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ON TOPOLOGICAL SEQUENCE ENTROPY OF PIECEWISE
MONOTONIC MAPPINGS

JosE S. CANOVAS

In this paper a full classification of piecewise monotonic maps from the point of view
of the topological sequence entropy is established.

1. INTRODUCTION

Let f :[0,1] — [0,1] be a continuous map. f is said to be chaotic in the sense of
Li-Yorke if there are two points z,y € [0, 1], £ # y, such that

lim inf| f(z) ~ f*(y)] = 0,
liﬁgplf"(x) ~ )| >o.

A useful tool to distinguish between chaotic and non—chaotic maps is the topological
sequence entropy (see definition below), as stated in the following result (see [3]).

THEOREM 1.1. Let f:[0,1) — [0,1) be continuous. Then f is chaotic if and only
if there exists an increasing sequence of positive integers A such that hy(f) > 0.

Theorem 1.1 does not establish apparently any difference between two essentially
different types of chaotic maps: chaotic maps of type 2> and of type greater than 2.
On the other hand, for chaotic maps of type greater than 2% there is a universal sequence,
A = (2)2,, for which h4(f) > 0 [6, Theorem 4.19]. For chaotic maps of type 2 there is
no such universal sequence (see [5]). However, we shall show that at least for piecewise
monotonic maps a universal property characterises chaotic maps of type 2°: they have
bounded topological sequence entropy. This property allows us to distinguish among
piecewise monotonic chaotic maps of type 2 and of type greater than 2 from the
topological sequence entropy point of view.

Let us introduce some definitions (see [6]). Recall that a point z € [0,1] is periodic
if there exists a positive integer n for which f*(z) = z. The smallest integer satisfying
this condition is called the period of z. For r € N, f is said to be of type 27 if it has
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periodic points of period 1,2,...,2", but no other periods. f is said to be of type 2% if
it has periodic points of period 2" for all positive integers n, but no other periods. f is
said to be of type greater than 2% if it has a periodic point with period n = 2Pq, where
g€ {2k+1:keN} and pe NU{0}.

Let z € [0,1]. The set of limit points of the sequence (f"(z)),>,, w(z, f), is called
the w-limit set of z. Thus y € w(z, f) if and only if there is a sequence of positive
integers {n;}{2,, with 'l_lglo n; = oo, such that ,1_1,12, fM(z) = y. w(z,f) is closed and

strongly invariant ( f(w(z, f) = w(z, f))). Recall that a continuous map f is piecewise
monotonic if there exists a partition of [0,1] into intervals such that f is monotonic in
each interval of the partition.

Now we introduce the notion of topological sequence entropy (see [4]). Let A = (a;)%,
be an increasing sequence of positive integers and let Y C [0,1]. Fixe > 0. Aset EC Y is
said to be (A4, n,¢, Y, f)-separated if for any z,y € E, z # y, thereisani € {1,2,... ,n}
such that |f%(z) — f%(y)| > €. Denote by s,(A,¢,Y, f) the cardinality of any maximal
(A,n,e,Y, f)-separated set in Y. Define

s(A,e,Y, f) := limsup % logs.(A,¢,Y, f).
hA(f’ Y) = ll_rz(l) S(Aie’ Yw f)

Define the topological entropy of f as

hA(f) = hy (f: [O’ 1])

When A = ()2, ha(f) = h(f) is the standard topological entropy (see [1]).
Let

hoo(f) ‘= Sup hA(f)
A

According to [4), we say that f is null if he(f) = 0, f is bounded if hoo(f) < 00 and f
is unbounded if heo (f) = 00.

2. PRELIMINARY RESULTS

Before proving our main results, we need some additional notation and known results
concerning w-limit sets of interval maps of type 2*°. For any infinite w-limit set w(z, f)
of a map of type 2% there exists a sequence of closed intervals J° D J1 D J2 D> ... D
J" O ... satisfying the following ({7]):

(C1) f¥(JY) = J'and fI(J) N fF(J) =0 for 0 < j < k < 2 and for all
i=0,1,... .
26-1
(C2) w(z, flc N U fF(J).

i20 j=0
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2ot .
Let Orby(J*) = (J f/(J') for all i € N. The set [} Orby(J*) is called a solenoid.
For any 7 € N, let J* be a periodic interval of period 2' with the following additional
condition: if I' is an interval satisfying the conditions (C1)-(C2) and I* N J* # 0, then

Jt = I'. In this case we say that ()} Orbs(J*) is a mazimal solenoid.
i20

In order to handle easily each interval f/(J*) withi > 0and 0 < j € 28 — 1 we
shall write them as follows. Consider the set of infinite sequences {0,1}* = {(a,-);?g, :
o; € {0,1}}, and the sets {0,1}" = {(6;)~, : 6; € {0,1}} for any n € N. For each
nand @ = (6,,6,,...,60,) € {0,1}", let 7(9) := 3 6;2°"1. Clearly 7(8) # 7(9) for any

i=1
6,9 € {0,1}*, 8 # 9. For all & € {0,1}*, let a|, = (a1,02,... ,a,) € {0,1}". Let
0=(0,0,...) € {0,1}® and 1 = (1,1,...) € {0,1}.

Fix n € N and let Ko, = J" (K = J°. Put K, := f2"-"®(J") for any § €
{0,1}"\{0|,}. Since 7(8) # 7(9) for any 8,9 € {0,1}", 8 # 9, it is clear that KyNK, = 0.
It is easy to check the properties summarised in the following lemma.

LEMMA 2.1. Let f be of type 2°. Let w(z, f) be an infinite w-limit set of f.
Then there exists a family of pairwise disjoint compact intervals (possibly degenerate)
{Kq : a € {0,1}>} satisfying the following conditions:

(a) w(z.flc U K.

ag{0,1}

(b) Kaqp, C Ka],,.{ if}n 2m,n,meN, a¢€{0,1}®. Also K, = Q K,

nx1

(c) The set of nondegerate intervals K, is at most countable. Moreover, if K,
in nondegenerate, then f1(K,) N fi(K,) = 0 if j # i (K, is a wandering
interval ).

(d) Leta € {0,1}°\ {0} and let j be the first integer such that a; = 1. Then
f(Kqs) = Kg where §; = 1ifi < j, f; = 0 and B; = o4 ifi > j. Additionally
f(Ko) = Ki.

ProOOF: The proof is easy and we omit it. ‘ D

The following lemma will be useful in what follows and was proved in [2].

LEMMA 2.2. Fixe > 0, and let A. = {K, : |Ko| 2 €}. Then there exists a
positive integer ng for which the following two conditions hold:

(a) If alng and K:ho denote the left and right side components of K, \ Kal,,
and K, € A, then max{]Ko',nol, ]K:,nol} <e.

(b) If8 € {0,1}™ and Ky # Ko, for all K, € A,, then |Kg| < €.

Let S be the set containing all the increasing sequences of positive integers. Define
the shift map 0 : S — S by o ((a:)R,) = (ai1)2, for all (a;)R2, € S.

LEMMA 2.3. Let A = (a;)2, € S. Let f : [0,1] — [0,1] be continuous. Let
Y C [0,1] be an invariant set such that f|y is surjective to Y. Let Z C [0, 1] satisfy

Ino
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M 2)cY for some positive integer k. Then for all € > 0 it follows that
Sn(A, 257 Z) f) g sﬂo(A’E7 Z7 f)sn(o.ﬂo(A)’E, Ya f))

where ny is the first integer such that feret'(Z) C Y.

ProoF: Let E; and E; be an (A4, ng,¢,Z, f)-separated set and an (0™ (A4),
n — ng, €, Y, f)-separated set with maximal cardinalities. Let z € Z and choose z, € Y
such that f¥(z,) = f*(z) (this can be done because f|y is surjective). Then for any
2 € Z one can assign a pair (z;,z,) € E; x E, such that |f“"(z f““(xl)l < ¢ if
1 <¢< ngand |f""(z) - f""(:z:g)I = If“"(z,) - [z )I < e if ng < i € n. Two differ-
ent points z; and z; of an (A, ng, 2¢, Z, f)-separated set have different pairs associated.
Conversely if they are not associated to the same pair, they cannot belong to the same
(A, ng, 2¢, Z, f)-separated set. Then

5n(A, 26,2, f) < sno (A6, Z, f)sn_no(0™(A),£,Y, )
< 8n0(A,6,Z, f)sa(0™(A),6,Y, f),
and this concludes the proof. |

LEMMA 2.4. Let A = (a;), € 8. Let f [0,1] — [0,1] be of type 2*° with a
finite number of maximal solenoids S¢, with 1 € ¢ < k. Let K(i)lj be periodic intervals of
period 27, j € N, such that S; C Orb( 3|j). For aII n €N let

k
L,= {a: €[0,1]: fo(z) ¢ UOrbf(Kélj) for1 <r < n}.

i=1

Then for any € > 0,

lim sup — logs,.(A e, La, f)=0.

n—oc
PROOF: Assume the contrary for some ¢ > 0 and define the following map f :
- k . -~ k .
[0,1] — [0,1]. Let f(z) = f(z) ifz € [0,1]\|J Orb;(Kjy.), and define f on | Orb,(K(',b_)
i=1 g i=1

to be continuous and linear in each subinterval. Hence, (f] Ki )? is monotone for any
i=1,2,...,kand 6 € {0,1}. So (ﬂK;)zi has periodic points of period at most two.
Then any w(z, f) is finite, that is, it is a periodic orbit. From [6, p.73], Fis of type 2!
for some | € N, and therefore it is non—chaotic. On the other hand, it is obvious that
sn(A,e,Ln, f) = sn(A,E,L,,,f). Since sn(A,e,Ln,f) < sa(4,5,[0, ll,ﬂ we conclude
that

ha(f) 2 hmsup logs,,(A &,[0,1], ﬂ

> limsup — logs,.(A e, Ln, f) >0,

n—oo

and this leads to a contradiction because f is non—chaotic and, according to Theorem 1.1,
its topological sequence entropy must be zero. 0
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3. MAIN RESULTS.

Our main goal is the following theorem.
THEOREM 3.1. Let f be a continuous map having a finite number of maximal
solenoids. Then
(a) f is non chaotic if and only if hoo(f) = 0 (f is null).
(b) f is chaotic of type 2% if and only if heo(f) = log2 (f is bounded and
non-null).
(¢) f is chaotic of type greater than 2™ if and only if heo(f) = oo (f is un-
bounded).

PROOF: Part (a) follows from Theorem 1.1. For part (c), let A = (29)2,. Then

n
K(A) = lim limsup ~Card {22 +1,... 2+ k) = oo
k=00 pny00 N i—

By [4], ha(f) = K(A)h(f). Since f is of type greater than 2%, h(f) > 0 (see, for
example, [6]). Then ha(f) = oco.
Part (b). Let S* = () Orbs(Kj ) be the maximal solenoids of f with 1 < i < k.
n21

By Lemma 2.2, for any € > 0 we can find a positive integer n, such that if AX = {K :
|Ki| >€},i=1,2,...,k, then:

(a) Orbs(K§, ) NOrbs(Kj ) =0ifi#j.

(b) If K;li and K ;rl; denotes the left and right side components of K7 \ K";'M

and K}, € A{ then max{|K_ |, IK;rli } <e.
(c) e {0,1}™ and K§ # K, forall Kj € A, then |Kj| <e.
We claim that for any positive integer n the number s,(4,¢,[0,1], f) < g(n)2",

where limsup(log ¢(n))/n = 0. This will give us

n—00

s(A,e,[0,1)],f) = limsup%logs,.(A,e, [0,1], f)

n—oo

1
< limsup = log g(n)2" = log 2

n—oo T

for all € > 0, and this will imply that hs(f) < log2 for any increasing sequence A.
Following the proof of [3, Theorem 2.2], there is a sequence B such that hg(f) > log2.
Thus, we shall obtain the result.

k
Let Ly = |J Orb f(Kéln ), and let L, be the set defined in Lemma 2.4 for any n € N.
i=1 i

First, we estimate s, (A, ¢, K}, f) forsome 1 < i < kand @ € {0,1}™. Let 8; € {0,1}™ be
such that f% (K}) = K;J, for 1 < j < n. We assign to each z € K} acode (C1,C,,...,Cp)
as follows: if f%(z) € Kj, with |Kj | < €, then we put C; = C. If 8; = als, for some
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K. € A:, then we put C; = L if f%(z) € K;;’i and C; = R if f%(z) € K(;:'i. Divide
all the intervals Ki € Al into pairwise disjoint intervals, K3!, K2, ... K™= each of
length smaller than ¢. If f%(z) € K&* we put C; = K¥*. It is clear that

(1) sn(A, €, Kj, f) < Card{(C1,Cy,... ,Cr) : C; € {C,L,R, K57} }.

We are going to obtain an upper bound for s,(A,¢, K§, f). Let r; = Card(A?) and
let R; = max{r, : K} € A}. Notice that any K} € Al is a wandering interval. So, by
Lemma 2.1, if z € K}, then f%(z) belongs to at most r; intervals K € A:. Moreover,
if for some z € K§ and f%(z) € K} € Al then f*(z) ¢ K for all s # j. Hence, the
number of codes is at most

N (OO

(3) su(A, €, K5, f) (( ) ( )+..,+(Z))(&)'-2"
Finally, if R=max{R;: 1 i< k}, r=max{r; : 1 € ¢ < k} and
-((3)+(1)(2)
then
(4) sn(A, €, Lo, f) < kR p(n)2"t".

By Lemma 2.3, since f|i, is surjective, we obtain for 1 < 7 < n that
sn(A, 26) Li, f) g Si(A, £, Li1 f)Sn(O"'(A), €, LO) f)
By (4)
sﬂ(Aw 26’ Li’ f) S Si(Aa £, Liy f)erp(n)2n+n!-

Hence

sn(A4,26,0,1], f) < 5.4, 2¢,[0, 1]\0L.-,f) +zn:s,.(A,2£, L, f)

i=0 t—O

< sa{Ae0, 1]\UL,,f) +Zs,,(A %, L;, f)

i=0 i=0

(
(

<sa(46,00, 1]\UL,,f)
(

+({1 +Zs,(A e,Li, f)) kR"p(n)2m+ne

<2+ n)Q(n)kR’p(n)2"+"‘,
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where
Q(n) = ma.x{{si(A,a,L,-,f) 1i=1,2,...,n}U {s,,(A,e, [0, 1]\UL,—,f)}}.
1=0
By Lemma 2.4, limsup(log @(n))/n = 0, and this concludes the proof. 0

THEOREM 3.2. Let f:[0,1] — [0,1] be piecewise monotonic. Then:
(a) f is non—chaotic if and only if hoo(f) = 0 (f is null).
(b) f is chaotic of type 2% if and only if hoo(f) = log2 (f is bounded and

non-null).

(c) f is chaotic of type greater than 2% if and only if hoo(f) = oo (f is un-
bounded).

PRrooF: Let Iy, I, ... , I be maximal subintervals of [0, 1] such that f|;, is monotone

k

and (0,1] = |J I; for some k € N. By Theorem 3.1 it suffices to prove that the number
=1

of maximal solenoids is smaller than k. Let w(z, f) be an infinite w-limit set contained

in a solenoid {| |J Kp. Then for any positive integer n there must exist an interval
n>16€{0,1}

Ky with 8 € {0,1}" for which f|k, is not monotone. Assume the contrary: let n € N

be such that f|k, is monotonic for any 8 € {0,1}". Then (f|x,)?" has at most periodic

points of period 2 and this leads to a contradiction because U K could not contain
ge{o,1}
an infinite w~limit set of f. So the number of maximal solenoids is smaller than & and

the proof is complete. 0
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