0,1}", let T{9) := f^*"1. Clearly T{6) ^ r(i?) for any

6,d e {0,1}", 6> # i9. For all Q € {0,1}°°, let a|n = {ai,a2t... , a n ) € {0,1}". Let
0 = (0,0, . . . ) € {0,1}°° and 1 = (1 ,1 , . . . ) e {0,1}00.

Fix n e N and let K0\n = Jn {K = J°). Put tffl := /2"-T(fl)(J") for any 6 €
{0, l}" \{0 | n } . Since T(6) ± T{$) for any 9, •d € {0,1}", 0 ^ t?, it is clear that K<,nKe = 0.
It is easy to check the properties summarised in the following lemma.

LEMMA 2 . 1 . Let f be of type 2°°. Let w(x,/) be an infinite LJ-limit set of f.

Then there exists a family of pairwise disjoint compact intervals (possibly degenerate)

{KQ : a € {0,1}°°} satisfying the following conditions:

(a) w(x,f)c U Ka.

(b) KaU C Ka]m if n ^m,n,m€^,ae {0,1}00. Also Ka = f] Ka\n.

(c) Tie set of nondegerate intervals Ka is at most countable. Moreover, ifKa

in nondegenerate, then fi{Ka) n f'(Ka) = 0 if j ^ i (Ka is a wandering
interval).

(d) Let a € {0,1}°° \ {0} and let j be the first integer such that a, = 1. Then

f(Ka) = Kg where (3{ = 1 ifi < j , & = 0 and ft = a{ i/i > j . Additionally

f(K0) = KL

PROOF: The proof is easy and we omit it. D

The following lemma will be useful in what follows and was proved in [2].

LEMMA 2 . 2 . Fix e > 0, and let Ac = {Ka : \Ka\ > e}. Then there exists a

positive integer no for which the following two conditions hold:

(a) HK~\n and K^ denote the left and right side components of KQ \ Ka\ng

and K°a € Ae then m a x f l i ^ J , \K+J} < e.

(b) If Be {0,1}"° and Ke ± KaUo for all KQ e A€, then \K,\ < e.

Let 5 be the set containing all the increasing sequences of positive integers. Define
the shift map a : S -* S by CT^aj)?^) = (ai+1)fli for all {a^ € 5 .

LEMMA 2 . 3 . Let A = (a-i)^ € 5. Let / : [0,1] -» [0,1] be continuous. Let
Y C [0,1] be an invariant set such that f\Y is surjective to Y. Let Z c [0,1] satisfy
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fk(Z) C Y for some positive integer k. Then for all e > 0 it follows that

sn(A,2e,Z,f) ^ sno(A,e,Z,f)sn(o
n°(A),e,YJ),

where n0 is the first integer such that fa"o+l(Z) C Y.

PROOF: Let E\ and E2 be an (A,n0,e, Z, /)-separated set and an (on°(A),
n — no,e, F,/)-separated set with maximal cardinalities. Let z £ Z and choose xz € Y
such that /*(xz) = fk(z) (this can be done because f\Y is surjective). Then for any
z € Z one can assign a pair (xj,x2) € E\ x E2 such that |/Oi(z) - fa'(xi)\ < e if
1 ^ i ^ n0 and \fa'{z) - fai(x2)\ = \fai(xz) - /Oi(x2)| < e if n0 < i < n. Two diflFer-
ent points Z\ and z2 of an (/I, no,2e, Z, /)-separated set have different pairs associated.
Conversely if they are not associated to the same pair, they cannot belong to the same
(A, n0,2e, Z, /)-separated set. Then

8n{A,2e,Z,f) ^ Sno(A,£,ZJ)sn-no(a
n°(A),e,Y,f)

<sno(A,e,ZJ)sn(a
n°(A),e,Y,f),

and this concludes the proof. Q

LEMMA 2 . 4 . Let A = (aO~i € 5 . Let f : [0,1] -4 [0,1] be of type 200 with a
finite number of maximal solenoids S', with 1 < i ^ k. Let KL. be periodic intervals of
period 2j, j € N, such that S{ C Orbf(K'olj). For allneN let

L,

Then for any e > 0,

n = \x € [0,1] : r{x) i IJ

lim sup - log sn(A, e,Ln,f) = 0.
n—*oo ^

PROOF: Assume the contrary for some e > 0 and define the following map / :

[0,1] -4 [0,1]. Let f{x) = f{x) if x e [0,1]\(J Orb,^ ' , . ) , and define /on \J Orb,^ ' , . )

to be continuous and linear in each subinterval. Hence, (f\j(
i)2i is monotone for any

i = 1,2,... ,k and 6 € {0, l p . So (/IK--)^ has periodic points of period at most two.
Then any w(x, f) is finite, that is, it is a periodic orbit. From [6, p.73], / is of type 2'
for some I € N, and therefore it is non-chaotic. On the other hand, it is obvious that
sn{A,e,Ln,f) = sn(A,£,Ln,f). Since sn(A,e, Ln,J) ^ sn(A,e, [0,1],/) we conclude
that

^A{T) ^ l i m sup -log sn (A, £,[0,1], f)

^ limsup-logsn(>l,£,Ln,/) > 0,
n—>oo n

and this leads to a contradiction because / is non-chaotic and, according to Theorem 1.1,
its topological sequence entropy must be zero. D
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3. M A I N RESULTS.

Our main goal is the following theorem.

THEOREM 3 . 1 . Let f be a continuous map having a finite number of maximal
solenoids. Then

(a) / is non chaotic if and only ifh^f) = 0 (f is null).

(b) / is chaotic of type 2°° if and only if /ioo(/) = log 2 (f is bounded and
non-null).

(c) / is chaotic of type greater than 2°° if and only if h^f) — oo (f is un-
bounded).

PROOF: Part (a) follows from Theorem 1.1. For part (c), let A = (2')^j. Then

1 n

K(A) = lim limsup-Card I J{2% 2* + 1,. . . ,2 ' + ifc} = oo.
*-»oo n-^oo n > ^

By [4], hA(f) = K(A)h{f). Since / is of type greater than 2°°, h{f) > 0 (see, for
example, [6]). Then hA(f) - oo.

Part (b). Let Si = f| Orbf(KL ) be the maximal solenoids of / with 1 < i ^ k.

By Lemma 2.2, for any e > 0 we can find a positive integer ne such that if A\ = {Kl
a :

\K'a\^e},i = l,2,... ,k, then:

(a) Ovbf(K'0]J D Orbf(Kiu) = 0 if i± j .

(b) If K~f and K*f denotes the left and right side components of Kl
Q \ Kl

a,

and K[ G Al then max{|^J, \ ^ \ } < e.
(c) If 9 6 {0,1}"' and K\ ± K^ for all K*a € A\, then \Kl

g\ < e.

We claim that for any positive integer n the number sn[A,e, [0,1],/) ^ q(n)2n,
where limsup(log q(n))/n = 0. This will give us

s(A, e, [0,1], / ) = limsup - log sn(A,e, [0,1], / )
n—>oo ^

^ limsup - log q (n) 2" = log 2
n—•oo ^

for all e > 0, and this will imply that hA(f) ^ log 2 for any increasing sequence A.
Following the proof of [3, Theorem 2.2], there is a sequence B such that hs{f) ^ log 2.
Thus, we shall obtain the result.

k

Let LQ = [j Orb/^QL )> a n d let Ln be the set defined in Lemma 2.4 for any n £ N.

First, we estimate sn{A,e, K'g, f) for some 1 ^ i ^ k and 0 e {0, l}" e . Let 0, e {0,1}"' be
such that f' {K%

g) = Kl
g. for 1 ^ j ^ n. We assign to each x e K\ a code ( d , C2, . . . , Cn)

as follows: if fa>{x) € K\. with | ^ | < e, then we put Cj = C. If 0, = a\nt for some

https://doi.org/10.1017/S0004972700018438 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018438


26 J.S. Canovas [6]

Kl
a € A\, then we put C, = L if faJ(x) € Kjf and C, = R if /°>(x) e tf£\ Divide

all the intervals Kl
Q € A\ into pairwise disjoint intervals, K^1, K^2, ... ,K\\Ta, each of

length smaller than e. If fa'(x) € K^' we put C, = K'^'. It is clear that

(1) sn(A,e,Kl
g,f) ^ C a r d { ( d , C 2 , . . . ,Cn) : C4 e { C , L , i ? , ^ } } .

We are going to obtain an upper bound for sn(A,e,K\,f). Let r,- = Card(>t*) and
let Ri = max{ra : Kx

a € ^.J}. Notice that any K'a £ A], is a. wandering interval. So, by
Lemma 2.1, if a; € /f j , then fa'{x) belongs to at most rt intervals Kl

a € A\. Moreover,
if for some x € K\ and fa'(x) € Kl

a € >!', then fa'(x) <£ K\\ for all s # j . Hence, the
number of codes is at most

^ {(;)<:)+•••<:.)>**"•

By(l)

(3) sn(A,e,Kif) < ̂  J ) + ( j ) + . . . +

Finally, if /? = max{i?j : 1 < i < A;}, r = max{rj : 1 ̂  i < k} and

* > - ( ( : ) • ( : ) • • • • • ( : ) ) •

then

(4) s n (^ ,e ,L 0 , / )^fef i r p (n)2 n + n ' .

By Lemma 2.3, since / |{,0 is surjective, we obtain for 1 sj i ̂  n that

an(A,2e,Li,f) ^ sj(>l,e,Li,/)sf l(a<(A)Ie,Lo,/).

By (4)

sn(i4,2e, Li , / ) ^ S i ( > l , e , L +

Hence

i=0 t=0

sn (A, e, [o,
)

t=0 «=0
n

t = 0

S a«(̂ 4, e, Liy f)) kRrp(n)2n+n<
i=l '
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where

i=0

By Lemma 2.4, lim sup (log Q(n) ) /n = 0, and this concludes the proof. D
n—*oo

THEOREM 3 . 2 . Let f : [0,1] -¥ [0,1] be piecewise monotonic. Then:

(a) / is non-chaotic if and only ifhoo{f) = 0 (f is null).

(b) / is chaotic of type 2°° if and only if /iTO(/) = log 2 (f is bounded and
non-null).

(c) / is chaotic of type greater than 2°° if and only if /i<»(/) = oo (f is un-
bounded).

PROOF: Let I\, I 2 , . . . , Ik be maximal subintervals of [0,1] such that /|/< is monotone
k

and [0,1] — \J Ii for some k 6 N. By Theorem 3.1 it suffices to prove that the number
«=i

of maximal solenoids is smaller than k. Let u)(x, f) be an infinite w-limit set contained
in a solenoid f] (J Kg. Then for any positive integer n there must exist an interval

Kg with 9 € {0,1}" for which } \ K $ is not monotone. Assume the contrary: let n G N
be such that f\Kg is monotonic for any 0 € {0,1}". Then (f\Kg)

2" has at most periodic
points of period 2 and this leads to a contradiction because [J Kg could not contain

{

an infinite w-limit set of / . So the number of maximal solenoids is smaller than k and
the proof is complete. D
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