
SPM

1513

11
Weather and Climate  
Extreme Events in 
a Changing Climate

Coordinating Lead Authors: 
Sonia I. Seneviratne (Switzerland), Xuebin Zhang (Canada)

Lead Authors: 
Muhammad Adnan (Pakistan), Wafae Badi (Morocco), Claudine Dereczynski (Brazil), 
Alejandro  Di  Luca (Australia/Canada/Argentina), Subimal Ghosh (India), Iskhaq Iskandar 
(Indonesia), James Kossin (United States of America), Sophie Lewis (Australia), Friederike Otto 
(United Kingdom/Germany), Izidine Pinto (South Africa/Mozambique), Masaki Satoh (Japan), 
Sergio M. Vicente-Serrano (Spain), Michael Wehner (United States of America), Botao Zhou (China)

Contributing Authors: 
Mathias Hauser (Switzerland), Megan Kirchmeier-Young (Canada/United States of America), 
Lisa  V.  Alexander (Australia), Richard P. Allan (United Kingdom), Mansour  Almazroui 
(Saudi  Arabia), Lincoln M. Alvez (Brazil), Margot Bador (France, Australia/France), 
Rondrotiana  Barimalala (South  Africa/Madagascar), Richard A. Betts (United Kingdom), 
Suzana J. Camargo (United States of America/Brazil, United States of America), Pep G. Canadell 
(Australia), Erika Coppola (Italy), Markus G. Donat (Spain/Germany, Australia), Hervé Douville 
(France), Robert J. H. Dunn (United  Kingdom/Germany,United Kingdom), Erich Fischer 
(Switzerland), Hayley J. Fowler (United  Kingdom), Nathan  P.  Gillett (Canada), Peter  Greve 
(Austria/Germany), Michael Grose (Australia), Lukas  Gudmundsson (Switzerland/
Germany, Iceland), José Manuel Guttiérez (Spain), Lofti Halimi (Algeria), Zhenyu  Han 
(China), Kevin  Hennessy (Australia), Richard  G.  Jones (United  Kingdom), Yeon-Hee Kim 
(Republic of Korea), Thomas Knutson (United States of America), June-Yi Lee (Republic of Korea), 
Chao Li  (China), Georges-Noel T.  Longandjo (South Africa/Democratic Republic of the Congo), 
Kathleen L.  McInnes (Australia), Tim  R.  McVicar (Australia), Malte Meinshausen (Australia/
Germany), Seung-Ki Min (Republic of Korea), Ryan  S.  Padron  Flasher (Switzerland/Ecuador,  
United States of America), Christina M. Patricola (United States of America), Roshanka Ranasinghe 
(The  Netherlands/Sri Lanka, Australia), Johan  Reyns (The Netherlands/Belgium), Joeri  Rogelj 
(United Kingdom/Belgium), Alex C. Ruane (United States of America), Daniel  Ruiz Carrascal 
(United States of America/Colombia), Bjørn  H.  Samset (Norway), Jonathan  Spinoni (Italy),  

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1514

Chapter 11 Weather and Climate Extreme Events in a Changing Climate

11

Qiaohong Sun (Canada/China), Ying Sun (China), Mouhamadou Bamba Sylla (Rwanda/Senegal),  
Claudia Tebaldi (United States of America), Laurent Terray (France), Wim Thiery (Belgium), 
Jessica  Tierney (United States of America), Maarten K. van Aalst (The Netherlands), 
Bart van den Hurk (The Netherlands), Robert Vautard (France), Wen Wang (China), Seth Westra 
(Australia), Jakob Zscheischler (Germany) 

Review Editors: 
Johnny Chan (China), Asgeir Sorteberg (Norway), Carolina Vera (Argentina)

Chapter Scientists:
Mathias Hauser (Switzerland), Megan Kirchmeier-Young (Canada/United States of America), 
Hui Wan (Canada)

This Chapter should be cited as:
Seneviratne, S.I., X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskandar, J. Kossin, S. Lewis, 
F.  Otto, I.  Pinto, M. Satoh, S.M. Vicente-Serrano, M. Wehner, and B. Zhou, 2021: Weather and Climate Extreme 
Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group 
I  to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, 
A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, 
J.B.R.  Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA, pp. 1513–1766, doi:10.1017/9781009157896.013.

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1515

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Table of Contents

Executive Summary    ��������������������������������������������������������������������������������   1517

11.1 Introduction   �������������������������������������������������������������������������������   1521

11.1.1 Scope of the Chapter   ����������������������������������������������������   1521

11.1.2 What Are Extreme Events  
and How are Their Changes Studied?  �����������������   1522

11.1.3 Types of Extremes Assessed in this Chapter   ���   1522

11.1.4 Effects of Greenhouse Gas  
and Other External Forcings on Extremes   ��������   1522

Box 11.1 |  
Thermodynamic and Dynamic Changes  
in Extremes Across Scales   ����������������������������������������������������������   1526

11.1.5 Effects of Large-scale Circulation 
on Changes in Extremes   ���������������������������������������������   1528

11.1.6 Effects of Regional-scale Processes and Forcings 
and Feedbacks on Changes in Extremes  �����������   1528

11.1.7 Global-scale Synthesis   �������������������������������������������������   1529

Box 11.2 |  
Changes in Low-likelihood, High-impact Extremes   �   1534

11.2 Data and Methods    ��������������������������������������������������������������   1536

11.2.1 Definition of Extremes   ��������������������������������������������������   1536

11.2.2 Data   �����������������������������������������������������������������������������������������   1537

Box 11.3 |  
Extremes in Paleoclimate Archives  
Compared to Instrumental Records  �����������������������������������   1538

11.2.3 Attribution of Extremes   �����������������������������������������������   1540

11.2.4 Projecting Changes in Extremes  
as a Function of Global Warming Levels    ���������   1541

Cross-Chapter Box 11.1 |  
Translating Between Regional Information  
at Global Warming Levels  
Versus Scenarios for End Users   ��������������������������������������������   1542

11.3 Temperature Extremes   ������������������������������������������������������   1546

11.3.1 Mechanisms and Drivers   ��������������������������������������������   1546

11.3.2 Observed Trends    �������������������������������������������������������������   1548

11.3.3 Model Evaluation    �����������������������������������������������������������   1550

11.3.4 Detection and Attribution, Event Attribution   �   1552

11.3.5 Projections   ���������������������������������������������������������������������������   1553

11.4 Heavy Precipitation   �������������������������������������������������������������   1557

11.4.1 Mechanisms and Drivers   ��������������������������������������������   1557

11.4.2 Observed Trends   ���������������������������������������������������������������   1557

11.4.3 Model Evaluation   ������������������������������������������������������������   1561

11.4.4 Detection and Attribution, Event Attribution   �   1562

11.4.5 Projections   ���������������������������������������������������������������������������   1563

11.5 Floods   ����������������������������������������������������������������������������������������������   1567

11.5.1 Mechanisms and Drivers   ��������������������������������������������   1567

11.5.2 Observed Trends   ���������������������������������������������������������������   1568

11.5.3 Model Evaluation   ������������������������������������������������������������   1568

11.5.4 Detection and Attribution, Event Attribution   �   1569

11.5.5 Future Projections    ����������������������������������������������������������   1569

11.6 Droughts   ���������������������������������������������������������������������������������������   1570

11.6.1 Mechanisms and Drivers   ��������������������������������������������   1570

11.6.2 Observed Trends   ���������������������������������������������������������������   1573

11.6.3 Model Evaluation   ������������������������������������������������������������   1575

11.6.4 Detection and Attribution, Event Attribution   �   1577

11.6.5 Projections   ���������������������������������������������������������������������������   1579

11.7 Extreme Storms   ����������������������������������������������������������������������   1583

11.7.1 Tropical Cyclones   �������������������������������������������������������������   1585

11.7.2 Extratropical Storms   ������������������������������������������������������   1592

11.7.3 Severe Convective Storms   ������������������������������������������   1594

11.7.4 Extreme Winds   ������������������������������������������������������������������   1597

11.8 Compound Events    ���������������������������������������������������������������   1598

11.8.1 Overview   �������������������������������������������������������������������������������   1598

11.8.2 Concurrent Extremes in Coastal 
and Estuarine Regions   �������������������������������������������������   1599

11.8.3 Concurrent Droughts and Heatwaves   ����������������   1600

Box 11.4 |  
Case Study: Global-scale Concurrent Climate 
Anomalies – the 2015–2016 Extreme El Niño  
and 2018 Boreal Spring–Summer   ����������������������������������������   1601

11.9 Regional Information on Extremes   ������������������������   1604

11.9.1 Overview   �������������������������������������������������������������������������������   1604

11.9.2 Temperature Extremes   �������������������������������������������������   1605

11.9.3 Heavy Precipitation   ��������������������������������������������������������   1605

11.9.4 Droughts   �������������������������������������������������������������������������������   1605

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1516

Chapter 11 Weather and Climate Extreme Events in a Changing Climate

11

Acknowledgements   ���������������������������������������������������������������������������������   1607

Frequently Asked Questions

FAQ 11.1 |  
How Do Changes In Climate Extremes  
Compare With Changes In Climate Averages?   ����������   1608

FAQ 11.2 |  
Will Unprecedented Extremes Occur  
As a Result Of Human-Induced Climate Change?   ��   1610

FAQ 11.3 |  
Did Climate Change Cause  
That Recent Extreme Event In My Country?   ���������������   1611

Large Tables   ����������������������������������������������������������������������������������������������������   1613

References   �������������������������������������������������������������������������������������������������������   1706

Appendix 11.A   ����������������������������������������������������������������������������������������������   1759

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1517

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Executive Summary 

This chapter assesses changes in weather and climate extremes 
on regional and global scales, including observed changes and 
their attribution, as well as projected changes. The extremes 
considered include temperature extremes, heavy precipitation 
and pluvial floods, river floods, droughts, storms (including 
tropical cyclones), as well as compound events (multivariate and 
concurrent extremes). The assessment focuses on land regions 
excluding Antarctica. Changes in marine extremes are addressed 
in Chapter  9  and Cross-Chapter Box  9.1. Assessments of past 
changes and their drivers are from 1950 onward, unless indicated 
otherwise. Projections for changes in extremes are presented for 
different levels of global warming, supplemented with information 
for the conversion to emissions scenario-based projections (Cross-
Chapter Box  11.1 and Table  4.2). Since the IPCC Fifth Assessment 
Report (AR5), there have been important new developments and 
knowledge advances on changes in weather and climate extremes, in 
particular regarding human influence on individual extreme events, 
on changes in droughts, tropical cyclones, and compound events, and 
on projections at different global warming levels (1.5°C–4°C). These, 
together with new evidence at regional scales, provide a  stronger 
basis and more regional information for the AR6 assessment on 
weather and climate extremes.

It is an established fact that human-induced greenhouse gas 
emissions have led to an increased frequency and/or intensity 
of some weather and climate extremes since pre-industrial 
time, in particular for temperature extremes. Evidence of 
observed changes in extremes and their attribution to human 
influence (including greenhouse gas and aerosol emissions and land-
use changes) has strengthened since AR5, in particular for extreme 
precipitation, droughts, tropical cyclones and compound extremes 
(including dry/hot events and fire weather). Some recent hot extreme 
events would have been extremely unlikely to occur without human 
influence on the climate system. {11.2, 11.3, 11.4, 11.6, 11.7, 11.8}

Regional changes in the intensity and frequency of climate 
extremes generally scale with global warming. New evidence 
strengthens the conclusion from the IPCC Special Report on 
Global Warming of 1.5°C (SR1.5) that even relatively small 
incremental increases in global warming (+0.5°C) cause 
statistically significant changes in extremes on the global scale 
and for large regions (high confidence). In particular, this is the 
case for temperature extremes (very likely), the intensification 
of heavy precipitation (high confidence) including that 
associated with tropical cyclones (medium confidence), and 
the worsening of droughts in some regions (high confidence). 
The occurrence of extreme events unprecedented in the observed 
record will rise with increasing global warming, even at 1.5°C of 

1 See Figure 1.18 for definition of AR6 regions. Acronyms for inhabited regions: ARP: Arabian Peninsula; CAF: Central Africa; CAR: Caribbean; CAU: Central Australia; CNA: Central North America; 
EAS: East Asia; EAU: Eastern Australia; ECA: East Central Asia; EEU: Eastern Europe; ENA: Eastern North America; ESAF: East Southern Africa; ESB: East Siberia; GIC: Greenland/Iceland; MDG: 
Madagascar; MED: Mediterranean; NAU: Northern Australia; NCA: Northern Central America; NEAF: North Eastern Africa; NEN: North-Eastern North America; NES: North-Eastern South America; 
NEU: Northern Europe; NSA: Northern South America; NWN: North-Western North America; NWS: North-Western South America; NZ: New Zealand; RAR: Russian Arctic; RFE: Russian Far East; 
SAH: Sahara; SAM: South American Monsoon; SAS: South Asia; SAU: Southern Australia; SCA: Southern Central America; SEA: Southeast Asia; SEAF: South Eastern Africa; SES: South-Eastern South 
America; SSA: Southern South America; SWS: South-Western South America; TIB: Tibetan Plateau; WAF: Western Africa; WCA: West Central Asia; WCE: Western and Central Europe; WNA: Western 
North America; WSAF: West Southern Africa; WSB: West Siberia.            

global warming. Projected percentage changes in frequency are 
higher for the rarer extreme events (high confidence). {11.1, 11.2, 
11.3, 11.4, 11.6, 11.9, Cross-Chapter Box 11.1}

Methods and Data for Extremes

Since AR5, the confidence about past and future changes 
in weather and climate extremes has increased due to 
better physical understanding of processes, an increasing 
proportion of the scientific literature combining different 
lines of evidence, and improved accessibility to different 
types of climate models (high confidence). There have 
been improvements in some observation-based datasets, 
including reanalysis data (high confidence). Climate models 
can reproduce the sign (direction) of changes in temperature 
extremes observed globally and in most regions, although the 
magnitude of the trends may differ (high confidence). Models 
are able to capture the large-scale spatial distribution of precipitation 
extremes over land (high confidence). The intensity and frequency of 
extreme precipitation simulated by Coupled Model Intercomparison 
Project Phase 6  (CMIP6) models are similar to those simulated by 
CMIP5 models (high confidence). Higher horizontal model resolution 
improves the spatial representation of some extreme events 
(e.g., heavy precipitation events), in particular in regions with highly 
varying topography (high confidence). {11.2, 11.3, 11.4}

Temperature Extremes

The frequency and intensity of hot extremes (including 
heatwaves) have increased, and those of cold extremes have 
decreased on the global scale since 1950 (virtually certain). 
This also applies at regional scale, with more than 80% of AR6 
regions1 showing similar changes assessed to be at least likely. 
In a  few regions, limited evidence (data or literature) prevents the 
reliable estimation of trends. {11.3, 11.9}

Human-induced greenhouse gas forcing is the main driver 
of the observed changes in hot and cold extremes on the 
global scale (virtually certain) and on most continents (very 
likely). The effect of enhanced greenhouse gas concentrations on 
extreme temperatures is moderated or amplified at the regional 
scale by regional processes such as soil moisture or snow/ice-albedo 
feedbacks, by regional forcing from land-use and land-cover changes, 
or aerosol concentrations, and decadal and multi-decadal natural 
variability. Changes in anthropogenic aerosol concentrations have 
likely affected trends in hot extremes in some regions. Irrigation and 
crop expansion have attenuated increases in summer hot extremes 
in some regions, such as the Midwestern USA (medium confidence). 
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Urbanization has likely exacerbated changes in temperature extremes 
in cities, in particular for nighttime extremes. {11.1, 11.2, 11.3}

The frequency and intensity of hot extremes will continue to 
increase and those of cold extremes will continue to decrease, 
at global and continental scales and in nearly all inhabited 
regions1 with increasing global warming levels. This will be the 
case even if global warming is stabilized at 1.5°C. Relative to present-
day conditions, changes in the intensity of extremes would be at least 
double at 2°C, and quadruple at 3°C of global warming, compared 
to changes at 1.5°C of global warming. The number of hot days and 
hot nights and the length, frequency, and/or intensity of warm spells 
or heatwaves will increase over most land areas (virtually certain). In 
most regions, future changes in the intensity of temperature extremes 
will very likely be proportional to changes in global warming, and up 
to two to three times larger (high confidence). The highest increase 
of temperature of hottest days is projected in some mid-latitude and 
semi-arid regions and in the South American Monsoon region, at 
about 1.5 times to twice the rate of global warming (high confidence). 
The highest increase of temperature of coldest days is projected 
in Arctic regions, at about three times the rate of global warming 
(high confidence). The frequency of hot temperature extreme events 
will very likely increase nonlinearly with increasing global warming, 
with larger percentage increases for rarer events. {11.2, 11.3, 11.9; 
Table 11.1; Figure 11.3}

Heavy Precipitation and Pluvial Floods 

The frequency and intensity of heavy precipitation events have 
likely increased at the global scale over a  majority of land 
regions with good observational coverage. Heavy precipitation 
has likely increased on the continental scale over three 
continents: North America, Europe, and Asia. Regional increases 
in the frequency and/or intensity of heavy precipitation have been 
observed with at least medium confidence for nearly half of AR6 
regions, including WSAF, ESAF, WSB, SAS, ESB, RFE, WCA, ECA, TIB, 
EAS, SEA, NAU, NEU, EEU, GIC, WCE, SES, CNA, and ENA. {11.4, 11.9}

Human influence, in particular greenhouse gas emissions, 
is likely the main driver of the observed global-scale 
intensification of heavy precipitation over land regions. It is 
likely that human-induced climate change has contributed to the 
observed intensification of heavy precipitation at the continental 
scale in North America, Europe and Asia. Evidence of a  human 
influence on heavy precipitation has emerged in some regions (high 
confidence). {11.4, 11.9, Table 11.1}

Heavy precipitation will generally become more frequent and 
more intense with additional global warming. At a global 
warming level of 4°C relative to the pre-industrial level, very 
rare (e.g., one in 10 or more years) heavy precipitation events 
would become more frequent and more intense than in the 
recent past, on the global scale (virtually certain) and in all 
continents and AR6 regions. The increase in frequency and 
intensity is extremely likely for most continents and very likely 
for most AR6 regions. At the global scale, the intensification of 

heavy precipitation will follow the rate of increase in the maximum 
amount of moisture that the atmosphere can hold as it warms (high 
confidence), of about 7% per 1°C of global warming. The increase in 
the frequency of heavy precipitation events will be non-linear with 
more warming and will be higher for rarer events (high confidence), 
with a  likely doubling and tripling in the frequency of 10-year and 
50-year events, respectively, compared to the recent past at 4°C of 
global warming. Increases in the intensity of extreme precipitation 
at regional scales will vary, depending on the amount of regional 
warming, changes in atmospheric circulation and storm dynamics 
(high confidence). {11.4, Box 11.1}

The projected increase in the intensity of extreme precipitation 
translates to an increase in the frequency and magnitude 
of pluvial floods  – surface water and flash floods  – (high 
confidence), as pluvial flooding results from precipitation 
intensity exceeding the capacity of natural and artificial 
drainage systems. {11.4}

River Floods

Significant trends in peak streamflow have been observed 
in some regions over the past decades (high confidence). 
The  seasonality of river floods has changed in cold regions where 
snow-melt is involved, with an earlier occurrence of peak streamflow 
(high confidence). {11.5}

Global hydrological models project a  larger fraction of land 
areas to be affected by an increase in river floods than by 
a  decrease in river floods (medium confidence). Regional 
changes in river floods are more uncertain than changes in pluvial 
floods because complex hydrological processes and forcings, 
including land cover change and human water management, are 
involved. {11.5}

Droughts 

Different drought types exist, and they are associated with 
different impacts and respond differently to increasing 
greenhouse gas concentrations. Precipitation deficits and changes 
in evapotranspiration govern net water availability. A lack of sufficient 
soil moisture, sometimes amplified by increased atmospheric 
evaporative demand, results in agricultural and ecological drought. 
Lack of runoff and surface water result in hydrological drought. {11.6}

Human-induced climate change has contributed to increases 
in agricultural and ecological droughts in some regions due to 
evapotranspiration increases (medium confidence). Increases 
in evapotranspiration have been driven by increases in atmospheric 
evaporative demand induced by increased temperature, decreased 
relative humidity and increased net radiation (high confidence). 
Trends in precipitation are not a main driver in affecting global-scale 
trends in drought (medium confidence), but have induced increases in 
meteorological droughts in a few AR6 regions (NES: high confidence; 
WAF, CAF, ESAF, SAM, SWS, SSA, SAS: medium confidence). Increasing 
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trends in agricultural and ecological droughts have been observed 
on all continents (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS, SAU, MED, 
WCE, WNA, NES: medium confidence), but decreases only in one AR6 
region (NAU: medium confidence). Increasing trends in hydrological 
droughts have been observed in a  few AR6 regions (MED: high 
confidence; WAF, EAS, SAU: medium confidence). Regional-
scale attribution shows that human-induced climate change has 
contributed to increased agricultural and ecological droughts (MED, 
WNA), and increased hydrological drought (MED) in some regions 
(medium confidence). {11.6, 11.9}

More regions are affected by increases in agricultural and 
ecological droughts with increasing global warming (high 
confidence). Several regions will be affected by more severe 
agricultural and ecological droughts even if global warming 
is stabilised at 2°C, including MED, WSAF, SAM and SSA (high 
confidence), and ESAF, MDG, EAU, SAU, SCA, CAR, NSA, NES, SWS, 
WCE, NCA, WNA and CNA (medium confidence). Some regions 
are also projected to be affected by more severe agricultural and 
ecological droughts at 1.5°C (MED, WSAF, ESAF, SAU, NSA, SAM, 
SSA, CNA, medium confidence). At 4°C of global warming, about 
50% of all inhabited AR6 regions would be affected by increases 
in agricultural and ecological droughts (WCE, MED, CAU, EAU, SAU, 
WCA, EAS, SCA, CAR, NSA, NES, SAM, SWS, SSA, NCA, CNA, ENA, 
WNA, WSAF, ESAF, MDG: medium confidence or higher), and only two 
regions (NEAF, SAS) would experience decreases in agricultural and 
ecological drought (medium confidence). There is high confidence 
that the projected increases in agricultural and ecological droughts 
are strongly affected by evapotranspiration increases associated with 
enhanced atmospheric evaporative demand. Several regions are 
projected to be more strongly affected by hydrological droughts with 
increasing global warming (at 4°C of global warming: NEU, WCE, 
EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF, ESAF, 
MDG: medium confidence or higher). There is  low confidence  that 
effects of enhanced atmospheric carbon dioxide (CO2) concentrations 
on plant water-use efficiency alleviate extreme  agricultural and 
ecological droughts in conditions  characterized by  limited soil 
moisture and enhanced atmospheric evaporative demand. There is 
also low confidence that these effects will substantially reduce global 
plant transpiration and the severity of hydrological droughts. There is 
high confidence that the land carbon sink will become less efficient 
due to soil moisture limitations and associated drought conditions 
in some regions in higher-emissions scenarios, in particular under 
global warming levels above 4°C. {11.6, 11.9, Cross-Chapter Box 5.1}

Extreme Storms, Including Tropical Cyclones

The average and maximum rain rates associated with tropical 
cyclones (TCs), extratropical cyclones and atmospheric rivers 
across the globe, and severe convective storms in some 
regions, increase  in a  warming world (high confidence). 
Available event attribution studies of observed strong TCs provide 
medium confidence for a human contribution to extreme TC rainfall. 
Peak TC rain rates increase with local warming at least at the rate 

2 Six-hourly intensity estimates during the lifetime of each TC.

of mean water vapour increase over oceans (about 7% per 1°C of 
warming)  and in some cases exceeding this rate  due to increased 
low-level moisture convergence caused by increases in TC wind 
intensity (medium confidence).  {11.7, 11.4, Box 11.1}

It is likely that the global proportion of Category 3–5 tropical 
cyclone instances2 has increased over the past four decades. 
The average location where TCs reach their peak wind intensity 
has very likely migrated poleward in the western North Pacific 
Ocean since the 1940s, and TC translation speed has likely slowed 
over the conterminous USA since 1900. Evidence of similar trends 
in other regions is not robust. The global frequency of TC rapid 
intensification events has likely increased over the past four decades. 
None of these changes can be explained by natural variability alone 
(medium confidence). 

The proportion of intense TCs, average peak TC wind speeds, 
and peak wind speeds of the most intense TCs will increase 
on the global scale with increasing global warming (high 
confidence). The total global frequency of TC formation will 
decrease or remain unchanged with increasing global warming 
(medium confidence). {11.7.1} 

There is low confidence in past changes of maximum 
wind speeds and other measures of dynamical intensity of 
extratropical cyclones. Future wind speed changes are expected 
to be small, although poleward shifts in the storm tracks 
could lead to substantial changes in extreme wind speeds in 
some regions (medium confidence). There is low confidence in 
past trends in characteristics of severe convective storms, such as 
hail and severe winds, beyond an increase in precipitation rates. The 
frequency of spring severe convective storms is projected to increase 
in the USA, leading to a lengthening of the severe convective storm 
season (medium confidence); evidence in other regions is limited. 
{11.7.2, 11.7.3}.

Compound Events, Including Dry/Hot Events, Fire Weather, 
Compound Flooding, and Concurrent Extremes

The probability of compound events has likely increased in 
the past due to human-induced climate change and will likely 
continue to increase with further global warming. Concurrent 
heatwaves and droughts have become more frequent, and this 
trend will continue with higher global warming (high confidence). 
Fire weather conditions (compound hot, dry and windy events) 
have become more probable in some regions (medium confidence) 
and there is high confidence that they will become more frequent 
in some regions at higher levels of global warming. The probability 
of compound flooding (storm surge, extreme rainfall and/or river 
flow) has increased in some locations (medium confidence), and will 
continue to increase due to sea level rise and increases in heavy 
precipitation, including changes in precipitation intensity associated 
with tropical cyclones (high confidence). The land area affected by 
concurrent extremes has increased (high confidence). Concurrent 
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extreme events at different locations, but possibly affecting similar 
sectors (e.g.,  critical crop-producing areas for global food supply) 
in different regions, will become more frequent with increasing 
global warming, in particular above 2°C of global warming (high 
confidence). {11.8, Box 11.2, Box 11.4}. 

Low-likelihood, High-impact Events Associated 
With Climate Extremes

The future occurrence of low-likelihood, high-impact 
events linked to climate extremes is generally associated 
with low confidence, but cannot be excluded, especially at 
global warming levels above 4°C. Compound events, including 
concurrent extremes, are a factor increasing the probability of low-
likelihood, high-impact events (high confidence). With increasing 
global warming, some compound events with low likelihood in 
past and current climates will become more frequent, and there is 
a higher chance of occurrence of historically unprecedented events 
and surprises (high confidence). However, even extreme events that 
do not have a particularly low probability in the present climate (at 
more than 1°C of global warming) can be perceived as surprises 
because of the pace of global warming (high confidence). {Box 11.2}
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11.1 Introduction

11.1.1 Scope of the Chapter

This chapter provides assessments of changes in weather and climate 
extremes (collectively referred to as extremes) framed in terms of 
the relevance to the Working Group II (WGII) assessment. It assesses 
observed changes in extremes, their attribution to causes, and future 
projections, at three global warming levels: 1.5°C, 2°C, and 4°C. This 
chapter is also one of the four ‘regional chapters’ of the WGI Report 
(along with Chapters 10 and 12 and the Atlas). Consequently, while 
it encompasses assessments of changes in extremes at global and 
continental scales to provide a large-scale context, it also addresses 
changes in extremes at regional scales. 

Extremes are climatic impact-drivers (Annex VII: Glossary, see 
Chapter  12 for a  comprehensive assessment). The IPCC risk 
framework (Chapter  1) articulates clearly that the exposure and 
vulnerability to climatic impact-drivers, such as extremes, modulate 
the risk of adverse impacts of these drivers, and that adaptation 
which reduces exposure and vulnerability will increase resilience, 
resulting in a reduction in impacts. Nonetheless, changes in extremes 
lead to changes in impacts as a direct consequence of changes in 
their magnitude and frequency, and also through their infl uence on 
exposure and resilience. 

The Special Report on Managing the Risks of Extreme Events and 
Disasters to Advance Climate Change Adaptation (referred as the 

SREX report, IPCC, 2012) provided a comprehensive assessment on 
changes in extremes and how exposure and vulnerability to extremes 
determine the impacts and likelihood of disasters. Chapter  3  of 
that report (Seneviratne et al., 2012, hereafter also referred to as 
SREX Chapter  3) assessed physical aspects of extremes, and laid 
a  foundation for the follow-up IPCC assessments. Several chapters 
of the IPCC Fifth Assessment Report (AR5) (IPCC, 2013) addressed 
climate extremes with respect to observed changes (Hartmann et al., 
2013), model evaluation (Flato et al., 2013), attribution (Bindoff 
et al., 2013), and projected long-term changes (Collins et al., 2013). 
Assessments were also provided in the IPCC Special Report on Global 
Warming of 1.5°C (SR1.5) (IPCC, 2018; Hoegh-Guldberg et al., 2018), 
on climate change and la nd (SRCCL; (IPCC, 2019a), and on oceans 
and the cryosphere (SROCC; IPCC, 2019b). These assessments are the 
starting point for the present assessment. 

This chapter is structured as follows (Figure  11.1): This section 
(11.1) provides the general framing and introduction to the chapter, 
highlighting key aspects that underlie the confi dence and uncertainty 
in the assessment of changes in extremes, and introducing some main 
elements of the chapter. To provide readers with a quick overview 
of past and future changes in extremes, a synthesis of global-scale 
assessments for different types of extremes is included at the end 
of this section (Tables 11.1 and 11.2). Section  11.2 introduces 
methodological aspects of research on climate extremes. Sections 
11.3 to 11.7 assess past changes and their attribution to causes, 
and projected future changes in extremes, for different types of 
extremes, including temperature extremes, heavy precipitation and 

FAQs

Chapter 11: Weather and climate extremes Chapter 11: Quick guide

Cross-chapter boxes

Section 11.1
Framing

Africa
Table 11.4 | Table 11.5 | Table 11.6

Asia
Table 11.7 | Table 11.8 | Table 11.9 | Box 11.4 

Australasia
Table 11.10 | Table 11.11 | Table 11.12

Central and South America
Table 11.13 | Table 11.14 | Table 11.15

Europe
Table 11.16 | Table 11.17 | Table 11.18 | Box 11.4 

North America
Table 11.19 | Table 11.20 | Table 11.21

Section 11.3
Temperature 
extremes

Section 11.5
Floods

Section 11.7
Extreme storms

Section 11.2
Data and methods

Section 11.8
Compound events

Section 11.6
Droughts

Section 11.4
Heavy 
precipitation

Section 11.9
Regional information

Box 11.1
Thermodynamic and 
dynamic changes

Box 11.2
Low-likelihood, 
high-impact extremes

Box 11.4
Examples of concurrent 
climate extremes

Box 11.3
Paleo 
extremes

CC Box 11.1
Translation between global warming levels and scenarios

Chapter 11 assesses observed changes in weather and climate extremes, their 
attribution to human influence, and future projections at +1.5ºC, +2ºC and +4ºC.

Key topics and corresponding sub-sections
Regional information distributed within Sections 11.3-11.8

Boxes

Syntheses for all regions
11.9 | Table 11.A.2 

Figure 11.1 | Visual guide to Chapter 11.
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pluvial floods, river floods, droughts, and storms, in separate sections. 
Section 11.8 addresses compound events. Section 11.9 summarizes 
regional assessments of changes in temperature extremes, in 
precipitation extremes and in droughts by continents in tables. The 
chapter also includes several boxes and FAQs on more specific topics.

11.1.2 What Are Extreme Events and How are Their 
Changes Studied?

Building on the SREX report and AR5, this Report defines an extreme 
weather event as ‘an event that is rare at a  particular place and 
time of year’, and an extreme climate event as ‘a pattern of extreme 
weather that persists for some time, such as a season’ (see Glossary). 
The definitions of ‘rare’ are wide ranging, depending on applications. 
Some studies consider an event as an extreme if it is unprecedented; 
other studies consider events that occur several times a  year as 
moderate extreme events. Rarity of an event with a fixed magnitude 
also changes under human-induced climate change, making events 
that are unprecedented so far rather probable under present 
conditions, but unique in the observational record – and thus often 
considered as ‘surprises’ (see Box 11.2). 

Various approaches are used to define extremes. These are generally 
based on the determination of relative (e.g.,  90th percentile) or 
absolute (e.g., 35°C for a hot day) thresholds above which conditions 
are considered extremes. Changes in extremes can be examined from 
two perspectives, either focusing on changes in frequency of given 
extremes, or on changes in their intensity. These considerations in the 
definition of extremes are further addressed in Section 11.2.1.

11.1.3 Types of Extremes Assessed in this Chapter

The types of extremes assessed in this chapter include temperature 
extremes, heavy precipitation and pluvial floods, river floods, droughts, 
and storms. The drought assessment addresses meteorological 
droughts, agricultural and ecological droughts, and hydrological 
droughts (see Glossary). The storms assessment addresses tropical 
cyclones, extratropical cyclones, and severe convective storms. 
This chapter also assesses changes in compound events  – that 
is, multivariate or concurrent extreme events  – because of their 
relevance to impacts as well as the emergence of new literature on 
the subject. Most of the considered extremes were also assessed in 
SREX and AR5. Compound events were not assessed in depth in past 
IPCC reports (SREX Chapter 3; Section 11.8 of this Report). Marine-
related extremes such as marine heatwaves and extreme sea level, 
are assessed in Section 9.6.4 and Box 9.2 of this Report. 

Extremes and related phenomena are of various spatial and 
temporal scales. Tornadoes have a  spatial scale as small as less 
than 100 metres and a  temporal scale as short as a  few minutes. 
In contrast, a  drought can last for multiple years, affecting vast 
regions. The level of complexity of the involved processes differs from 
one type of extreme to another, affecting our capability to detect, 
attribute and project changes in weather and climate extremes. 
Temperature and precipitation extremes studied in the literature are 

often based on extremes derived from daily values. Studies of events 
on longer time scales for temperature or precipitation, or on sub-
daily extremes, are scarcer, which generally limits the assessment for 
such events. Nevertheless, extremes on time scales different from 
daily are assessed for temperature extremes and heavy precipitation, 
when possible (Sections 11.3 and 11.4). Droughts and tropical 
cyclones are treated as phenomena in general in the assessment, 
not limited by their extreme forms, because these phenomena are 
relevant to impacts (Sections 11.6 and 11.7). Both precipitation and 
wind extremes associated with storms are considered. 

Multiple concomitant extremes can lead to stronger impacts than 
those resulting from the same extremes had they happened in 
isolation. For this reason, the occurrence of multiple extremes that 
are multivariate and/or concurrent and/or happening in succession, 
also called ‘compound events’ (SREX Chapter 3), are assessed in this 
chapter based on emerging literature on this topic (Section  11.8). 
Box 11.2 also provides an assessment on low-likelihood, high-impact 
scenarios associated with extremes.

The assessment of projected future changes in extremes is presented 
as function of different global warming levels (Section  11.2.4 and 
Cross-Chapter Box  11.1). This provides traceability and comparison 
to the SR1.5 assessment (Hoegh-Guldberg et al., 2018, hereafter 
referred to as SR1.5 Chapter 3). Also, this is useful for decision makers 
as actionable information, as much of the mitigation policy discussion 
and adaptation planning can be tied to the level of global warming. 
For example, regional changes in extremes, and thus their impacts, can 
be linked to global mitigation efforts. There is also the advantage of 
separating uncertainty in future projections due to regional responses 
as a  function of global warming levels from other factors such as 
differences in global climate sensitivity and emissions scenarios (Cross-
Chapter Box  11.1). Information is also provided on the translation 
between information provided at global warming levels and for single 
emissions scenarios (Cross-Chapter Box  11.1). This facilitates easier 
comparison with the AR5 assessment and with some analyses provided 
in other chapters as function of emissions scenarios.

A global-scale synthesis of this chapter’s assessments is provided in 
Section 11.1.7. In particular, Tables 11.1 and 11.2 provide a synthesis 
for observed and attributed changes, and projected changes in 
extremes, respectively, at different global warming levels (1.5°C, 
2°C, and 4°C). Tables on regional-scale assessments for changes 
in temperature extremes, heavy precipitation and droughts, are 
provided in Section 11.9.

11.1.4 Effects of Greenhouse Gas and Other External 
Forcings on Extremes

The SREX, AR5, and SR1.5 assessed that there is evidence from 
observations that some extremes have changed since the mid-
20th century, that some of the changes are a result of anthropogenic 
influences, and that some observed changes are projected to continue 
into the future. Additionally, other changes are projected to emerge 
from natural climate variability under enhanced global warming 
(SREX Chapter 3; AR5 Chapter 10). 
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At the global scale, and also at the regional scale to some extent, 
many of the changes in extremes are a  direct consequence of 
enhanced radiative forcing, and the associated global warming and/
or resultant increase in the water-holding capacity of the atmosphere, 
as well as changes in vertical stability and meridional temperature 
gradients that affect climate dynamics (see Box 11.1). Widespread 
observed and projected increases in the intensity and frequency of 
hot extremes, together with decreases in the intensity and frequency 
of cold extremes, are consistent with global and regional warming 
(Section 11.3 and Figure 11.2). Extreme temperatures on land tend 
to increase more than the global mean temperature (Figure 11.2), 
due in large part to the land–sea warming contrast, and additionally 
to regional feedbacks in some regions (Section 11.1.6). Increases in 
the intensity of temperature extremes scale robustly, and in general 
linearly, with global warming across different geographical regions 
in projections up to 2100, with minimal dependence on emissions 
scenarios (Section 11.2.4, Figure 11.3, and Cross-Chapter Box 11.1; 
Seneviratne et al., 2016; Wartenburger et al., 2017; Kharin et al., 
2018). The frequency of hot temperature extremes (see Figure 11.6), 
the number of heatwave days and the length of heatwave seasons 
in various regions also scale well, but nonlinearly (because of 
threshold effects, Section  11.2.1), with global mean temperatures 
(Wartenburger et al., 2017; Y. Sun et al., 2018a). 

Changes in annual maximum one-day precipitation (Rx1day) are 
proportional to mean global surface temperature changes, at about 
7% increase per 1°C of warming, that is, following the Clausius–
Clapeyron relation (Box  11.1), both in observations (Westra et al., 
2013) and in future projections (Kharin et al., 2013) at the global 
scale. Extreme short-duration precipitation in North America also 
scales with global surface temperature (Prein et al., 2016b; C. Li et al., 
2019a). At the local and regional scales, changes in extremes are also 
strongly modulated and controlled by regional forcings and feedback 
mechanisms (Section  11.1.6), whereby some regional forcings, for 

example, associated with changes in land cover and land use or 
aerosol emissions, can have non-local or some (non-homogeneous) 
global-scale effects. In general, there is high confidence in changes in 
extremes due to global-scale thermodynamic processes (i.e., global 
warming, mean moistening of the air) as the processes are well 
understood, while the confidence in those related to dynamic 
processes or regional and local forcing, including regional and local 
thermodynamic processes, is much lower due to multiple factors (see 
the following subsection and Box 11.1). 

Since AR5, the attribution of extreme weather events, or the 
investigation of changes in the frequency and/or magnitude of 
individual and local- and regional-scale extreme weather events due 
to various drivers (Section 11.2.3 and Cross-Working Group Box 1.1) 
has provided evidence that greenhouse gases and other external 
forcings have affected individual extreme weather events. The events 
that have been studied are geographically uneven. For example, 
extreme rainfall events in the UK (Schaller et al., 2016; Vautard et al., 
2016; Otto et al., 2018b) or heatwaves in Australia (King et al., 2014; 
Perkins-Kirkpatrick et al., 2016; Lewis et al., 2017b) have spurred more 
studies than other events. Many highly impactful extreme weather 
events have not been studied in the event attribution framework. 
Studies in the developing world are also generally lacking. This is due 
to various reasons (Section 11.2) including lack of observational data, 
lack of reliable climate models and other problems (Otto et al., 2020). 
While the events that have been studied are not representative of all 
extreme events that occurred, and results from these studies may also 
be subject to selection bias, the large number of event attribution 
studies provide evidence that changes in the properties of these 
local and individual events are in line with expected consequences 
of human influence on the climate and can be attributed to external 
drivers (Section  11.9). Figure  11.4 summarizes assessments of 
observed changes in temperature extremes, in heavy precipitation 
and in droughts, and their attribution in a map form. 

Figure 11.2 | Time series of observed temperature anomalies for global average annual mean temperature (black), land average annual mean temperature 
(green), land average annual hottest daily maximum temperature (TXx, purple), and land average annual coldest daily minimum temperature (TNn, blue). 
Global and land mean temperature anomalies are relative to their 1850–1900 means and are based on the multi-product mean annual time series assessed in Section 2.3.1.1.3 
(see text for references). TXx and TNn anomalies are relative to their respective 1961–1990 means and are based on the HadEX3 dataset (Dunn et al., 2020) using values for 
grid boxes with at least 90% temporal completeness over 1961–2018. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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Figure 11.3 | Regional mean changes in annual hottest daily maximum temperature (TXx) for AR6 land regions and the global land area (except 
Antarctica), against changes in global mean surface air temperature (GSAT) as simulated by Coupled Model Intercomparison Project Phase 6 (CMIP6) 
models under different Shared Socio-economic Pathway (SSP) forcing scenarios, SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Changes in TXx and 
GSAT are relative to the 1850–1900 baseline, and changes in GSAT are expressed as global warming level. (a) Individual models from the CMIP6 ensemble (grey), the multi-
model median under three selected SSPs (colours), and the multi-model median (black); (b) to (l) Multi-model median for the pooled data for individual AR6 regions. Numbers 
in parentheses indicate the linear scaling between regional TXx and GSAT. The black line indicates the 1:1 reference scaling between TXx and GSAT. See Atlas.1.3.2 for the 
definition of regions. Changes in TXx are also displayed in the Interactive Atlas. For details on the methods, see Supplementary Material 11.SM.2.
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Figure 11.4 | Overview of observed changes for cold, hot, and wet extremes and their potential human contribution. Shown are the direction of change and the confi dence in: 1) the observed changes in cold and hot as well 
as wet extremes across the world; and 2) whether human-induced climate change contributed to causing these changes (attribution). In each region changes in extremes are indicated by colour (orange – increase in the type of extreme; blue – 
decrease; both colours – changes of opposing direction within the region, with the signal depending on the exact event defi nition; grey – there are  no changes observed; and no fi ll – the data/evidence is too sparse to make an assessment). 
The squares and dots next to the symbol indicate the level of confi dence for observing the trend and the human contribution, respectively. The more black dots/squares, the higher the level of confi dence. The information on this fi gure is based 
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Box 11.1 | Thermodynamic and Dynamic Changes in Extremes Across Scales

Changes in weather and climate extremes are determined by local exchanges in heat, moisture, and other related quantities 
(thermodynamic changes) and those associated with atmospheric and oceanic motions (dynamic changes). While thermodynamic and 
dynamic processes are interconnected, considering them separately helps to disentangle the roles of different processes contributing 
to changes in climate extremes (e.g., Shepherd, 2014). 

Temperature extremes
An increase in the concentration of greenhouse gases in the atmosphere leads to the warming of tropospheric air and the Earth’s 
surface. This direct thermodynamic effect leads to warmer temperatures everywhere, with an increase in the frequency and intensity 
of warm extremes, and a decrease in the frequency and intensity of cold extremes. The initial increase in temperature leads to other 
thermodynamic responses and feedbacks affecting the atmosphere and the surface. These include an increase in the water vapour 
content of the atmosphere (water vapour feedback, see Section 7.4.2.2) and a change in the vertical profile of temperature (lapse rate 
feedback, see Section 7.4.2.2). While the water vapour feedback always amplifies the initial temperature increases (positive feedback), 
the lapse rate feedback amplifies near-surface temperature increases (positive feedback) in mid- and high latitudes but reduces 
temperature increases (negative feedback) in tropical regions (Pithan and Mauritsen, 2014). 

Thermodynamic responses and feedbacks also occur through surface processes. For instance, observations and model simulations 
show that temperature increases, including extreme temperatures, are amplified in areas where seasonal snow cover is reduced due 
to decreases in surface albedo (see Section 11.3.1). In some mid-latitude areas, temperature increases are amplified by the higher 
atmospheric evaporative demand (Fu and Feng, 2014; Vicente-Serrano et al., 2020a) that results in a drying of soils in some regions 
(Section 11.6), leading to increased sensible heat fluxes (soil-moisture–temperature feedback, see Sections 11.1.6 and 11.3.1 for 
more background). Other thermodynamic feedback processes include changes in the water-use efficiency of plants under enhanced 
atmospheric carbon dioxide (CO2) concentrations that can reduce the overall transpiration, and thus also enhance temperature in 
projections (Sections 8.2.3.3, 11.1.6, 11.3 and 11.6).

Changes in the spatial distribution of temperatures can also affect temperature extremes by modifying the characteristics of weather 
patterns (e.g.,  Suarez-Gutierrez et al., 2020a). For example, a  robust thermodynamic effect of polar amplification is a  weakened 
north-south temperature gradient, which amplifies the warming of cold extremes in the Northern Hemisphere mid- and high latitudes 
because of the reduction of cold air advection (Holmes et al., 2015; Schneider et al., 2015; Gross et al., 2020). Much less robust is the 
dynamic effect of polar amplification (Section 7.4.4.1) and the reduced low-altitude meridional temperature gradient that has been 
linked to an increase in the persistence of weather patterns (e.g., heatwaves) and subsequent increases in temperature extremes 
(Cross-Chapter Box 10.1; Francis and Vavrus, 2012; Coumou et al., 2015, 2018; Mann et al., 2017). 

Precipitation extremes
Changes in temperature also control changes in water vapour through increases in evaporation and in the water-holding capacity of 
the atmosphere (Section 8.2.1). At the global scale, column-integrated water vapour content increases roughly following the Clausius–
Clapeyron (C-C) relation, with an increase of approximately 7% per 1°C of global-mean surface warming (Section 8.2.1). Nonetheless, 
at regional scales, water vapour increases differ from this C-C rate due to several reasons (Section 8.2.2), including a  change in 
weather regimes and limitations in moisture transport from the ocean, which warms more slowly than land (Byrne and O’Gorman, 
2018). Observational studies (Fischer and Knutti, 2016; Sun et al., 2021) have shown that the observed rate of increased precipitation 
extremes is similar to the C-C rate at the global scale. Climate model projections show that the increase in water vapour leads to 
robust increases in precipitation extremes everywhere, with a magnitude that varies between 4% and 8% per 1°C of surface warming 
(thermodynamic contribution, Box 11.1, Figure 1b). At regional scales, climate models show that the dynamic contribution (Box 11.1, 
Figure 1c) can be substantial and strongly modify the projected rate of change of extreme precipitation (Box 11.1, Figure 1a) with large 
regions in the subtropics showing robust reductions and other areas (e.g., equatorial Pacific) showing robust amplifications (Box 11.1, 
Figure 1c). However, the dynamic contributions show large differences across models and are more uncertain than thermodynamic 
contributions (Box 11.1, Figure 1c; Shepherd, 2014; Trenberth et al., 2015; Pfahl et al., 2017). 

Dynamic contributions can occur in response to changes in the vertical and horizontal distribution of temperature (thermodynamics) 
and can affect the frequency and intensity of synoptic and subsynoptic phenomena, including tropical cyclones, extratropical cyclones, 
fronts, mesoscale-convective systems and thunderstorms. For example, the poleward shift and strengthening of the Southern 
Hemisphere mid-latitude storm tracks (Section 4.5.1) can modify the frequency or intensity of extreme precipitation. However, the 
precise way in which dynamic changes will affect precipitation extremes is unclear due to several competing effects (Shaw et al., 2016; 
Allan et al., 2020).
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Box 11.1 (continued)

Extreme precipitation can also be enhanced by dynamic responses and feedbacks occurring within storms that result from the extra 
latent heat released from the thermodynamic increases in moisture (Lackmann, 2013; Willison et al., 2013; Marciano et al., 2015; 
Nie et al., 2018; Mizuta and Endo, 2020). The extra latent heat released within storms has been shown to increase precipitation 
extremes by strengthening convective updrafts and the intensity of the cyclonic circulation (e.g., Molnar et al., 2015; Nie et al., 2018), 
although weakening effects have also been found in mid-latitude cyclones (e.g., Kirshbaum et al., 2017). Additionally, the increase 
in latent heat can also suppress convection at larger scales due to atmospheric stabilization (Nie et al., 2018; Tandon et al., 2018; 
Kendon et al., 2019). As these dynamic effects result from feedback processes within storms where convective processes are crucial, 
their proper representation might require improving the horizontal/vertical resolution, the formulation of parametrizations, or both, 
in current climate models (i.e., Kendon et al., 2014; Westra et al., 2014; Ban et al., 2015; Meredith et al., 2015; Prein et al., 2015; 
Nie et al., 2018).

Droughts
Droughts are also affected by thermodynamic and dynamic processes (Sections 8.2.3.3 and 11.6). Thermodynamic processes affect 
droughts by increasing atmospheric evaporative demand (Martin, 2018; Gebremeskel Haile et al., 2020; Vicente-Serrano et al., 
2020a) through changes in air temperature, radiation, wind speed, and relative humidity. Dynamic processes affect droughts through 
changes in the occurrence, duration and intensity of weather anomalies, which are related to precipitation and the amount of sunlight 
(Section 11.6). While at mospheric evaporative demand increases with warming, regional changes in aridity are affected by increasing 
land–ocean warming contrast, vegetation feedbacks and responses to rising CO2 concentrations, and dynamic shifts in the location of 
the wet and dry parts of the atmospheric circulation in response to climate change, as well as internal variability (Byrne and O’Gorman, 
2015; Kumar et al., 2015; Allan et al., 2020).

In summary, both thermodynamic and dynamic processes are involved in the changes of extremes in response to warming. 
Anthropogenic forcing (e.g., increases in greenhouse gas concentrations) directly affects thermodynamic variables, including overall 
increases in high temperatures and atmospheric evaporative demand, and regional changes in atmospheric moisture, which intensify 
heatwaves, droughts and heavy precipitation events when they occur (high confi dence). Dynamic processes are often indirect responses 
to thermodynamic changes, are strongly affected by internal climate variability, and are also less well understood. As such, there is low 
confi dence in how dynamic changes affect the location and magnitude of extreme events in a warming climate.

Change in annual maximum daily precipitation
(a) Total change (b) Thermodynamic contribution (c) Dynamic contribution

-15  -12    -9   -6     -3    -1     1     3     6      9    12   15
Change per °C global warming (% °C-1)

Colour
Low model agreement
High model agreement

Box 11.1, Figure 1: Multi-model Coupled Model Intercomparison Project Phase 5 (CMIP5) mean fractional changes (in % per degree of warming). 
(a)  changes in annual maximum precipitation (Rx1day); (b) changes in Rx1day due to the thermodynamic contribution; and (c) changes in Rx1day due to the dynamic 
contribution estimated as the difference between the total changes and the thermodynamic contribution. Changes were derived from a linear regression for the period 
1950–2100. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models (n=22) agree 
on the sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the 
simple approach, please refer to the Cross-Chapter Box Atlas 1. A detailed description of the estimation of dynamic and thermodynamic contributions is given in Pfahl 
et al. (2017). Figure adapted from Pfahl et al. (2017), originally published in Nature Climate Change/Springer Nature. Further details on data sources and processing 
are available in the chapter data table (Table 11.SM.9). 
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11.1.5 Effects of Large-scale Circulation 
on Changes in Extremes

Atmospheric large-scale circulation patterns and associated 
atmospheric dynamics are important determinants of the regional 
climate (Chapter 10). As a result, they are also important to the magnitude, 
frequency, and duration of extremes (Box 11.4). Aspects of changes in 
large-scale circulation patterns are assessed in Chapters 2, 3, 4 and 8, 
and representative atmospheric and oceanic modes are described in 
Annex IV. This subsection provides some general concepts, through 
a couple of examples, on why the uncertainty in the response of large-
scale circulation patterns to external forcing can cascade to uncertainty 
in the response of extremes to external forcings. Details for specific 
types of extremes are covered in the relevant subsections. For example, 
the occurrence of the El Niño–Southern Oscillation (ENSO) influences 
precipitation regimes in many areas, favouring droughts in some regions 
and heavy rains in others (Box 11.4). The extent and strength of the Hadley 
circulation influences regions where tropical and extratropical cyclones 
occur, with important consequences for the characteristics of extreme 
precipitation, drought, and winds (Section 11.7). Changes in circulation 
patterns associated with land–ocean heat contrast, which affect the 
monsoon circulations (Section 8.4.2.4), lead to heavy precipitation along 
the coastal regions in East Asia (Freychet et al., 2015). As a result, changes 
in the spatial and/or temporal variability of the atmospheric circulation in  
response to warming affect characteristics of weather systems such 
as tropical cyclones (Sharmila and Walsh, 2018), storm tracks (Shaw 
et al., 2016), and atmospheric rivers (Section 11.7; Waliser and Guan, 
2017). Changes in weather systems come with changes in the frequency 
and intensity of extreme winds, extreme temperatures, and extreme 
precipitation, on the backdrop of thermodynamic responses of extremes 
to warming (Box 11.1). Floods are also affected by large-scale circulation 
modes, including ENSO, the North Atlantic Oscillation (NAO), the Atlantic 
Multi-decadal Variability (AMV), and the Pacific Decadal Variability (PDV) 
(Kundzewicz et al., 2018; Annex IV). Aerosol forcing, through changes 
in patterns of sea surface temperatures (SSTs), also affects circulation 
patterns and tropical cyclone activities (Takahashi et al., 2017).

In general, changes in atmospheric large-scale circulation due to 
external forcing are uncertain, but there are some robust changes 
(Sections 2.3.1.4 and 8.2.2.2). Among them, there has been a very likely 
widening of the Hadley circulation since the 1980s and the extratropical 
jets and cyclone tracks have likely been shifting poleward since the 
1980s (Section  2.3.1.4). The poleward expansion affects drought 
occurrence in some regions (Section  11.6), and results in poleward 
shifts of tropical cyclones and storm tracks (Sections 11.7.1 and 
11.7.2). Although it is very likely that the amplitude of ENSO variability 
will not robustly change over the 21st century (Section 4.3.3.2), the 
frequency of extreme ENSO events (Box 11.4), defined by precipitation 
threshold, is projected to increase with global warming (Section 6.5 
of SROCC). This would have implications for projected changes in 
extreme events affected by ENSO, including droughts over wide areas 
(Section 11.6; Box 11.4) and tropical cyclones (Section 11.7.1). A case 
study is provided for extreme ENSO events in 2015–2016 in Box 11.4 
to highlight the influence of ENSO on extremes. 

In summary, large-scale atmospheric circulation patterns are 
important drivers for local and regional extremes. There is overall low 
confidence about future changes in the magnitude, frequency, and 

spatial distribution of these patterns, which contributes to uncertainty 
in projected responses of extremes, especially in the near term. 

11.1.6 Effects of Regional-scale Processes and Forcings 
and Feedbacks on Changes in Extremes

At the local and regional scales, changes in extremes are strongly 
modulated by local and regional feedbacks (SRCCL, Jia et al., 2019; 
Seneviratne et al., 2013; Miralles et al., 2014a; Lorenz et al., 2016; 
Vogel et al., 2017), changes in large-scale circulation patterns 
(Section 11.1.5), and regional forcings such as changes in land use 
or aerosol concentrations (Chapters 3  and 7; Findell et al., 2017; 
Hirsch et al., 2017, 2018; Thiery et al., 2017; Z. Wang et al., 2017b). 
In some cases, such responses may also include non-local effects 
(e.g., de Vrese et al., 2016; Persad and Caldeira, 2018; Miralles et al., 
2019; Schumacher et al., 2019). Regional-scale forcing and feedbacks 
often affect temperature distributions asymmetrically, with generally 
higher effects for the hottest percentiles (Section 11.3). 

Land use can affect regional extremes, in particular hot extremes, 
in several ways (high confidence). This includes effects of land 
management (e.g.,  cropland intensification, irrigation, double 
cropping) as well as of land cover changes (deforestation; Sections 
11.3.2 and 11.6). Some of these processes are not well represented 
(e.g.,  effects of forest cover on diurnal temperature cycle) or not 
integrated (e.g.,  irrigation) in climate models (Sections 11.3.2 and 
11.3.3). Overall, the effects of land-use forcing may be particularly 
relevant in the context of low-emissions scenarios, which include 
large land-use modifications, for instance those associated with the 
expansion of biofuels, bioenergy with carbon capture and storage, 
or re-/afforestation to ensure negative emissions, as well as with the 
expansion of food production (e.g., SR1.5, Chapter 3; Cross-Chapter 
Box 5.1 in this Report; van Vuuren et al., 2011; Hirsch et al., 2018). 
There are also effects on the water cycle through freshwater use 
(Section 11.6 and Cross-Chapter Box 5.1).

Aerosol forcing also has a strong regional footprint associated with 
regional emissions, which affects temperature and precipitation 
extremes (high confidence) (Sections 11.3 and 11.4). From around the 
1950s to 1980s, enhanced aerosol loadings led to regional cooling 
due to decreased global solar radiation (‘global dimming’) which 
was followed by a phase of ‘global brightening’ due to a reduction 
in aerosol loadings (Chapters 3 and 7; Wild et al., 2005). King et al. 
(2016b) show that aerosol-induced cooling delayed the timing of 
a significant human contribution to record-breaking heat extremes in 
some regions. However, the decreased aerosol loading since the 1990s 
has led to an accelerated warming of hot extremes in some regions. 
Based on Earth system model (ESM) simulations, Dong et al. (2017) 
suggest that a  substantial fraction of the warming of the annual 
hottest days in Western Europe since the mid-1990s has been due to 
decreases in aerosol concentrations in the region. Dong et al. (2016b) 
also identify non-local effects of decreases in aerosol concentrations 
in Western Europe, which they estimate played a dominant role in 
the warming of the hottest daytime temperatures in north-east Asia 
since the mid-1990s, via induced coupled atmosphere–land surface 
and cloud feedbacks, rather than a direct impact of anthropogenic 
aerosol changes on cloud condensation nuclei. 
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In addition to regional forcings, regional feedback mechanisms can 
also substantially affect extremes (high confi dence) (Sections 11.3, 
11.4 and 11.6). In particular, soil moisture feedbacks play an important 
role for extremes in several mid-latitude regions, leading to a marked 
additional warming of hot extremes compared to mean global warming 
(Seneviratne et al., 2016; Bathiany et al., 2018; Miralles et al., 2019), 
which is superimposed on the known land–sea contrast in mean 
warming (Vogel et al., 2017). Soil moisture–atmosphere feedbacks 
also affect drought development (Section 11.6). Additionally, effects of 
land surface conditions on circulation patterns have also been reported 
(Koster et al., 2016; Sato and Nakamura, 2019). These regional feedbacks 
are also associated with substantial spread in models (Section 11.3), 
and contribute to the identifi ed higher spread of regional projections of 
temperature extremes as a function of global warming, compared with 
the spread resulting from the differences in projected global warming 
(global transient climate responses) in climate models (Seneviratne 
and Hauser, 2020). In addition, there are also feedbacks between soil 
moisture content and precipitation occurrence, generally characterized 
by negative spatial feedbacks and positive local feedbacks (Tay lor 
et al., 2012; Guillod et al., 2015). Climate model projections suggest 
that these feedbacks are relevant for projected changes in heavy 
precipitation (Seneviratne et al., 2013). However, there is evidence that 
climate models do not capture the correct sign of the soil moisture–
precipitation feedbacks in several regions, in particular spatially, and/
or in some cases also temporally (Tayl or et al., 2012; Moon et al., 2019). 
In the Northern Hemisphere high latitudes, the snow- and ice-albedo 
feedback, along with other factors, is projected to largely amplify 
temperature increases (e.g., Pithan and Mauritsen, 2014), although the 
effect on temperature extremes is still unclear. It also remains unclear 
whether snow-albedo feedbacks in mountainous regions might have 
an effect on temperature and precipitation extremes (e.g., Gobiet et al., 

2014). However, these feedbacks play an important role in projected 
changes in high-latitude warming (Hall and Qu, 2006), and, in 
particular, in changes in cold extremes in these regions (Section 11.3).

Finally, extreme events may also regionally amplify one another. 
For example, this is the case for heatwaves and droughts, with high 
temperatures and stronger radiative forcing leading to drying tendencies 
on land due to increased evapotranspiration (Section 11.6), and drier 
soils then inducing decreased evapotranspiration and higher sensible 
heat fl ux and hot temperatures (Box 11.1, Section 11.8; Seneviratne 
et al., 2013; Miralles et al., 2014a; Vogel et al., 2017; Zscheischler and 
Seneviratne, 2017; S. Zhou et al., 2019; Kong et al., 2020). 

In summary, regional forcings and feedbacks  – in particular those 
associated with land use and aerosol forcings – and soil-moisture–
temperature, soil moisture–precipitation, and snow/ice–albedo–
temperature feedbacks, play an important role in modulating 
regional changes in extremes. These can also lead to a  higher 
warming of extreme temperatures compared to mean temperature 
(high confi dence), and possibly cooling in some regions (medium 
confi dence). However, there is only medium confi dence in the 
representation of the associated processes in state-of-the-art ESMs.

11.1.7 Global-scale Synthesis

Tables 11.1 and 11.2 provide a synthesis for observed and attributed 
changes in extremes, and projected changes in extremes, respectively, 
at different levels of global warming. This synthesis assessment 
focuses on the assessed range of observed and projected changes. 
In this chapter, the assessed likely range in a  projection typically 
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Figure 11.7 | Projected changes in the frequency of extreme precipitation events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative to the 1850–1900 baseline. Extreme precipitation is defi ned 
as the annual maximum daily precipitation (Rx1day) that was exceeded on average once during a 10-year period (10-year event, blue) and once during a 50-year period (50-year event, orange) during the 1850–1900 base period. Results 
are shown for the global land area and the AR6 regions. For each box plot, the horizontal line and the box represent the median and central 66% uncertainty range, respectively, of the frequency changes across the multi-model ensemble, 
and the ‘whiskers’ extend to the 90% uncertainty range. The dotted line indicates no change in frequency. The results are based on the multi-model ensemble from simulations of global climate models contributing to the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) under different Shared Socio-economic Pathway forcing scenarios. Adapted from Li et al. (2021). Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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corresponds to the 90% range of the multi-model ensemble spread 
to take into account other sources of uncertainty, unless stated 
otherwise. Some low-likelihood, high-impact scenarios that can be of 
high relevance are addressed in Box 11.2.

Building on the assessments from Tables 11.1 and 11.2, Figure 11.5 
provides a synthesis on the level of confidence in the attribution and 
projection of changes in extremes. In the case where the signal in 
the observations is still relatively weak but the physical processes 
underlying the changes in extremes in response to human forcing 
are well understood, confidence in the projections would be higher 
than in the attribution because of strengthening in the signal with 
warming. But, when the observed signal is already strong and when 
observational evidence is consistent with model simulated responses, 

Table 11.1 | Synthesis table on observed changes in extremes and contribution by human influence. Note that observed changes in marine extremes are assessed 
in Cross-Chapter Box 9.1. 

Phenomenon and Direction 
of Trend

Observed/Detected Trends Since 1950  
(for +0.5°C global warming or higher)

Human Contribution to the Observed Trends Since 
1950 (for +0.5°C global warming or higher) 

Warmer and/or more frequent hot days 
and nights over most land areas

Warmer and/or fewer cold days and nights 
over most land areas

Warm spells/heatwaves: increases in 
frequency or intensity over most land areas

Cold spells/cold waves: decreases in 
frequency or intensity over most land areas

Virtually certain on global scale {11.3}

Continental-scale evidence:
Asia, Australasia, Europe, North America: Very likely 
Central and South America: High confidence
Africa: Medium confidence
{11.3, 11.9}

Extremely likely main contributor on global scale {11.3}

Continental-scale evidence:
North America, Europe, Australasia, Asia: Very likely 
Central and South America: High confidence
Africa: Medium confidence 
{11.3, 11.9}

Heavy precipitation events: increase in 
the frequency, intensity, and/or amount 
of heavy precipitation

Likely on global scale, over majority of land regions with good 
observational coverage {11.3}

Continental-scale evidence:
Asia, Europe, North America: Likely
Africa, Australasia, Central and South America: Low confidence
{11.3, 11.9}

Likely main contributor to the observed intensification of heavy 
precipitation in land regions on global scale.
{11.3}

Continental-scale evidence:
Asia, Europe, North America: Likely 
Africa, Australasia, Central and South America: Low confidence
{11.3, 11.9}

Increases in agricultural and ecological 
drought events

Medium confidence some regions {11.6, 11.9}

Increasing trends in agricultural and ecological droughts 
have been observed in AR6 regions on all continents 
(medium confidence) {11.6, 11.9}

Medium confidence some regions
{11.6, 11.9}

Increase in precipitation associated 
with tropical cyclones (TCs)

Medium confidence
{11.7}

High confidence
{11.7}

Increase in likelihood that a TC will 
be at major TC intensity (Cat. 3–5)

Likely
{11.7}

Medium confidence
{11.7}

Changes in frequency of rapidly 
intensifying tropical cyclones

Likely
{11.7}

Medium confidence
{11.7}

Poleward migration of tropical cyclones 
in the western Pacific

Medium confidence 
{11.7}

Medium confidence 
{11.7}

Decrease in TC forward motion 
over the USA

It is likely that TC translation speed has slowed over  
the USA since 1900. 
{11.7}

It is more likely than not that the slowdown of TC translation 
speed over the USA has contributions from anthropogenic forcing.
{11.7}

Severe convective storms (tornadoes, hail, 
rainfall, wind, lightning)

Low confidence in past trends in hail and winds and tornado 
activity due to short length of high-quality data records. {11.7}

Low confidence
{11.7}

Increase in compound events

Likely increase in the probability of compound events.

High confidence that concurrent heatwaves and droughts are 
becoming more frequent under enhanced greenhouse gas forcing 
at global scale. 

Medium confidence that fire weather, i.e. compound hot, dry 
and windy events, have become more frequent in some regions. 

Medium confidence that compound flooding risk has increased 
in some locations.

{11.8}

Likely that human-induced climate change has increased the 
probability of compound events.

High confidence that human influence has increased the frequency 
of concurrent heatwaves and droughts. 

Medium confidence that human influence has increased fire 
weather occurrence in some regions. 

Low confidence that human influence has contributed to changes 
in compound events leading to flooding.

{11.8}
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confidence in the projection may be lower than that in attribution if 
certain physical processes could be expected to behave differently 
in a  much warmer world and under much higher greenhouse gas 
forcing, and in particular if such a behaviour is poorly understood.

Further synthesis for regional assessments are provided in 
Figure  11.4 (event attribution), Figure  11.6 (projected change 
in hot temperature extremes) and Figure 11.7 (projected changes in  
precipitation extremes). A  synthesis on regional assessments for 
observed, attributed and projected changes in extremes is provided 
in Section 11.9 for all AR6 reference regions (see Section 1.4.5 and 
Figures 1.18 and Atlas.2 for definitions of AR6 regions).

Table 11.2 | Synthesis table on projected changes in extremes. Note that projected changes in marine extremes are assessed in Chapter 9 and Cross-Chapter Box 9.1 
(marine heatwaves). Assessments are provided compared to pre-industrial conditions.

Phenomenon and 
Direction of Trend

Projected Changes at 
+1.5ºC Global Warming

Projected Changes at  
+2°C Global Warming

Projected Changes at  
+4°C Global Warming

Warmer and/or more frequent 
hot days and nights over most 
land areas

Warmer and/or fewer cold days 
and nights over most land areas

Warm spells/heatwaves; increases 
in frequency or intensity over 
most land areas

Cold spells/cold waves: decreases 
in frequency or intensity over 
most land areas

Virtually certain on global scale

Extremely likely on all continents 

Highest increase of temperature of hottest 
days is projected in some mid-latitude and 
semi-arid regions, and the South American 
Monsoon region, at about 1.5 times to twice 
the rate of global warming (high confidence) 
{11.3, Figure 11.3}

Highest increase of temperature of coldest 
days is projected in Arctic regions, at about 
three times the rate of global warming 
(high confidence) 
{11.3}

Continental-scale projections:
Extremely likely: Africa, Asia, Australasia, 
Central and South America, Europe, 
North America
{11.3, 11.9}

Virtually certain on global scale

Virtually certain on all continents

Highest increase of temperature of hottest 
days is projected in some mid-latitude and 
semi-arid regions, and the South American 
Monsoon region, at about 1.5 times to twice 
the rate of global warming (high confidence)  
{11.3, Figure 11.3}

Highest increase of temperature of coldest 
days is projected in Arctic regions, at about 
three times the rate of global warming 
(high confidence) 
{11.3}

Continental-scale projections:
Virtually certain: Africa, Asia, Australasia, 
Central and South America, Europe, 
North America
{11.3, 11.9}

Virtually certain on global scale

Virtually certain on all continents

Highest increase of temperature of hottest 
days is projected in some mid-latitude and 
semi-arid regions, and the South American 
Monsoon region, at about 1.5 times to twice 
the rate of global warming (high confidence) 
{11.3, Figure 11.3}

Highest increase of temperature of coldest 
days is projected in Arctic regions, at about 
three times the rate of global warming 
(high confidence) 
{11.3}

Continental-scale projections:
Virtually certain: Africa, Asia, Australasia, 
Central and South America, Europe, 
North America
{11.3, 11.9}

Heavy precipitation events: 
increase in the frequency, 
intensity, and/or amount 
of heavy precipitation 

High confidence that increases take place 
in most land regions 
{11.4}

Very likely: Asia, North America
Likely: Africa, Europe 
High confidence: Central and South America
Medium confidence: Australasia
{11.4, 11.9}

Likely that increases take place in most 
land regions 
{11.4}

Extremely likely: Asia, North America
Very likely: Africa, Europe
Likely: Australasia, Central and South America
{11.4, 11.9}

Very likely that increases take place in most 
land regions 
{11.4}

Virtually certain: Africa, Asia, North America 
Extremely likely: Central and South America, 
Europe 
Very likely Australasia
{11.4, 11.9}

Agricultural and ecological 
droughts: increases in intensity 
and/or duration of drought events 

More regions affected by increases in 
agricultural and ecological droughts 
compared to observed changes 
(high confidence). {11.6, 11.9}

Decreased precipitation is going to increase 
the severity of drought in some regions; 
atmospheric evaporative demand will 
continue to increase compared to pre-
industrial conditions and lead to further 
increases in agricultural and ecological 
droughts due to increased evapotranspiration 
in some regions. (high confidence)
{11.6, 11.9}

More regions affected by increases in 
agricultural and ecological droughts than at 
1.5°C of global warming (high confidence). 
{11.6, 11.9}

Decreased precipitation is going to increase 
the severity of drought in some regions; 
atmospheric evaporative demand will 
continue to increase compared to pre-
industrial conditions and lead to further 
increases in agricultural and ecological 
droughts due to increased evapotranspiration 
in some regions. (high confidence)
{11.6, 11.9}

More regions affected by increases in 
agricultural and ecological droughts than 
at 2°C of global warming (very likely). 
{11.6, 11.9}

Decreased precipitation is going to increase 
the severity of drought in several regions; 
atmospheric evaporative demand will 
continue to increase compared to pre-
industrial conditions and lead to further 
increases in agricultural and ecological 
droughts due to increased evapotranspiration 
in several regions. (high confidence)
{11.6, 11.9}

Increase in precipitation 
associated with tropical 
cyclones (TCs)

High confidence in a projected increase of TC 
rain rates at the global scale with a median 
projected increase due to human emissions 
of about 11%. {11.7}

Medium confidence that rain rates will 
increase in every basin. {11.7}

High confidence in a projected increase of TC 
rain rates at the global scale with a median 
projected increase due to human emissions 
of about 14%. {11.7}

Medium confidence that rain rates will 
increase in every basin. {11.7}

High confidence in a projected increase of TC 
rain rates at the global scale with a median 
projected increase due to human emissions 
of about 28%. {11.7}

Medium confidence that rain rates will 
increase in every basin. {11.7}

Increase in mean TC lifetime-
maximum wind speed (intensity)

Medium confidence 
{11.7}

High confidence 
{11.7}

High confidence 
{11.7}
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Phenomenon and 
Direction of Trend

Projected Changes at 
+1.5ºC Global Warming

Projected Changes at  
+2°C Global Warming

Projected Changes at  
+4°C Global Warming

Increase in likelihood that a TC 
will reach major TC intensity 
(Category 4–5)

High confidence for an increase in the 
proportion of TCs that reach the strongest 
(Category 4–5) levels. The median projected 
increase in this proportion is about 10%. 
{11.7}

High confidence for an increase in the 
proportion of TCs that reach the strongest 
(Category 4–5) levels. The median projected 
increase in this proportion is about 13%.
{11.7}

High confidence for an increase in the 
proportion of TCs that reach the strongest 
(Category 4–5) levels. The median projected 
increase in this proportion is about 20%.
{11.7}

Severe convective storms

High confidence that the average and maximum rain rates associated with severe convective storms increase in some regions, including the 
USA. High confidence that convective available potential energy (CAPE) increases in response to global warming in the tropics and subtropics, 
suggesting more favourable environments for severe convective storms. Medium confidence that the frequency of spring severe convective storms 
is projected to increase in the USA, leading to a lengthening of the severe convective storm season. {11.7}

Increase in compound events 
(frequency, intensity)

Likely that probability of compound events will continue to increase with global warming.

High confidence that concurrent heatwaves and droughts will continue to increase under higher levels of global warming, with higher frequency/
intensity with every additional 0.5°C of global warming. 

High confidence that fire weather, (i.e. compound hot, dry and windy events), will become more frequent in some regions at higher levels 
of global warming. 

High confidence that compound flooding at the coastal zone will increase under higher levels of global warming. {11.8}

Box 11.2 | Changes in Low-likelihood, High-impact Extremes

The SREX (Chapter 3) assigned low confidence to changes in low-likelihood, high-impact (LLHI) events (termed ‘low-probability high-
impact scenarios‘). Such events are often not anticipated and thus sometimes referred to as ‘surprises’. There are several types of LLHI 
events. Abrupt changes in mean climate are addressed in Chapter 4. Unanticipated LLHI events can either result from tipping points 
in the climate system (Section 1.4.4.3), such as the shutdown of the Atlantic thermohaline circulation (SROCC Chapter 6; Collins 
et al., 2019) or the drydown of the Amazonian rainforest (SR1.5 Chapter 3, Hoegh-Guldberg et al., 2018; Drijfhout et al., 2015), or 
from uncertainties in climate processes, including climate feedbacks, that may enhance or damp extremes either related to global or 
regional climate responses (Seneviratne et al., 2018a; Sutton, 2018). The low confidence does not by itself exclude the possibility of 
such events occuring, rather it indicates a poor state of knowledge. Such outcomes, while improbable, could be associated with very 
high impacts, and are thus highly relevant from a risk perspective (see Section 1.4.3 and Box 11.4; Sutton, 2018, 2019). Alternatively, 
high impacts can occur when different extremes occur at the same time, or in short succession at the same location, or in several 
regions with shared vulnerability (e.g., food-basket regions Gaupp et al., 2019). These ‘compound events’ are assessed in Section 11.8, 
and Box 11.4 provides a case study example. 

Difficulties persist in determining the likelihood of occurrence and time frame of potential tipping points and LLHI events. However, 
new literature has emerged on unanticipated and LLHI events. There are some events that are sufficiently rare that they have not been 
observed in meteorological records, but whose occurrence is nonetheless plausible within the current state of the climate system – 
see examples below and in McCollum et al. (2020). The rare nature of such events and the limited availability of relevant data makes 
it difficult to estimate their occurrence probability and thus gives little evidence on whether to include such hypothetical events in 
planning decisions and risk assessments. The estimation of such potential surprises is often limited to events that have historical 
analogues (including before the instrumental records began, Wetter et al., 2014), albeit the magnitude of the event may differ. 
Additionally, there is also a limitation of available resources to exhaust all plausible trajectories of the climate system. As a result, there 
will still be events that cannot be anticipated. These events can be surprises to many in that the events have not been experienced, 
although their occurrence could be inferred by statistical means or physical modelling approaches (Chen et al., 2017; van Oldenborgh 
et al., 2017; Harrington and Otto, 2018a). Another approach focusing on the estimation of low-probability events and of events 
whose likelihood of occurrence is unknown consists in using physical climate models to create a physically self-consistent storyline of 
plausible extreme events and assessing their impacts and driving factors in past (Section 11.2.3) or future conditions (Section 11.2.4) 
(Hazeleger et al., 2015; Shepherd, 2016; Zappa and Shepherd, 2017; Cheng et al., 2018; Shepherd et al., 2018; Sutton, 2018; Schaller 
et al., 2020; Wehrli et al., 2020). 

In many parts of the world, observational data are limited to 50–60 years. This means that the chance to observe an extreme event 
at a particular location that occurs once in several hundred or more years is small. Thus, when a very extreme event occurs, it becomes 
a  surprise to many (Bao et al., 2017; McCollum et al., 2020), and very rare events are often associated with high impacts (van 
Oldenborgh et al., 2017; Philip et al., 2018b; Tozer et al., 2020). Attributing and projecting very rare events in a particular location by 
assessing their likelihood of occurrence within the same larger region and climate thus provides another way to make quantitative 
assessments regarding events that are extremely rare locally. Some examples of such events include: 
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• Hurricane Harvey, that made landfall in Houston, TX in August 2017 (Section 11.7.1.4.)
• The 2010–2011 extreme floods in Queensland, Australia (Christidis et al., 2013a)
• The 2018 concurrent heatwaves across the Northern Hemisphere (Box 11.4)
• Tropical Cyclone Idai in Mozambique (Cross-Chapter Box: Disaster in WGII AR6 Chapter 4)
• The California fires in 2018 and 2019
• The 2019–2020 Australia fires (Cross-Chapter Box: Disaster in WGII AR6 Chapter 4)

One factor making such events hard to anticipate is the fact that we now live in a non-stationary climate, and that the framework of 
reference for adaptation is continuously moving. As an example, the concurrent heatwaves that occurred across the Northern Hemisphere 
in the summer of 2018 were considered very unusual and were unprecedented given the total area that was concurrently affected (Drouard 
et al., 2019; Kornhuber et al., 2019; Toreti et al., 2019; Vogel et al., 2019); however, the probability of this event under 1°C global warming 
was found to be about 16% (Vogel et al., 2019), which is not particularly low. Similarly, the 2013 summer temperature over eastern 
China was the hottest on record at the time, but it had an estimated recurrence interval of about four years in the climate of 2013 
(Sun et al., 2014). Furthermore, when other aspects of the risk, vulnerability, and exposure are historically high or have recently increased 
(see WGII, Chapter 16, Section 16.4), relatively moderate extremes can have very high impacts (Otto et al., 2015b; Philip et al., 2018b). 
As warming continues, the climate moves further away from its historical state we are familiar with, resulting in an increased likelihood of 
unprecedented events and surprises. This is particularly the case under high global warming levels – for example, the climate of the late 
21st century under high-emissions scenarios, above 4°C of global warming (Cross-Chapter Box 11.1).

Another factor highlighted in Section 11.8 and Box 11.4 making events high-impact and difficult to anticipate is that several locations 
under moderate warming levels could be affected simultaneously, or very repeatedly by different types of extremes (Mora et al., 2018; 
Gaupp et al., 2019; Vogel et al., 2019). Box 11.4 shows that concurrent events at different locations, which can lead to major impacts 
across the world, can also result from the combination of anomalous circulation or natural variability (e.g., El Niño–Southern Oscillation) 

 
Box 11.2 (continued)

Box 11.2, Table 1 | Examples of changes in low-likelihood, high-impact extreme conditions (single extremes, compound events) at different 
global warming levels.

+1°C (Present-day) +1.5°C +2°C +3°C and Higher

Risk ratio for annual hottest daytime temperature (TXx) 
with 1% of probability under present-day warming 
(+1°C) (Kharin et al., 2018): Global land

1
3.3 (i.e., 230% 
higher probability)

8.2 (i.e., 720% 
higher probability)

Not assessed

Risk ratio for heavy precipitation events (Rx1day) with 
1% of probability under present-day warming (+1°C) 
(Kharin et al., 2018): Global land

1 
1.2 (i.e., 20% 
higher probability)

1.5 (i.e., 50% 
higher probability)

Not assessed

Number of 1–5 day duration extreme floods with 1% 
of probability under present-day warming (+1°C) (H. Ali 
et al., 2019) Indian subcontinent

Up to 3 in 
individual locations

Up to 5 in 
individual locations

2–6 in most locations
Up to 12 in individual 
locations (4°C)

Probability of ‘extreme extremes’ hot days with 1/1000 
probability at the end of the 20th century (Vogel et al., 
2020a): Global land

About 20 days 
over 20 years 
in most locations

About 50 days 
in 20 years in 
most locations

About 150 days 
in 20 years in 
most locations

About 500 days 
in 20 years in most 
locations (3°C)

Probability of co-occurrence in the same week of hot 
days with 1/1000 probability and dry days with 1/1000 
probability at the end of the 20th century (Vogel et al., 
2020a): Amazon

0% probability
About one week 
in 20 years

About 4 to 5 weeks 
in 20 years

More than 9 weeks 
in 20 years (3°C)

Projected soil moisture drought duration per year 
(Samaniego et al., 2018): Mediterranean region

41 days (+46% 
compared to the late 
20th century)

58 days (+107% 
compared to the late 
20th century)

71 days (+154% 
compared to the late 
20th century)

125 days (+346% 
compared to the late 
20th century) (3°C)

Increase in days exposed to dangerous extreme heat – 
measured in Health Heat Index (HHI) (Q. Sun et al., 2019) 
global land

Not assessed, baseline 
is 1981–2000

1.6 times higher risk of 
experiencing heat >40.6

2.3 times higher risk of 
experiencing heat >40.6

Around 80% of 
land area exposed to 
dangerous heat, tropical 
regions 1/3 of the year 
(4°C)

Increase in regional mean fire season length 
(Q. Sun et al., 2019; Xu et al., 2020) global land

Not assessed, baseline 
is 1981–2000

6.2 days 9.5 days About 50 days (4°C)
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patterns with amplification of resulting responses to human-induced global warming. Also multivariate extremes at single locations 
pose specific challenges to anticipation (Section 11.8), with low likelihoods in the current climate but the probability of occurrence of 
such compound events strongly increasing with increasing global warming levels (Vogel et al., 2020a). Therefore, in order to estimate 
whether, and at what level of global warming, very high impacts arising from extremes would occur, the spatial extent of extremes 
and the potential of compounding extremes need to be assessed. Sections 11.3, 11.4, 11.7 and 11.8 highlight increasing evidence that 
temperature extremes, higher intensity precipitation accompanying tropical cyclones, and compound events such as dry/hot conditions 
conducive to wildfire or storm surges resulting from sea level rise and heavy precipitation events, pose widespread threats to societies 
already at relatively low warming levels. Studies have already shown that the probability for some recent extreme events is so small in 
the undisturbed world that these events were extremely unlikely to occur without human influence (Section 11.2.4). Box 11.2, Table 1, 
provides examples of projected changes in LLHI extremes (single extremes, compound events) of potential relevance for impact and 
adaptation assessments showing that today’s very rare events can become commonplace in a warmer future.

In summary, the future occurrence of LLHI events linked to climate extremes is generally associated with low confidence, but cannot 
be excluded, especially at global warming levels above 4°C. Compound events, including concurrent extremes, are a factor increasing 
the probability of LLHI events (high confidence). With increasing global warming, some compound events with low likelihood in past 
and current climate will become more frequent, and there is a higher chance of historically unprecedented events and surprises (high 
confidence). However, even extreme events that do not have a particularly low probability in the present climate (at more than 1°C of 
global warming) can be perceived as surprises because of the pace of global warming (high confidence).

 
Box 11.2 (continued)

11.2 Data and Methods 

This section provides an assessment of observational data and 
methods used in the analysis and attribution of climate change 
specific to weather and climate extremes. It also introduces some 
concepts used in presenting future projections of extremes. Later 
sections (Sections 11.3–11.8) also provide additional assessments 
on relevant observational datasets and model validation specific to 
the type of extremes to be assessed. General background on climate 
modelling is provided in Chapters 4 and 10.

11.2.1 Definition of Extremes

In the literature, an event is generally considered extreme if the value 
of a variable exceeds (or lies below) a threshold. The thresholds have 
been defined in different ways, leading to differences in the meaning 
of extremes that may share the same name. For example, two sets 
of metrics for the frequency of hot/warm days have been used in 
the literature. One set counts the number of days when maximum 
daily temperature is above a relative threshold defined as the 90th or 
higher percentile of maximum daily temperature for the calendar day 
over a base period. An event based on such a definition can occur at 
any time of the year, and the impact of such an event would differ 
depending on the season. The other set counts the number of days 
in which maximum daily temperature is above an absolute threshold 
such as 35°C, because exceeding this temperature can sometimes 
cause health impacts (however, these impacts may depend on 
location and whether ecosystems and the population are adapted 
to such temperatures). While both types of hot extreme indices 
have been used to analyse changes in the frequency of hot/warm 
events, they represent different events that occur at different times 

of the year, possibly affected by different types of processes and 
mechanisms, and possibly also associated with different impacts. 

Changes in extremes have also been examined from two 
perspectives:  changes in the frequency for a  given magnitude of 
extremes; or changes in the magnitude for a particular return period 
(frequency). Changes in the probability of extremes (e.g., temperature 
extremes) depend on the rarity of the extreme event that is assessed, 
with a  larger change in probability associated with a  rarer event 
(e.g.,  Kharin et al., 2018). However, changes in the magnitude 
represented by the return levels of the extreme events may not be 
as sensitive to the rarity of the event. While the answers to the two 
different questions are related, their relevance may differ for distinct 
audiences. Conclusions regarding the respective contribution of 
greenhouse gas forcing to changes in magnitude versus frequency 
of extremes may also differ (Otto et al., 2012). Correspondingly, the 
sensitivity of changes in extremes to increasing global warming is 
also dependent on the definition of the considered extremes. In the 
case of temperature extremes, changes in magnitude have been 
shown to often depend linearly on global surface temperature 
(Seneviratne et al., 2016; Wartenburger et al., 2017), while changes in 
frequency tend to be nonlinear and can, for example, be exponential 
for increasing global warming levels (Fischer and Knutti, 2015; Kharin 
et al., 2018). When similar damage occurs once a  fixed threshold 
is exceeded, it is more important to ask a  question regarding 
changes in the frequency. But when the exceedance of this fixed 
threshold becomes a normal occurrence in the future, this can lead 
to a  saturation in the change of probability (Harrington and Otto, 
2018a). Also, if the impact of an event increases with the intensity 
of the event, it would be more relevant to examine changes in the 
magnitude. Finally, adaptation to climate change might change 
the  relevant thresholds over time, although such aspects are still 
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rarely integrated in the assessment of projected changes in extremes. 
Framing is considered when forming the assessments of this Chapter, 
including how extremes are defined and how the questions are asked 
in the literature.

11.2.2 Data

Studies of past and future changes in weather and climate extremes, 
and in the mean state of the climate, use the same original sources 
of weather and climate observations, including in situ observations, 
remotely sensed data, and derived data products such as reanalyses. 
Sections 2.3 and 10.2 assess various aspects of these data sources 
and data products from the perspective of their general use, and in 
the analysis of changes in the mean state of the climate in particular. 
Building on these previous chapters, this subsection highlights 
particular aspects that are related to extremes and are most relevant 
to the assessment of this Chapter. The SREX (Chapter 3, Seneviratne 
et al., 2012) and AR5 (Chapter 2, Hartmann et al., 2013) addressed 
critical issues regarding the quality and availability of observed data 
and their relevance for the assessment of changes in extremes. 

Extreme weather and climate events occur on time scales of 
hours (e.g.,  convective storms that produce heavy precipitation) 
to days (e.g.,  tropical cyclones, heatwaves), to seasons and years 
(e.g., droughts). A robust determination of long-term changes in these 
events can have different requirements for the spatial and temporal 
scales and sample size of the data. In general, it is more difficult 
to determine long-term changes for events of fairly large temporal 
duration, such as ‘megadroughts’ that last several years or longer 
(e.g., Ault et al., 2014), because of the limitations of the observational 
sample size. Literature that studies changes in extreme precipitation 
and temperature often uses indices representing specifics of extremes 
that are derived from daily precipitation and temperature values. 
Station-based indices would have the same issues as those for the 
mean climate regarding the quality, availability, and homogeneity of 
the data. For the purpose of constructing regional information and/
or for comparison with model outputs, such as model evaluation, 
and detection and attribution, these station-based indices are often 
interpolated onto regular grids. Two different approaches, involving 
two different orders of operation, have been used in producing such 
gridded datasets. 

In some cases, such as for the HadEX3 dataset (Dunn et al., 2020), 
indices of extremes are computed using time series directly derived 
from stations first, and are then gridded over the space. As the indices 
are computed at the station level, the gridded data products represent 
point estimates of the indices averaged over the spatial scale of the 
grid box. In other instances, daily values of station observations are 
first gridded (e.g.,  Contractor et al., 2020a), and the interpolated 
values can then be used to compute various indices. Depending on the 
station density, values for extremes computed from data gridded this 
way represent extremes of spatial scales anywhere from the size of 
the grid box to a point. In regions with high station density (e.g., North 
America, Europe), the gridded values are closer to extremes of area 
means and are thus more appropriate for comparisons with extremes 
estimated from climate model output, which is often considered 

to represent areal means (Chen and Knutson, 2008; Gervais et al., 
2014; Avila et al., 2015; Di Luca et al., 2020b). In regions with very 
limited station density (e.g., Africa), the gridded values are closer to 
point estimates of extremes. The difference in spatial scales among 
observational data products and model simulations needs to be 
carefully accounted for when interpreting the comparison among 
different data products. For example, the average annual maximum 
daily maximum temperature (TXx) over land computed from the 
original ERA-Interim reanalysis (at 0.75° resolution) is about 0.4°C 
warmer than that computed when the ERA-Interim dataset is 
upscaled to the resolution of 2.5° × 3.75° (Di Luca et al., 2020).

Extreme indices computed from various reanalysis data products have 
been used in some studies, but reanalysis extreme statistics have not 
been rigorously compared to observations (Donat et al., 2016a). 

In general, changes in temperature extremes from various reanalyses 
were most consistent with gridded observations after about 1980, 
but larger differences were found during the pre-satellite era (Donat 
et al., 2014b). Overall, lower agreement across reanalysis datasets 
was found for extreme precipitation changes, although temporal 
and spatial correlations against observations were found to be still 
significant. In regions with sparse observations (e.g., Africa and parts 
of South America), there is generally less agreement for extreme 
precipitation between different reanalysis products, indicating 
a  consequence of the lack of an observational constraint in these 
regions (Donat et al., 2014b, 2016a). More recent reanalyses, such as 
ERA5 (Hersbach et al., 2020), seem to have improved over previous 
products, at least over some regions (e.g., Mahto and Mishra, 2019; 
Gleixner et al., 2020; Sheridan et al., 2020). Caution is needed when 
reanalysis data products are used to provide additional information 
about past changes in these extremes in regions where observations 
are generally lacking. 

Satellite remote sensing data have been used to provide information 
about precipitation extremes because several products provide 
data at sub-daily resolution for precipitation, for example, Tropical 
Rainfall Measuring Mission (TRMM; Maggioni et al., 2016) and 
clouds, for example, Himawari (Bessho et al., 2016; Chen et al., 
2019). However, satellites do not observe the primary atmospheric 
state variables directly and polar orbiting satellites do not observe 
any given place at all times. Hence, their utility as a substitute for 
high-frequency (i.e., daily) ground-based observations is limited. For 
instance, Timmermans et al. (2019) found little relationship between 
the timing of extreme daily and five-day precipitation in satellite and 
gridded station data products over the USA. 
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Box 11.3 | Extremes in Paleoclimate Archives Compared to Instrumental Records

Examining extremes in pre-instrumental information can help to put events occurring in the instrumental record (referred to as 
‘observed’) in a longer-term context. This box focuses on extremes in the Common Era (CE, the last 2000 years), because there is 
generally higher confidence in pre-instrumental information gathered from the more recent archives from the Common Era than from 
earlier evidence. It addresses evidence of extreme events in paleoreconstructions, documentary evidence (such as grape harvest data, 
religious documents, newspapers, and logbooks) and model-based analyses, and whether observed extremes have or have not been 
exceeded in the Common Era. This box provides overviews of: (i) AR5 assessments; (ii) types of evidence assessed here; evidence of: 
(iii) droughts; (iv) temperature extremes; (v) paleofloods; and (vi) paleotempests; and (vii) a summary. 

Chapter 5 of AR5 (Masson-Delmotte et al., 2013) concluded with high confidence that droughts of greater magnitude and of longer 
duration than those observed in the instrumental period occurred in many regions during the preceding millennium. There was high 
confidence in evidence that floods during the past five centuries in northern and Central Europe, the western Mediterranean region, 
and eastern Asia were of a greater magnitude than those observed instrumentally, and medium confidence in evidence that floods 
in the Near East, India and Central North America were comparable to modern observed floods. While AR5 assessed 20th century 
summer temperatures compared to those reconstructed in the Common Era, it did not assess shorter duration temperature extremes.

Many factors affect confidence in information on pre-instrumental extremes. First, the geographical coverage of paleoclimate 
reconstructions of extremes is not spatially uniform (Smerdon and Pollack, 2016) and depends on both the availability of archives and 
records, which are environmentally dependent, and also the differing attention and focus from the scientific community. In Australia, 
for example, the paleoclimate network is sparser than for other regions, such as Asia, Europe and North America, and synthesized 
products rely on remote proxies and assumptions about the spatial coherence of precipitation between remote climates (Cook et al., 
2016c; Freund et al., 2017). Second, pre-instrumental evidence of extremes may be focused on understanding archetypal extreme 
events, such as the climatic consequences of the 1815 eruption of Mount Tambora, Indonesia (Veale and Endfield, 2016). These studies 
provide narrow evidence of extremes in response to specific forcings (M. Li et al., 2017) for specific epochs. Third, natural archives may 
provide information about extremes in one season only and may not represent all extremes of the same types. 

Evidence of shorter duration extreme event types, such as floods and tropical storms, is further restricted by the comparatively low 
chronological controls and temporal resolution (e.g., monthly, seasonal, yearly, multiple years) of most archives compared to the 
events (e.g., minutes to days). Natural archives may be sensitive only to intense environmental disturbances, and so only sporadically 
record short-duration or small spatial-scale extremes. Interpreting sedimentary records as evidence of past short-duration extremes is 
also complex and requires a clear understanding of natural processes (Wilhelm et al., 2019). For example, paleoflood reconstructions 
of flood recurrence and intensity produced from geological evidence (e.g., river and lake sediments), speleothems (Denniston and 
Luetscher, 2017), botanical evidence (e.g.,  flood damage to trees, or tree ring reconstructions), and floral and faunal evidence 
(e.g.,  diatom fossil assemblages) require understanding of sediment sources and flood mechanisms. Pre-instrumental records of 
tropical storm intensity and frequency (also called paleotempest records) derived from overwash deposits of coastal lake and marsh 
sediments are difficult to interpret. Many factors have an impact on whether disturbances are deposited in archives (Muller et al., 
2017) and deposits may provide sporadic and incomplete preservation histories (e.g., Tamura et al., 2018). 

Overall, the most complete pre-instrumental evidence of extremes occurs for long-duration, large spatial-scale extremes, such as for 
multi-year meteorological droughts or seasonal- and regional-scale temperature extremes. Additionally, more precise insights into 
recent extremes emerge where multiple studies have been undertaken, compared to the confidence in extremes reported at single sites 
or in single studies, which may not necessarily be representative of large-scale changes, or for reconstructions that synthesize multiple 
proxies over large areas (e.g., drought atlases). Multiproxy synthesis products combine paleoclimate temperature reconstructions 
and cover sub-continental- to hemispheric-scale regions to provide continuous records of the Common Era (e.g., Ahmed et al., 2013; 
Neukom et al., 2014 for temperature).

There is high confidence in the occurrence of long-duration and severe drought events during the Common Era for many locations, 
although their severity compared to recent drought events differs between locations and the lengths of reconstruction provided. 
Recent observed drought extremes in some regions – such as the eastern Mediterranean Levant (Cook et al., 2016a), California in the 
USA (Cook et al., 2014b; Griffin and Anchukaitis, 2014), and in the Andes (Garreaud et al., 2017; Domínguez-Castro et al., 2018) – do 
not have precedents within the multi-century periods reconstructed in these studies, in terms of duration and/or severity. In some 
regions (in south-western North America (Asmerom et al., 2013; Cook et al., 2015), the Great Plains region (Cook et al., 2004), the 
Middle East (Kaniewski et al., 2012), and China (Gou et al., 2015)), recent drought extremes may have been exceeded in the Common 
Era. In further locations, there is conflicting evidence for the severity of pre-instrumental droughts compared to observed extremes, 
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depending on the length of the reconstruction and the seasonal perspective provided (see Cook et al., 2016c; Freund et al., 2017 for 
Australia). There can also be differing conclusions for the severity, or even the occurrence, of specific individual pre-instrumental 
droughts when different evidence is compared (e.g., Wetter et al., 2014; Büntgen et al., 2015). 

There is medium confidence that the magnitudes of large-scale, seasonal-scale extreme high temperatures in observed records exceed 
those reconstructed over the Common Era in some locations, such as Central Europe. In one example, multiple studies have examined 
the unusualness of present-day European summer temperature records in a  long-term context, particularly in comparison to the 
exceptionally warm year of 1540 CE in Central Europe. Several studies indicate that recent extreme summers (2003 and 2010) in 
Europe have been unusually warm in the context of the last 500 years (Barriopedro et al., 2011; Wetter and Pfister, 2013; Wetter et al., 
2014; Orth et al., 2016b), or longer (Luterbacher et al., 2016). Others studies show that summer temperatures in Central Europe in 
1540 were warmer than the present-day (1966–2015) mean, but note that it is difficult to assess whether or not the 1540 summer 
was warmer than observed record extreme temperatures (Orth et al., 2016b). 

There is high confidence that the magnitude of floods over the Common Era exceeded observed records in some locations, including 
Central Europe and eastern Asia. Recent literature supports the AR5 assessments of floods (Masson-Delmotte et al., 2013). For example, 
high temporally resolved records provide evidence of Common Era floods exceeding the probable maximum flood levels in the Upper 
Colorado River, USA (Greenbaum et al., 2014) and peak discharges that are double gauge levels along the middle Yellow River, China 
(Liu et al., 2014). Further studies demonstrate pre-instrumental or early instrumental differences in flood frequency compared to 
the instrumental period, including reconstructions of high and low flood frequency in the European Alps (e.g., Swierczynski et al., 
2013; Amann et al., 2015) and Himalayas (Ballesteros Cánovas et al., 2017). The combination of extreme historical flood episodes 
determined from documentary evidence also increases confidence in the determination of flood frequency and magnitude, compared 
to using geomorphological archives alone (Kjeldsen et al., 2014). In regions, such as Europe and China, that have rich historical flood 
documents, there is strong evidence of high-magnitude flood events over pre-instrumental periods (Kjeldsen et al., 2014; Benito et al., 
2015; Macdonald and Sangster, 2017). A key feature of paleoflood records is variability in flood recurrence at centennial timescales 
(Wilhelm et al., 2019), although constraining climate-flood relationships remains challenging. Pre-instrumental floods often occurred 
in considerably different contexts in terms of land use, irrigation, and infrastructure, and may not provide direct insight into modern 
river systems, which further prevents long-term assessments of flood changes being made based on these sources. 

There is medium confidence that periods of both more and less tropical cyclone activity (frequency or intensity) than observed 
occurred over the Common Era in many regions. Paleotempest studies cover a limited number of locations that are predominantly 
coastal, and hence provide information on specific locations that cannot be extrapolated basin-wide (see Muller et al., 2017). In 
some locations, such as the Gulf of Mexico and the New England, USA, coast, similarly intense storms to those observed recently 
have occurred multiple times over centennial timescales (Donnelly et al., 2001; Bregy et al., 2018). Further research focused on the 
frequency of tropical storm activity. Extreme storms occurred considerably more frequently in particular periods of the Common Era, 
compared to the instrumental period in north-east Queensland, Australia (Nott et al., 2009; Haig et al., 2014), and the Gulf Coast 
(e.g., Brandon et al., 2013; Lin et al., 2014). 

The probability of finding an unprecedented extreme event increases with a  longer length of past record-keeping, in the absence 
of longer-term trends. Thus, as a record is extended to the past based on paleoreconstruction, there is a higher chance of very rare 
extreme events having occurred at some time prior to instrumental records. Such an occurrence is not, in itself, evidence of a change, 
or lack of a change, in the magnitude or the likelihood of extremes in the past or in the instrumental period at regional and local scales. 
Yet, the systematic collection of paleoclimate records over wide areas may provide evidence of changes in extremes. In one study, 
extended evidence of the last millennium from observational data and paleoclimate reconstructions using tree rings indicates that 
human activities affected the worldwide occurrence of droughts as early as the beginning of the 20th century (Marvel et al., 2019). 

In summary, there is low confidence in overall changes in extremes derived from paleo-archives. There is high confidence that long-
duration and severe drought events occurred at many locations during the last 2000 years. There is also high confidence that high-
magnitude flood events occurred at some locations during the last 2000 years, but overall changes in infrastructure and human water 
management make the comparison with present-day records difficult. But these isolated paleo-drought and paleo-flood events are 
not evidence of a change, or lack of a change, in the magnitude or the likelihood of relevant extremes. 

 
Box 11.3 (continued)
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11.2.3 Attribution of Extremes

Attribution science concerns the identification of causes for changes 
in characteristics of the climate system (e.g., trends, single extreme 
events). A general overview and summary of methods of attribution 
science is provided in  the Cross-Working Group Box  1.1. Trend 
detection using optimal fingerprinting methods is a well-established 
field, and has been assessed in AR5 (Chapter 10, Bindoff et al., 2013), 
and Section 3.2.1 of this Report. There are specific challenges when 
applying optimal fingerprinting to the detection and attribution of 
trends in extremes and on regional scales where the lower signal-
to-noise ratio is a  challenge. In particular, the method generally 
requires the data to follow a Normal (Gaussian) distribution, which 
is often not the case for extremes. However, recent studies showed 
that extremes can be transformed to a  Gaussian distribution, for 
example, by averaging over space, so that optimal fingerprinting 
techniques can still be used (Wen et al., 2013; Zhang et al., 2013; 
Wan et al., 2019). Non-stationary extreme value distributions, which 
allow for the detailed detection and attribution of regional trends in 
temperature extremes, have also been used (Z. Wang et al., 2017a). 

Apart from the detection and attribution of trends in extremes, new 
approaches have been developed to answer the question of whether, 
and to what extent, external drivers have altered the probability and 
intensity of an individual extreme event (NASEM, 2016). In AR5, there 
was an emerging consensus that the role of external drivers of climate 
change in specific extreme weather events could be estimated and 
quantified in principle, but related assessments were still confined 
to particular case studies, often using a single model, and typically 
focusing on high-impact events with a clear attributable signal. 

However, since AR5, the attribution of extreme weather events has 
emerged as a growing field of climate research with an increasing 
body of literature (see series of supplements to the annual State 
of the Climate report (Peterson et al., 2012, 2013a; Herring et al., 
2014, 2015, 2016, 2018), including the number of approaches to 
examining extreme events (described in Easterling et al., 2016; 
Otto, 2017; Stott et al., 2016)). A commonly used approach – often 
called the risk-based approach in the literature, and referred to 
here as the ‘probability-based approach’  – produces statements 
such as ‘anthropogenic climate change made this event type twice 
as likely’ or ‘anthropogenic climate change made this event 15% 
more intense’. This is done by estimating probability distributions of 
the index characterizing the event in today’s climate, as well as in 
a counterfactual climate, and either comparing intensities for a given 
occurrence probability (e.g.,  1-in-100-year event) or probabilities 
for a  given magnitude (see FAQ 11.3). There are a  number of 
different analytical methods encompassed in the probability-based 
approach, building on observations and statistical analyses (e.g., van 
Oldenborgh et al., 2012), optimal fingerprint methods (Sun et al., 
2014), regional climate and weather forecast models (e.g., Schaller 
et al., 2016), global climate models (GCMs) (e.g., Lewis and Karoly, 
2013), and large ensembles of atmosphere-only GCMs (e.g.,  Lott 
et al., 2013). A key component in any event attribution analysis is 
the level of conditioning on the state of the climate system. In the 
least conditional approach, the combined effect of the overall 
warming and changes in the large-scale atmospheric circulation 

are considered and often utilize fully coupled climate models (Sun 
et al., 2014). Other more conditional approaches involve prescribing 
certain aspects of the climate system. These range from prescribing 
the pattern of the surface ocean change at the time of the event 
(e.g.,  Hoerling et al., 2013, 2014), often using Atmospheric Model 
Intercomparison Project (AMIP) style global models, where the 
choice of sea surface temperature and ice patterns influences the 
attribution results (Sparrow et al., 2018), to prescribing the large-
scale circulation of the atmosphere and using weather forecasting 
models or methods (e.g., Pall et al., 2017; Patricola and Wehner, 2018; 
Wehner et al., 2018a). These highly conditional approaches have also 
been called ‘storylines’ (Cross-Working Group Box  1.1; Shepherd, 
2016) and can be useful when applied to extreme events that are 
too rare to otherwise analyse, or where the specific atmospheric 
conditions were central to the impact. These methods are also used 
to enable the use of very high-resolution simulations in cases were 
lower-resolution models do not simulate the regional atmospheric 
dynamics well (Shepherd, 2016; Shepherd et al., 2018). However, the 
imposed conditions limit an overall assessment of the anthropogenic 
influence on an event, as the fixed aspects of the analysis may also 
have been affected by climate change. For instance, the specified 
initial conditions in the highly conditional hindcast attribution 
approach often applied to tropical cyclones (e.g.,  Takayabu 
et al., 2015; Patricola and Wehner, 2018) permit only a conditional 
statement about the magnitude of the storm if similar large-scale 
meteorological patterns could have occurred in a  world without 
climate change, thus precluding any attribution statement about 
the change in frequency if used in isolation. Combining conditional 
assessments of changes in the intensity with a multi-model approach 
does allow for the latter as well (Shepherd, 2016).

The outcome of event attribution is dependent on the definition of 
the event (Leach et al., 2020), as well as the framing (Otto et al., 
2016; Christidis et al., 2018; Jézéquel et al., 2018) and uncertainties 
in observations and modelling. Observational uncertainties arise in 
estimating the magnitude of an event as well as its rarity (Angélil 
et al., 2017). Results of attribution studies can also be very sensitive 
to the choice of climate variables (Sippel and Otto, 2014; Wehner 
et al., 2016). Attribution statements are also dependent on the spatial 
(Uhe et al., 2016; Cattiaux and Ribes, 2018; Kirchmeier-Young et al., 
2019) and temporal (Harrington, 2017; Leach et al., 2020) extent 
of event definitions, as events of different scales involve different 
processes (W. Zhang et al., 2020) and large-scale averages generally 
yield higher attributable changes in magnitude or probability due 
to the smoothing out of noise. In general, confidence in attribution 
statements for large-scale heat and lengthy extreme precipitation 
events have higher confidence than shorter and more localized events, 
such as extreme storms, an aspect also relevant for determining the 
emergence of signals in extremes or the confidence in projections 
(see also Cross-Chapter Box Atlas.1). 

The reliability of the representation of the event in question in the 
climate models used in a  study is essential (Angélil et al., 2016; 
Herger et al., 2018). Extreme events characterized by atmospheric 
dynamics that stretch the capabilities of current-generation models 
(Section 10.3.3.4; Shepherd, 2014; Woollings et al., 2018) limit the 
applicability of the probability-based approach of event attribution. 
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The lack of model evaluation, in particular in early event attribution 
studies, has led to criticism of the emerging field of attribution science 
as a whole (Trenberth et al., 2015) and of individual studies (Angélil 
et al., 2017). In this regard, the storyline approach (Shepherd, 2016) 
provides an alternative option that does not depend on the model’s 
ability to represent the circulation reliably. In addition, several ways 
of quantifying statistical uncertainty (Paciorek et al., 2018) and model 
evaluation (Lott and Stott, 2016; Philip et al., 2018b, 2020) have been 
employed to evaluate the robustness of event attribution results. 
For the unconditional probability-based approach, multi-model and 
multi-approach (e.g.,  combining observational analyses and model 
experiments) methods have been used to improve the robustness of 
event attribution (Hauser et al., 2017; Otto et al., 2018a; Philip et al., 
2018b, 2019, 2020; van Oldenborgh et al., 2018; Kew et al., 2019). 

In the regional tables provided in Section  11.9, the different lines 
of evidence from event attribution studies and trend attributions 
are assessed alongside one another to provide an assessment 
of the human contribution to observed changes in extremes in 
all AR6 regions. 

11.2.4 Projecting Changes in Extremes as a Function 
of Global Warming Levels 

The most important quantity used to characterize past and future 
climate change is global warming relative to its pre-industrial 
level. Changes in global warming are linked quasi-linearly to 
global cumulative carbon dioxide (CO2) emissions (IPCC, 2013), 
and for their part, changes in regional climate, including many 
types of extremes, scale quasi-linearly with changes in global 
warming, often independently of the underlying emissions scenarios 
(SR1.5 Chapter  3; Seneviratne et al., 2016; Matthews et al., 2017; 
Wartenburger et al., 2017; Kharin et al., 2018; Y. Sun et al., 2018a; 
Tebaldi and Knutti, 2018; Beusch et al., 2020; Li et al., 2021). 
In addition, the use of global warming levels in the context of global 
policy documents – in particular the 2015 Paris Agreement (UNFCCC, 
2016) implies that information on changes in the climate system, 
and specifically extremes, as a  function of global warming are of 
particular policy relevance. Cross-Chapter Box  11.1 provides an 
overview on the translation between information at global warming 
levels (GWLs) and scenarios.

The assessment of projections of future changes in extremes as 
function of GWL has an advantage in separating uncertainty 
associated with the global warming response (see Chapter 4) from 
the uncertainty resulting from the regional climate response as 
a function of GWLs (Seneviratne and Hauser, 2020). If the interest is 
in the projection of regional changes at certain GWLs, such as those 
defined by the Paris Agreement, projections based on time periods 
and emissions scenarios have unnecessarily larger uncertainty due 
to differences in model global transient climate responses. To take 
advantage of this feature and to provide easy comparison with 
SR1.5, assessments of projected changes in this chapter are largely 
provided in relation to future GWLs, with a  focus on changes at 
+1.5°C, +2°C, and +4°C of global warming above pre-industrial 
levels (e.g., Tables 11.1 and 11.2 and regional tables in Section 11.9). 

These encompass a scenario compatible with the lowest limit of the 
Paris Agreement (+1.5°C), a scenario slightly overshooting the aims 
of the Paris Agreement (+2°C), and a ‘worst-case’ scenario with no 
mitigation (+4°C). Cross-Chapter Box  11.1 provides a  background 
on the GWL sampling approach used in AR6, for the computation 
of GWL projections from climate models contributing to Phase 6 of 
the Coupled Model Intercomparison Project (CMIP6) as well as for 
the mapping of existing scenario-based literature for CMIP6 and the 
CMIP Phase 5 (CMIP5) to assessments as function of GWLs (see also 
Section 11.9. and Table 11.3 for an example).

While regional changes in many types of extremes do scale robustly 
with global surface temperature, generally irrespective of emissions 
scenarios (Section  11.1.4, Figures 11.3, 11.6 and 11.7 and Cross-
Chapter Box 11.1), effects of local forcing can distort this relation. 
For example, emissions scenarios with the same radiative forcing 
can have different regional extreme precipitation responses resulting 
from different aerosol forcing (Z. Wang et al., 2017b). Another 
example is related to forcing from land-use and land cover changes 
(Section  11.1.6). Climate models often either overestimate or 
underestimate observed changes in annual maximum daily maximum 
temperature, depending on the region and considered models (Donat 
et al., 2017; Vautard et al., 2020). Part of the discrepancies may be 
due to the lack of representation of some land forcings, in particular 
crop intensification and irrigation (N.D. Mueller et al., 2016; Findell 
et al., 2017; Thiery et al., 2017, 2020). Since these local forcings are 
not represented, and their future changes are difficult to project, 
these can be important caveats when using GWL scaling to project 
future changes for these regions. However, these caveats also apply 
to the use of scenario-based projections.

The SR1.5 (Chapter  3) assessed different climate responses at 
+1.5°C of global warming, including transient climate responses, 
short-term stabilization responses, and long-term equilibrium 
stabilization responses, and their implications for future projections 
of different extremes. Indeed, the temporal dimension  – that 
is, when the given GWL occurs  – also matters for projections, in 
particular beyond the 21st century, and for some climate variables 
related to components of the climate system associated with large 
inertia (e.g., sea level rise and associated extremes). Nonetheless, 
for assessments focused on conditions within the next decades, 
and for the main extremes considered in this chapter, derived 
projections are relatively insensitive to details of climate scenarios 
and can be well-estimated based on transient simulations (Cross-
Chapter Box 11.1; see also SR1.5).

An important question is the identification of the GWL at which 
a  given change in a  climate extreme can begin to emerge from 
climate noise. Figure 11.8 displays analyses of the GWLs at which 
emergence in hot extremes – annual maximum daily temperature 
represented by TXx and heavy precipitation represented by Rx1day 
is identified in AR6 regions for the whole CMIP5 and CMIP6 
ensembles. Overall, signals for extremes emerge very early for 
TXx, already below 0.2°C in many regions (Figure 11.8a,b), and at 
around 0.5°C in most regions. This is consistent with conclusions 
from the SR1.5 Chapter 3 for less-rare temperature extremes (TXx 
on the yearly time scale), which shows that a difference as small as 
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0.5°C of global warming – for example, between +1.5°C and +2°C 
of global warming – leads to detectable differences in temperature 
extremes in TXx in most WGI AR6 regions in CMIP5 projections 
(e.g., Wartenburger et al., 2017; Seneviratne et al., 2018b). The GWL 
emergence for Rx1day is also largely consistent with analyses for 
less-extreme heavy precipitation events (Rx5day on the yearly time 
scale) in SR1.5 (see Chapter 3). 

To some extent, analyses as functions of GWLs replace the time axis 
with a global surface temperature axis. Nonetheless, information on 
the timing of given changes in extremes is obviously also relevant. 
(For information on the time frame at which given GWLs are reached, 
see Cross-Chapter Box  11.1 and Section  4.6). Figure  11.5 provides 
a synthesis of attributed and projected changes in extremes as function 
of GWLs (see also Figures. 11.3, 11.6 and 11.7 for regional analyses).

glob. oc. land GIC NEC CNA ENA NWN WNA NCA SCA CAR NWS SAM SSA SWS SES NSA NES NEU CEU EEU MED

CMIP5

CMIP6 0.1 0.1 0.2 0.5 0.7 0.8 0.7 0.7 0.7 0.6 0.5 0.3 0.3 0.4 0.6 0.2 0.4 0.3 0.3 0.8 0.9 0.9 0.4

0.1 0.1 0.2 0.5 0.5 0.5 0.4 0.7 0.4 0.4 0.4 0.2 0.3 0.4 0.9 0.3 0.4 0.3 0.3 1.0 0.7 0.7 0.4

(a) Annual hottest temperature (TXx)

WAF SAH NEAF CEAF SWAF SEAF CAF RAR RFE ESB WSB WCA TIB EAS ARP SAS SEA NAU CAU SAU NZ EAN WAN

CMIP5

CMIP6 0.2 0.2 0.2 0.2 0.3 0.3 0.4 0.7 0.7 0.8 0.8 0.4 0.5 0.6 0.2 0.6 0.4 0.4 0.4 0.6 0.7 0.8 1.1

0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.6 0.7 0.8 0.8 0.3 0.5 0.6 0.2 0.3 0.2 0.4 0.5 0.7 0.7 0.6 1.0

glob. oc. land GIC NEC CNA ENA NWN WNA NCA SCA CAR NWS SAM SSA SWS SES NSA NES NEU CEU EEU MED

CMIP5

CMIP6 0.3 0.4 0.4 0.8 0.7 1.4 1.0 0.8 1.7 2.0 2.2 2.8 0.9 1.3 2.1 2.7 0.8 1.2 1.2 0.8 1.0 1.2 2.0

0.3 0.4 0.4 0.7 0.7 1.4 1.0 0.8 1.5 1.9 2.0 2.7 0.8 1.1 2.2 2.2 0.9 0.9 1.3 0.9 1.0 1.2 2.1

(b) Annual maximum daily precipitation (Rx1day)

WAF SAH NEAF CEAF SWAF SEAF CAF RAR RFE ESB WSB WCA TIB EAS ARP SAS SEA NAU CAU SAU NZ EAN WAN

CMIP5

CMIP6 0.9 1.5 1.1 0.8 1.9 1.2 0.6 0.9 0.9 1.0 0.9 1.3 1.0 1.1 2.6 0.9 0.8 2.1 2.2 2.6 1.7 0.6 0.9

1.3 2.7 1.3 0.8 1.7 1.3 0.7 0.8 1.0 0.9 1.1 1.8 1.0 0.9 2.6 1.1 0.8 1.9 1.9 2.5 1.9 0.7 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Global warming level of emergence (°C)

Figure 11.8 | Global and regional-scale emergence of changes in temperature (a) and precipitation (b) extremes for the globe (glob.), global oceans (oc.), 
global lands (land), and the AR6 regions. Colours indicate the multi-model mean global warming level at which the difference in 20-year means of the annual maximum 
daily maximum temperature (TXx) and the annual maximum daily precipitation (Rx1day) become significantly different from their respective mean values during the 1850–1900 
base period. Results are based on simulations from the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6) multi-model ensembles. See Atlas.1.3.2 for 
the definition of regions. Adapted from Seneviratne and Hauser (2020) under the terms of the Creative Commons Attribution licence. 

Cross-Chapter Box 11.1 | Translating Between Regional Information at Global Warming Levels 
Versus Scenarios for End Users

Contributors: Erich Fischer (Switzerland), Mathias Hauser (Switzerland), Sonia I. Seneviratne (Switzerland), Richard Betts (United Kingdom), 
José M. Gutiérrez (Spain), Richard G. Jones (United Kingdom), June-Yi Lee (Republic of Korea), Malte Meinshausen (Australia/Germany), 
Friederike Otto (United Kingdom/Germany), Izidine Pinto (Mozambique), Roshanka Ranasinghe (The Netherlands/Sri Lanka/Australia), 
Joeri Rogelj (Germany/Belgium), Bjørn Samset (Norway), Claudia Tebaldi (United States of America), Laurent Terray (France)

Background 
Traditionally, projections of climate variables are summarized and communicated as function of time and emissions scenarios. Recently, 
quantifying global and regional climate at specific global warming levels (GWLs) has become widespread, motivated by the inclusion of 
explicit GWLs in the long-term temperature goal of the Paris Agreement (Section 1.6.2). GWLs, expressed as changes in global surface 
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temperature relative to the 1850–1900 period (see Cross-Chapter 
Box 2.3), are used in SR1.5 and in the assessment of Reasons for 
Concerns in the WGII reports (see also Cross-Chapter Box 12.1). 
Cross-Chapter Box 11.1, Figure 1 illustrates how the assessment 
of the climate response at GWLs relates to the uncertainty in 
scenarios regarding the timing of the respective GWLs, as well as 
to the uncertainty in the associated regional climate responses, 
including extremes and other climatic impact-drivers (CIDs). 
For many (but not all) climate variables and CIDs, the response 
pattern for a given GWL is consistent across different scenarios 
(Chapters 1, 4, 9, 11 and Atlas). GWLs are defi ned as long-term 
means (e.g.,  20-year averages) compared to the pre-industrial 
period, are commonly used in the literature, and were also 
underlying main assessments of SR1.5 (Chapter 3). 

Numerous studies have compared the regional response to 
anthropogenic forcing at GWLs in annual and seasonal mean 
values and extremes of different climate and impact variables 
across different multi-model ensembles and/or different 
scenarios (e.g.,  Frieler et al., 2012; Schewe et al., 2014; Herger 
et al., 2015; Schleussner et al., 2016; Seneviratne et al., 2016; 

Wartenburger et al., 2017; Betts et al., 2018; Dosio and Fischer, 2018; Samset et al., 2019; Tebaldi et al., 2020; see Sections 4.6.1, 8.5.3, 
9.3.1, 9.5, 9.6.3, 10.4.3 and 11.2.4 for further details). The regional response patterns at given GWLs have been found to be consistent 
across different scenarios for many climate variables (Cross-Chapter Box 11.1 Figure 2;  Pendergrass et al., 2015; Seneviratne et al., 
2016; Wartenburger et al., 2017; Seneviratne and Hauser, 2020). The consistency tends to be higher for temperature-related variables 
than for variables in the hydrological cycle or variables characterizing atmospheric dynamics, and for intermediate to high-emissions 
scenarios than for low-emissions scenarios (e.g.,  for mean precipitation in the Representative Concentration Pathway (RCP) 2.6 
scenario: Pendergrass et al., 2015; Wartenburger et al., 2017). Nonetheless, Cross-Chapter Box 11.1 Figure 2 illustrates that, even for 
mean precipitation, which is known to be forcing dependent (Sections 4.6.1 and 8.5.3), scenario differences in the response pattern at 
a given GWL are smaller than model uncertainty and internal variability in many regions (Herger et al., 2015). The response pattern is 
further found to be broadly consistent between models that reach a GWL relatively early, and those that reach it later under a given 
Shared Socio-economic Pathway (SSP; see Cross-Chapter Box 11.1, Figure 2g,h).

In contrast to linear pattern scaling (Mitchell, 2003; Collins et al., 2013), the use of GWLs as a dimension of integration does not 
require linearity in the response of a climate variable. It is therefore useful even for metrics that do not show a linear response, such 
as the frequency of heat extremes over land and oceans (Fischer and Knutti, 2015; Frölicher et al., 2018; Kharin et al., 2018; Perkins-
Kirkpatrick and Gibson, 2017) if the relationship of the variable of interest to the GWL is scenario independent. The latter means that 
the response is independent of the pathway and relative contribution of various radiative forcings. For some more complex indices like 
warm-spell duration, or for regions with strong aerosol changes, discrepancies can be larger (Z. Wang et al., 2017b; King et al., 2018; 
Tebaldi et al., 2020). (See also the subsection below on GWLs vs scenarios for further caveats.) 

The limited scenario dependence of the GWL-based response for many variables implies that the regional response to emissions 
scenarios can be split in almost independent contributions of: (i) the transient global warming response to scenarios (see Chapter 4); 
and (ii) the regional response as function of a given GWL, which has also been referred to as ‘regional climate sensitivity’ (Seneviratne 
and Hauser, 2020). This property has also been used to develop regionally resolved emulators for global climate models, using global 
surface temperature as input (Beusch et al., 2020; Tebaldi et al., 2020). Analyses of the CMIP6 and CMIP5 multi-model ensembles 
shows that the GWL-based responses are very similar for temperature and precipitation extremes across the ensembles (Seneviratne 
and Hauser, 2020; Wehner, 2020; Li et al., 2021). This is despite their difference in global warming response (Chapter 4), confi rming 
a substantial decoupling between the two responses (global warming vs GWL-based regional response) for these variables. Thus, the 
GWL approach isolates the uncertainty in the regional climate response from the global warming uncertainty induced by scenario, 
global mean model response and internal variability (Cross-Chapter Box, Figure 1).

Cross-Chapter Box 11.1 (continued)

emissions climate
forcing

global mean
response

regional
climate

response

physical and
societal
impacts

emissions
question

impacts
questionregional climate

3.0°C

2.0°C

Global warming
levels (GWLs)

1.5°C

Cross-Chapter Box  11.1, Figure  1 | Schematic representation of 
relationship between emissions scenarios, global warming levels 
(GWLs), regional climate responses, and impacts. The illustration shows 
the implied uncertainty problem associated with differentiating between 1.5°C, 
2°C, and other GWLs. Focusing on GWLs raises questions associated with 
emissions pathways to get to these temperatures (scenarios), as well as regional 
climate responses and the associated impacts at the corresponding GWL (the 
impacts question). Adapted from James et al. (2017) and Rogelj (2013) under 
the terms of the Creative Commons Attribution licence. 
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Mapping between GWL- and scenario-based responses in model analyses 
To map scenario-based climate projections into changes at specific GWLs, first, all individual Earth system model (ESM) simulations 
that reach a certain GWL are identified. Second, the climate response patterns at the respective GWL are calculated using an approach 
termed here ‘GWL-sampling’ – sometimes also referred to as epoch analysis, time shift, or time sampling approach – taking into 
account all models and scenarios (Cross-Chapter Box, Figure 3). Note that the range of years when a given GWL is reached in the 
CMIP6 ensemble is different from the AR6 assessed range of projected global surface temperature (Section 4.3.4; Table 4.5). The latter 
further takes into account different lines of evidence, including the assessed observed warming between pre-industrial and present 

 
Cross-Chapter Box 11.1 (continued)

SSP1-2.6

Annual mean precipitation response at 2°C
SSP2-4.5 SSP5-8.5

SSP5-8.5SSP2-4.5
Annual mean temperature response at 2°C

SSP1-2.6

High warming rate Medium to low warming rate

(a) (b) (c)

(d) (e) (f)

(g) (h)

Cross-Chapter Box 11.1, Figure 2 | (a–c) Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model mean precipitation change at 2°C 
global warming level (GWL) (20-year mean) in three different Shared Socio-economic Pathway (SSP) scenarios relative to 1850–1900. All models 
reaching the corresponding GWL in the corresponding scenario are averaged. The number of models averaged across is shown at the top right of the panel. The maps 
for the other two SSP scenarios SSP1-1.9 (five models only) and SSP3-7.0 (not shown) are consistent. (d–f) Same as (a–c) but for annual mean temperature. (g) 
Annual mean temperature change at 2°C in CMIP6 models with high warming rate reaching the GWL in the corresponding scenario before the earliest year of the 
assessed very likely range (Section 4.3.4). (h) Climate response at 2°C GWL across all SSP1-1.9, SSP2-2.6, SSP2-4.5. SSP3-7.0 and SSP5-8.5 in all other models not 
shown in (g). The close agreement of (g) and (h) demonstrates that the mean temperature response at 2°C is not sensitive to the rate of warming, and thereby the 
global mean surface air temperature (GSAT) warming of the respective models in 2081–2100. Uncertainty is represented using the advanced approach: No overlay 
indicates regions with robust signal, where ≥66% of models show change greater than the variability threshold and ≥80% of all models agree on the sign of change; 
diagonal lines indicate regions with no change or no robust signal, where <66% of models show a change greater than the variability threshold; crossed lines indicate 
regions with conflicting signal, where ≥66% of models show change greater than the variability threshold and <80% of all models agree on the sign of change. For 
more information on the advanced approach, please refer to the Cross-Chapter Box Atlas.1.
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day, information from observational constraints on CMIP6, and emulators using the assessed transient climate response (TCR) 
and equilibrium climate sensitivity (ECS) ranges (Section 4.3.4). Hence the Chapter 4 assessed range (Table 4.5) is the reference to 
determine when a given GWL is likely reached under given scenarios, while the mapping between scenarios/time frames and GWLs is 
used to assess the respective regional responses happening at these time frames (which also allows accounting for the global surface 
temperature assessment, rather than using scenarios analyses directly from CMIP6 output). 

In the model-based asssessment of Chapters 4, 8, 10, 11, 12 and the Atlas, the estimation of changes at GWLs are generally defi ned as 
the 20-year time period in which the mean global surface air temperature (GSAT; Cross-Chapter Box 2.3) fi rst exceeds a certain anomaly 
relative to 1850–1900 – for simulations that start after 1850, relative to all years up to 1900 (Cross-Chapter Box Figure 3). The years 
when each individual model reaches a given GWL for CMIP6 and CMIP5 can be found in Hauser et al. (2021). The changes at given GWLs 
are identifi ed for each ensemble member (for all scenarios) individually. Thereby, a given GWL is potentially reached a few years earlier 
or later in different realizations of the same model due to internal variability, but the temperature averaged across the 20-year period 
analysed in any simulation is consistent with the GWL. Instead of blending the information from the different scenarios, the Interactive 
Atlas can be used to compare the GWL spatial patterns and timings across the different scenarios (see Section Atlas 1.3.1). 

Cross-Chapter Box 11.1 (continued)

Response at global warming level (GWL)

Timing of GWL

Timing 2°C Best estimate Very likely range
SSP1-1.9 NA NA
SSP1-2.6 NA (2031–50 to NA)
SSP2-4.5 2043-62 (2028–47 to 2075–94)
SSP3-7.0 2037–56 (2026–45 to 2053–72)
SSP5-8.5 2032–51 (2023–42 to 2044–63)

2°C in SSP1-2.6
2°C in SSP3-7.0
Assessed GSAT range (table 4.5 and section 4.3.4)

2000 2020 2040 2060 2080 2100

2000 2020 2040 2060 2080 2100

2°C in SSP1-2.6
2°C in SSP3-7.0
CMIP6 range (table 4.2 and Hauser et al. 2021)

The best estimate and likely range when a
GWL is crossed is not based on CMIP6 only
but on the GSAT assessment in section 4.3.4.

The climate
response at a given
GWL is estimated
based on an
average across all
models and all SSP
scenarios in CMIP6
in which the
corresponding GWL
is reached.
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Cross-Chapter Box11.1, Figure 3 | Illustration of the AR6 global warming level (GWL) sampling approach to derive the timing and the response 
at a given GWL for the case of Coupled Model Intercomparison Project Phase 6 (CMIP6) data. For the mapping of scenarios/time slices into GWLs for 
CMIP6, please refer to Table 4.2. Respective numbers for the CMIP5 multi-model experiment are provided in Chapter 11 Supplementary Material (11.SM.1). Note that 
the time frames used to derive the GWL time slices can also include a different number of years (e.g., 30 years for some analyses). 
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Cross-Chapter Box 11.1 (continued)

Mapping between GWL- and scenario-based responses for literature
A large fraction of the literature considers scenario-based analyses for given time slices. When GWL-based information is required 
instead, an approximated mapping of the multi-model mean can be derived based on the known GWL in the given experiments for 
a particular time period. As a rough approximation, CMIP6 multi-model mean projections for the near-term (2021–2040) correspond 
to changes at about 1.5°C, and projections for the high-end scenario (SSP5-8.5) for the long-term (2081–2100) correspond to about 
4°C–5°C of global warming (see Table 4.2 for changes in the CMIP6 ensemble and the Chapter 11 Supplementary Material (11.SM.1) 
and Hauser (2021) for details on other time periods and CMIP5). These approximated changes are used for some of the GWL-based 
assessments provided in the Chapter 11 regional tables (Section 11.9 and Table 11.3) when literature based on scenario projections is 
used to assess estimated changes at given GWLs.

GWLs versus scenarios 
The use of scenarios remains a key element to inform mitigation decisions (Cross-Chapter Box 1.4), to assess which emissions pathways 
are consistent with a certain GWL (Cross-Chapter Box 1.4, Figure 1), to estimate when certain GWLs are reached (Section 4.3.4), and 
to assess for which variables it is meaningful to use GWLs as a dimension of integration. The use of scenarios is also essential for 
variables whose climate response strongly depends on the contribution of radiative forcing (e.g.,  aerosols) or land-use and land 
management changes, are time and warming rate dependent (e.g., sea level rise), or differ between transient and quasi-equilibrium 
states. Furthermore, the use of concentration or emission-driven scenario simulations is required if regional climate assessments need 
to account for the uncertainty in GSAT changes or climate-carbon feedbacks.

Forcing dependence of the GWL response is found for global mean precipitation (Section 8.4.3), but less for regional patterns of mean 
precipitation changes (Cross-Chapter Box 11.1, Figure 2). Limited dependence is found for extremes, as highlighted above. In the 
cryosphere, elements that are quick to respond to warming like sea ice area, permafrost and snow, show little scenario dependence 
(Sections 9.3.1.1, 9.5.2.3 and 9.5.3.3), whereas slow-responding variables such as ice volumes of glaciers and ice sheets respond with 
a substantial delay and, due to their inertia, the response depends on when a certain GWL is reached. This also applies to some extent 
for sea level rise where, for example, the contributions of melting glaciers and ice sheets depend on the pathway followed to reach 
a given GWL (Section 9.6.3.4). 

In addition to the lagged effect, the climate response at a given GWL may differ before and after a period of overshoot, for example 
in the Atlantic Meridional Overturning Circulation (e.g., Palter et al. 2018). Finally, as assessed in IPCC SR1.5, there is a difference in 
the response even for temperature-related variables if a GWL is reached in a rapidly warming transient state or in an equilibrium state 
when the land–sea warming contrast is less pronounced (e.g., King et al. 2020). However, in this Report, GWLs are used in the context 
of projections for the 21st century when the climate response is mostly not in equilibrium and where projections for many variables 
are less dependent on the pathway than for projections beyond 2100 (Section 9.6.3.4).

Key conclusions on assessments based on GWLs
GWL-based projections can inform society and policymakers on how climate would change under GWLs consistent with the aims 
of the Paris Agreement (stabilization at 1.5°C/well below 2°C), as well as on the consequences of missing these aims and reaching 
GWLs of 3°C or 4°C by the end of the century. The AR6 assessment shows that every bit of global warming matters and that changes 
in global warming of 0.5°C lead to statistically significant changes in mean climate and climate extremes on global scale and for 
large regions (Sections 4.6.2, 11.2.4, 11.3, 11.4, 11.6 and 11.9, Figures 11.8 and 11.9, Atlas and Interactive Atlas), as also assessed 
in IPCC SR1.5. 

11.3 Temperature Extremes

This section assesses changes in temperature extremes at global, 
continental and regional scales. The main focus is on the changes in the 
magnitude and frequency of moderate extreme temperatures (those 
that occur several times a  year) to very extreme temperatures 
(those that occur once in 10 or more years) of time scales from a day 
to a  season, though there is a  strong emphasis on the daily scale 
where literature is most concentrated. 

11.3.1 Mechanisms and Drivers

The SREX (IPCC, 2012) and AR5 (IPCC, 2014) concluded that 
greenhouse gas forcing is the dominant factor for the increases in the 
intensity, frequency, and duration of warm extremes and the decrease 
in those of cold extremes. This general global-scale warming is 
modulated by large-scale atmospheric circulation patterns, as well as 
by feedbacks such as soil moisture-evapotranspiration–temperature 
and snow/ice-albedo–temperature feedbacks, and local forcings 
such as land-use change or changes in aerosol concentrations at the 
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regional and local scales (Sections 11.1.5 and 11.1.6, and Box 11.1). 
Therefore, changes in temperature extremes at regional and local 
scales can have heterogeneous spatial distributions. Changes in 
the magnitudes (or intensities) of extreme temperatures are often 
larger than changes in global surface temperature, because of larger 
warming on land than on the ocean surface (Section 2.3.1.1), and 
because of feedbacks, though they are of similar magnitude to 
changes in the local mean temperature (Figure 11.2). 

Extreme temperature events are associated with large-scale 
meteorological patterns (Grotjahn et al., 2016). Quasi-stationary 
anticyclonic circulation anomalies or atmospheric blocking events are 
linked to temperature extremes in many regions, such as in Australia 
(Parker et al., 2014; Perkins-Kirkpatrick et al., 2016), Europe (Brunner 
et al., 2017, 2018; Schaller et al., 2018), Eurasia (Yao et al., 2017), 
Asia (Chen et al., 2016; Ratnam et al., 2016; Rohini et al., 2016), 
and North America (Yu et al., 2018, 2019; Zhang and Luo, 2019). 
Mid-latitude planetary wave modulations affect short-duration 
temperature extremes such as heatwaves (Perkins, 2015; Kornhuber 
et al., 2020). The large-scale modes of variability (Annex IV) affect 
the strength, frequency and persistence of these meteorological 
patterns and, hence, temperature extremes. For example, cold 
and warm extremes in the mid-latitudes are associated with 
atmospheric circulation patterns such as the Pacific-North American 
(PNA) pattern, as well as atmosphere–ocean coupled modes such 
as Pacific Decadal Variability (PDV), the North Atlantic Oscillation 
(NAO), and Atlantic Multi-decadal Variability (AMV) (Section 11.1.5; 
Kamae et al., 2014; Johnson et al., 2018; Ruprich-Robert et al., 2018; 
Yu et al., 2018, 2020; Müller et al., 2020; Qasmi et al., 2021). Changes 
in the modes of variability in response to warming would therefore 
affect temperature extremes (Clark and Brown, 2013; Horton 
et al., 2015). The level of confidence in those changes varies, both 
in the observations and in future projections, affecting the level of 
confidence in changes in temperature extremes in different regions. 
As highlighted in Chapters 2  to 4  of this Report, it is likely that 
there have been observational changes in the extratropical jets and 
mid-latitude jet meandering (Section  2.3.1.4.3 and Cross-Chapter 
Box  10.1). There is low confidence in possible effects of Arctic 
warming on mid-latitude temperature extremes (Cross-Chapter 
Box 10.1). A large portion of the multi-decadal changes in extreme 
temperature remains after the removal of the effect of these modes 
of variability, and can be attributed to human influence (Kamae et al., 
2017b; Wan et al., 2019). Thus, global warming dominates changes in 
temperature extremes at the regional scale and it is very unlikely that 
dynamic responses to greenhouse-gas induced warming would alter 
the direction of these changes. 

Land–atmosphere feedbacks strongly modulate regional- and 
local-scale changes in temperature extremes (high confidence) 
(Section 11.1.6; Seneviratne et al., 2013; Lemordant et al., 2016; Donat 
et al., 2017; Sillmann et al., 2017b; Hirsch et al., 2019). This effect is 
particularly notable in mid-latitude regions where the drying of soil 
moisture amplifies high temperatures, especially through increases 
in sensible heat flux (Whan et al., 2015; Douville et al., 2016; Vogel 
et al., 2017). Land–atmosphere feedbacks amplifying temperature 
extremes also include boundary-layer feedbacks and effects on 
atmospheric circulation (Miralles et al., 2014a; Schumacher et al., 

2019). Soil-moisture–temperature feedbacks affect past and present-
day heatwaves in observations and model simulations, both locally 
(Miralles et al., 2014a; Cowan et al., 2016, 2020; Hauser et al., 2016; 
Meehl et al., 2016; Wehrli et al., 2019) and beyond the regions of 
feedback occurrence through changes in regional circulation patterns 
(Stéfanon et al., 2014; Koster et al., 2016; Sato and Nakamura, 2019). 
The uncertainty due to the representation of land–atmosphere 
feedbacks in ESMs is a cause of discrepancy between observations 
and simulations (Clark et al., 2006; Mueller and Seneviratne, 2014; 
Meehl et al., 2016). The decrease of plant transpiration or the 
increase of stomata resistance under enhanced CO2 concentrations 
is a direct CO2 forcing of land temperatures (warming due to reduced 
evaporative cooling), which contributes to higher warming on land 
(Lemordant et al., 2016; Vicente-Serrano et al., 2020b). The snow/ice-
albedo feedback plays an important role in amplifying temperature 
variability in the high latitudes (Diro et al., 2018) and can be the 
largest contributor to the rapid warming of cold extremes in the mid- 
and high latitudes of the Northern Hemisphere (Gross et al., 2020). 

Regional external forcings, including land-use changes and 
emissions of anthropogenic aerosols, play an important role in the 
changes of temperature extremes in some regions (high confidence) 
(Section  11.1.6). Deforestation may have contributed to about 
one third of the warming of hot extremes in some mid-latitude 
regions since the pre-industrial time (Lejeune et al., 2018). Aspects 
of agricultural practice, including no-till farming, irrigation, and 
overall cropland intensification, may cool hot temperature extremes 
(Davin et al., 2014; N.D. Mueller et al., 2016). For instance, cropland 
intensification has been suggested to be responsible for a cooling of 
the highest temperature percentiles in Midwest USA (N.D. Mueller 
et al., 2016). Irrigation has been shown to be responsible for 
a  cooling of hot temperature extremes of up to 1°C–2°C in many 
mid-latitude regions in the present climate (Thiery et al., 2017, 2020), 
a process not represented in most of state-of-the-art ESMs (CMIP5, 
CMIP6). Double cropping may have led to increased hot extremes 
in the inter-cropping season in part of China (Jeong et al., 2014). 
Rapid increases in summer warming in western Europe and north-
east Asia since the 1980s are linked to a reduction in anthropogenic 
aerosol precursor emissions over Europe (Nabat et al., 2014; Dong 
et al., 2016b, 2017), in addition to the effect of increased greenhouse 
gas forcing (see also Section  10.1.3.1). This effect of aerosols on 
temperature-related extremes is also noted for declines in short-lived 
anthropogenic aerosol emissions over North America (Mascioli et al., 
2016). On the local scale, the urban heat island (UHI) effect results 
in higher temperatures in urban areas than in their surrounding 
regions, and contributes to warming in regions of rapid urbanization, 
in particular for nighttime temperature extremes (Box 10.3; Phelan 
et al., 2015; Chapman et al., 2017; Y. Sun et al., 2019). But these local 
and regional forcings are generally not or not well represented in the 
CMIP5 and CMIP6 simulations (see also Section 11.3.3), contributing 
to uncertainty in model simulated changes. 

In summary, greenhouse gas forcing is the dominant driver leading 
to the warming of temperature extremes. At regional scales, changes 
in temperature extremes are modulated by changes in large-scale 
patterns and modes of variability, feedbacks including soil-moisture–
evapotranspiration–temperature or snow/ice–albedo–temperature 
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feedbacks, and local and regional forcings such as land-use and land-
cover changes, or aerosol concentrations, and decadal and multi-
decadal natural variability. This leads to heterogeneity in regional 
changes and their associated uncertainties (high confidence). 
Changes in anthropogenic aerosol concentrations have likely affected 
trends in hot extremes in some regions. Irrigation and crop expansion 
have attenuated increases in summer hot extremes in some regions, 
such as the Midwestern USA (medium confidence). Urbanization has 
likely exacerbated the effects of global warming in cities, in particular 
for nighttime temperature extremes.

11.3.2 Observed Trends 

The SREX (IPCC, 2012) reported a very likely decrease in the number 
of cold days and nights and increase in the number of warm days 
and nights at the global scale. Confidence in trends was assessed as 
regionally variable (low to medium confidence) due to either a lack 
of observations or varying signals in sub-regions. 

Since SREX (IPCC, 2012) and AR5 (IPCC, 2014), many regional-
scale studies have examined trends in temperature extremes using 
different metrics that are based on daily temperatures, such as the 
Commission for Climatology/World Climate Research Program/
Commission for Oceanography and Marine Meteorology joint Expert 
Team on Climate Change Detection and Indices (ETCCDI) indices 
(Dunn et al., 2020). The additional observational records, along with 
a stronger warming signal, show very clearly that changes observed 
at the time of AR5 (IPCC, 2014) continued, providing strengthened 
evidence of an increase in the intensity and frequency of hot extremes 
and decrease in the intensity and frequency of cold extremes. While 
the magnitude of the observed trends in temperature-related 
extremes varies depending on the region, spatial and temporal 
scales, and metric assessed, evidence of a  warming effect is 
overwhelming, robust, and consistent. In particular, an increase 
in the intensity and frequency of hot extremes is almost always 
associated with an increase in the hottest temperatures and in the 
number of heatwave days. It is also the case for changes (decreases) 
in cold extremes. For this reason, and to simplify the presentation, 
the phrase ‘increase in the intensity and frequency of hot extremes’ 
is used to represent, collectively, an increase in the magnitude of 
extreme day and/or night temperatures, in the number of warm days 
and/or nights, and in the number of heatwave days. Changes in cold 
extremes are assessed similarly. 

On the global scale, evidence of an increase in the number of 
warm days and nights and a decrease in the number of cold days 
and nights, and an increase in the coldest and hottest extreme 
temperatures is very robust and consistent among all variables. 
Figure 11.2 displays time series of globally averaged TXx and TNn on 
land. Warming of land mean TXx is similar to the mean temperature 
warming on land, which is about 45% higher than global warming 
(Section 2.3.1). Warming of land mean TNn is even higher, with about 
3°C of warming since 1960 (Figure 11.2). Figure 11.9 shows maps 
of linear trends over 1960–2018 in TXx, TNn, and frequency of warm 
days (TX90p). The maps for TXx and TNn show trends consistent 
with overall warming in most regions, with a  particularly high 

warming of TXx in Europe and north-western South America, and 
a particularly high warming of TNn in the Arctic. Consistent with the 
observed warming in global surface temperature (Section 2.3.1.2) 
and the observed trends in TXx and TNn, the frequency of TX90p 
has increased, while that of cold nights (TN10p) has decreased since 
the 1950s: Nearly all land regions showed statistically significant 
decreases in TN10p (Alexander, 2016; Dunn et al., 2020), though 
trends in TX90p are variable with some decreases in Southern South 
America, mainly during austral summer (Rusticucci et al., 2017). 
A decrease in the number of cold spell days is also observed over 
nearly all land surface areas (Easterling et al., 2016) and in the 
northern mid-latitudes in particular (van Oldenborgh et al., 2019). 
These observed changes are also consistent when a  new global 
land surface daily air temperature dataset is analysed (P. Zhang 
et al., 2019). Warming trends in temperature extremes globally, 
and in most land areas, over the path  century are also found to 
be consistent in a  range of observation-based datasets (Fischer 
and Knutti, 2014; Donat et al., 2016a; Dunn et al., 2020), with the 
extremes related to daily minimum temperatures changing faster 
than those related to daily maximum temperatures (Dunn et al., 
2020; see Figure 11.2). Seasonal variations in trends in temperature-
related extremes have been demonstrated. A  warming in warm-
season temperature extremes is detected, even during the ‘slower 
surface global warming’ period from the late 1990s to early 2010s 
(Cross-Chapter Box 3.1; Kamae et al., 2014; Seneviratne et al., 2014; 
Imada et al., 2017). Many studies of past changes in temperature 
extremes for particular regions or countries show trends consistent 
with this global picture, as summarized below and in Tables 11.4, 
11.7, 11.10, 11.13, 11.16 and 11.19. 

In Africa (Table  11.4), while it is difficult to assess changes in 
temperature extremes in parts of the continent because of a  lack 
of data, evidence of an increase in the intensity and frequency of 
hot extremes and decrease in the intensity and frequency of cold 
extremes is clear and robust in regions where data are available. 
These include an increase in the frequency of warm days and nights 
and a decrease in the frequency of cold days and nights with high 
confidence (Donat et al., 2013a, 2014b; Kruger and Sekele, 2013; 
Chaney et al., 2014; Filahi et al., 2016; Moron et al., 2016; Ringard 
et al., 2016; Barry et al., 2018; Gebrechorkos et al., 2018) and an 
increase in heatwaves (Russo et al., 2016; Ceccherini et al., 2017). The 
increase in TNn is more notable than in TXx (Figure 11.9). Cold spells 
occasionally strike subtropical areas, but are likely to have decreased 
in frequency (Barry et al., 2018). The frequency of cold events has likely 
decreased in South Africa (Song et al., 2014; Kruger and Nxumalo, 
2017), North Africa (Filahi et al., 2016; Driouech et al., 2021), and 
the Sahara (Donat et al., 2016a). Over the whole continent, there 
is medium confidence in an increase in the intensity and frequency 
of hot extremes and decrease in the intensity and frequency of cold 
extremes; it is likely that similar changes have also occurred in areas 
with poor data coverage, as warming is widespread and as projected 
future changes are similar over all regions (Section 11.3.5).

In Asia (Table 11.7), there is very robust evidence for a very likely 
increase in the intensity and frequency of hot extremes and decrease 
in the intensity and frequency of cold extremes in recent decades. 
This is clear in global studies (e.g.,  Alexander, 2016; Dunn et al., 
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2020), as well as in numerous regional studies (Table 11.7). The area 
fraction with extreme warmth in Asia increased during 1951–2016 
(Imada et al., 2018). The frequency of warm extremes increased and 
the frequency of cold extremes decreased in East Asia (B. Zhou et al., 
2016; Chen and Zhai, 2017; Yin et al., 2017; W. Lee et al., 2018; Qian 
et al., 2019) and west Asia (Ac ar Deniz and Gönençgil, 2015; Erlat 
and Türkeş, 2016; Rahimi and Hejabi, 2018; Rahimi et al., 2018) with 
high confi dence. The duration of heat extremes has also lengthened 
in some regions, for example, in southern China (Luo and Lau, 
2016), but there is medium confi dence of heat extremes increasing 
in frequency in South Asia (AlSarmi and Washington, 2014; Sheikh 
et al., 2015; Mazdiyasni et al., 2017; Zahid et al., 2017; Nasim et al., 
2018; Khan et al., 2019; Sen Roy, 2019). Warming trends in daily 
temperature extremes indices have also been observed in central 
Asia (Hu et al., 2016; Feng et al., 2018), the Hindu Kush Himalaya (Sun 
et al., 2017), and South East Asia (Supari et al., 2017; Cheong et al., 
2018). The intensity and frequency of cold spells in all Asian regions 
have been decreasing since the beginning of the 20th century (high 
confi dence) (Sheikh et al., 2015; Donat et al., 2016a; Dong et al., 
2018; van Oldenborgh et al., 2019).

In Australasia (Table 11.10), there is very robust evidence for very 
likely increases in the number of warm days and warm nights and 
decreases in the number of cold days and cold nights since 1950 
(Lewis and King, 2015; Jakob and Walland, 2016; Alexander and 
Arblaster, 2017). The increase in extreme minimum temperatures 
occurs in all seasons over most of Australia and typically exceeds the 
increase in extreme maximum temperatures (X.L. Wang et al., 2013b; 
Jakob and Walland, 2016). However, some parts of Southern Australia 
have shown stable or increased numbers of frost days since the 
1980s (Dittus et al., 2014) (see also Section 11.3.4). Similar positive 
trends in extreme minimum and maximum temperatures have been 
observed in New Zealand, in particular in the autumn and winter 
seasons, although they generally show higher spatial variability 
(Caloiero, 2017). In the tropical Western Pacifi c region, spatially 
coherent warming trends in maximum and minimum temperature 

extremes have been reported for the period 1951–2011 (Whan et al., 
2014; McGree et al., 2019). 

In Central and South America (Table 11.13), there is high confi dence
that observed hot extremes (TN90p, TX90p) have increased, and 
cold extremes (TN10p, TX10p) have decreased over recent decades, 
though trends vary among different extremes types, datasets, and 
regions (Skansi et al., 2013; Dittus et al., 2016; Rusticucci et al., 2017; 
Meseguer-Ruiz et al., 2018; Salvador and de Brito, 2018; Dereczynski 
et al., 2020; Dunn et al., 2020; Olmo et al., 2020). An increase in 
the intensity and frequency of heatwave events was also observed 
between 1961 and 2014 in an area covering most of South America 
(Ceccherini et al., 2016; Geirinhas et al., 2018). However, there 
is medium confi dence that warm extremes (TXx and TX90p) have 
decreased in the last decades over the central region of South-Eastern 
South America (SES) during austral summer (Tencer and Rusticucci, 
2012; Skansi et al., 2013; Rusticucci et al., 2017; Wu and  Polvani, 
2017). There is medium confi dence that TNn extremes are warming 
faster than TXx extremes, with the largest warming rates observed 
over North-East Brazil (NEB) and Northern South America (NSA) for 
cold nights (Skansi et al., 2013). 

In Europe (Table  11.16), there is very robust evidence for a  very 
likely increase in maximum temperatures and the frequency of 
heatwaves. The increase in the magnitude and frequency of high 
maximum temperatures has been observed consistently across 
regions, including in central Europe (Twardosz and Kossowska-Cezak, 
2013; Christidis et al., 2015; Lorenz et al., 2019) and southern Europe 
(Croitoru and Piticar, 2013; El Kenawy et al., 2013; Christidis et al., 
2015; Nastos and Kapsomenakis, 2015; Fioravanti et al., 2016; Ruml 
et al., 2017). In Northern Europe, a strong increase in extreme winter 
warming events has been observed (Matthes et al., 2015; Vikhamar-
Schuler et al., 2016). Temperature observations for winter cold spells 
show a  long-term decreasing frequency in Europe (Bru nner et al., 
2018; van Oldenborgh et al., 2019), and typical cold spells, such 
as that observed during the 2009–2010 winter, had an occurrence 

Non-significant trends
Significant trendsColour

No data

Figure 11.9 | Linear trends over 1960–2018 for three temperature extreme indices: (a) the annual maximum daily maximum temperature (TXx), (b) the annual 
minimum daily minimum temperature (TNn), and (c) the annual number of days when daily maximum temperature exceeds its 90th percentile from a base period of 1961–1990 
(TX90p); based on the HadEX3 dataset (Dunn et al., 2020). Linear trends are calculated only for grid points with at least 66% of the annual values over the period and which 
extend to at least 2009. Areas without suffi cient data are shown in grey. No overlay indicates regions where the trends are signifi cant at the p = 0.1 level. Crosses indicate 
regions where trends are not signifi cant. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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probability two times smaller currently than if climate change had 
not occurred (Christiansen et al., 2018).

In North America (Table  11.19), there is very robust evidence for 
a very likely increase in the intensity and frequency of hot extremes 
and decrease in the intensity and frequency of cold extremes for the 
whole continent, though there are substantial spatial and seasonal 
variations in the trends. Minimum temperatures display warming 
consistently across the continent, while there are more contrasting 
trends in the annual maximum daily temperatures in parts of the 
USA (Figure 11.9; Lee et al., 2014; van Oldenborgh et al., 2019; Dunn 
et al., 2020). In Canada, there is a  clear increase in the intensity 
and frequency of hot extremes and decrease in the intensity and 
frequency of cold extremes (Vincent et al., 2018). In Mexico, a clear 
warming trend in TNn was found, particularly in the northern arid 
region (Montero-Martínez et al., 2018). The number of warm days has 
increased and the number of cold days has decreased (García-Cueto 
et al., 2019). Cold spells have undergone a reduction in magnitude 
and intensity in all regions of North America (Bennett and Walsh, 
2015; Donat et al., 2016a; Grotjahn et al., 2016; Vose et al., 2017; 
García-Cueto et al., 2019; van Oldenborgh et al., 2019). 

Extreme heat events have increased around the Arctic since 1979, 
particularly over Arctic North America and Greenland (Matthes 
et al., 2015; Dobricic et al., 2020), which is consistent with summer 
melt (Section 9.4.1). Observations north of 60˚N show increases in 
winter warm days and nights over 1979–2015, while cold days and 
nights declined (Sui et al., 2017). Extreme heat days are particularly 
strong in winter, with observations showing the warmest mid-winter 
temperatures at the North Pole rising at twice the rate of mean 
temperature (Moore, 2016), as well as increases in Arctic winter 
warm days (Vikhamar-Schuler et al., 2016; Graham et al., 2017). 
Arctic annual minimum temperatures have increased at about three 
times the rate of global surface temperature since the 1960s (Figures 
11.2 and 11.9), consistent with the observed mean cold season 
(October–May) warming of 3.1°C in the region (Atlas 11.2).

Trends in some measures of heatwaves are also observed at the 
global scale. Globally averaged heatwave intensity, heatwave 
duration, and the number of heatwave days have significantly 
increased from 1950–2011 (Perkins, 2015). There are some regional 
differences in trends in characteristics of heatwaves, with significant 
increases reported in Europe (Russo et al., 2015; Forzieri et al., 2016;  
Sánchez-Benítez et al., 2020) and Australia (CSIRO and BOM, 
2016;  Alexander and Arblaster, 2017). In Africa, there is medium 
confidence that heatwaves, regardless of the definition, have been 
becoming more frequent, longer-lasting, and hotter over more 
than three decades (Fontaine et al., 2013; Mouhamed et al., 2013; 
Ceccherini et al., 2016, 2017; Forzieri et al., 2016; Moron et al., 2016; 
Russo et al., 2016). The majority of heatwave characteristics examined 
in China between 1961 and 2014 show increases in heatwave days, 
consistent with warming (You et al., 2017; Xie et al., 2020). Increases 
in the frequency and duration of heatwaves are also observed in 
Mongolia (Erdenebat and Sato, 2016) and India (Ratnam et al., 2016; 
Rohini et al., 2016). In the UK, the lengths of short heatwaves have 
increased since the 1970s, while the lengths of long heatwaves (more 
than 10 days) have decreased over some stations in the south-east 

of England (M. Sanderson et al., 2017). In Central and South America, 
there are increases in the frequency of heatwaves (Barros et al., 
2015; Bitencourt et al., 2016; Ceccherini et al., 2016; Piticar, 2018), 
although decreases in Excess Heat Factor (EHF), which is a metric for 
heatwave intensity, are observed in South America in data derived 
from HadGHCND (Cavanaugh and Shen, 2015). 

In summary, it is virtually certain that there has been an increase in 
the number of warm days and nights and a decrease in the number of 
cold days and nights on the global scale since 1950. Both the coldest 
extremes and hottest extremes display increasing temperatures. It is 
very likely that these changes have also occurred at the regional 
scale in Europe, Australasia, Asia, and North America. It is virtually 
certain that there has been increases in the intensity and duration 
of heatwaves and in the number of heatwave days at the global 
scale. These trends likely occur in Europe, Asia, and Australia. There 
is medium confidence in similar changes in temperature extremes in 
Africa and high confidence in South America; the lower confidence is 
due to reduced data availability and fewer studies. Annual minimum 
temperatures on land have increased about three times more than 
global surface temperature since the 1960s, with particularly strong 
warming in the Arctic (high confidence).

11.3.3 Model Evaluation 

The AR5 assessed that CMIP3 and CMIP5 models generally captured 
the observed spatial distributions of the mean state and that the 
inter-model range of simulated temperature extremes was similar 
to the spread estimated from different observational datasets; 
the models generally captured trends in the second half of the 
20th  century for indices of extreme temperature, although they 
tended to overestimate trends in hot extremes and underestimate 
trends in cold extremes (Flato et al., 2013). Post-AR5 studies on 
the CMIP5 models’ performance in simulating mean and changes 
in temperature extremes continue to support the AR5 assessment 
(Fischer and Knutti, 2014; Sillmann et al., 2014; Ringard et al., 2016; 
Borodina et al., 2017b; Donat et al., 2017; Di Luca et al., 2020b). Over 
Africa, the observed warming in temperature extremes is captured by 
CMIP5 models, although it is underestimated in Western and Central 
Africa (Sherwood et al., 2014; Diedhiou et al., 2018). Over East Asia, 
the CMIP5 ensemble performs well in reproducing the observed 
trend in temperature extremes averaged over China (Dong et al., 
2015). Over Australia, the multi-model mean performs better than 
individual models in capturing observed trends in gridded station-
based ETCCDI temperature indices (Alexander and Arblaster, 2017). 

Initial analyses of CMIP6 simulations (H. Chen et al., 2020; Di Luca 
et al., 2020a; Kim et al., 2020; Thorarinsdottir et al., 2020; Wehner 
et al., 2020; Li et al., 2021) indicate that the CMIP6 models perform 
similarly to the CMIP5 models regarding biases in hot and cold 
extremes. In general, CMIP5 and CMIP6 historical simulations are 
similar in their performance in simulating the observed climatology 
of extreme temperatures (high confidence). The general warm bias 
in hot extremes and cold bias in cold extremes reported for CMIP5 
models (Kharin et al., 2013; Sillmann et al., 2013a) remain in CMIP6 
models (Di Luca et al., 2020a). However, there is some evidence that 
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CMIP6 models better represent some of the underlying processes 
leading to extreme temperatures, such as seasonal and diurnal 
variability and synoptic-scale variability (Di Luca et al., 2020a). Whether 
these improvements are sufficient to enhance our understanding of 
past changes, or to reduce uncertainties in future projections, remains 
unclear. The relative error estimates in the simulation of various indices 
of temperature extremes in the available CMIP6 models show that 
no single model performs the best on all indices, and the multi-model 
ensemble seems to outperform any individual model due to its reduction 
in systematic bias (Kim et al., 2020). Figure 11.10 show errors in the 
1979–2014 average annual TXx and annual TNn simulated by available 
CMIP6 models in comparison with HadEX3 and ERA5 (Kim et al., 2020; 
Wehner et al., 2020; Li et al., 2021). While the magnitude of the model 
error depends on the reference dataset, the model evaluations drawn 
from different reference datasets are quite similar. In general, models 
reproduce the spatial patterns and magnitudes of both cold and hot 
temperature extremes quite well. There are also systematic biases. 
Hot extremes tend to be too cool in mountainous and high-latitude 
regions, but too warm in the eastern USA and South America. For cold 
extremes, CMIP6 models are too cool, except in north-eastern Eurasia 
and the southern mid-latitudes. Errors in seasonal mean temperatures 
are uncorrelated with errors in extreme temperatures and are often of 
opposite sign (Wehner et al., 2020). 

Atmospheric Model Intercomparison Project (AMIP) simulations 
are often used in event attribution studies to assess the influence 
of global warming on observed temperature-related extremes. These 
simulations typically capture the observed trends in temperature 
extremes, though some regional features, such as the lack of warming 
in daytime warm temperature extremes over South America and 
parts of North America, are not reproduced in the model simulations 
(Dittus et al., 2018), possibly due to internal variability, deficiencies 
in local surface processes, or forcings that are not represented in 
the sea surface temperatures (SSTs). Additionally, the AMIP models 
assessed tend to produce overly persistent heatwave events. This bias 

in the duration of the events does not impact on the reliability of the 
models’ positive trends (Freychet et al., 2018). 

Several regional climate models (RCMs) have also been evaluated in 
terms of their performance in simulating the climatology of extremes 
in various regions of the Coordinated Regional Downscaling 
Experiment (CORDEX) (Giorgi et al., 2009), especially in East Asia 
(Ji and Kang, 2015; Yu et al., 2015; Park et al., 2016; Bucchignani 
et al., 2017; Gao et al., 2017a; Niu et al., 2018; Y. Sun et al., 2018b; 
Wang et al., 2019), Europe (Vautard et al., 2013, 2021; Smiatek 
et al., 2016; Gaertner et al., 2018; Cardoso et al., 2019; Lorenz et al., 
2019; Jacob et al., 2020; Kim et al., 2020), and Africa (J. Kim et al., 
2014; Diallo et al., 2015; Dosio, 2017; Samouly et al., 2018; Mostafa 
et al., 2019). Compared to GCMs, RCM simulations show an added 
value in simulating temperature-related extremes, though this 
depends on topographical complexity and the parameters employed 
(see  Section  10.3.3). The improvement with resolution is noted in 
East Asia (Park et al., 2016; W. Zhou et al., 2016; Shi et al., 2017; Hui 
et al., 2018). However, in the European CORDEX ensemble, different 
aerosol climatologies with various degrees of complexity were used 
in projections (Bartók et al., 2017; Lorenz et al., 2019) and the land 
surface models used in the RCMs do not account for physiological CO2 
effects on photosynthesis leading to enhanced water-use efficiency 
and decreased evapotranspiration (Schwingshackl et al., 2019), 
which could lead to biases in the representation of temperature 
extremes in these projections (Boé et al., 2020). In addition, there 
are key cold biases in temperature extremes over areas with complex 
topography (Niu et al., 2018). Over North America, 12 RCMs were 
evaluated over the ARCTIC-CORDEX region (Diaconescu et al., 2018). 
Models performed well at simulating climate indices related to mean 
air temperature and hot extremes over most of the Canadian Arctic, 
with the exception of the Yukon region where models displayed 
the largest biases related to topographic effects. Two RCMs were 
evaluated against observed extremes indices over North America 
over the period 1989–2009, with a cool bias in minimum temperature 

(a) Bias in annual hottest temperature (TXx) (b) Bias in annual coldest temperature (TNn)

-10     -8     -6      -4     -2       0       2       4       6      8      10
too cold too warmTemperature bias (°C)

No data

Multi model mean bias in temperature extremes

Figure 11.10 | Multi-model mean bias in temperature extremes (°C) for the period 1979–2014, calculated as the difference between the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) multi-model mean and the average of observations from the values available in HadEX3. (a) The annual hottest 
temperature (TXx); and (b) the annual coldest temperature (TNn). Areas without sufficient data are shown in grey. Adapted from Wehner et al. (2020) under the terms of the 
Creative Commons Attribution licence. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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extremes shown in both RCMs (Whan and Zwiers, 2016). The most 
significant biases are found in TXx and TNn, with fewer differences 
in the simulation of annual minimum daily maximum temperature 
(TXn) and annual maximum daily minimum temperature (TNx) 
in Central and Western North America. Over Central and South 
America, maximum temperatures from the Eta RCM are generally 
underestimated, although hot days, warm nights, and heatwaves are 
increasing in the period 1961–1990, in agreement with observations 
(Chou et al., 2014b; Tencer et al., 2016; Bozkurt et al., 2019).

Some land forcings are not well represented in climate models. 
As  highlighted in the Special Report on Climate Change and Land 
(SRCCL) Chapter 2, there is high agreement that temperate deforestation 
leads to summer warming and winter cooling (Anderson et al., 2011; 
Gálos et al., 2011, 2013; Anderson-Teixeira et al., 2012; Chen et al., 
2012; Wickham et al., 2013; Zhao and Jackson, 2014; Ahlswede and 
Thomas, 2017; Bright et al., 2017; Strandberg and Kjellström, 2019), 
which has substantially contributed to the warming of hot extremes in 
the northern mid-latitudes over the course of the 20th century (Lejeune 
et al., 2018) and in recent years (Strandberg and Kjellström, 2019). 
However, observed forest effects on the seasonal and diurnal cycle of 
temperature are not well-captured in several ESMs: while observations 
show a cooling effect of forest cover compared to non-forest vegetation 
during daytime (Li et al., 2015), in particular in arid, temperate, and 
tropical regions (Alkama and Cescatti, 2016), several ESMs simulate 
a warming of daytime temperatures for regions with forest versus non-
forest cover (Lejeune et al., 2017). Also irrigation effects, which can 
lead to regional cooling of temperature extremes, are generally not 
integrated in current generations of ESMs (Section 11.3.1).

In summary, there is high confidence that climate models can 
reproduce the mean state and overall warming of temperature 
extremes observed globally and in most regions, although the 
magnitude of the trends may differ. The ability of models to capture 
observed trends in temperature-related extremes depends on the 
metric evaluated, the way indices are calculated, and the time 
periods and spatial scales considered. Regional climate models add 
value in simulating temperature-related extremes over GCMs in some 
regions. Some land forcings on temperature extremes are not well-
captured (effects of deforestation) or generally not representated 
(irrigation) in ESMs.

11.3.4 Detection and Attribution, Event Attribution

The SREX (IPCC, 2012) assessed that it is likely anthropogenic 
influences have led to the warming of extreme daily minimum and 
maximum temperatures at the global scale. The AR5 concluded that 
human influence has very likely contributed to the observed changes 
in the intensity and frequency of daily temperature extremes on the 
global scale in the second half of the 20th  century (IPCC, 2014). 
With regard to individual, or regionally or locally specific events, AR5 
concluded that it is likely human influence has substantially increased 
the probability of occurrence of heatwaves in some locations.

Studies since AR5 continue to attribute the observed increase in the 
frequency or intensity of hot extremes and the observed decrease 

in the frequency or intensity of cold extremes to human influence, 
dominated by anthropogenic greenhouse gas emissions, on global 
and continental scales, and for many AR6 regions. These include 
attribution of changes in the magnitude of annual TXx, TNx, TXn, and 
TNn, based on different observational datasets including, HadEX2 
and HadEX3, CMIP5 and CMIP6 simulations, and different statistical 
methods (Kim et al., 2016; Z. Wang et al., 2017a; Seong et al., 2021). 
As is the case for an increase in mean temperature (Section 3.3.1), 
an increase in extreme temperature is mostly due to greenhouse gas 
forcing, offset by aerosol forcing. The aerosols’ cooling effect is clearly 
detectable over Europe and Asia (Seong et al., 2021). As much as 75% 
of the moderate daily hot extremes (above 99.9th percentile) over 
land are due to anthropogenic warming (Fischer and Knutti, 2015). 
New results are found to be more robust due to the extended period 
that improves the signal-to-noise ratio. The effect of anthropogenic 
forcing is clearly detectable and attributable in the observed changes 
in these indicators of temperature extremes, even at country and 
sub-country scales, such as in Canada (Wan et al., 2019). Changes in 
the number of warm nights, warm days, cold nights, and cold days, 
and other indicators such as the Warm Spell Duration Index (WSDI), 
are also attributed to anthropogenic influence (Christidis and Stott, 
2016; Hu et al., 2020). 

Regional studies, including for Asia (Dong et al., 2018; Lu et al., 2018), 
Australia (Alexander and Arblaster, 2017), and Europe (Christidis and 
Stott, 2016), found similar results. A  clear anthropogenic signal is 
also found in the trends in the Combined Extreme Index (CEI) for 
North America, Asia, Australia, and Europe (Dittus et al., 2016). While 
various studies have described increasing trends in several heatwave 
metrics (heatwave duration, the number of heatwave days, etc.) in 
different regions (e.g.,  Cowan et al., 2014; Bandyopadhyay et al., 
2016; M. Sanderson et al., 2017), few recent studies have explicitly 
attributed these changes to causes; most of them stated that observed 
trends are consistent with anthropogenic warming. The detected 
anthropogenic signals are clearly separable from the response to 
natural forcing, and the results are generally insensitive to the use 
of different model samples, as well as different data availability, 
indicating robust attribution. Studies of monthly, seasonal, and 
annual records in various regions (Kendon, 2014; Lewis and King, 
2015; Bador et al., 2016; Meehl et al., 2016; C. Zhou et al., 2019) and 
globally (King, 2017) show an increase in the breaking of hot records 
and a decrease in the breaking of cold records (King, 2017). Changes 
in anthropogenically attributable record-breaking rates are noted to 
be largest over the Northern Hemisphere land areas (Shiogama et al., 
2016). Yin and Sun (2018) found clear evidence of an anthropogenic 
signal in the changes in the number of frost and ice days, when 
multiple model simulations were used. In some key wheat-producing 
regions of Southern Australia, increases in frost days or frost season 
length have been reported (Dittus et al., 2014; Crimp et al., 2016); 
these changes are linked to decreases in rainfall, cloud-cover, and 
subtropical ridge strength, despite an overall increase in regional 
mean temperatures (Dittus et al., 2014; Pepler et al., 2018). 

A significant advance since AR5 has been a large number of studies 
focusing on extreme temperature events at monthly and seasonal 
scales, using various extreme event attribution methods. Diffenbaugh 
et al. (2017) found that anthropogenic warming has increased the 
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severity and probability of the hottest month by more than 80% of 
the available observational area on the global scale. Christidis and 
Stott (2014) provide clear evidence that warm events have become 
more probable because of anthropogenic forcings. Sun et al. (2014) 
found that human influence has caused a more than 60-fold increase 
in the probability of the extreme warm 2013 summer in eastern 
China since the 1950s. Human influence is found to have increased 
the probability of the historically hottest summers in many regions of 
the world, both in terms of mean temperature (B. Mueller et al., 2016) 
and wet bulb globe temperature (WBGT; C. Li et al., 2017). In most 
regions of the Northern Hemisphere, changes in the probability of 
extreme summer average WBGT were found to be about an order 
of magnitude larger than changes in the probability of extreme hot 
summers estimated by surface air temperature (C. Li et al., 2017). 
In addition to these generalized, global-scale approaches, extreme 
event studies have found an attributable increase in the probability 
of hot annual and seasonal temperatures in many locations, 
including Australia (Knutson et al., 2014b; Lewis and Karoly, 2014), 
China (Sun et al., 2014; Sparrow et al., 2018; Zhou et al., 2020), Korea 
(Y.-H. Kim et al., 2018) and Europe (King et al., 2015b). 

There have also been many extreme event attribution studies that 
examined short-duration temperature extremes, including daily 
temperatures, temperature indices, and heatwave metrics. Examples 
of these events from different regions are summarized in various 
annual Explaining Extreme Events supplements of the Bulletin of 
the American Meteorological Society (Peterson et al., 2012, 2013a; 
Herring et al., 2014, 2015, 2016, 2018, 2019, 2020), including 
a  number of approaches to examine extreme events (described in 
Easterling et al., 2016; Stott et al., 2016; Otto, 2017). Several studies 
of recent events from 2016 onwards have determined an infinite 
risk ratio (a fraction of attributable risk, or FAR, of 1), indicating that 
the occurrence probability for such events is close to zero in model 
simulations without anthropogenic influences (see Herring et al., 
2018, 2019, 2020; Imada et al., 2019; Vogel et al., 2019). Though it 
is difficult to accurately estimate the lower bound of the uncertainty 
range of the FAR in these cases (Paciorek et al., 2018), the fact that 
those events are so far outside the envelop of the models with only 
natural forcing indicates that it is extremely unlikely for those events 
to occur without human influence. 

Studies that focused on the attributable signal in observed cold extreme 
events show human influence reducing the probability of those events. 
Individual attribution studies on the extremely cold winter of 2011 in 
Europe (Peterson et al., 2012), in the eastern USA during 2014 and 
2015 (Trenary et al., 2015, 2016; Wolter et al., 2015; Bellprat et al., 
2016), in the cold spring of 2013 in the United Kingdom (Christidis 
et al., 2014), and of 2016 in eastern China (Qian et al., 2018; Y. Sun 
et al., 2018b) all showed a reduced probability due to human influence 
on the climate. An exception is the study of Grose et al. (2018), which 
found an increase in the probability of the severe western Australian 
frost of 2016 due to anthropogenically-driven changes in circulation 
patterns that drive cold outbreaks and frost probability. 

Different event attribution studies can produce a  wide range of 
changes in the probability of event occurrence because of different 
framing. The temperature event definition itself plays a crucial role in 

the attributable signal (Fischer and Knutti, 2015; Kirchmeier-Young 
et al., 2019). Large-scale, longer-duration events tend to have notably 
larger attributable risk ratios (Angélil et al., 2014, 2018; Uhe et al., 
2016; Harrington, 2017; Kirchmeier-Young et al., 2019), as natural 
variability is smaller. While uncertainty in the best estimates of the 
risk ratios may be large, their lower bounds can be quite insensitive to 
uncertainties in observations or model descriptions, thus increasing 
confidence in conservative attribution statements (Jeon et al., 2016).

The relative strength of anthropogenic influences on temperature 
extremes is regionally variable, in part due to differences in changes 
in atmospheric circulation, land–surface feedbacks, and other 
external drivers such as aerosols. For example, in the Mediterranean 
and over western Europe, risk ratios on the order of 100 have been 
found (Kew et al., 2019; Vautard et al., 2020), whereas in the USA, 
changes are much less pronounced. This is probably a reflection of 
the land–surface feedback enhanced extreme 1930s temperatures 
that reduce the rarity of recent extremes, in addition to the definition 
of the events and framing of attribution analyses (e.g., spatial and 
temporal scales considered). Local forcing may mask or enhance 
the warming effect of greenhouse gases. In India, short-lived 
aerosols or an increase in irrigation may be masking the warming 
effect of greenhouse gases (Wehner et al., 2018c). Irrigation and 
crop intensification have been shown to lead to a cooling in some 
regions, in particular in North America, Europe, and India (high 
confidence) (N.D. Mueller et al., 2016; Thiery et al., 2017, 2020; Chen 
and Dirmeyer, 2019). Deforestation has contributed about one third 
of the total warming of hot extremes in some mid-latitude regions 
since pre-industrial times (Lejeune et al., 2018). Despite all of these 
differences, and larger uncertainties at the regional scale, nearly 
all studies demonstrated that human influence has contributed 
to an increase in the frequency or intensity of hot extremes and to 
a decrease in the frequency or intensity of cold extremes. 

In summary, long-term changes in various aspects of long- and 
short-duration extreme temperatures, including intensity, frequency, 
and duration have been detected in observations and attributed to 
human influence at global and continental scales. It is extremely 
likely that human influence is the main contributor to the observed 
increase in the intensity and frequency of hot extremes and the 
observed decrease in the intensity and frequency of cold extremes 
on the global scale. It is very likely that this applies on continental 
scales as well. Some specific recent hot extreme events would have 
been extremely unlikely to occur without human influence on the 
climate system. Changes in aerosol concentrations have affected 
trends in hot extremes in some regions, with the presence of aerosols 
leading to attenuated warming, in particular from 1950 to 1980. 
Crop intensification, irrigation and no-till farming have attenuated 
increases in summer hot extremes in some regions, such as Central 
North America (medium confidence).

11.3.5 Projections

The AR5 (Chapter12, Collins et al., 2013) concluded that it is virtually 
certain there will be more frequent hot extremes and fewer cold 
extremes at the global scale and over most land areas in a  future 
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warmer climate, and it is very likely that heatwaves will occur 
with a higher frequency and longer duration.The SR1.5 (Chapter 3, 
Hoegh-Guldberg et al., 2018) assessment on projected changes in 
hot extremes at 1.5°C and 2°C global warming is consistent with the 
AR5 assessment, concluding that it is very likely a global warming 
of 2°C, when compared with a 1.5°C warming, would lead to more 
frequent and more intense hot extremes on land, as well as to longer 
warm spells, affecting many densely inhabited regions. The SR1.5 
also assessed it is very likely that the strongest increases in the 
frequency of hot extremes are projected for the rarest events, while 
cold extremes will become less intense and less frequent, and cold 
spells will be shorter. 

New studies since AR5 and SR1.5 confirm these assessments. New 
literature since AR5 includes projections of temperature-related 
extremes in relation to changes in mean temperatures, projections 
based on CMIP6 simulations, projections based on stabilized global 
warming levels, and the use of new metrics. Constraints for the 
projected changes in hot extremes were also provided (Borodina 
et al., 2017b; Sippel et al., 2017b; Vogel et al., 2017). Overall, 
projected changes in the magnitude of extreme temperatures over 
land are larger than changes in global mean temperature, over mid-
latitude land regions in particular (Figures 11.3, 11.11; Fischer et al., 
2014; Seneviratne et al., 2016; B.M. Sanderson et al., 2017; Wehner 
et al., 2018b; Di Luca et al., 2020b). Large warming in hot and cold 

extremes will occur, even at the 1.5°C GWL (Figure 11.11). At this 
level, widespread significant changes at the grid-box level occur for 
different temperature indices (Aerenson et al., 2018). In agreement 
with CMIP5 projections, CMIP6 simulations show that a  0.5°C 
increment in global warming will significantly increase the intensity 
and frequency of hot extremes, and decrease the intensity and 
frequency of cold extremes on the global scale (Figures 11.6, 11.8 
and 11.12). It takes less than half of a degree for the changes in TXx 
to emerge above the level of natural variability (Figure 11.8) and the 
66% ranges of the land medians of the 10-year or 50-year TXx events 
do not overlap between 1.0°C and 1.5°C in the CMIP6 multi-model 
ensemble simulations (Figure 11.6, Li et al., 2021). 

Projected warming is larger for TNn and exhibits strong equator-to-
pole amplification, similar to the warming of boreal winter mean 
temperatures. The warming of TXx is more uniform over land and 
does not exhibit this behaviour (Figure  11.11). The warming of 
temperature extremes on global and regional scales tends to scale 
linearly with global warming (Section 11.1.4; Fischer et al., 2014; 
Seneviratne et al., 2016; Wartenburger et al., 2017; Li et al., 2021; 
see also SR1.5, Chapter 3). In the mid-latitudes, the rate of warming  
of hot extremes can be as large as twice the rate of global 
warming (Figure 11.11). In the Arctic winter, the rate of warming of 
the temperature of the coldest nights is about three times the rate 
of global warming (Appendix, Figure  11.A.1). Projected changes 

Colour
Low model agreement
High model agreement

Figure 11.11 | Projected changes in (a–c) annual maximum temperature (TXx) and (d–f) annual minimum temperature (TNn) at 1.5°C, 2°C, and 4°C of 
global warming compared to the 1850–1900 baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model 
ensemble under the Shared Socio-economic Pathways (SSPs) SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers in the top right indicate the number 
of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the 
sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, 
please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in TXx and TNn are also displayed in the Interactive 
Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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11in temperature extremes can deviate from projected changes in 
annual mean warming in the same regions (Figures 11.3, 11.A.1 and 
11.A.2; Di Luca et al., 2020b; Wehner, 2020) due to the additional 
processes that control the response of regional extremes, including, 
in particular, soil moisture–evapotranspiration–temperature 
feedbacks for hot extremes in the mid-latitudes and subtropical 
regions, and snow/ice–albedo–temperature feedbacks in high-
latitude regions. 

The probability of exceeding a  certain hot extreme threshold will 
increase, while those for cold extreme will decrease with global 
warming (B. Mueller et al., 2016; Lewis et al., 2017b; Suarez-
Gutierrez et al., 2020b). The changes tend to sc ale nonlinearly with 
the level of global warming, with larger changes for more rare 
events (Section 11.2.4; Cross-Chapter Box 11.11; Figures 11.6 and 
11.12; Fischer and Knutti, 2015; Kharin et al., 2018; Li et al., 2021). 
For  example, the CMIP5 ensemble projects the frequency of the 
present-day climate 20-year hottest daily temperature to increase 
by 80% at the 1.5°C GWL and by 180% at the 2.0°C GWL, and 
the frequency of the present-day climate 100-year hottest daily 
temperature to increase by 200% and more than 700% at the 1.5°C 
and 2.0°C warming levels, respectively (Kharin et al., 2018). CMIP6 
simulations project similar changes (Li et al., 2021).

Tebaldi and Wehner (2018) showed that, at the middle of 
the  21st  century, 66% of the land surface area would experience 

the present-day 20-year return values of TXx and the running three-
day average of the daily maximum temperature every other year, on 
average, under the Representative Concentration Pathway 8.5 (RCP8.5) 
scenario, as opposed to only 34% under RCP4.5. By the end of the 
century, these area fractions increase to 92% and 62%, respectively. 
Such nonlinearities in the characteristics of future regional extremes are 
shown, for instance, for Europe (Dosio and Fischer, 2018; Spinoni et al., 
2018b; Lionello and Scarascia, 2020), Asia (Guo et al., 2017; Harrington 
and Otto, 2018b; King et al., 2018), and Australia (Lewis et al., 2017a) 
under various global warming thresholds. The nonlinear increase in 
fi xed-threshold indices (e.g., based on a percentile for a given reference 
period, or on an absolute threshold) as a function of global warming 
is consistent with a  linear warming of the absolute temperature of 
the temperature extremes (e.g., Whan et al., 2015). Compared to the 
historical climate, warming will result in strong increases in heatwave 
area, duration and magnitude (Vogel et al., 2020b). These changes are 
mostly due to the increase in mean seasonal temperature, rather than 
changes in temperature variability, though the latter can ha ve an effect 
in some regions ( Brown, 2020; Di Luca et al., 2020b; Suarez-Gutierrez 
et al., 2020a).

Projections of temperature-related extremes in RCMs in the CORDEX 
regions demonstrate robust increases under future scenarios and can 
provide information on fi ner spatial scales than GCMs (e.g., Coppola 
et al., 2021b). Five RCMs in the CORDEX–East Asia region project 
increases in the 20-year return values of temperature extremes 
(summer maxima), with models that exhibit warm biases projecting 
stronger warming (Park and Min, 2019). Similarly, in the African 
domain, future increases in TX90p and TN90p are projected (Dosio, 
2017; Mostafa et al., 2019). This regional-scale analysis provides 
fi ne-scale information, such as distinguishing the increase in TX90p 
over sub-equatorial Africa (Democratic Republic of the Congo, 
Angola, and Zambia) with values over the Gulf of Guinea, Central 
African Republic, South Sudan, and Ethiopia. Empirical statistical 
downscaling has also been used to produce more robust estimates 
for future heatwaves compared to RCMs based on large multi-model 
ensembles (Furrer et al., 2010; Keellings and Waylen, 2014; Wang 
et al., 2015; Benestad et al., 2018).

In all continental regions, including Africa (Table  11.4), Asia 
(Table  11.7), Australasia (Table  11.10), Central and South America 
(Table 11.13), Europe (Table 11.16), North America (Table 11.19) and 
at the continental scale, it is very likely that the intensity and frequency 
of hot extremes will increase and the intensity and frequency of cold 
extremes will decrease compared with the 1995–2014 baseline, even 
under 1.5°C global warming. Those changes are virtually certain
to occur under 4°C global warming. At the regional scale, and for 
almost all AR6 regions, it is likely that the intensity and frequency of 
hot extremes will increase and the intensity and frequency of cold 
extremes will decrease compared with the 1995–2014 baseline, 
even under 1.5°C global warming. Those changes are virtually 
certain to occur under 4°C global warming. Exceptions include lower 
confi dence in the projected decrease in the intensity and frequency of 
cold extremes compared with the 1995–2014 baseline under 1.5°C 
of global warming (medium confi dence) and 4°C of global warming 
(very likely) in Northern Central America, Central North America, and 
Western North America.

Figure 11.12 | Projected changes in the intensity of extreme temperature 
events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative 
to the 1850–1900 baseline. Extreme temperature events are defi ned as the 
daily maximum temperatures (TXx) that were exceeded on average once during 
a 10-year period (10-year event, blue) and once during a 50-year period (50-year 
event, orange) during the 1850–1900 base period. Results are shown for the global 
land. For each box plot, the horizontal line and the box represent the median and 
central 66% uncertainty range, respectively, of the intensity changes across the 
multi-model ensemble, and the ‘whiskers’ extend to the 90% uncertainty range. 
The results are based on the multi-model ensemble from simulations of global climate 
models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6) 
under different Shared Socio-economic Pathway forcing scenarios. Adapted from 
Li et al. (2021). Further details on data sources and processing are available in the 
chapter data table (Table 11.SM.9).
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In Africa (Table  11.4), evidence includes increases in the intensity 
and frequency of hot extremes, such as warm days, warm nights, 
and heatwaves, and decreases in the intensity and frequency of cold 
extremes, such as cold days and cold nights over the continent, as 
projected by CMIP5, CMIP6, and CORDEX simulations (Giorgi et al., 
2014; Engelbrecht et al., 2015; Lelieveld et al., 2016; Russo et al., 
2016; Dosio, 2017; Bathiany et al., 2018; Mba et al., 2018; Nangombe 
et al., 2018; Weber et al., 2018; Kruger et al., 2019; Coppola et al., 
2021b; Li et al., 2021). Cold spells are projected to decrease under 
all RCPs, and even at low warming levels in Western and Central 
Africa (Diedhiou et al., 2018). The number of cold days is projected to 
decrease in East Africa (Ongoma et al., 2018b).

In Asia (Table  11.7), evidence includes increases in the intensity 
and frequency of hot extremes, such as warm days, warm nights, and  
heatwaves, and decreases in the intensity and frequency of cold 
extremes, such as cold days and cold nights over the continent, as 
projected by CMIP5, CMIP6, and CORDEX simulations (Sillmann 
et al., 2013b; Zhou et al., 2014; R. Zhang et al., 2015; Zhao et al., 
2015; Pal and Eltahir, 2016; Singh and Goyal, 2016; Xu et al., 2017; 
Gao et al., 2018; Han et al., 2018; Shin et al., 2018; Sui et al., 2018; 
L. Li et al., 2019; Zhu et al., 2020). More intense heatwaves of longer 
durations and occurring at a  higher frequency are projected over 
India (Murari et al., 2015; Mishra et al., 2017) and Pakistan (Nasim 
et al., 2018). Future mid-latitude warm extremes, similar to those 
experienced during the 2010 event, are projected to become more 
extreme, with temperature extremes increasing potentially by 8.4°C 
(RCP8.5) over north-west Asia (van der Schrier et al., 2018). Over 
West and East Siberia, and Russian Far East, an increase in extreme 
heat durations is expected in all scenarios (Sillmann et al., 2013b; 
Kattsov et al., 2017; Reyer et al., 2017). In the MENA regions (Arabian 
Peninsula and Western Central Asia), extreme temperatures could 
increase by almost 7°C by 2100 under RCP8.5 (Lelieveld et al., 2016).

In Australasia (Table  11.10), evidence includes increases in the 
intensity and frequency of hot extremes, such as warm days, warm 
nights, and heatwaves, and decreases in the intensity and frequency 
of cold extremes, such as cold days and cold nights over the 
continent, as projected by CMIP5, CMIP6, and CORDEX simulations 
(CSIRO and BOM, 2015; Alexander and Arblaster, 2017; Lewis et al., 
2017a; Herold et al., 2018; Coppola et al., 2021b; Evans et al., 2021). 
Over most of Australia, increases in the intensity and frequency of 
hot extremes are projected to be predominantly driven by the long-
term increase in mean temperatures (Di Luca et al., 2020b). Future 
projections indicate a decrease in the number of frost days regardless 
of the region and season considered (Alexander and Arblaster, 2017; 
Herold et al., 2018).

In Central and South America (Table  11.13), evidence includes 
increases in the intensity and frequency of hot extremes, such as warm 
days, warm nights, and heatwaves, and decreases in the intensity and 
frequency of cold extremes, such as cold days and cold nights over the 
continent, as projected by CMIP5, CMIP6, and CORDEX simulations 
(Chou et al., 2014a; Cabré et al., 2016; López-Franca et al., 2016; 
Stennett-Brown et al., 2017; Coppola et al., 2021b; Li et al., 2021; 
Vichot-Llano et al., 2021). Over South-Eastern South America during 
the austral summer, the increase in the frequency of TN90p is larger 

than that projected for TX90p, consistent with observed past changes 
(López-Franca et al., 2016). Under RCP8.5, the number of heatwave 
days are projected to increase for the intra-Americas region for the 
end of the 21st century (Angeles-Malaspina et al., 2018). A general 
decrease in the frequency of cold spells and frost days is projected, as 
indicated by several indices based on minimum temperature (López-
Franca et al., 2016).

In Europe (Table 11.16), evidence includes increases in the intensity 
and frequency of hot extremes, such as warm days, warm nights, 
and heatwaves, and decreases in the intensity and frequency of cold 
extremes, such as cold days and cold nights over the continent, as 
projected by CMIP5, CMIP6, and CORDEX simulations (Lau and Nath, 
2014; Ozturk et al., 2015; Russo et al., 2015; Schoetter et al., 2015; 
Vogel et al., 2017; Winter et al., 2017; Jacob et al., 2018; Lhotka et al., 
2018; Rasmijn et al., 2018; Suarez-Gutierrez et al., 2018; Cardoso 
et al., 2019; Lionello and Scarascia, 2020; Molina et al., 2020; Coppola 
et al., 2021b; Li et al., 2021). Increases in heatwaves are greater over 
the southern Mediterranean and Scandinavia (Forzieri et al., 2016; 
Abaurrea et al., 2018; Dosio and Fischer, 2018; Rohat et al., 2019). 
The biggest increases in the number of heatwave days are expected 
for southern European cities (Guerreiro et al., 2018a; Junk et al., 
2019), and Central European cities will see the biggest increases in 
maximum heatwave temperatures (Guerreiro et al., 2018a).

In North America (Table 11.19), evidence includes increases in the 
intensity and frequency of hot extremes, such as warm days, warm 
nights, and heatwaves, and decreases in the intensity and frequency 
of cold extremes, such as cold days and cold nights over the 
continent, as projected by CMIP5, CMIP6, and CORDEX simulations 
(Grotjahn et al., 2016; Vose et al., 2017; Alexandru, 2018; C. Li et al., 
2018, 2021; C. Yang et al., 2018; X. Zhang et al., 2019; Coppola 
et al., 2021b). Projections of temperature extremes for the end of 
the 21st century show that warm days and nights are very likely to 
increase, and cold days and nights are very likely to decrease in all 
regions. There is medium confidence in large increases in warm days 
and warm nights in summer, particularly over the USA, and in large 
decreases in cold days in Canada in autumn and winter (Grotjahn 
et al., 2016; Vose et al., 2017; Alexandru, 2018; C. Li et al., 2018, 2021; 
C. Yang et al., 2018; X. Zhang et al., 2019; Coppola et al., 2021b). 
Minimum winter temperatures are projected to rise faster than mean 
winter temperatures (Underwood et al., 2017). Projections for the 
end of the century under RCP8.5 showed the four-day cold spell that 
happens on average once every five years is projected to warm by 
more than 10°C. CMIP5 models do not project current 1-in-20-year 
annual minimum temperature extremes to recur over much of the 
continent (Wuebbles et al., 2014).

In summary, it is virtually certain that further increases in the intensity 
and frequency of hot extremes, and decreases in the intensity and 
frequency of cold extremes, will occur throughout the 21st century 
and around the world. It is virtually certain that the number of hot 
days and hot nights and the length, frequency, and/or intensity of 
warm spells or heatwaves compared to 1995–2014 will increase 
over most land areas. In most regions, changes in the magnitude 
of temperature extremes are proportional to global warming levels 
(high confidence). The highest increase of temperature of hottest 
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days is projected in some mid-latitude and semi-arid regions, 
at about 1.5 times to twice the rate of global warming (high 
confidence). The highest increase of temperature of coldest days is 
projected in Arctic regions, at about three times the rate of global 
warming (high confidence). The probability of temperature extremes 
generally increases nonlinearly with increasing global warming 
levels (high confidence). Confidence in assessments depends on the 
spatial and temporal scales of the extreme in question, with high 
confidence in projections of temperature-related extremes at global 
and continental scales for daily to seasonal scales. There is high 
confidence that, on land, the magnitude of temperature extremes 
increases more strongly than global mean temperature.

11.4 Heavy Precipitation

This section assesses changes in heavy precipitation at global and 
regional scales. The main focus is on extreme precipitation at a daily 
scale where literature is most concentrated, though extremes of 
shorter (sub-daily) and longer (five-day or more) durations are also 
assessed to the extent the literature allows.

11.4.1 Mechanisms and Drivers

The SREX (Chapter 3, Seneviratne et al., 2012) assessed changes in 
heavy precipitation in the context of the effects of thermodynamic 
and dynamic changes. Box  11.1 assesses thermodynamic and 
dynamic changes in a  warming world to aid the understanding 
of changes in observations and projections in some extremes and 
the sources of uncertainties (see also Section  8.2.3.2). In general, 
warming increases the atmospheric water-holding capacity following 
the Clausius–Clapeyron (C-C) relation. This thermodynamic effect 
results in an increase in extreme precipitation at a similar rate at the 
global scale. On a  regional scale, changes in extreme precipitation 
are further modulated by dynamic changes (Box 11.1). 

Large-scale modes of variability, such as the North Atlantic Oscillation 
(NAO), El Niño–Southern Oscillation (ENSO), Atlantic Multi-decadal 
Variability (AMV), and Pacific Decadal Variability (PDV) (Annex IV), 
modulate precipitation extremes through changes in environmental 
conditions or embedded storms (Section 8.3.2). Latent heating can 
invigorate these storms (Nie et al., 2018; Z. Zhang et al., 2019a); 
changes in dynamics can increase precipitation intensity above 
that expected from the C-C scaling rate (Sections 8.2.3.2 and 11.7; 
Box  11.1). Additionally, the efficiency of converting atmospheric 
moisture into precipitation can change as a  result of cloud 
microphysical adjustment to warming, resulting in changes in the 
characteristics of extreme precipitation; but changes in precipitation 
efficiency in a warming world are highly uncertain (Sui et al., 2020).

It is difficult to separate the effect of global warming from internal 
variability in the observed changes in the modes of variability 
(Section  2.4). Future projections of modes of variability are highly 
uncertain (Section  4.3.3), resulting in uncertainty in regional 
projections of extreme precipitation. Future warming may amplify 
monsoonal extreme precipitation. Changes in extreme storms, 

including tropical/extratropical cyclones and severe convective 
storms, result in changes in extreme precipitation (Section  11.7). 
Also,  changes in sea surface temperatures (SSTs) alter land–sea 
contrast, leading to changes in precipitation extremes near coastal 
regions. For example, the projected larger SST increase near the 
coasts of East Asia and India can result in heavier rainfall near these 
coastal areas from tropical cyclones (Mei and Xie, 2016) or torrential 
rains (Manda et al., 2014). The warming in the western Indian Ocean 
is associated with increases in moisture surges on the low-level 
monsoon westerlies towards the Indian subcontinent, which may 
lead to an increase in the occurrence of precipitation extremes over 
central India (Krishnan et al., 2016; Roxy et al., 2017). 

Decreases in atmospheric aerosols results in warming and thus an 
increase in extreme precipitation (Samset et al., 2018; Sillmann 
et al., 2019). Changes in atmospheric aerosols also result in dynamic 
changes such as in tropical cyclones (Takahashi et al., 2017; Strong 
et al., 2018). Uncertainty in the projections of future aerosol 
emissions results in additional uncertainty in the heavy precipitation 
projections of the 21st century (Lin et al., 2016). 

There has been new evidence of the effect of local land-use and 
land-cover change on heavy precipitation. There is a growing set of 
literature linking increases in heavy precipitation in urban centres 
to urbanization (Argüeso et al., 2016; Y. Zhang et al., 2019b). 
Urbanization intensifies extreme precipitation, especially in the 
afternoon and early evening, over the urban area and its downwind 
region (medium confidence) (Box  10.3). There are four possible 
mechanisms: (i) increases in atmospheric moisture due to horizontal 
convergence of air associated with the urban heat island effect (Shastri 
et al., 2015; Argüeso et al., 2016); (ii) increases in condensation due 
to urban aerosol emissions (Han et al., 2011; Sarangi et al., 2017); 
(iii)  aerosol pollution that impacts cloud microphysics (Box  8.1; 
Schmid and Niyogi, 2017); and (iv) urban structures that impede 
atmospheric motion (Shepherd, 2013; Ganeshan and Murtugudde, 
2015; Paul et al., 2018). Other local forcing, including reservoirs 
(Woldemichael et al., 2012), irrigation (Devanand et al., 2019), or 
large-scale land-use and land-cover change (Odoulami et al., 2019), 
can also affect local extreme precipitation.

In summary, precipitation extremes are controlled by both 
thermodynamic and dynamic processes. Warming-induced 
thermodynamic change results in an increase in extreme precipitation, 
at a  rate that closely follows the C-C relationship at the global 
scale (high confidence). The effects of warming-induced changes 
in dynamic drivers on extreme precipitation are more complicated, 
difficult to quantify, and are an uncertain aspect of projections. 
Precipitation extremes are also affected by forcings other than 
changes in greenhouse gases, including changes in aerosols, land-
use and land-cover change, and urbanization (medium confidence). 

11.4.2 Observed Trends

Both SREX (Chapter  3, Seneviratne et al., 2012) and AR5 (IPCC, 
2014 Chapter 2) concluded it was likely that the number of heavy 
precipitation events over land had increased in more regions than 
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it had decreased, though there were wide regional and seasonal 
variations, and trends in many locations were not statistically 
significant. This assessment has been strengthened with multiple 
studies finding robust evidence of the intensification of extreme 
precipitation at global and continental scales, regardless of spatial 
and temporal coverage of observations and the methods of data 
processing and analysis.

The average annual maximum precipitation amount in a  day 
(Rx1day) has significantly increased since the mid-20th century over 
land (Du et al., 2019; Dunn et al., 2020) and in the humid and dry 
regions of the globe (Dunn et al., 2020). The percentage of observing 
stations with statistically significant increases in Rx1day is larger 
than expected by chance, while the percentage of stations with 
statistically significant decreases is smaller than expected by chance, 
over the global land as a  whole and over North America, Europe, 
and Asia (Figure 11.13; Sun et al., 2021) and over global monsoon 
regions (Zhang and Zhou, 2019) where data coverage is relatively 
good. The addition of the past decade of observational data shows 
a more robust increase in Rx1day over the global land region (Sun 
et al., 2021). Light, moderate, and heavy daily precipitation has all 
intensified in a gridded daily precipitation dataset (Contractor et al., 
2020a). Daily mean precipitation intensities have increased since 
the mid-20th century in a majority of land regions (high confidence) 
(Section 8.3.1.3). The probability of precipitation exceeding 50 mm/
day increased during 1961–2018 (Benestad et al., 2019). The globally 
averaged annual fraction of precipitation from days in the top 5% 
(R95pTOT) has also significantly increased (Dunn et al., 2020). The 
increase in the magnitude of Rx1day in the 20th century is estimated 
to be at a  rate consistent with C-C scaling with respect to global 
mean temperature (Fischer and Knutti, 2016; Sun et al., 2021). Studies 
on past changes in extreme precipitation of durations longer than 
a day are more limited, though there are some studies examining 
long-term trends in annual maximum five-day precipitation (Rx5day). 
On global and continental scales, long-term changes in Rx5day are 
similar to those of Rx1day in many aspects (Zhang and Zhou 2019; 
Sun et al., 2021). As discussed below, at the regional scale, changes in 
Rx5day are also similar to those of Rx1day where there are analyses 
of changes in both Rx1day and Rx5day. 

Overall, there is a lack of systematic analysis of long-term trends in 
sub-daily extreme precipitation at the global scale. Often, sub-daily 
precipitation data have only sporadic spatial coverage and are of 
limited length. Additionally, the available data records are far shorter 
than needed for a robust quantification of past changes in sub-daily 
extreme precipitation (C. Li et al., 2019a). Despite these limitations, 
there are studies in regions of almost all continents that generally 
indicate intensification of sub-daily extreme precipitation, although 
there remains low confidence in an overall increase at the global 
scale. Studies include an increase in extreme sub-daily rainfall in   
summer over South Africa (Sen Roy and Rouault, 2013), annually  
in Australia (Guerreiro et al., 2018b), over 23 urban locations in 
India (Ali and Mishra, 2018), in Peninsular Malaysia (Syafrina et al., 
2015), and in eastern China in the summer season during 1971–2013 
(Xiao  et al., 2016). In some regions in Italy (Arnone et al., 2013; 
Libertino et al., 2019) and in the USA during 1950–2011 (Barbero 
et al., 2017), there is also an increase. In general, an increase in sub-

daily heavy precipitation results in an increase in pluvial floods over 
smaller watersheds (Ghausi and Ghosh, 2020). 

There is a  considerable body of literature examining scaling of 
sub-daily precipitation extremes, conditional on day-to-day air or 
dew-point temperatures (Westra et al., 2014; Fowler et al., 2021). 
This scaling, also termed ‘apparent scaling’ (Fowler et al., 2021), is 
robust when different methodologies are used in different regions, 
ranging between the C-C and two-times the C-C rate (e.g., Formayer 
and Fritz, 2017; Lenderink et al., 2017; Burdanowitz et al., 2019). 
This is confirmed when sub-daily precipitation data collected from 
multiple continents (Lewis et al., 2019) are analysed in a consistent 
manner using different methods (Ali et al., 2021). It has been 
hoped that apparent scaling might be used to help understand past 
and future changes in extreme sub-daily precipitation. However, 
apparent scaling samples multiple synoptic weather states, mixing 
thermodynamic and dynamic factors that are not directly relevant for 
climate change responses (Section 8.2.3.2; Prein et al., 2016b; Bao 
et al., 2017; X. Zhang et al., 2017; Drobinski et al., 2018; Sun et al., 
2020). The spatial pattern of apparent scaling is different from those 
of projected changes over Australia (Bao et al., 2017) and North 
America (Sun et al., 2020) in regional climate model simulations. 
It thus remains difficult to use the knowledge about apparent scaling 
to infer past and future changes in extreme sub-daily precipitation 
according to observed and projected changes in local temperature. 

In Africa (Table 11.5), evidence shows an increase in extreme daily 
precipitation for the late half of the 20th century over the continent 
where data are available; there is a  larger percentage of stations 
showing significant increases in extreme daily precipitation than 
decreases (Sun et al., 2021). There are increases in different metrics 
relevant to extreme precipitation in various regions of the continent 
(Chaney et al., 2014; Harrison et al., 2019; Dunn et al., 2020; Sun 
et al., 2021). There is an increase in extreme precipitation events in 
Southern Africa (Weldon and Reason, 2014; Kruger et al., 2019) and 
a general increase in heavy precipitation over East Africa, the Greater 
Horn of Africa (Omondi et al., 2014). Over sub-Saharan Africa, 
increases in the frequency and intensity of extreme precipitation 
have been observed over the well-gauged areas during 1950–2013; 
however, this covers only 15% of the total area of sub-Saharan Africa 
(Harrison et al., 2019). There is medium confidence about the increase 
in extreme precipitation for some regions where observations are 
more abundant, but for Africa as whole, there is low confidence 
because of a general lack of continent-wide systematic analysis, the 
sporadic nature of available precipitation data over the continent, 
and spatially non-homogenous trends in places where data are 
available (Donat et al., 2014a; Mathbout et al., 2018b; Alexander 
et al., 2019; Funk et al., 2020).

In Asia (Table 11.8), there is robust evidence that extreme precipitation 
has increased since the 1950s (high confidence), however, this 
is dominated by high spatial variability. Increases in Rx1day and 
Rx5day during 1950–2018 are found over two-thirds of stations. 
The  percentage of stations with statistically significant trends is 
larger than can be expected by chance (Figure  11.13; Sun et al., 
2021). An increase in extreme precipitation has also been observed 
in various regional studies based on different metrics of extreme 
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precipitation and spatial and temporal coverage of the data. These 
include an increase in daily precipitation extremes over central Asia 
(Hu et al., 2016), most of South Asia (Zahid and Rasul, 2012; Pai et al., 
2015; Sheikh et al., 2015; Adnan et al., 2016; Malik et al., 2016; Dimri 
et al., 2017; Priya et al., 2017; Roxy et al., 2017; Hunt et al., 2018; 
Kim et al., 2019; Wester et al., 2019), the Arabian Peninsula (Rahimi 
and Fatemi, 2019; Almazroui and Saeed, 2020; Atif et al., 2020), 
South East Asia (Siswanto et al., 2015; Supari et al., 2017; Cheong 
et al., 2018); the north-west Himalaya (Malik et al., 2016), parts of 
East Asia (Baek et al., 2017; Nayak et al., 2017; Ye and Li, 2017), the 
western Himalayas since the 1950s (Ridley et al., 2013; Dimri et al., 
2015; Madhura et al., 2015), West and East Siberia, and Russian Far 
East (Donat et al., 2016a). A decrease was found over the eastern 
Himalayas (Sheikh et al., 2015; Talchabhadel et al., 2018). Increases 
have been observed over Jakarta (Siswanto et al., 2015), but Rx1day 
over most parts of the Maritime Continent has decreased (Villafuerte 
and Matsumoto, 2015). Trends in extreme precipitation over China 
are mixed with increases and decreases (G. Fu et al., 2013; Jiang 
et al., 2013; Ma et al., 2015; Yin et al., 2015; Xiao et al., 2016) and 
are not significant over China as whole (Jiang et al., 2013; Hu et al., 
2016; Ge et al., 2017; Deng et al., 2018; He and Zhai, 2018; W. Li et al., 
2018a; Tao et al., 2018; M. Liu et al., 2019b; Chen et al., 2021). With 
few exceptions, most South East Asian countries have experienced an 
increase in rainfall intensity, but with a reduced number of wet days 
(Donat et al., 2016a; Cheong et al., 2018; Naveendrakumar et al., 
2019), though large differences in trends exists if the trends are 
estimated from different datasets, including gauge-based, remotely 
sensed, and reanalysis data, over a relatively short period (Kim et al., 
2019). There is a significant increase in heavy rainfall (>100 mm day–

1) and a significant decrease in moderate rainfall (5–100 mm day–1) 
in central India during the South Asian monsoon season (Deshpande 
et al., 2016; Roxy et al., 2017). 

In Australasia (Table  11.11), available evidence has not shown 
an increase or a  decrease in heavy precipitation over Australasia 
as a  whole (medium confidence), but heavy precipitation tends 
to increase over Northern Australia (particularly the north-west) 
and decrease over the eastern and southern regions (e.g., Jakob and  
Walland, 2016; Guerreiro et al., 2018b; Dey et al., 2019b; Dunn 
et al., 2020; Sun et al., 2021). Available studies that used long-
term observations since the mid-20th  century showed nearly as 
many stations with an increase as those with a decrease in heavy 
precipitation (Jakob and Walland, 2016) or slightly more stations 
with a decrease than with an increase in Rx1day and Rx5day (Sun 
et al., 2021), or strong differences in Rx1day trends with increases 
over Northern Australia and Central Australia in general, but mostly 
decreases over Southern Australia and Eastern Australia (Dunn et al., 
2020). Over New Zealand, decreases are observed for moderate–
heavy precipitation events, but there are no significant trends for very 
heavy events (more than 64 mm in a day) for the period 1951–2012. 
The number of stations with an increase in very wet days is similar 
to that with a decrease during 1960–2019 (MfE and Stats NZ, 2020). 
Overall, there is low confidence in trends in the frequency of heavy 
rain days, with mostly decreases over New Zealand (Harrington and 
Renwick, 2014; Caloiero, 2015). 

In Central and South America (Table  11.14), evidence shows an 
increase in extreme precipitation, but in general there is low 
confidence; while continent-wide analyses produced wetting trends 
are not robust. Rx1day increased at more stations than it decreased 
in South America between 1950 and 2018 (Sun et al., 2021). Over 
the period 1950–2010, both Rx5day and R99p increased over large 
regions of South America, including North-Western South America, 
Northern South America, and South-Eastern South America (Skansi 
et al., 2013). There are large regional differences. A decrease in daily 
extreme precipitation is observed in north-eastern Brazil (Skansi 
et al., 2013; Bezerra et al., 2018; Dereczynski et al., 2020). Trends 
in extreme precipitation indices were not statistically significant 
over the period 1947–2012 within the São Francisco River basin in 
the Brazilian semi-arid region (Bezerra et al., 2018). An increase in 
extreme rainfall is observed in the Amazon with medium confidence 
(Skansi et al., 2013) and in South-Eastern South America with 
high confidence (Skansi et al., 2013; Valverde and Marengo, 2014; 
Barros et al., 2015; Ávila et al., 2016; Wu and Polvani, 2017; Lovino 
et al., 2018; Dereczynski et al., 2020). Among all sub-regions, South-
Eastern South America shows the highest rate of increase for rainfall 
extremes, followed by the Amazon (Skansi et al., 2013). Increases 
in the intensity of heavy daily rainfall events have been observed in  
the southern Pacific and in the Titicaca basin (Skansi et al., 2013; 
Huerta and Lavado-Casimiro, 2021). In Southern Central America, 
trends in annual precipitation are generally not significant, although 
small (but significant) increases are found in Guatemala, El Salvador, 
and Panama (Hidalgo et al., 2017). Small positive trends were found 
in multiple extreme precipitation indices over the Caribbean region 
over a  short time period (1986–2010) (Stephenson et al., 2014; 
McLean et al., 2015).

In Europe (Table 11.17), there is robust evidence that the magnitude 
and intensity of extreme precipitation has very likely increased since 
the 1950s. There is a  significant increase in Rx1day and Rx5day 
during 1950–2018 in Europe as a  whole (Sun et al., 2021, also 
Figure  11.13). The number of stations with increases far exceeds 
those with decreases in the frequency of daily rainfall exceeding its 
90th or 95th percentile in century-long series (Cioffi et al., 2015). The 
five-, 10-, and 20-year events of one-day and five-day precipitation 
during 1951–1960 became more common since the 1950s (van 
den Besselaar et al., 2013). There can be large discrepancies among 
studies and regions and seasons (Croitoru et al., 2013; Willems, 
2013; Casanueva et al., 2014; Roth et al., 2014; Fischer et al., 2015); 
evidence for increasing extreme precipitation is more frequently 
observed for summer and winter, but not in other seasons (Madsen 
et al., 2014; Helama et al., 2018). An increase is observed in central 
Europe (Volosciuk et al., 2016; Zeder and Fischer, 2020), and in 
Romania (Croitoru et al., 2016). Trends in the Mediterranean region 
are in general not spatially consistent (Reale and Lionello, 2013), with 
decreases in the western Mediterranean and some increases in the 
eastern Mediterranean (Rajczak et al., 2013; Casanueva et al., 2014; 
de Lima et al., 2015; Gajić-Čapka et al., 2015; Sunyer et al., 2015; 
Pedron et al., 2017; Serrano-Notivoli et al., 2018; Ribes et al., 2019). 
In the Netherlands, the total precipitation contributed from extremes 
higher than the 99th percentile doubles per 1°C increase in warming 
(Myhre et al., 2019), though extreme rainfall trends in Northern 
Europe may differ in different seasons (Irannezhad et al., 2017). 
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In North America (Table  11.20), there is robust evidence that the 
magnitude and intensity of extreme precipitation has very likely
increased since the 1950s. Both Rx1day and Rx5day have signifi cantly 
increased in North America during 1950–2018 (Sun et al., 2021, also 
Figure 11.13). There is, however, regional diversity. In Canada, there 
is a  lack of detectable trends in observed annual maximum daily 
(or shorter duration) precipitation (Shephard et al., 2014; Mekis et al., 
2015; Vincent et al., 2018). In the USA, there is an overall increase in 
one-day heavy precipitation, both in terms of intensity and frequency 
(Villarini et al.,  2012; Donat et al., 2013b; Wu, 2015; Easterling et al., 
2017; H. Huang et al., 2017; Howarth et al., 2019; Sun et al., 2021), 
except for the southern USA (Hoerling et al., 2016) where internal 
variability may have played a substantial role in the lack of observed 
increases. In Mexico, increases are observed in R10mm and R95p 
(Donat et al., 2016a), very wet days over the cities (García-Cueto 
et al., 2019) and in total precipitation (PRCPTOT) and Rx1day (Donat 
et al., 2016b). 

In Small Islands, there is a lack of evidence showing changes in heavy 
precipitation overall. There were increases in extreme precipitation 
in Tobago from 1985–2015 (Stephenson et al., 2014; Dookie et al., 
2019) and decreases in south-western French Polynesia and the 
southern subtropics (low confi dence) (Table 11.5; Atlas.10). Extreme 
precipitation leading to fl ooding in the Small Islands has been 
attributed in part to tropical cyclones, as well as being infl uenced by 
ENSO (Box 11.5; Khouakhi et al., 2016; Hoegh-Guldberg et al., 2018).

In summary, the frequency and intensity of heavy precipitation have 
likely increased at the global scale over a majority of land regions 
with good observational coverage. Since 1950, the annual maximum 
amount of precipitation falling in a day, or over fi ve consecutive days, 
has likely increased over land regions with suffi cient observational 
coverage for assessment, with increases in more regions than 
there are decreases. Heavy precipitation has likely increased on the 
continental scale over three continents (North America, Europe, and 
Asia) where observational data are more abundant. There is very low 
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Figure 11.13 | Signs and signifi cance of the observed trends in annual maximum daily precipitation (Rx1day) during 1950–2018 at 8345 stations with 
suffi cient data. (a) Percentage of stations with statistically signifi cant trends in Rx1day; green dots show positive trends and brown dots negative trends. Box and ‘whisker’ 
plots indicate the expected percentage of stations with signifi cant trends due to chance estimated from 1000 bootstrap realizations under a no-trend null hypothesis. The boxes 
mark the median, 25th percentile, and 75th percentile. The upper and lower whiskers show the 97.5th and the 2.5th percentiles, respectively. Maps of stations with positive 
(b) and negative (c) trends. The light colour indicates stations with non-signifi cant trends, and the dark colour stations with signifi cant trends. Signifi cance is determined by 
a two-tailed test conducted at the 5% level. Adapted from Sun et al. (2021). Figure copyright © American Meteorological Society (used with permission). Further details on data 
sources and processing are available in the chapter data table (Table 11.SM.9).
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confidence about changes in sub-daily extreme precipitation due to 
the limited number of studies and available data. 

11.4.3 Model Evaluation

Evaluating climate model competence in simulating heavy 
precipitation extremes is challenging due to a  number of factors, 
including the lack of reliable observations and the spatial scale 
mismatch between simulated and observed data (Avila et al., 2015; 
Alexander et al., 2019). Simulated precipitation represents areal 
means, but station-based observations are conducted at point 
locations and are often sparse. The areal-reduction factor, the ratio 
between pointwise station estimates of extreme precipitation and 
extremes of the areal mean, can be as large as 130% at CMIP6 
resolutions (about 100 km) (Gervais et al., 2014). Hence, the order in 
which gridded station based extreme values are constructed (i.e., if 
the extreme values are extracted at the station first and then gridded, 
or if the daily station values are gridded and then the extreme values 
are extracted) represents different spatial scales of extreme  
precipitation and needs to be taken into account in model evaluation 
(Wehner et al. 2020). This aspect has been considered in some studies. 
Reanalysis products are used in place of station observations for their 
spatial completeness as well as spatial-scale comparability (Sillmann 
et al., 2013a; Kim et al., 2020; Li et al., 2021). However, reanalyses 
share similar parametrizations to the models themselves, reducing 
the objectivity of the comparison. 

Different generations of CMIP models have improved over time, 
though quite modestly (Flato et al., 2013; Watterson et al., 2014). 
Improvements in the representation of the magnitude of the Expert 
Team on Climate Change Detection and Indices (ETCCDI) in CMIP5 
over CMIP3 (Sillmann et al., 2013a; Chen and Sun, 2015a) have 
been attributed to higher resolution, as higher-resolution models 
represent smaller areas at individual grid boxes. Additionally, the 
spatial distribution of extreme rainfall simulated by high-resolution 

models is generally more comparable to observations (Sillmann 
et al., 2013b; Kusunoki, 2017, 2018b; Scher et al., 2017) as these 
models tend to produce more realistic storms compared to coarser 
models (Section 11.7.2). Higher horizontal resolution alone improves 
simulation of extreme precipitation in some models (Wehner et al., 
2014; Kusunoki, 2017, 2018b), but this is insufficient in other models 
(Bador et al., 2020) as parametrization also plays a significant role 
(M. Wu et al., 2020). A  simple comparison of climatology may not 
fully reflect the improvements of the new models that have more 
comprehensive process formulations (Di Luca et al., 2015). Dittus et al. 
(2016) found that many of the eight CMIP5 models they evaluated 
reproduced the observed increase in the difference between areas 
experiencing an extreme high (90%) and an extreme low (10%) 
proportion of the annual total precipitation from heavy precipitation 
(R95p/PRCPTOT) for Northern Hemisphere regions. Additionally, 
CMIP5 models reproduced the relation between changes in extreme 
and non-extreme precipitation: an increase in extreme precipitation 
is at the cost of a decrease in non-extreme precipitation (Thackeray 
et al., 2018), a  characteristic found in the observational record 
(Gu and Adler, 2018).

The CMIP6 models perform reasonably well in capturing large-scale 
features of precipitation extremes, including intense precipitation 
extremes in the intertropical convergence zone (ITCZ), and weak 
precipitation extremes in dry areas in the tropical regions (Li et al., 
2021) but a double-ITCZ bias over the equatorial central and eastern 
Pacific that appeared in CMIP5 models remains (Section 3.3.2.3). There 
are also regional biases in the magnitude of precipitation extremes 
(Kim et al., 2020). The models also have difficulties in reproducing 
detailed regional patterns of extreme precipitation, such as over the 
north-east USA (Agel and Barlow, 2020), though they performed 
better for summer extremes over the USA (Akinsanola et al., 2020). The 
comparison between climatologies in the observations and in model 
simulations shows that the CMIP6 and CMIP5 models that have similar 
horizontal resolutions also have similar model evaluation scores, 
and their error patterns are highly correlated (Wehner et al., 2020). 

Figure 11.14 | Multi-model mean bias in annual maximum daily precipitation (Rx1day, %) for the period 1979–2014. Calculated as the difference between the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model mean and the average of available observational or reanalysis products including (a) ERA5, (b) HadEX3, 
and (c) REGEN. Bias is expressed as the percent error relative to the long-term mean of the respective observational data products. Brown indicates that models are too dry, 
while green indicates that they are too wet. Areas without sufficient observational data are shown in grey. Adapted from Wehner et al. (2020) under the terms of the Creative 
Commons Attribution licence. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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In general, extreme precipitation in CMIP6 models tends to be 
somewhat larger than in CMIP5 models (Li et al., 2021), reflecting 
smaller spatial scales of extreme precipitation represented by slightly 
higher-resolution models (Gervais et al., 2014). This is confirmed by 
Kim et al. (2020), who showed that Rx1day and Rx5day simulated 
by CMIP6 models tend to be closer to point estimates of HadEX3 
data (Dunn et al., 2020) than those simulated by CMIP5. Figure 11.14 
shows the multi-model ensemble bias in mean Rx1day over the 
period 1979–2014 from 21 available CMIP6 models when compared 
with observations and reanalyses. Measured by global land root-
mean-square error, the model performance is generally consistent 
across different observed/reanalysis data products for the extreme 
precipitation metric (Figure 11.14). The magnitude of extreme area 
mean precipitation simulated by the CMIP6 models is consistently 
smaller than the point estimates of HadEX3, but the model values 
are more comparable to those of areal-mean values (Figure 11.14) 
of the ERA5 reanalysis or REGEN (Contractor et al., 2020b). Taylor-
plot-based performance metrics reveal strong similarities in the 
patterns of extreme precipitation errors over land regions between 
CMIP5 and CMIP6 (Srivastava et al., 2020; Wehner et al., 2020) and 
between annual mean precipitation errors and Rx1day errors for both 
generations of models (Wehner et al., 2020).

In general, there is high confidence that historical simulations 
by CMIP5 and CMIP6 models of similar horizontal resolutions are 
interchangeable in their performance in simulating the observed 
climatology of extreme precipitation.

Studies using regional climate models (RCMs), for example, CORDEX 
(Giorgi et al., 2009) over Africa (Dosio et al., 2015; Klutse et al., 2016; 
Pinto et al., 2016; Gibba et al., 2019), Australia, East Asia (Park et al., 
2016), Europe (Prein et al., 2016a; Fantini et al., 2018), and parts 
of North America (Diaconescu et al., 2018) suggest that extreme 
rainfall events are better captured in RCMs compared to their host 
GCMs due to their ability to address regional characteristics, for 
example, topography and coastlines. However, CORDEX simulations 
do not show good skill over South Asia for heavy precipitation, and 
do not add value with respect to their GCM source of boundary 
conditions (Mishra et al., 2014b; S. Singh et al., 2017). The evaluation 
of models in simulating regional processes is discussed in detail in 
Section  10.3.3.4. The high-resolution simulation of mid-latitude 
winter extreme precipitation over land is of similar magnitude to 
point observations. Simulation of summer extreme precipitation has 
a large bias when compared with observations at the same spatial 
scale. Simulated extreme precipitation in the tropics also appears to 
be too large, indicating possible deficiencies in the parametrization 
of cumulus convection at this resolution. Indeed, precipitation 
distributions at both daily and sub-daily time scales are much 
improved with a convection-permitting model (Belušić et al., 2020) 
over Western Africa (Berthou et al., 2019b), East Africa (Finney et al., 
2019), North America and Canada (Cannon and Innocenti, 2019; 
Innocenti et al., 2019) and over Belgium in Europe (Vanden Broucke 
et al., 2019). 

In summary, there is  high confidence  in the ability of models to 
capture the large-scale spatial distribution of precipitation extremes 
over land. The magnitude and frequency of extreme precipitation 

simulated by CMIP6 models are similar to those simulated by CMIP5 
models (high confidence). 

11.4.4 Detection and Attribution, Event Attribution

Both SREX (Chapter 3, Seneviratne et al., 2012) and AR5 (Chapter 10, 
IPCC, 2014) concluded with medium confidence that anthropogenic 
forcing has contributed to a  global-scale intensification of heavy 
precipitation over the second half of the 20th  century. These 
assessments were based on the evidence of anthropogenic influence 
on aspects of the global hydrological cycle, in particular, the human 
contribution to the warming-induced observed increase in atmospheric 
moisture that leads to an increase in heavy precipitation, and limited 
evidence of anthropogenic influence on extreme precipitation of 
durations of one and five days.

Since AR5 there has been new and robust evidence and improved 
understanding of human influence on extreme precipitation. In 
particular, detection and attribution analyses have provided consistent 
and robust evidence of human influence on extreme precipitation 
of one- and five-day durations at global to continental scales. 
The observed increases in Rx1day and Rx5day over the Northern 
Hemisphere land area during 1951–2005 can be attributed to the 
effect of combined anthropogenic forcing, including greenhouse 
gases and anthropogenic aerosols, as simulated by CMIP5 models 
and the rate of intensification with regard to warming is consistent 
with C-C scaling (Zhang et al., 2013). This is confirmed to be robust 
when an additional nine years of observational data and the CMIP6 
model simulations were used (Cross-Chapter Box 3.2, Figure 1; Paik 
et al., 2020). The influence of greenhouse gases is attributed as the 
dominant contributor to the observed intensification. The global 
average of Rx1day in the observations is consistent with simulations 
by both CMIP5 and CMIP6 models under anthropogenic forcing, 
but not under natural forcing (Cross-Chapter Box 3.2, Figure 1). The 
observed increase in the fraction of annual total precipitation falling 
into the top fifth or top first percentiles of daily precipitation can 
also be attributed to human influence at the global scale (Dong 
et al., 2021). The CMIP5 models were able to capture the fraction 
of land experiencing a strong intensification of heavy precipitation 
during 1960–2010 under anthropogenic forcing, but not in unforced 
simulations (Fischer et al., 2014). But the models underestimated 
the observed trends (Borodina et al., 2017a). Human influence also 
significantly contributed to the historical changes in record-breaking 
one-day precipitation (Shiogama et al., 2016). There is also limited 
evidence of the influences of natural forcing. Substantial reductions in 
Rx5day and Simple Daily Intensity Index (SDII) for daily precipitation 
intensity over the global summer monsoon regions occurred during 
1957–2000 after explosive volcanic eruptions (Paik and Min, 2018). 
The reduction in post-volcanic eruption extreme precipitation in the 
simulations is closely linked to the decrease in mean precipitation, for 
which both thermodynamic effects (moisture reduction due to surface 
cooling) and dynamic effects (monsoon circulation weakening) play 
important roles. 

There has been new evidence of human influence on extreme 
precipitation at continental scales, including the detection of 
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the combined effect of greenhouse gases and aerosol forcing on 
Rx1day and Rx5day over North America, Eurasia, and mid-latitude 
land regions (Zhang et al., 2013) and of greenhouse gas forcing 
in Rx1day and Rx5day in the mid-to-high latitudes, western and 
eastern Eurasia, and the global dry regions (Paik et al., 2020). These 
findings are corroborated by the detection of human influence in the 
fraction of extreme precipitation in the total precipitation over Asia, 
Europe, and North America (Dong et al., 2021). Human influence 
was found to have contributed to the increase in frequency and 
intensity of regional precipitation extremes in North America during 
1961–2010, based on optimal fingerprinting and event attribution 
approaches (Kirchmeier-Young and Zhang, 2020). Tabari et al. (2020) 
found the observed latitudinal increase in extreme precipitation 
over Europe to be consistent with model-simulated responses to 
anthropogenic forcing. 

Evidence of human influence on extreme precipitation at regional 
scales is more limited and less robust. In north-west Australia, the 
increase in extreme rainfall since 1950 can be related to increased 
monsoonal flow due to increased aerosol emissions, but cannot be 
attributed to an increase in greenhouse gases (Dey et al., 2019a). 
Anthropogenic influence on extreme precipitation in China was 
detected in one study (H. Li et al., 2017), but not in another using 
different detection and data-processing procedures (W. Li et al., 
2018a), indicating the lack of robustness in the detection results. 
A still weak signal-to-noise ratio seems to be the main cause for the 
lack of robustness, as detection would become robust 20 years in 
the future (W. Li et al., 2018a). Krishnan et al. (2016) attributed the 
observed increase in heavy rain events (intensity >100 mm day–1) 
in the post-1950s over central India to the combined effects of 
greenhouse gases, aerosols, land-use and land-cover changes, and 
rapid warming of the equatorial Indian Ocean SSTs. Roxy et al. (2017) 
and Devanand et al. (2019) showed that the increase in widespread 
extremes over the South Asian Monsoon during 1950–2015 is due 
to the combined impacts of the warming of the Western Indian 
Ocean (Arabian Sea) and the intensification of irrigation water 
management over India. 

Anthropogenic influence may have affected the large-scale 
meteorological processes necessary for extreme precipitation 
and the localized thermodynamic and dynamic processes, both 
contributing to changes in extreme precipitation events. Several new 
methods have been proposed to disentangle these effects by either 
conditioning on the circulation state or attributing analogues. In 
particular, the extremely wet winter of 2013–2014 in the UK can be 
attributed, approximately to the same degree, to both temperature-
induced increases in saturation vapour pressure and changes in the 
large-scale circulation (Vautard et al., 2016; Yiou et al., 2017). There 
are multiple cases indicating that very extreme precipitation may 
increase at a rate more than the C-C rate (7% per 1°C of warming) 
(Pall et al., 2017; Risser and Wehner, 2017; van der Wiel et al., 2017; 
van Oldenborgh et al., 2017; S.-Y.S. Wang et al., 2018). 

Event attribution studies found an influence of anthropogenic 
activities on the probability or magnitude of observed extreme 
precipitation events, including European winters (Schaller et al., 2016; 
Otto et al., 2018b), extreme 2014 precipitation over the northern 

Mediterranean (Vautard et al., 2015), parts of the USA for individual 
events (Knutson et al., 2014a; Szeto et al., 2015; Eden et al., 2016; 
van Oldenborgh et al., 2017), extreme rainfall in 2014 over Northland, 
New Zealand (Rosier et al., 2015) or China (Burke et al., 2016; Sun 
and Miao, 2018; Yuan et al., 2018b; Zhou et al., 2018). However, 
for other heavy rainfall events, studies identified a lack of evidence 
about anthropogenic influences (Imada et al., 2013; Schaller et al., 
2014; Otto et al., 2015c; Siswanto et al., 2015). There are also studies 
where results are inconclusive because of limited reliable simulations 
(Christidis et al., 2013b; Angélil et al., 2016). Overall, both the spatial 
and temporal scales on which extreme precipitation events are 
defined are important for attribution; events defined on larger scales 
have larger signal-to-noise ratios and thus the signal is more readily 
detectable. At the current level of global warming, there is a strong 
enough signal to be detectable for large-scale extreme precipitation 
events, but the chance of detecting such signals for smaller-scale 
events decreases (Kirchmeier-Young et al., 2019).

In summary, most of the observed intensification of heavy precipitation 
over land regions is likely due to anthropogenic influence, for which 
greenhouse gases emissions are the main contributor. New and 
robust evidence since AR5 includes attribution to human influence 
of the observed increases in annual maximum one-day and five-
day precipitation and in the fraction of annual precipitation falling 
in heavy events. The evidence since AR5 also includes a  larger 
fraction of land showing enhanced extreme precipitation and 
a  larger probability of record-breaking one-day precipitation than 
expected by chance, both of which can only be explained when 
anthropogenic greenhouse gas forcing is considered. Human 
influence has contributed to the intensification of heavy precipitation 
in three continents where observational data are more abundant 
(high confidence) (North America, Europe and Asia). On the spatial 
scale of AR6 regions, there is limited evidence of human influence on 
extreme precipitation, but new evidence is emerging; in particular, 
studies attributing individual heavy precipitation events  found 
that human influence was a  significant driver of the events,  
particularly in the winter season. 

11.4.5 Projections

The AR5 concluded it is very likely that extreme precipitation events 
will be more frequent and more intense over most of the mid-
latitude land masses and wet tropics in a  warmer world (Collins 
et al., 2013). Post-AR5 studies provide more and robust evidence 
to support the previous assessments. These include an observed 
increase in extreme precipitation (Section 11.4.3) and human causes 
of past changes (Section  11.4.4), as well as projections based on 
either GCM and/or RCM simulations. The CMIP5 models project 
that the rate of increase in Rx1day with warming is independent 
of the forcing scenario (Section  8.5.3.1; Pendergrass et al., 2015) 
or forcing mechanism (Sillmann et al., 2017a). This is confirmed 
in CMIP6 simulations (Sillmann et al., 2019; Li et al., 2021). In 
particular, for extreme precipitation that occurs once a year or less 
frequently, the magnitudes of the rates of change per 1°C change 
in global mean temperature are similar, regardless of whether the 
temperature change is caused by increases in carbon dioxide (CO2), 
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methane (CH4), solar forcing, or sulphate (SO4) (Sillmann et al., 2019). 
In some models – CESM1 in particular – the extreme precipitation 
response to warming may follow a quadratic relation (Pendergrass 
et al., 2019). Figure  11.15 shows changes in the 10- and 50-year 
return values of Rx1day at different warming levels as simulated by 
the CMIP6 models. The median value of the scaling over land, across 
all Shared Socio-economic Pathway (SSP) scenarios and all models, 
is close to 7% per 1°C of warming for the 50-year return value of 
Rx1day. It is just slightly smaller for the 10- and 50-year return 
values of Rx5day (Li et al., 2021). The 90% ranges of the multimodel 
ensemble changes across all land grid boxes in the 50-year return 
values for Rx1day and Rx5day do not overlap between 1.5°C and 
2°C warming levels (Li et al., 2021), indicating that a small increment 
such as 0.5°C in global warming can result in a significant increase 
in extreme precipitation. Projected long-period Rx1day return value 
changes are larger than changes in mean Rx1day and with larger 
relative changes for more rare events (Pendergrass, 2018; Mizuta and 
Endo, 2020; Wehner, 2020). The rate of change of moderate extreme 
precipitation may depend more on the forcing agent, similar to the 
mean precipitation response to warming (Lin et al., 2016, 2018). 
Thus, there is high confidence that extreme precipitation that occurs 
once a year or less frequently increases proportionally to the amount 
of surface warming, and the rate of change in precipitation is not 
dependent on the underlying forcing agents of warming.

The spatial patterns of the projected changes across different 
warming levels are quite similar, as shown in Figure  11.16, and 

confirmed by near-linear scaling between extreme precipitation and 
global warming levels at regional scales (Seneviratne and Hauser, 
2020). Internal variability modulates changes in heavy rainfall (Wood 
and Ludwig, 2020), resulting in different changes in different regions 
(Seneviratne and Hauser, 2020). Extreme precipitation nearly always 
increases across land areas with larger increases at higher global 
warming levels, except in very few regions, such as Southern Europe 
around the Mediterranean Basin at low warming levels (Table 11.17). 
The very likely ranges of the multi-model ensemble changes across 
all land grid boxes in the 50-year return values for Rx1day and 
Rx5day between 1.5°C and 1°C warming levels are above zero for 
all continents except Europe, with the lower bound of the likely 
range above zero over Europe (Li et al., 2021). Decreases in extreme 
precipitation are confined mostly to subtropical ocean areas and are 
highly correlated to decreases in mean precipitation due to storm 
track shifts. These subtropical decreases can extend to nearby land 
areas in individual realizations. 

Projected increases in the probability of extreme precipitation of 
fixed magnitudes are nonlinear and show larger increases for more 
rare events (Figures 11.7 and 11.15; Fischer and Knutti, 2015; Kharin 
et al., 2018; Li et al., 2021). The CMIP5 model projected increases 
in the probability of high (99th and 99.9th) percentile precipitation 
between 1.5°C and 2°C warming scenarios are consistent with what 
can be expected based on observed changes (Fischer and Knutti, 
2015), providing confidence in the projections. The CMIP5 model 
simulations show that the frequency for present-day climate 20-year 
extreme precipitation is projected to increase by 10% at the 1.5°C 
global warming level, and by 22% at the 2.0°C global warming 
level, while the increase in the frequency for present-day climate 
100-year extreme precipitation is projected to increase by 20% and 
more than 45% at the 1.5°C and 2.0°C warming levels, respectively 
(Kharin et al., 2018). CMIP6 simulations with SSP scenarios show that 
the frequency of 10-year and 50-year events will be approximately 
doubled and tripled, respectively, at a very high warming level of 4°C 
(Figure 11.7; Li et al., 2021). 

There is a  limited number of studies on the projections of extreme 
hourly precipitation. The ability of GCMs to simulate hourly 
precipitation extremes is limited (Morrison et al., 2019) and very 
few modelling centres archive sub-daily and hourly precipitation 
prior to CMIP6 experiments. RCM simulations project an increase in 
extreme sub-daily precipitation in North America (C. Li et al., 2019b) 
and Sweden (Olsson and Foster, 2013), but these models still do not 
explicitly resolve convective processes that are important for properly 
simulating extreme sub-daily precipitation. Simulations by RCMs 
that explicitly resolve convective processes (convection-permitting 
models) are limited in length and only available in a  few regions 
because of high computing costs. Yet, a  majority of the available 
convection-permitting simulations project increases in the intensities 
of extreme sub-daily precipitation events, with the amount similar to 
or higher than the C-C scaling rate (Kendon et al., 2014, 2019; Ban 
et al., 2015; Prein et al., 2016b; Helsen et al., 2020; Fowler et al., 2021). 
An increase is projected in extreme sub-daily precipitation over Africa 
(Kendon et al., 2019); East Africa (Finney et al., 2020) and Western 
Africa (Berthou et al., 2019a; Fitzpatrick et al., 2020), even for areas 
where parametrized RCMs project a decrease; in Europe (Hodnebrog 

Figure 11.15 | Projected changes in the intensity of extreme precipitation 
events under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative 
to the 1850–1900 baseline. Extreme precipitation events are defined as the annual 
maximum daily maximum precipitation (Rx1day) that was exceeded on average once 
during a  10-year period (10-year event, blue) and once during a  50-year period 
(50-year event, orange) during the 1850–1900 base period. Results are shown for the 
global land. For each box plot, the horizontal line and the box represent the median 
and central 66% uncertainty range, respectively, of the intensity changes across 
the multi-model median, and the ‘whiskers’ extend to the 90% uncertainty range. The 
results are based on the multi-model ensemble estimated from simulations of global 
climate models contributing to the Coupled Model Intercomparison Project Phase 
6 (CMIP6) under different Shared Socio-economic Pathway forcing scenarios. Based 
on Li et al. (2021). Further details on data sources and processing are available in the 
chapter data table (Table 11.SM.9).
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et al., 2019; Chan et al., 2020); as well as in the continental USA 
(Prein et al., 2016b). Overall, while limited, the available evidence 
points to an increase in extreme sub-daily precipitation in the future. 
Studies on future changes in extreme precipitation for a month or 
longer are limited. One study projects an increase in extreme monthly 
precipitation in Japan under 4°C global warming for around 80% of 
stations in the summer (Hatsuzuka and Sato, 2019). 

In Africa (Table 11.5), extreme precipitation will likely increase under 
warming levels of 2°C or below (compared to pre-industrial values) 
and very likely increase at higher warming levels. Simulations by 
CMIP5, CMIP6 and CORDEX regional models project an increase 
in daily extreme precipitation between 1.5°C and 2.0°C warming 
levels. The pattern of change in heavy precipitation under different 
scenarios or warming levels is similar with larger increases for 
higher warming levels (e.g., Nikulin et al., 2018; Li et al., 2021). With 
increases in warming, extreme precipitation is projected to increase 
in the majority of land regions in Africa (Mtongori et al., 2016; Pfahl 
et al., 2017; Diedhiou et al., 2018; Dunning et al., 2018; Akinyemi 
and Abiodun, 2019; Giorgi et al., 2019). Over Southern Africa, heavy 
precipitation will likely increase by the end of the 21st century under 
RCP 8.5 (Dosio, 2016; Pinto et al., 2016; Abiodun et al., 2017; Dosio 
et al., 2019). However, heavy rainfall amounts are projected to 
decrease over western South Africa (Pinto et al., 2018) as a  result 
of a projected decrease in the frequency of the prevailing westerly 
winds south of the continent that translates into fewer cold fronts 
and closed mid-latitudes cyclones (Engelbrecht et al., 2009; Pinto 
et al., 2018). Heavy precipitation will likely increase by the end of the 
century under RCP8.5 in West Africa (Diallo et al., 2016; Dosio, 2016; 
Sylla et al., 2016; Abiodun et al., 2017; Akinsanola and Zhou, 2019; 
Dosio et al., 2019) and is projected to increase (high confidence) 
in Central Africa (Fotso-Nguemo et al., 2018, 2019; Sonkoué et al., 
2019) and eastern Africa (Thiery et al., 2016; Ongoma et al., 2018a). 
In north-east and central east Africa, extreme precipitation intensity 
is projected to increase across CMIP5, CMIP6 and CORDEX-CORE 
(high confidence) in most areas annually (Coppola et al., 2021a), 
but the trends differ from season to season in all future scenarios 
(Dosio et al., 2019). In northern Africa, there is low confidence in 
the projected changes in heavy precipitation, either due to a lack of 
agreement among studies on the sign of changes (Sillmann et al., 
2013a; Giorgi et al., 2014) or due to insufficient evidence. 

In Asia (Table 11.8), extreme precipitation will likely increase at global 
warming levels of 2°C and below, but very likely increase at higher 
warming levels for the region as whole. The CMIP6 multi-model 
median projects an increase in the 10- and 50-year return values 
of Rx1day and Rx5day over more than 95% of regions, even at the 
2°C warming level, with larger increases at higher warming levels, 
independent of emissions scenarios (Li et al., 2021, also Figure 11.7). 
The CMIP5 models produced similar projections. Both heavy rainfall 
and rainfall intensity are projected to increase (Zhou et al., 2014; Guo 
et al., 2016, 2018; Y. Xu et al., 2016; Endo et al., 2017; Han et al., 2018; 
G. Kim et al., 2018). A half-degree difference in warming between the 
1.5°C and 2.0°C warming levels can result in a detectable increase 
in extreme precipitation over the region (Li et al., 2021), in the 
Asian–Australian monsoon region (Chevuturi et al., 2018), and over 
South Asia and China (D. Lee et al., 2018; W. Li et al., 2018b). While 

there are regional differences, extreme precipitation is projected 
to increase in almost all sub-regions, though there can be spatial 
heterogeneity within sub-regions, such as in India (Shashikanth et al., 
2018) and South East Asia (Ohba and Sugimoto, 2019). In East and 
South East Asia, there is high confidence that extreme precipitation 
is projected to intensify (Seo et al., 2014; Zhou et al., 2014; Y. Xu 
et al., 2016; Nayak et al., 2017; X. Wang et al., 2017; Y. Wang et al., 
2017; Guo et al., 2018; D. Li et al., 2018; Sui et al., 2018). Extreme 
daily precipitation is also projected to increase in South Asia (Xu 
et al., 2017; Han et al., 2018; Shashikanth et al., 2018). The extreme 
precipitation indices, including Rx5day, R95p, and days of heavy 
precipitation (i.e.,  R10mm), are all projected to increase under the 
RCP4.5 and RCP8.5 scenarios in central and northern Asia (Xu et al., 
2017; Han et al., 2018). A general wetting across the whole Tibetan 
Plateau and the Himalayas is projected, with increases in heavy 
precipitation in the 21st  century (Palazzi et al., 2013; Zhou et al., 
2014; Rajbhandari et al., 2015; R. Zhang et al., 2015; Wu et al., 2017; 
Gao et al., 2018; Paltan et al., 2018). Agreement in projected changes 
by different models is low in regions of complex topography such 
as Hindu-Kush Himalayas (Roy et al., 2019), but CMIP5, CMIP6 and 
CORDEX-CORE simulations consistently project an increase in heavy 
precipitation in higher latitude areas, such as West and East Siberia, 
and Russian Far East (high confidence) (Coppola et al., 2021a). 

In Australasia (Table  11.11), most CMIP5 models project an 
increase in Rx1day under RCP4.5 and RCP8.5 scenarios for the late 
21st century (CSIRO and BOM, 2015; Alexander and Arblaster, 2017; 
Grose et al., 2020) and the CMIP6 multi-model median projects an 
increase in the 10- and 50-year return values of Rx1day and Rx5day 
at a rate between 5% and 6% per 1°C of near-surface global mean 
warming (Figure 11.7; Li et al., 2021). Yet, there is large uncertainty 
in the increase because projected changes in dynamic processes 
lead to a  decrease in Rx1day that can offset the thermodynamic 
increase over a large portion of the region (Box 11.1, Figure 1; Pfahl 
et al., 2017). Projected changes in moderate extreme precipitation 
(the 99th percentile of daily precipitation) by RCMs under RCP8.5 
for 2070–2099 are mixed, with more regions showing decreases 
than increases (Evans et al., 2021). It is likely that daily rainfall 
extremes such as Rx1day will increase at the continental scale for 
global warming levels at or above 3°C. Daily rainfall extremes are 
projected to increase at the 2.0°C global warming level (medium 
confidence), and there is low confidence in changes at the 1.5°C. 
Projected changes show important regional differences with very 
likely increases over Northern Australia (Alexander and Arblaster, 
2017; Herold et al., 2018; Grose et al., 2020) and New Zealand (MfE, 
2018) where projected dynamic contributions are small (Box  11.1 
Figure 1; Pfahl et al., 2017) and medium confidence on increases over 
central, eastern, and Southern Australia where dynamic contributions 
are substantial and can affect local phenomena (CSIRO and BOM, 
2015; Pepler et al., 2016; Bell et al., 2019; Dowdy et al., 2019). 

In Central and South America (Table  11.14), extreme precipitation 
will likely increase at global warming levels of 2°C and below, but 
very likely increase at higher warming levels for the region as whole. 
A  larger increase in global surface temperature leads to a  larger 
increase in extreme precipitation, independent of emissions scenarios 
(Li et al., 2021). But there are regional differences in the projection, 
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and projected changes for more moderate extreme precipitation 
are also more uncertain. Extreme precipitation, represented by 
the number of days with daily precipitation exceeding 50 mm and the 
annual fraction of precipitation falling during days with the top 10% 
daily precipitation amount, is projected to increase on the eastern 
coast of Southern Central America, but to decrease along the Pacific 
coasts of El Salvador and Guatemala (Imbach et al., 2018). Chou et al. 
(2014b) and Giorgi et al. (2014) projected an increase in extreme 
precipitation over South-Eastern South America and the Amazon. 
Projected changes in moderate extreme precipitation represented 
by the 99th percentile of daily precipitation by different models 
under different emissions scenarios, even at high warming levels, 
are mixed: increases are projected for all regions by the CORDEX-
CORE and CMIP5 simulations, while increases for some regions and 
decreases for other regions are projected by CMIP6 simulations 
(Coppola et al., 2021a). Extreme precipitation is projected to increase 
in the La Plata basin (Cavalcanti et al., 2015; Carril et al., 2016). Taylor 
et al. (2018) projected a decrease in days with intense rainfall in the 
Caribbean under 2°C global warming by the 2050s under RCP4.5 
relative to 1971–2000. 

In Europe (Table 11.17), extreme precipitation will likely increase at 
global warming levels of 2°C and below, but very likely increase for 
higher warming levels for the region as whole. The CMIP6 multi-
model median projects an increase in the 10- and 50-year return 
values of Rx1day and Rx5day over a majority of the region at the 2°C 
global warming level, with more than 95% of the region showing 
an increase at higher warming levels (Figure 11.7; C. Li et al., 2021). 
The most intense precipitation events observed today in Europe are 
projected to almost double in occurrence for each 1°C of further global 
warming (Myhre et al., 2019). Extreme precipitation is projected to 
increase in both boreal winter and summer over Europe (Madsen 
et al., 2014; Christensen et al., 2015; Nissen and Ulbrich, 2017). There 
are regional differences, with decreases or no change for the southern 

part of Europe, such as the southern Mediterranean (Tramblay and 
Somot, 2018; Lionello and Scarascia, 2020; Coppola et al., 2021a), 
uncertain changes over central Europe (Argüeso et al., 2012; Croitoru 
et al., 2013; Rajczak et al., 2013; Casanueva et al., 2014; Patarčić 
et al., 2014; Paxian et al., 2014; Roth et al., 2014; Fischer and Knutti, 
2015; Monjo et al., 2016) and a  strong increase in the remaining 
parts, including the Alps region (Gobiet et al., 2014; Donnelly et al., 
2017), particularly in winter (Fischer et al., 2015), and in northern 
Europe. In a 3°C warmer world, there will be a  robust increase in 
extreme rainfall over 80% of land areas in northern Europe (Madsen 
et al., 2014; Donnelly et al., 2017; Cardell et al., 2020). 

In North America (Table 11.20), the intensity and frequency of extreme 
precipitation will likely increase at the global warming levels of 
2°C and below, and very likely increase at higher warming  levels. 
An increase is projected by CMIP6 model simulations (Li et al., 
2021) and by previous model generations (Wu, 2015; Easterling 
et al., 2017; Innocenti et al., 2019), as well as by RCMs (Coppola 
et al., 2021a). Projections of extreme precipitation over the southern 
portion of the continent and over Mexico are more uncertain, with 
decreases possible (Sillmann et al., 2013b; Alexandru, 2018; Coppola 
et al., 2021a). 

In summary, heavy precipitation will generally become more frequent 
and more intense with additional global warming. At global warming 
levels of 4°C relative to the pre-industrial, very rare (e.g.,  one in 
10 or more years) heavy precipitation events would become more 
frequent and more intense than in the recent past, on the global 
scale (virtually certain), and in all continents and AR6 regions: The 
increase in frequency and intensity is extremely likely for most 
continents and very likely for most AR6 regions. The likelihood 
is lower at lower global warming levels and for less-rare heavy 
precipitation events.  At the global scale, the intensification of 
heavy precipitation will follow the rate of increase in the maximum 

Annual maximum daily precipitation change (Rx1day) - median
(a) At 1.5°C global warming (b) At 2.0°C global warming (c) At 4.0°C global warming
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Figure 11.16 | Projected changes in annual maximum daily precipitation at (a) 1.5°C, (b) 2°C, and (c) 4°C of global warming compared to the 1850–1900 
baseline. Results are based on simulations from the Coupled Model Intercomparison Project Phase 6  (CMIP6) multi-model ensemble under the Shared Socio-economic 
Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers on the top right indicate the number of simulations included. Uncertainty is 
represented using the simple approach: no overlay indicates regions with high model agreement, where ≥80% of models agree on the sign of change; diagonal lines indicate 
regions with low model agreement, where <80% of models agree on the sign of change. For more information on the simple approach, please refer to the Cross-Chapter Box 
Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in Rx1day are also displayed in the Interactive Atlas. Further details on data sources and 
processing are available in the chapter data table (Table 11.SM.9).
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amount of moisture that the atmosphere can hold as it warms (high 
confidence), of about 7% per 1°C of global warming. The increase in 
the frequency of heavy precipitation events will be non-linear with 
more warming and will be higher for rarer events (high confidence), 
with 10- and 50-year events to be approximately double and triple, 
respectively, at the 4°C warming level. Increases in the intensity of 
extreme precipitation events at regional scales will depend on the 
amount of regional warming as well as changes in atmospheric 
circulation and storm dynamics leading to regional differences 
in the rate of heavy precipitation changes (high confidence). 

11.5 Floods

Floods are the inundation of normally dry land, and are classified 
into types (e.g., pluvial floods, flash floods, river floods, groundwater 
floods, surge floods, coastal floods) depending on the space and time 
scales and the major factors and processes involved (Section 8.2.3.2; 
Nied et al., 2014; Aerts et al., 2018). Flooded area is difficult to 
measure or quantify and, for this reason, many of the existing studies 
on changes in floods focus on streamflow. Thus, this section assesses 
changes in flow as a proxy for river floods, in addition to some types 
of flash floods. Pluvial and urban floods  – types of flash floods 
resulting from the precipitation intensity exceeding the capacity of 
natural and artificial drainage systems – are directly linked to extreme 
precipitation. Because of this link, changes in extreme precipitation 
are the main proxy for inferring changes in pluvial and urban floods 
(see also Section  12.4), assuming there is no additional change 
in the surface condition. Changes in these types of floods are not 
assessed in this section, but can be inferred from the assessment of 
changes in heavy precipitation in Section 11.4. Coastal floods due to 
extreme sea levels and flood changes at regional scales are assessed 
in Section 12.4. 

11.5.1 Mechanisms and Drivers

Since AR5, the number of studies on understanding how floods 
may have changed, and will change in the future, has substantially 
increased. Floods are a complex interplay of hydrology, climate, and 
human management, and the relative importance of these factors 
varies for different flood types and regions. 

In addition to the amount and intensity of precipitation, the main 
factors for river floods include antecedent soil moisture (Paschalis 
et al., 2014; Berghuijs et al., 2016; Grillakis et al., 2016; Woldemeskel 
and Sharma, 2016) and snow water-equivalent in cold regions 
(Sikorska et al., 2015; Berghuijs et al., 2016). Other factors are also 
important, including stream morphology (Borga et al., 2014; Slater 
et al., 2015), river and catchment engineering (Pisaniello et al., 2012; 
Nakayama and Shankman, 2013; Kim and Sanders, 2016), land-use 
and land-cover characteristics (Aich et al., 2016; Rogger et al., 2017) 
and changes (Knighton et al., 2019), and feedbacks between climate, 
soil, snow, vegetation, etc. (Hall et al., 2014; Ortega et al., 2014; 
Berghuijs et al., 2016; Buttle et al., 2016; Teufel et al., 2019). Water 
regulation and management have, in general, increased resilience to 

flooding (Formetta and Feyen, 2019), masking effects of an increase 
in extreme precipitation on flood probability in some regions, even 
though they do not eliminate very extreme floods (Vicente-Serrano 
et al., 2017). This means that an increase in precipitation extremes 
may not always result in an increase in river floods (Sharma et al., 
2018; Do et al., 2020). Yet, as very extreme precipitation can become 
a dominant factor for river floods, there can be some correspondence 
in the changes in very extreme precipitation and river floods (Ivancic 
and Shaw, 2015; Wasko and Sharma, 2017; Wasko and Nathan, 2019). 
This has been observed in the western Mediterranean (Llasat et al., 
2016), in China (Q. Zhang et al., 2015a) and in the USA (Peterson 
et al., 2013b; Berghuijs et al., 2016; Slater and Villarini, 2016).

In regions with a seasonal snow cover, snowmelt is the main cause 
of extreme river flooding over large areas (Pall et al., 2019). Extensive 
snowmelt combined with heavy and/or long-duration precipitation 
can cause significant floods (D. Li et al., 2019; Krug et al., 2020). 
Changes in floods in these regions can be uncertain because of 
the compounding and competing effects of the responses of snow 
and rain to warming that affect snowpack size: warming results 
in an increase in precipitation, but also a  reduction in the time 
period of snowfall accumulation (Teufel et al., 2019). An increase in 
atmospheric CO2 enhances water-use efficiency by plants (Roderick 
et al., 2015; Milly and Dunne, 2016; Swann et al., 2016; Swann, 
2018); this could reduce evapotranspiration and contribute to the 
maintenance of soil moisture and streamflow levels under enhanced 
atmospheric CO2 concentrations (Yang et al., 2019). This mechanism 
would suggest an increase in the magnitude of some floods in the 
future (Kooperman et al., 2018). But this effect is uncertain as an 
increase in leaf area index, and vegetation coverage could also result 
in overall larger water consumption (Mátyás and Sun, 2014; Mankin 
et al., 2019; Teuling et al., 2019), and there are also other CO2-related 
mechanisms that come into play (Cross-Chapter Box 5.1). 

Various factors, such as extreme precipitation (Cho et al., 2016; Archer 
and Fowler, 2018), glacier lake outbursts (Schneider et al., 2014; 
Schwanghart et al., 2016), or dam breaks (Biscarini et al., 2016) can 
cause flash floods. Very intense rainfall, along with a high fraction 
of impervious surfaces can result in flash floods in urban areas 
(Hettiarachchi et al., 2018). Because of this direct connection, changes 
in very intense precipitation can translate to changes in urban flood 
potential (Rosenzweig et al., 2018), though there can be a spectrum 
of urban flood responses to this flood potential (Smith et al., 2013), 
as many factors, such as the overland flow rate and the design of 
urban (Falconer et al., 2009) and storm water drainage systems 
(Maksimović et al., 2009), can play an important role. Nevertheless, 
changes in extreme precipitation are the main proxy for inferring 
changes in some types of flash floods, (which are addressed in 
Section 12.4), given the relation between extreme precipitation and 
pluvial floods, the very limited literature on urban and pluvial floods 
(e.g., Skougaard Kaspersen et al., 2017), and limitations of existing 
methodologies for assessing changes in floods (Archer et al., 2016). 

In summary, there is not always a  one-to-one correspondence 
between an extreme precipitation event and a flood event, or between 
changes in extreme precipitation and changes in floods, because 
floods are affected by many factors in addition to heavy precipitation 
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(high confidence). Changes in extreme precipitation may be used as 
a proxy to infer changes in some types of flash floods that are more 
directly related to extreme precipitation (high confidence). 

11.5.2 Observed Trends

The SREX (Seneviratne et al., 2012) assessed low confidence for 
observed changes in the magnitude or frequency of floods at the 
global scale. This assessment was confirmed by AR5 (Hartmann et al., 
2013). The SR1.5 (Hoegh-Guldberg et al., 2018) found increases 
in flood frequency and extreme streamflow in some regions, but 
decreases in other regions. While the number of studies on flood 
trends has increased since AR5, and there were also new analyses 
after the release of SR1.5 (Berghuijs et al., 2017; Blöschl et al., 2019; 
Gudmundsson et al., 2019), hydrological literature on observed 
flood changes is heterogeneous, focusing at regional and sub-
regional basin scales, making it difficult to synthesize at the global 
and sometimes regional scales. The vast majority of studies focus on 
river floods using streamflow as a proxy, with limited attention to 
urban floods. Streamflow measurements are not evenly distributed 
over space, with gaps in spatial coverage, and their coverage in many 
regions of Africa, South America, and parts of Asia is poor (e.g., Do 
et al., 2017), leading to difficulties in detecting long-term changes in 
floods (Slater and Villarini, 2017). See also Section 8.3.1.5.

Peak flow trends are characterized by high regional variability and 
lack overall statistical significance of a decrease or an increase over 
the globe as a  whole. Of more than 3500 streamflow stations in 
the USA, central and Northern Europe, Africa, Brazil, and Australia, 
7.1% stations showed a  significant increase, and 11.9% stations 
showed a significant decrease in annual maximum peak flow during 
1961–2005 (Do et al., 2017). This is in direct contrast to the global 
and continental scale intensification of short-duration extreme 
precipitation (Section 11.4.2). There may be some consistency over 
large regions (see Gudmundsson et al., 2019), in high streamflows 
(>90th percentile), including a decrease in some regions (e.g., in the 
Mediterranean) and an increase in others (e.g., northern Asia), but 
gauge coverage is often limited. On a continental scale, a decrease 
seems to dominate in Africa (Tramblay et al., 2020) and Australia 
(Ishak et al., 2013; Wasko and Nathan, 2019), an increase in the 
Amazon (Barichivich et al., 2018), and trends are spatially variable 
in other continents (Q. Zhang et al., 2015b; Bai et al., 2016; Do et al., 
2017; Hodgkins et al., 2017). In Europe, flow trends have large spatial 
differences (Hall et al., 2014; Mediero et al., 2015; Kundzewicz et al., 
2018; Mangini et al., 2018), but there appears to be a  pattern of 
increase in north-western Europe, and a decrease in southern and 
eastern Europe in annual peak flow during 1960–2000 (Blöschl et al., 
2019). In North America, peak flow has increased in north-east USA 
and decreased in south-west USA (Peterson et al., 2013b; Armstrong 
et al., 2014; Mallakpour and Villarini, 2015; Archfield et al., 2016; Burn 
and Whitfield, 2016; Wehner et al., 2017; Neri et al., 2019). There are 
important changes in the seasonality of peak flows in regions where 
snowmelt dominates, such as northern North America (Burn and 
Whitfield, 2016; Dudley et al., 2017) and Northern Europe (Blöschl 
et al., 2017), corresponding to strong winter and spring warming. 

In summary, the seasonality of floods has changed in cold regions 
where snowmelt dominates the flow regime in response to warming 
(high confidence). There is low confidence about peak flow trends over 
past decades on the global scale, but there are regions experiencing 
increases, including parts of Asia, Southern South America, north-
east USA, north-western Europe, and the Amazon, and regions 
experiencing decreases, including parts of the Mediterranean, 
Australia, Africa, and south-western USA. 

11.5.3 Model Evaluation

Hydrological models used to simulate floods are structurally diverse 
(Dankers et al., 2014; Mateo et al., 2017; Şen, 2018), often requiring 
extensive calibration since sub-grid processes and land-surface 
properties need to be parametrized, irrespective of the spatial 
resolutions (Döll et al., 2016; Krysanova et al., 2017). The data used 
to drive and calibrate the models are usually of coarse resolution, 
necessitating the use of a wide variety of downscaling techniques 
(Muerth et al., 2013). This adds uncertainty not only to the models 
but also to the reliability of the calibrations. The quality of the flood 
simulations also depends on the spatial scale, as flood processes 
are different for catchments of different sizes. It is more difficult to 
replicate flood processes for large basins, as water management and 
water use are often more complex for these basins. 

Studies that use different regional hydrological models show a large 
spread in flood simulations (Dankers et al., 2014; Roudier et al., 
2016; Trigg et al., 2016; Krysanova et al., 2017). Regional models 
reproduce moderate and high flows reasonably well (0.02–0.1 flow 
annual exceedance probabilities), but there are large biases for the 
most extreme flows (0–0.02 annual flow exceedance probability), 
independent of the climatic and physiographic characteristics of the 
basins (S. Huang et al., 2017a). Global-scale hydrological models have 
even more challenges, as they struggle to reproduce the magnitude 
of the flood hazard (Trigg et al., 2016). Also, the ensemble mean of 
multiple models does not perform better than individual models 
(Zaherpour et al., 2018). 

The use of hydrological models for assessing changes in floods, 
especially for future projections, adds another dimension of 
uncertainty on top of uncertainty in the driving climate projections, 
including emissions scenarios, and in the driving climate models 
(both RCMs and GCMs) (Arnell and Gosling, 2016; Hundecha 
et al., 2016; Krysanova et al., 2017). The differences in hydrological 
models (Roudier et al., 2016; Thober et al., 2018), as well as post-
processing of climate model output for the hydrological models 
(Muerth et al., 2013; Maier et al., 2018), add to uncertainty for 
flood projections. 

In summary, there is medium confidence that simulations for the most 
extreme flows by regional hydrological models can have large biases. 
Global-scale hydrological models still struggle with reproducing the 
magnitude of floods. Projections of future floods are hampered by 
these difficulties and cascading uncertainties, including uncertainties 
in emissions scenarios and the climate models that generate inputs. 
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11.5.4 Detection and Attribution, Event Attribution

There are very few studies focused on the attribution of long-term 
changes in floods, but there are studies on changes in flood events. 
Most of the studies focus on flash floods and urban floods, which 
are closely related to intense precipitation events (Hannaford, 2015). 
In other cases, event attribution focused on runoff using hydrological 
models, and examples include river basins in the UK (Section 11.4.4; 
Schaller et al., 2016; Kay et al., 2018), the Okavango River in Africa 
(Wolski et al., 2014), and the Brahmaputra River in Bangladesh (Philip 
et al., 2019). Findings about anthropogenic influences vary between 
different regions and basins. For some flood events, the probability of 
high floods in the current climate is lower than in a climate without 
an anthropogenic influence (Wolski et al., 2014), while in other 
cases anthropogenic influence leads to more intense floods (Cho 
et al., 2016; Pall et al., 2017; van der Wiel et al., 2017; Philip et al., 
2018a; Teufel et al., 2019). Factors such as land-cover change and 
river management can also increase the probability of high floods 
(Ji et al., 2020). These, along with model uncertainties and the lack 
of studies overall, suggest a low confidence in general statements to 
attribute changes in flood events to anthropogenic climate change. 
A  few individual regions have been well studied, which allows for 
high confidence in the attribution of increased flooding in these 
cases. For example, flooding in the UK following increased winter 
precipitation (Schaller et al., 2016; Kay et al., 2018) can be attributed 
to anthropogenic climate change (Schaller et al., 2016; Vautard et al., 
2016; Yiou et al., 2017; Otto et al., 2018b). 

Attributing changes in heavy precipitation to anthropogenic activities 
(Section 11.4.4) cannot be readily translated to attributing changes 
in floods to human activities, because precipitation is only one of 
the multiple factors, albeit an important one, that affect floods. For 
example, Teufel et al. (2017) showed that, while human influence 
increased the odds of the flood-producing rainfall for the 2013 
Alberta flood in Canada, it was not detected to have influenced 
the probability of the flood itself. Schaller et al. (2016) showed 
that human influence on the increase in the probability of heavy 
precipitation translated linearly into an increase in the resulting river 
flow of the Thames in the UK in winter 2014, but its contribution to 
the inundation was inconclusive. 

Gudmundsson et al. (2021) compared the spatial pattern of the observed 
regional trends in high river flows (>90th percentile) over 1971–2010 
with that simulated by global hydrological models. The hydrological 
models were driven by outputs of climate model simulations under 
all historical forcing and pre-industrial forcing conditions. They found 
complex spatial patterns of extreme river flow trends. They also found 
the observed spatial patterns of trends can be reproduced only if 
anthropogenic climate change is considered, and that simulated effects 
of water and land management cannot reproduce the observed spatial 
pattern of trends. As there is only one study and multiple caveats 
associated with the study, including relatively poor observational 
data coverage, there is low confidence about human influence on the 
changes in high river flows on the global scale. 

In summary there is low confidence in the human influence on 
the changes in high river flows on the global scale. In general, 

there is low confidence in attributing changes in the probability or 
magnitude of flood events to human influence because of a limited 
number of studies, differences in the results of these studies and 
large modelling uncertainties. 

11.5.5 Future Projections 

The SREX (Chapter  3, Seneviratne et al., 2012) stressed the low 
availability of studies on flood projections under different emissions 
scenarios, and concluded that there was low confidence in 
projections of flood events given the complexity of the mechanisms 
driving floods at the regional scale. The AR5 WGII report (Chapter 3, 
Jimenez Cisneros et al., 2014) assessed with medium confidence the 
pattern of future flood changes, including flood hazards increasing 
over about half of the globe (parts of southern and South East Asia, 
tropical Africa, north-east Eurasia, and South America) and flood 
hazards decreasing in other parts of the world, despite uncertainties 
in GCMs and their coupling to hydrological models. The SR1.5 
(Chapter  3, Hoegh-Guldberg et al., 2018) assessed with medium 
confidence that global warming of 2°C would lead to an expansion 
of the fraction of global area affected by flood hazards, compared to 
conditions at 1.5°C of global warming, as a consequence of changes 
in heavy precipitation. 

The majority of new studies that produce future flood projections 
based on hydrological models do not typically consider aspects 
that are also important to actual flood severity or damages, such 
as flood prevention measures (Neumann et al., 2015; Şen, 2018), 
flood control policies (Barraqué, 2017), and future changes in land 
cover (see also Section  8.4.1.5). At the global scale, Alfieri et al. 
(2017) used downscaled projections from seven GCMs as input to 
drive a hydrodynamic model. They found successive increases in the 
frequency of high floods in all continents except Europe, associated 
with increasing levels of global warming (1.5°C, 2°C, 4°C). These 
results are supported by Paltan et al. (2018), who applied a simplified 
runoff aggregation model forced by outputs from four GCMs. S. Huang 
et al. (2018) used three hydrological models forced with bias-adjusted 
outputs from four GCMs to produce projections for four river basins 
including the Rhine, Upper Mississippi, Upper Yellow, and Upper 
Niger under 1.5°C, 2°C, and 3°C global warming. This study found 
diverse projections for different basins, including a  shift towards 
earlier flooding for the Rhine and the Upper Mississippi, a substantial 
increase in flood frequency in the Rhine only under the 1.5°C and 2°C 
scenarios, and a decrease in flood frequency in the Upper Mississippi 
under all scenarios. 

At the continental and regional scales, the projected changes in 
floods are uneven in different parts of the world, but there is a larger 
fraction of regions with an increase than with a decrease over the 
21st  century (Hirabayashi et al., 2013; Dankers et al., 2014; Arnell 
and Gosling, 2016; Döll et al., 2018). These results suggest medium 
confidence in flood trends at the global scale, but low confidence in 
projected regional changes. Increases in flood frequency or magnitude 
are identified for south-eastern and northern Asia and India (high 
agreement across studies), eastern and tropical Africa, and the high 
latitudes of North America (medium agreement), while decreasing 
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frequency or magnitude is found for central and eastern Europe and 
the Mediterranean (high confidence), and parts of South America, 
southern and central North America, and south-west Africa (low 
confidence) (Hirabayashi et al., 2013; Dankers et al., 2014; Arnell and 
Gosling, 2016; Döll et al., 2018). Over South America, most studies 
based on global and regional hydrological models show an increase 
in the magnitude and frequency of high flows in the western Amazon 
(Guimberteau et al., 2013; Langerwisch et al., 2013; Sorribas et al., 
2016; Zulkafli et al., 2016) and the Andes (Hirabayashi et al., 2013; 
Bozkurt et al., 2018). Section 12.4 provides a detailed assessment of 
regional flood projections. 

In summary, global hydrological models project a  larger fraction 
of land areas to be affected by an increase in river floods than by 
a  decrease in river floods (medium confidence). There is medium 
confidence that river floods will increase in the western Amazon, 
the Andes, and south-eastern and northern Asia. Regional changes 
in river floods are more uncertain than changes in pluvial floods 
because complex hydrological processes and forcings are involved, 
including land cover change and human water management.

11.6 Droughts

Droughts refer to periods of time with substantially below-
average moisture conditions, usually covering large areas, during 
which limitations in water availability result in negative impacts 
for various components of natural systems and economic sectors 
(Wilhite and Pulwarty, 2017; Ault, 2020). Depending on the 
variables used to characterize it and the systems or sectors being 
impacted, drought may be classified in different types (Figure 8.6 
and Appendix Table 11.A.1) such as meteorological (precipitation 
deficits), agricultural (e.g.,  crop yield reductions or failure, often 
related to soil moisture deficits), ecological (related to plant water 
stress that causes e.g.,  tree mortality), or hydrological droughts 
(e.g.,  water shortage in streams or storages such as reservoirs, 
lakes, lagoons, and groundwater; see Glossary). The distinction of 
drought types is not absolute, as drought can affect different sub-
domains of the Earth system concomitantly, but sometimes also 
asynchronously, including propagation from one drought type to 
another (Brunner and Tallaksen, 2019). Because of this, drought 
cannot be characterized using a single universal definition (Lloyd-
Hughes, 2014) or directly measured based on a  single variable 
(SREX Chapter  3; Wilhite and Pulwarty, 2017). Drought can 
happen on a wide range of timescales – from ‘flash droughts’ on 
a scale of weeks, and characterized by a sudden onset and rapid 
intensification of drought conditions (Hunt et al., 2014; Otkin et al., 
2018; Pendergrass et al., 2020) to multi-year or decadal rainfall 
deficits  – sometimes termed ‘megadroughts’ (see Glossary; Ault 
et al., 2014; Cook et al., 2016b; Garreaud et al., 2017). Droughts 
are often analysed using indices that are measures of drought 
severity, duration and frequency (Sections 8.3.1.6, 8.4.1.6, 12.3.2.6 
and 12.3.2.7, and Table  11.A.1). There are many drought indices 
published in the scientific literature, as also highlighted in SREX 
(SREX Chapter 3). These can range from anomalies in single variables 
(e.g.,  precipitation, soil moisture, runoff, evapotranspiration) to 
indices combining different atmospheric variables. 

This assessment is focused on changes in physical conditions and 
metrics of direct relevance to droughts: (i) precipitation deficits; 
(ii)  excess of atmospheric evaporative demand (AED); (iii) soil 
moisture deficits; (iv) hydrological deficits; and e) atmospheric-
based indices combining precipitation and AED (Table 11.A.1). In the 
regional tables (Section 11.9), the assessment is structured by drought 
types, addressing: (i) meteorological, (ii) agricultural and ecological, 
and (iii) hydrological droughts. Note that the latter two assessments 
directly inform the Chapter  12 assessment on projected regional 
changes in these climatic impact-drivers (Section  12.4). The text 
refers to AR6 region acronyms (Section 11.9, and see Section 1.4.5).

11.6.1 Mechanisms and Drivers

Similar to many other extreme events, droughts occur as 
a combination of thermodynamic and dynamic processes (Box 11.1). 
Thermodynamic processes contributing to drought, which are 
modified by greenhouse gas forcing both at global and regional 
scales, are mostly related to heat and moisture exchanges, and are 
also partly modulated by plant coverage and physiology. They affect, 
for instance, atmospheric humidity, temperature, and radiation, 
which in turn affect precipitation and/or evapotranspiration in some 
regions and time frames. However, dynamic processes are particularly 
important to explain drought variability on different time scales, 
from a few weeks (flash droughts) to multiannual (megadroughts). 
There is low confidence in the effects of greenhouse gas forcing 
on changes in atmospheric dynamic (Section  2.4; Section  4.3.3), 
and on associated changes in drought occurrence. Thermodynamic 
processes are thus the main driver of drought changes in a warming 
climate (high confidence). 

11.6.1.1  Precipitation Deficits

Lack of precipitation is generally the main factor controlling drought 
onset. There is high confidence that atmospheric dynamics, which 
vary on interannual, decadal and longer time scales, is the dominant 
contributor to variations in precipitation deficits in the majority of 
world regions (Dai, 2013; Miralles et al., 2014b; Seager and Hoerling, 
2014; Burgman and Jang, 2015; Dong and Dai, 2015; Schubert et al., 
2016; Raymond et al., 2018; Baek et al., 2019; Drumond et al., 2019; 
Herrera-Estrada et al., 2019; Gimeno et al., 2020; Mishra, 2020). 
Precipitation deficits are driven by dynamic mechanisms taking 
place on different spatial scales, including synoptic processes  – 
atmospheric rivers and extratropical cyclones, blocking and ridges 
(Section 11.7; Sousa et al., 2017), dominant large-scale circulation 
patterns (Kingston et al., 2015), and global ocean–atmosphere 
coupled patterns such as inter-decadal Pacific Oscillation (IPO), 
Atlantic Multi-decadal Oscillation (AMO) and El Niño–Southern 
Oscillation (ENSO; Dai and Zhao, 2017). These various mechanisms 
occur on different scales, are not independent, and substantially 
interact with one another. Also regional moisture recycling and land–
atmosphere feedbacks play an important role for some precipitation 
anomalies (see below). 

There is high confidence that land–atmosphere feedbacks play 
a  substantial or dominant role in affecting precipitation deficits in 
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some regions (SREX, Chapter 3; Koster et al., 2011; Gimeno et al., 
2012; Taylor et al., 2012; Guillod et al., 2015; Tuttle and Salvucci, 
2016; Santanello Jr. et al., 2018; Haslinger et al., 2019; Herrera-
Estrada et al., 2019). The sign of the feedbacks can be either positive 
or negative, as well as local or non-local (Taylor et al., 2012; Guillod 
et al., 2015; Tuttle and Salvucci, 2016). Earth system models (ESMs) 
tend to underestimate non-local negative soil-moisture–precipitation 
feedbacks (Taylor et al., 2012) and also show high variations in their 
representation in some regions (Berg et al., 2017b). Soil-moisture–
precipitation feedbacks contribute to changes in precipitation 
in climate model projections in some regions, but ESMs display 
substantial uncertainties in their representation, and there is thus 
only low confidence in these contributions (Berg et al., 2017b; Vogel 
et al., 2017, 2018). 

11.6.1.2  Atmospheric Evaporative Demand 

Atmospheric evaporative demand (AED) quantifies the maximum 
amount of actual evapotranspiration (ET) that can happen from land 
surfaces if they are not limited by water availability (Table 11.A.1). 
AED is affected by radiative and aerodynamic components. For this 
reason, the atmospheric dryness, often quantified with the relative 
humidity or the vapour pressure deficit (VPD), is not equivalent to 
the AED, as other variables are also highly relevant, including solar 
radiation and wind speed (Hobbins et al., 2012; McVicar et al., 2012a; 
Sheffield et al., 2012). AED can be estimated using different methods 
(McMahon et al., 2013), and those solely based on air temperature 
(e.g., Hargreaves, Thornthwaite) usually overestimate it in terms of 
magnitude and temporal trends (Sheffield et al., 2012), in particular, 
in the context of substantial background warming. Physically-based 
combination methods such as the Penman-Monteith equation are 
more adequate and recommended since 1998 by the United Nations 
Food and Agriculture Oganization (Pereira et al., 2015). For this reason, 
the assessment of this Chapter, when considering atmospheric-
based drought indices, only includes AED estimates using the latter 
(see also Section 11.9). AED is generally higher than ET, since AED 
represents an upper bound for ET. Hence, an AED increase does not 
necessarily lead to increased ET (Milly and Dunne, 2016), in particular 
under drought conditions given soil moisture limitation (Bonan et al., 
2014; Berg et al., 2016; Konings et al., 2017; Stocker et al., 2018). 
In general, AED is highest in regions where ET is lowest (e.g., desert 
areas), further illustrating the decoupling between the two variables 
under limited soil moisture. 

The influence of AED on drought depends on the drought type, 
background climate, the environmental conditions and the moisture 
availability (Hobbins et al., 2016, 2017; Vicente-Serrano et al., 
2020a). This influence also includes effects not related to increased 
ET. Under low soil moisture conditions, increased AED increases 
plant stress, enhancing the severity of agricultural and ecological 
droughts (Williams et al., 2013; Allen et al., 2015; McDowell et al., 
2016; Grossiord et al., 2020). Moreover, high VPD impacts overall 
plant physiology; it affects the leaf and xylem safety margins, and 
decreases the sap velocity and plant hydraulic conductance (Fontes 
et al., 2018). VPD also affects the plant metabolism of carbon and, 
if prolonged, it may cause plant mortality via carbon starvation 
(Breshears et al., 2013; Hartmann, 2015). Drought projections based 

exclusively on AED metrics overestimate changes in soil moisture and 
runoff deficits. Nevertheless, AED also directly impacts hydrological 
drought, as ET from surface waters is not limited (Wurbs and Ayala, 
2014; Friedrich et al., 2018; Hogeboom et al., 2018; K. Xiao et al., 2018), 
and this effect increases under climate change projections (W. Wang 
et al., 2018; Althoff et al., 2020). In addition, high AED increases crop 
water consumptions in irrigated lands (García-Garizábal et al., 2014), 
contributing to intensifying hydrological droughts downstream (Fazel 
et al., 2017; Vicente-Serrano et al., 2017).

On subseasonal to decadal scales, temporal variations in AED are 
strongly controlled by circulation variability (Williams et al., 2014; 
Chai et al., 2018; Martens et al., 2018), but thermodynamic processes 
also play a  fundamental role and, under human-induced climate 
change, dominate the changes in AED. Atmospheric warming due 
to increased atmospheric CO2 concentrations increases AED by 
means of enhanced VPD in the absence of other influences (Scheff 
and Frierson, 2015). Because of the greater warming over land than 
over oceans (Sections 2.3.1.1 and 11.3), the saturation pressure of 
water vapour increases more over land than over oceans; oceanic 
air masses advected over land thus contain insufficient water vapour 
to keep pace with the greater increase in saturation vapour pressure 
over land (Sherwood and Fu, 2014; Byrne and O’Gorman, 2018; 
Findell et al., 2019). Land–atmosphere feedbacks are also important 
in affecting atmospheric moisture content and temperature, with 
resulting effects on relative humidity and VPD (Box 11.1; Berg et al., 
2016; Haslinger et al., 2019; S. Zhou et al., 2019).

11.6.1.3  Soil Moisture Deficits

Soil moisture shows an important correlation with precipitation 
variability (Khong et al., 2015; Seager et al., 2019), but ET also plays 
a substantial role in further depleting moisture from soils, in particular 
in humid regions during periods of precipitation deficits (Teuling 
et al., 2013; Padrón et al., 2020). In addition, soil moisture plays 
a role in drought self-intensification under dry conditions in which ET 
is decreased and leads to higher AED (Miralles et al., 2019), an effect 
that can also contribute to triggering flash droughts (Otkin et al., 
2016, 2018; DeAngelis et al., 2020; Pendergrass et al., 2020). If soil 
moisture becomes limited, ET is reduced, which may decrease the 
rate of soil drying, but can also lead to further atmospheric dryness 
through various feedback loops (Seneviratne et al., 2010; Miralles 
et al., 2014a, 2019; Teuling, 2018; Vogel et al., 2018; S. Zhou et al., 
2019; Liu et al., 2020). The process is complex since vegetation cover 
plays a role in modulating albedo and in providing access to deeper 
stores of water (both in the soil and groundwater). Also, changes in 
land cover and in plant phenology may alter ET (Sterling et al., 2013; 
Woodward et al., 2014; Frank et al., 2015; Döll et al., 2016; Ukkola 
et al., 2016; Trancoso et al., 2017; Hao et al., 2019; Lian et al., 2020). 
Snow depth has strong and direct impacts on soil moisture in many 
systems (Gergel et al., 2017; Williams et al., 2020). 

Soil moisture directly affects plant water stress and ET. Soil moisture 
is the primary factor that controls xylem hydraulic conductance  – 
that is, water uptake in plants (Sperry et al., 2016; Hayat et al., 2019; 
X. Chen et al., 2020). For this reason, soil moisture deficits are the 
main driver of xylem embolism, the primary cause of plant mortality 
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(Anderegg et al., 2012, 2016; Rowland et al., 2015). Also carbon 
assimilation by plants strongly depends on soil moisture (Hartzell 
et al., 2017), with implications for carbon starvation and plant 
dying if soil moisture deficits are prolonged (Sevanto et al., 2014). 
These mechanisms explain that soil moisture deficits are usually 
more relevant than AED excess to explain gross primary production 
anomalies and vegetation stress, mostly in sub-humid and semi-arid 
regions (Stocker et al., 2018; Liu et al., 2020). High CO2 concentrations 
are shown to potentially decrease plant ET and increase plant water-
use efficiency, affecting soil moisture levels, but this effect interacts 
with other CO2 physiological and radiative effects (Section 11.6.5.2 
and Cross-Chapter Box 5.1), and has less relevance under low soil 
moisture (Morgan et al., 2011; Z. Xu et al., 2016; Nackley et al., 2018; 
Dikšaitytė et al., 2019). ESMs represent both surface (around 10cm) 
and total column soil moisture, whereby total soil moisture is of more 
direct relevance for root water uptake, in particular by trees. There is 
evidence that surface soil moisture projections are substantially drier 
than total soil moisture projections, and may overestimate drying of 
relevance for most vegetation (Berg et al., 2017a).

11.6.1.4  Hydrological Deficits

Drivers of streamflow and surface water deficits are complex 
and strongly depend on the hydrological system analysed 
(e.g.,  streamflows in the headwaters, medium course of the rivers, 
groundwater, highly regulated hydrological basins). Soil hydrological 
processes, which control the propagation of meteorological droughts 
throughout different parts of the hydrological cycle (Van Loon and 
Van Lanen, 2012), are spatially and temporally complex (Herrera-
Estrada et al., 2017; S. Huang et al., 2017b) and difficult to quantify 
(Van Lanen et al., 2016; Apurv et al., 2017; Caillouet et al., 2017; 
Konapala and Mishra, 2017; Hasan et al., 2019). The physiographic 
characteristics of the basins also affect how droughts propagate 
throughout the hydrological cycle (Van Loon and Van Lanen, 2012; 
Van Lanen et al., 2013; Van Loon, 2015; Konapala and Mishra, 2020; 
Veettil and Mishra, 2020). In addition, the assessment of groundwater 
deficits is very difficult given the complexity of processes that 
involve natural and human-driven feedbacks and interactions with 
the climate system (Taylor et al., 2013). Streamflow and surface 
water deficits are affected by land cover, groundwater and soil 
characteristics (Van Lanen et al., 2013; Van Loon and Laaha, 2015; 
Barker et al., 2016; Tijdeman et al., 2018), as well as human activities 
(water management and demand, damming) and land-use changes 
(Section 11.6.4.3; Van Loon et al., 2016; He et al., 2017; Veldkamp 
et al., 2017; J. Wu et al., 2018; Y. Xu et al., 2019; Jehanzaib et al., 
2020). Finally, snow and glaciers are relevant for water resources 
in some regions. For instance, warming affects snowpack levels 
(Dierauer et al., 2019; Huning and AghaKouchak, 2020), as well as 
the timing of snow melt, thus potentially affecting the seasonality 
and magnitude of low flows (Barnhart et al., 2016).

11.6.1.5  Atmospheric-based Drought Indices

Given the difficulties of drought quantification and data constraints, 
atmospheric-based drought indices combining both precipitation 
and AED have been developed, as they can be derived from 
meteorological data that is available in most regions (with few 

exceptions). These demand/supply indices are not intended to be 
metrics of soil moisture, streamflow or vegetation water stress. 
Because of their reliance on precipitation and AED, they are mostly 
related to the actual water balance in humid regions, in which ET is 
not limited by soil moisture and tends towards AED. In water-limited 
regions and in dry  periods everywhere, they constitute an upper 
bound for overall  water-balance  deficits  (e.g.,  of surface waters) 
but are also related to  conditions  conducive  to vegetation stress, 
particularly under soil moisture limitation (Section 11.6.1.2). 

Although there are many atmospheric-based drought indices, two are 
assessed in this chapter: the Palmer Drought Severity Index (PDSI) and 
the Standardized Precipitation Evapotranspiration Index (SPEI). The 
PDSI has been widely used to monitor and quantify drought severity 
(Dai et al., 2018), but is affected by some constraints (SREX Chapter 3; 
Mukherjee et al., 2018a). Although the calculation of the PDSI is based 
on a soil water budget, the PDSI is essentially a climate drought index 
that mostly responds to the precipitation and the AED (van der Schrier 
et al., 2013; Vicente-Serrano et al., 2015; Dai et al., 2018). The SPEI also 
combines precipitation and AED, being equally sensitive to these two 
variables (Vicente-Serrano et al., 2015). The SPEI is more sensitive to 
AED than the PDSI (Cook et al., 2014a; Vicente-Serrano et al., 2015), 
although under humid and normal precipitation conditions, the effects 
of AED on the SPEI are small (Tomas-Burguera et al., 2020). Given 
the limitations associated with temperature-based AED estimates 
(Section  11.6.1.2), only studies using the Penman-Monteith-based 
SPEI and PDSI (hereafter SPEI-PM and PDSI-PM) are considered in this 
assessment and in the regional tables in Section 11.9.

11.6.1.6 Relation of Assessed Variables and Metrics 
for Changes in Different Drought Types

This Chapter assesses changes in meteorological drought, 
agricultural and ecological droughts, and hydrological droughts. 
Precipitation-based indices are used for the estimation of changes 
in meteorological droughts, such as the Standardized Precipitation 
Index (SPI) and the number of consecutive dry days (CDD). Changes 
in total soil moisture and soil moisture-based drought events are 
used for the estimation of changes in agricultural and ecological 
droughts, complemented by changes in surface soil moisture, water-
balance estimates (precipitation minus ET), and SPEI-PM and PDSI-
PM. For hydrological droughts, changes in low flows are assessed, 
sometimes complemented by changes in mean streamflow.

In summary, different drought types exist and they are associated 
with different impacts and respond differently to increasing 
greenhouse gas concentrations. Precipitation deficits and changes in 
evapotranspiration govern net water availability. A lack of sufficient 
soil moisture, sometimes amplified by increased atmospheric 
evaporative demand, result in agricultural and ecological drought. Lack 
of runoff and surface water result in hydrological drought. Drought 
events are the result of dynamic and/or thermodynamic processes, 
with thermodynamic processes being the main driver of drought 
changes under human-induced climate change (high confidence). 
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11.6.2 Observed Trends

Evidence on observed drought trends was limited at the time of SREX 
(Chapter 3) and AR5 (Chapter 2). The SREX concluded: ‘There is medium 
confidence that since the 1950s some regions of the world have 
experienced a trend to more intense and longer droughts, in particular 
in southern Europe and west Africa, but in some regions droughts have 
become less frequent, less intense, or shorter, for example, in Central 
North America and north-western Australia.’ The assessment at the 
time did not distinguish between different drought types. This Chapter 
includes numerous updates on observed drought trends, associated 
with extensive new literature and longer datasets since AR5. 

11.6.2.1  Precipitation Deficits

Strong precipitation deficits have been recorded in recent decades 
in the Amazon (2005, 2010), south-western China (2009–2010), 
south-western North America (2011–2014), Australia (1997–2009), 
California (2014), the middle East (2012–2016), Chile (2010–2015), 
the Great Horn of Africa (2011), among others (van Dijk et al., 2013; 
Mann and Gleick, 2015; Rowell et al., 2015; Marengo and Espinoza, 
2016; Dai and Zhao, 2017; Garreaud et al., 2017, 2020; Marengo 
et al., 2017; Brito et al., 2018; Cook et al., 2018). Global studies 
generally show no significant trends in SPI time series (Orlowsky 
and Seneviratne, 2013; Spinoni et al., 2014), and in derived drought 
frequency and severity data (Spinoni et al., 2019), with very few 
regional exceptions (Section  11.9 and Figure  11.17). Long-term 
decreases in precipitation are found in some AR6 regions in Africa 
(Central Africa and East Southern Africa), and several regions in South 
America (North-Eastern South America, South American Monsoon, 
South-Western South America, and Southern South America) 
(Section 11.9). Evidence of precipitation-based drying trends is also 
found in Western Africa, consistent with studies based on CDD trends 
(Figure 11.17; Chaney et al., 2014; Donat et al., 2014b; Barry et al., 
2018; Dunn et al., 2020), however, there is a partial recovery of the 
rainfall trends since the 1980s in this region (Section  10.4.2.1). 
Some AR6 regions show a  decrease in meteorological drought, 
including Northern Australia, Central Australia, Northern Europe 
and Central North America (Section 11.9). Other regions either do 
not show substantial trends in long-term meteorological drought, or 
they display mixed signals depending on the considered time frame 
and sub-regions, such as in Southern Australia (Gallant et al., 2013; 
Delworth and Zeng, 2014; Alexander and Arblaster, 2017; Spinoni 
et al., 2019; Dunn et al., 2020; Rauniyar and Power, 2020) and the 
Mediterranean (Camuffo et al., 2013; Gudmundsson and Seneviratne, 
2016; Spinoni et al., 2017; Stagge et al., 2017; Caloiero et al., 2018; 
Peña-Angulo et al., 2020b; see also Section 11.9 and Atlas.8.2).

11.6.2.2 Atmospheric Evaporative Demand

In several regions, AED increases have intensified recent drought 
events (Williams et al., 2014, 2020; Seager et al., 2015b; Basara 
et al., 2019; García-Herrera et al., 2019), enhanced vegetation stress 
(Allen et al., 2015; Sanginés de Cárcer et al., 2018; Yuan et al., 2019), 
or contributed to the depletion of soil moisture or runoff through 
enhanced ET (high confidence) (Teuling et al., 2013; Padrón et al., 2020). 
Trends in pan evaporation measurements and Penman-Monteith AED 

estimates provide an indication of possible trends in the influence of 
AED on drought. Given the observed global temperature increases 
(Sections 2.3.1.1 and 11.3) and dominant decrease in relative 
humidity over land areas (Simmons et al., 2010; Willett et al., 2014), 
VPD has increased globally (Barkhordarian et al., 2019; Yuan et al., 
2019). Pan evaporation has increased as a  consequence of VPD 
changes in several AR6 regions, such as East Asia (Li et al., 2013; 
Z.  Sun et al., 2018; M.-Z. Yang et al., 2018), Western and Central 
Europe (Mozny et al., 2020), the Mediterranean, (Azorin-Molina et al., 
2015) and Central and Southern Australia (Stephens et al., 2018). 
Nevertheless, there is an important regional variability in observed 
trends, and in other AR6 regions pan evaporation has decreased – 
for example, in North Central America (Breña-Naranjo et al., 2017) 
and in the Tibetan Plateau (C. Zhang et al., 2018)). Physical models 
also show an important regional diversity, with an increase in New 
Zealand (Salinger and Porteous, 2014) and the Mediterranean (Gocic 
and Trajkovic, 2014; Azorin-Molina et al., 2015; Piticar et al., 2016), 
a decrease in South Asia (Jhajharia et al., 2015), and strong spatial 
variability in North America (Seager et al., 2015b). This variability is 
driven by the role of other meteorological variables affecting AED. 
Changes in solar radiation as a consequence of solar dimming and 
brightening may affect trends (Section  7.2.2.2; Kambezidis et al., 
2012; Wang and Yang, 2014; Sanchez-Lorenzo et al., 2015). Wind 
speed is also relevant (McVicar et al., 2012b), and studies suggest 
a reduction of the wind speed in some regions (Z. Zhang et al., 2019b) 
that could compensate the role of the VPD increase. Nevertheless, the 
VPD trend seems to dominate the overall AED trends, compared to 
the effects of trends in wind speed and solar radiation (Wang et al., 
2012; Park Williams et al., 2017; Vicente-Serrano et al., 2020a).   

11.6.2.3  Soil Moisture Deficits

There are limited long-term measurements of soil moisture from 
ground observations (Dorigo et al., 2011; Qiu et al., 2016; Quiring 
et al., 2016), which impedes their use in the analysis of trends. Among 
the few existing observational studies covering at least two decades, 
several studies have investigated trends in ground soil moisture in 
East Asia (Section 11.9; Chen and Sun, 2015b; Liu et al., 2015; Qiu 
et al., 2016). Alternatively, microwave-based satellite measurements 
of surface soil moisture have also been used to analyse trends (Dorigo 
et al., 2012; Jia et al., 2018). Although there is regional evidence that 
microwave-based soil moisture estimates can capture well drying 
trends in comparison with ground soil moisture observations (Jia 
et al., 2018), there is only medium confidence in the derived trends, 
since satellite soil moisture data are affected by inhomogeneities 
(Dorigo et al., 2015; Rodell et al., 2018; Preimesberger et al., 2021). 
Furthermore, microwave-based satellites only sense surface soil 
moisture, which differs from root-zone soil moisture (Berg et al., 
2017a), although relationships can be derived between the two 
(Brocca et al., 2011). Several studies have also analysed long-term 
soil moisture time series from observation-driven land-surface 
or hydrological models, including land-based reanalysis products 
(Albergel et al., 2013; Jia et al., 2018; Gu et al., 2019b; Markonis 
et al., 2021). Such models have also been used to assess changes in 
land water availability, estimated as precipitation minus ET, which 
is equal to the sum of soil moisture and runoff (Greve et al., 2014; 
Padrón et al., 2020). 
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Overall, evidence from global studies suggests that several land 
regions have been affected by increased soil moisture drying or water 
balance drying in past decades, despite some spread among products 
(Albergel et al., 2013; Greve et al., 2014; Gu et al., 2019b; Padrón 
et al., 2020). Drying has not only occurred in dry regions but also in 
humid regions (Greve et al., 2014). Some studies have specifi cally 
addressed changes in soil moisture at regional scale (Section 11.9). 
For AR6 regions, several studies suggest an increase in the frequency 
and areal extent of soil moisture defi cits, with examples in East Asia 
(Cheng et al., 2015; Y. Qin et al., 2015; Jia et al., 2018), Western and 
Central Europe (Trnka et al., 2015b), and the Mediterranean (Hanel 
et al., 2018; Moravec et al., 2019; Markonis et al., 2021). Nonetheless, 
some analyses also show no long-term trends in soil drying in some 
AR6 regions – for example, in Eastern North America (Park Williams 
et al., 2017) and Central North America (Seager et al., 2019), as well 
as in North Eastern Africa (Kew et al., 2021). The soil moisture drying 
trends identifi ed in both global and regional studies are generally 
related to increases in ET (associated with higher AED) rather than 
decreases in precipitation, as identifi ed on global land for trends in 
water balance in the dry season (Padrón et al., 2020), as well as for 
some regions (Teuling et al., 2013; Cheng et al., 2015; Trnka et al., 
2015a; van Der Linden et al., 2019; X. Li et al., 2020). 

Evidence from observed or observations-derived trends in soil 
moisture and precipitation minus ET, are combined with evidence 
from SPEI and PDSI-PM studies to derive regional assessments of 
changes in agricultural and ecological droughts (Section 11.9). This 
assessment is summarized in Section 11.6.2.6.

11.6.2.4  Hydrological Defi cits

There is evidence based on streamfl ow records of increased 
hydrological droughts in East Asia (D. Zhang et al., 2018) and 
southern Africa (Gudmundsson et al., 2019). In areas of Western 
and Central Europe and Northern Europe, there is no evidence of 
changes in the severity of hydrological droughts since 1950 based on 

fl ow reconstructions (Caillouet et al., 2017; Barker et al., 2019) and 
observations (Vicente-Serrano et al., 2019). In the Mediterranean 
region, there is high confi dence in hydrological drought intensifi cation 
(Section  11.9; Giuntoli et al., 2013; Lorenzo-Lacruz et al., 2013; 
Gudmundsson et al., 2019). In south-eastern South America there 
is a  decrease in the severity of hydrological droughts (Rivera and 
Penalba, 2018). In North America, depending on the methods, datasets 
and study periods, there are differences between studies that suggest 
an increase  (Shukla et al., 2015; Udall and Overpeck, 2017) versus 
a  decrease in hydrological drought frequency (Mo and Lettenmaier, 
2018), but in general there is strong spatial variability (Poshtiri and 
Pal, 2016). Streamfl ow observation reference networks of near-natural 
catchments have also been used to isolate the effect of climate trends 
on hydrological drought trends in a few regions, but these show limited 
trends in Northern Europe and Western and Central Europe (Stahl et al., 
2010; Bard et al., 2015; Harrigan et al., 2018), North America (Dudley 
et al., 2020) and most of Australia, with the exception of Eastern and 
Southern Australia (X.S. Zhang et al., 2016). Given the low availability 
of observations, there are few studies analysing trends of drought 
severity in the groundwater. Nevertheless, some studies suggest 
a noticeable response of groundwater droughts to climate variability 
(Lorenzo-Lacruz et al., 2017) and increased drought frequency and 
severity associated with warming, probably as a  consequence of 
enhanced ET induced by higher AED (Maxwell and Condon, 2016). This 
is supported by studies in Northern Europe (Bloomfi eld et al., 2019) 
and North America (Condon et al., 2020).

11.6.2.5 Atmospheric-based Drought Indices

Globally, trends in SPEI-PM and PDSI-PM suggest slightly higher 
increases of drought frequency and severity in regions affected by 
drying over the last decades in comparison to the SPI (Dai and Zhao, 
2017; Spinoni et al., 2019; Song et al., 2020), mainly in regions of 
Western and Southern Africa, the Mediterranean and East Asia 
(Figure 11.17), which is consistent with observed soil moisture trends 
(Section 11.6.2.3). These indices suggest that AED has contributed to 

Non-significant trends
Significant trendsColour

No data

Figure 11.17 | Observed linear trend for (a) consecutive dry days (CDD) during 1960–2018, (b) standardized precipitation index (SPI) and (c) standardized 
precipitation-evapotranspiration index (SPEI) during 1951–2016. CDD data are from the HadEx3 dataset (Dunn et al., 2020), trend calculation of CDD as in Figure 11.9. 
Drought severity is estimated using 12-month SPI (SPI-12) and 12-month SPEI (SPEI-12). SPI and SPEI datasets are from Spinoni et al. (2019). The threshold to identify drought 
episodes was set at -1 SPI/SPEI units. Areas without suffi cient data are shown in grey. No overlay indicates regions where the trends are signifi cant at the p = 0.1 level. Crosses 
indicate regions where trends are not signifi cant. Fo r details on the methods see Supplementary Material 11.SM.2. Further details on data sources and processing are available 
in the chapter data table (Table 11.SM.9).
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increase the severity of agricultural and ecological droughts compared 
to meteorological droughts (García-Herrera et al., 2019; Williams et al., 
2020), reduce soil moisture during the dry season (Padrón et al., 2020), 
increase plant water stress (Allen et al., 2015; Grossiord et al., 2020; 
Solander et al., 2020) and trigger more severe forest fires (Abatzoglou 
and Williams, 2016; Turco et al., 2019; Nolan et al., 2020). A number 
of regional studies based on these drought indices have also shown 
stronger drying trends in comparison to trends in precipitation-based 
indices in the following AR6 regions (see also Section  11.9): NSA 
(R. Fu et al., 2013; Marengo and Espinoza, 2016), SCA (Hidalgo et al., 
2017), WCA (Tabari and Aghajanloo, 2013; Sharafati et al., 2020), SAS 
(Niranjan Kumar et al., 2013), NEAF (Zeleke et al., 2017), WSAF (Edossa 
et al., 2016), NWN and NEN (Bonsal et al., 2013), EAS (Yu et al., 2014; 
Chen and Sun, 2015b; L. Li et al., 2020; Liang et al., 2020; Z. Wu et al., 
2020) and MED (Kelley et al., 2015; Stagge et al., 2017; González-
Hidalgo et al., 2018; Mathbout et al., 2018a). 

11.6.2.6  Synthesis for Different Drought Types

Few AR6 regions show observed increases in meteorological drought 
(Section  11.9), mostly in Africa and South America (NES: high 
confidence; WAF, CAF, ESAF, SAM, SWS, SSA, SAS: medium confidence); 
a  few others show a  decrease (WSB, ESB, NAU, CAU, NEU, CNA: 
medium confidence). There are stronger signals indicating observed 
increases in agricultural and ecological drought (Section 11.9), which 
highlights the role of increased ET, driven by increased AED, for these 
trends (Sections 11.6.2.3 and11.6.2.5). Past increases in agricultural 
and ecological droughts are found on all continents and several 
regions (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS, SAU, MED, WCE, 
NES: medium confidence), while decreases are found only in one 
AR6 region (NAU: medium confidence). The more limited availability 
of datasets makes it more difficult to assess historical trends in 
hydrological drought at regional scale (Section  11.9). Increasing 
(MED: high confidence; WAF, EAS, SAU: medium confidence) and 
decreasing (NEU, SES: medium confidence) trends in hydrological 
droughts have only been observed in a few regions.

In summary, there is high confidence that AED has increased on 
average on continents, contributing to increased ET and resulting 
water stress during periods with precipitation deficits, in particular 
during dry seasons. There is medium confidence in increases in 
precipitation deficits in a few regions of Africa and South America. 
Based on multiple evidence, there is medium confidence that 
agricultural and ecological droughts have increased in several 
regions on all continents (WAF, CAF, WSAF, ESAF, WCA, ECA, EAS, 
SAU, MED, WCE, NES: medium confidence), while there is only 
medium confidence in decreases in one AR6 region (NAU). More 
severe hydrological droughts are found in fewer regions (MED: high 
confidence; WAF, EAS, SAU: medium confidence). 

11.6.3 Model Evaluation

11.6.3.1  Precipitation Deficits

ESMs generally show limited performance and large spread 
in identifying precipitation deficits and associated long-term 

trends in comparison with observations (Nasrollahi et al., 2015). 
Meteorological drought trends in the CMIP5 ensemble showed 
substantial disagreements compared with observations (Orlowsky 
and Seneviratne, 2013; Knutson and Zeng, 2018) including 
a  tendency to overestimate drying, in particular in mid- to high 
latitudes (Knutson and Zeng, 2018). The CMIP6 models display 
a better performance in reproducing long-term precipitation trends 
or seasonal dynamics in some studies in Southern South America 
(Rivera and Arnould, 2020), East Asia (Xin et al., 2020), southern 
Asia (Gusain et al., 2020), and south-western Europe (Peña-Angulo 
et al., 2020b), but there is still too limited evidence to allow for 
an assessment of possible differences in performance between 
CMIP5 and CMIP6. Furthermore, ESMs are generally found to 
underestimate the severity of precipitation deficits and the dry day 
frequencies in comparison to observations (Fantini et al., 2018; 
Ukkola et al., 2018). This is probably related to shortcomings in 
the simulation of persistent weather events in the mid-latitudes 
(Section  10.3.3.3). ESMs also show a  tendency to underestimate 
precipitation-based drought persistence at monthly to decadal 
time scales (Ault et al., 2014; Moon et al., 2018). The overall inter-
model spread in the projected frequency of precipitation deficits is 
also substantial (Touma et al., 2015; Zhao et al., 2016; Engström 
and Keellings, 2018). Moreover, there are spatial differences in the 
spread, which is higher in the regions where enhanced drought 
conditions are projected and under high-emissions scenarios 
(Orlowsky and Seneviratne, 2013). Nonetheless, some event 
attribution studies have concluded that droughts at regional scales 
can be adequately simulated by some climate models (Schaller 
et al., 2016; Otto et al., 2018c).

11.6.3.2  Atmospheric Evaporative Demand

There is only limited evidence on the evaluation of AED in state-
of-the-art ESMs, which is performed on externally computed AED, 
based on model output (Scheff and Frierson, 2015; Liu and Sun, 
2016, 2017). An evaluation of average AED in 17 CMIP5 ESMs for 
1981–1999 based on potential evaporation show that the models’ 
spatial patterns resemble the observations, but the magnitude of 
potential evaporation displays strong divergence among models 
globally and regionally (Scheff and Frierson, 2015). The evaluation 
of AED in 12  CMIP5 ESMs with pan evaporation observations in 
East Asia for 1961–2000 (Liu and Sun, 2016, 2017) show that 
the ESMs capture seasonal cycles well, but that regional AED 
averages are underestimated due to biases in the meteorological 
variables controlling the aerodynamic and radiative components 
of AED. The CMIP5 ESMs also show a  strong underestimation of 
atmospheric drying trends compared to reanalysis data (Douville and 
Plazzotta, 2017).

11.6.3.3  Soil Moisture Deficits

The performance of climate models for representing soil moisture 
deficits shows more uncertainty than for precipitation deficits since, 
in addition to the uncertainties related to cloud and precipitation 
processes, there is uncertainty related to the representation of 
complex soil hydrological and boundary-layer processes (van den 
Hurk et al., 2011; Lu et al., 2019; Quintana-Seguí et al., 2020). 
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Another limitation is the lack of observations, particularly for soil 
moisture, in most regions (Section  11.6.2.3) and the paucity of 
land surface property data to parametrize land surface models, in 
particular soil types, soil properties and depth (Xia et al., 2015). The 
spatial resolution of models is an additional limitation since the 
representation of some land–atmosphere feedbacks and topographic 
effects requires detailed resolution (Nicolai-Shaw et al., 2015; Van 
Der Linden et al., 2019). In addition to climate models, land surface 
and hydrological models are also used to derive historical and 
projected trends in soil moisture and related land water variables 
(Albergel et al., 2013; Cheng et al., 2015; Gu et al., 2019b; Padrón 
et al., 2020; Markonis et al., 2021; Pokhrel et al., 2021). 

Overall, there are contrasting results on the performance of land 
surface models and climate models in representing soil moisture. 
Some studies suggest that soil moisture anomalies are well captured 
by land surface models driven with observation-based forcing 
(Dirmeyer et al., 2006; Albergel et al., 2013; Xia et al., 2014; Balsamo 
et al., 2015; Reichle et al., 2017; Spennemann et al., 2020), but other 
studies report limited agreement in the representation of interannual 
soil moisture variability (Stillman et al., 2016; Yuan and Quiring, 2017; 
Ford and Quiring, 2019) and noticeable seasonal differences in model 
skill in some regions (Xia et al., 2014, 2015). Models with good skill 
can nonetheless display biases in absolute soil moisture (Xia et al., 
2014; Gu et al., 2019a), but these are not necessarily of relevance 
for the simulation of surface water fluxes and drought anomalies 
(Koster et al., 2009). There is also substantial inter-model spread 
(Albergel et al., 2013), particularly for the root-zone soil moisture 
(Berg et al., 2017a). 

Regarding the performance of regional and global climate models, an 
evaluation of an ensemble of RCM simulations for Europe (Stegehuis 
et al., 2013) shows that these models display overly strong drying 
in early summer, resulting in an excessive decrease of latent heat 
fluxes, with potential implications for more severe droughts in dry 
environments (Teuling, 2018; van Der Linden et al., 2019). Compared 
with a range of observational ET estimates, CMIP5 models show an 
overestimation of ET on annual scale, but an ET underestimation in 
boreal summer in many Northern Hemisphere mid-latitude regions, 
also suggesting a  tendency towards excessive soil drying (Mueller 
and Seneviratne, 2014), consistent with identified biases in soil-
moisture–temperature coupling (Donat et al., 2018; Vogel et al., 
2018; Selten et al., 2020). Land surface models used in ESMs display 
a bias in their representation of the sensitivity of interannual land 
carbon uptake to soil moisture conditions, which appears related to 
a limited range of soil moisture variations compared to observations 
(Humphrey et al., 2018).

For future projections, the spread of soil moisture outputs among 
different ESMs is more important than internal variability and 
scenario uncertainty, and the bias is strongly related to the sign of 
the projected change (Ukkola et al., 2018; Lu et al., 2019; Selten et al., 
2020). The CMIP5 ESMs that project more drying and warming in mid-
latitude regions show a substantial bias in soil-moisture–temperature 
coupling (Donat et al., 2018; Vogel et al., 2018). Although CMIP6 and 
CMIP5 simulations for soil moisture changes are similar overall, some 
differences are found in projections in a few regions (Section 11.9; 

Cook et al., 2020). There is still limited evidence to assess whether 
there are substantial differences in model performance in the two 
ensembles, but improvements in modelling aspects relevant for soil 
moisture have been reported for precipitation (Section 11.6.3.2), and 
a better performance has been found in CMIP6 for the representation 
of long-term trends in soil moisture in continental USA (Yuan et al., 
2021). Despite the mentioned model limitations, the representation 
of soil moisture processes in ESMs uses physical and biological 
understanding of the underlying processes, which can well represent 
the temporal anomalies associated with temporal variability and 
trends in climate. In summary, there is medium confidence in the 
representation of soil moisture deficits in ESMs and related land 
surface and hydrological models. 

11.6.3.4  Hydrological Deficits

Streamflow and groundwater are not directly simulated by ESMs, 
which only simulate runoff, but they are generally represented in 
hydrological models (Prudhomme et al., 2014; Giuntoli et al., 2015), 
which are typically driven in a stand-alone manner by observed or 
simulated climate forcing. The simulation of hydrological deficits is 
much more problematic than the simulation of mean streamflow or 
peak flows (Fundel et al., 2013; Stoelzle et al., 2013; Velázquez et al., 
2013; Staudinger et al., 2015), since models tend to be too responsive 
to the climate forcing and do not satisfactorily capture low flows 
(Tallaksen and Stahl, 2014). Simulations of hydrological drought 
metrics show uncertainties related to the contribution of both GCMs 
and hydrological models (Bosshard et al., 2013; Giuntoli et al., 2015; 
Samaniego et al., 2017; Vetter et al., 2017), but hydrological models 
forced by the same climate input data also show a  large spread 
(van Huijgevoort et al., 2013; Ukkola et al., 2018). At the catchment 
scale, the hydrological model uncertainty is higher than both GCM 
and downscaling uncertainty (Vidal et al., 2016), and the hydrological 
models show issues in representing drought propagation throughout 
the hydrological cycle (Barella-Ortiz and Quintana Seguí, 2019). 
A  study on the evaluation of streamflow droughts in seven global 
(hydrological and land surface) models compared with observations 
in near-natural catchments of Europe showed a substantial spread 
among models, an overestimation of the number of drought events, 
and an underestimation of drought duration and drought-affected 
area (Tallaksen and Stahl, 2014). 

11.6.3.5  Atmospheric-based Drought Indices

A number of studies have analysed the ability of models to capture 
drought severity and trends based on climatic drought indices. Given 
the limitations of ESMs in reproducing the dynamic of precipitation 
deficits and AED (11.6.3.1, 11.6.3.2), atmospheric-based drought 
indices derived from ESM data for these two variables are also 
affected by uncertainties and biases. A  comparison of historical 
trends in PDSI-PM for 1950–2014 derived from CMIP3 and CMIP5, 
with respective estimates derived from observations (Dai and 
Zhao, 2017) show a  similar behaviour at global scale (long-term 
decrease), but low spatial agreement in the trends except in a few 
regions (Mediterranean, South Asia, north-western USA). In future 
projections, there is an important spread in PDSI-PM and SPEI-PM 
among different models (Cook et al., 2014a). 
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11.6.3.6  Synthesis for Different Drought Types

The performance of ESMs used to assessed changes in variables 
related to meteorological droughts, agricultural and ecological 
droughts, and hydrological droughts, shows the presence of biases 
and uncertainties compared to observations, but there is medium 
confidence in their overall performance for assessing drought 
projections given process understanding. Given the substantial inter-
model spread documented for all related variables, the consideration 
of multi-model projections increases the confidence of model-based 
assessments, with only low confidence in assessments based on 
single models. 

In summary, the evaluation of ESMs, land surface and hydrological 
models for the simulation of droughts is complex, due to the regional 
scale of drought trends, their overall low signal-to-noise ratio, and the 
lack of observations in several regions, in particular for soil moisture 
and streamflow. There is medium confidence in the ability of ESMs 
to simulate trends and anomalies in precipitation deficits and AED, 
and also medium confidence in the ability of ESMs and hydrological 
models to simulate trends and anomalies in soil moisture and 
streamflow deficits, on global and regional scales. 

11.6.4 Detection and Attribution, Event Attribution

11.6.4.1 Precipitation Deficits

There are only two AR6 regions where there is at least medium 
confidence that human-induced climate change has contributed 
to changes in meteorological droughts (Section  11.9). In South-
Western South America, there is medium confidence that human-
induced climate change has contributed to an increase in 
meteorological droughts (Boisier et al., 2016; Garreaud et al., 2020), 
while in Northern Europe, there is medium confidence that it has 
contributed to a decrease in meteorological droughts (Section 11.9; 
Gudmundsson and Seneviratne, 2016). In other AR6 regions, there 
is inconclusive evidence in the attribution of long-term trends, but 
a human contribution to single meteorological events or sub-regional 
trends has been identified in some instances (Section 11.9; see also 
below). In the Mediterranean region, some studies have identified 
a  precipitation decline or increase in meteorological drought 
probability for time frames since the early or mid 20th century, and 
a possible human contribution to these trends (Hoerling et al., 2012; 
Gudmundsson and Seneviratne, 2016; Knutson and Zeng, 2018), also 
on sub-regional scale in Syria from 1930 to 2010 (Kelley et al., 2015). 
On the contrary, other studies have not identified precipitation and 
meteorological drought trends in the region for the long term (Camuffo 
et al., 2013; Paulo et al., 2016; Vicente-Serrano et al., 2021) and also 
from the mid 20th century (Norrant and Douguédroit, 2006; Stagge 
et al., 2017). There is evidence of substantial internal variability in 
long-term precipitation trends in the region (Section 11.6.2.1), which 
limits the attribution of human influence on variability and trends 
of meteorological droughts from observational records (Kelley et al., 
2012; Peña-Angulo et al., 2020b). In addition, there are important 
sub-regional trends showing mixed signals (Section 11.9; MedECC, 
2020). The evidence thus leads to an assessment of low confidence 

in the attribution of observed short-term changes in meteorological 
droughts in the region (Section 11.9). In North America, the human 
influence on precipitation deficits is complex (Wehner et al., 2017), 
with low confidence in the attribution of long-term changes in 
meteorological drought in AR6 regions (Section 11.9; Lehner et al., 
2018). In Africa there is low confidence that human influence has 
contributed to the observed long-term meteorological drought 
increase in Western Africa (Sections 11.9 and 10.6.2). There is low 
confidence in the attribution of the observed increasing trends in 
meteorological drought in East Southern Africa, but evidence that 
human-induced climate change has affected recent meteorological 
drought events in the region (Section 11.9). 

Attribution studies for recent meteorological drought events are 
available for various regions. In Western and Central Europe, a multi-
method and multi-model attribution study on the 2015 Central 
European drought did not find conclusive evidence for whether 
human-induced climate change was a driver of the rainfall deficit, 
as the results depended on model and method used (Hauser et al., 
2017). In the Mediterranean region, a human contribution was found 
in the case of the 2014 meteorological drought in the southern Levant 
based on a single-model study (Bergaoui et al., 2015). In Africa, there 
is some evidence of a  contribution of human emissions to single 
meteorological drought events, such as the 2015–2017 southern 
African drought (Funk et al., 2018a; Yuan et al., 2018a; Pascale et al., 
2020), and the three-year (2015–2017) drought in the western Cape 
Town region of South Africa (Otto et al., 2018c). An attributable 
signal was not found in droughts that occurred in different years 
with different spatial extents in the last decade in North and South 
Eastern Africa (Marthews et al., 2015; Uhe et al., 2017; Otto et al., 
2018a; Philip et al., 2018b; Kew et al., 2021). However, an attributable 
increase in 2011 long rain failure was identified (Lott et al., 2013). 
Further studies have attributed some African meteorological drought 
events to large-scale modes of variability, such as the strong 2015 
El Niño (Box 11.4; Philip et al., 2018b) and increased SSTs overall 
(Funk et al., 2015a, 2018b). Natural variability was dominant in 
the California droughts of 2011–2012 to 2013–2014 (Seager et al., 
2015a). In Asia, no climate change signal was found in the record dry 
spell over Singapore and Malaysia in 2014 (Mcbride et al., 2015) or 
the drought in central south-west Asia in 2013–2014 (Barlow and 
Hoell, 2015). Nevertheless, the South East Asia drought of 2015 has 
been attributed to anthropogenic warming effects (Shiogama et al., 
2020). Recent droughts occurring in South America, specifically in 
the southern Amazon region in 2010 (Shiogama et al., 2013) and 
in north-east South America in 2014 (Otto et al., 2015b) and 2016 
(Martins et al., 2018) were not attributed to anthropogenic climate 
change. Nevertheless, the central Chile drought between 2010 
and 2018 has been suggested to be partly associated to global 
warming (Boisier et al., 2016; Garreaud et al., 2020). The 2013 New 
Zealand meteorological drought was attributed to human influence 
by Harrington et al. (2014, 2016) based on fully coupled CMIP5 
models, but no corresponding change in the dry end of simulated 
precipitation from a  stand-alone atmospheric model was found by 
Angélil et al. (2017).   

Event attribution studies also highlight a  complex interplay of 
anthropogenic and non-anthropogenic climatological factors for 
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some events. For example, anthropogenic warming contributed to 
the 2014 drought in North Eastern Africa by increasing east African 
and west Pacific temperatures, and increasing the gradient between 
standardized western and central Pacific SSTs, causing reduced 
rainfall (Funk et al., 2015a). As different methodologies, models 
and data sources have been used for the attribution of precipitation 
deficits, Angélil et al. (2017) re-examined several events using 
a  single analytical approach and climate model and observational 
datasets. Their results showed a  disagreement in the original 
anthropogenic attribution in a number of precipitation deficit events, 
which increased uncertainty in the attribution of meteorological 
droughts events. 

11.6.4.2  Soil Moisture Deficits

There is a  growing number of studies on the detection and 
attribution of long-term changes in soil moisture deficits. Mueller 
and Zhang (2016) concluded that anthropogenic forcing contributed 
significantly to soil moisture drying in the warm season in the 
Northern Hemisphere from 1951 to 2005 and also led to an increase 
in the land surface area affected by soil moisture deficits, which can 
be reproduced by CMIP5 models only if anthropogenic forcings are 
involved. Gu et al. (2019b) similarly identified a  global-scale soil 
moisture drying tendency in land surface model data from the Global 
Land Data Assimilation System 2 over the time frame 1948–2005, 
which was attributed to anthropogenic forcing based on evaluation 
with CMIP5 models using optimal fingerprinting. Padrón et al. (2019) 
analysed long-term reconstructed and CMIP5 simulated dry season 
water availability, defined as precipitation minus ET (i.e., equivalent 
to soil moisture and runoff availability), also related to agricultural 
and ecological droughts. They found an intensification of dry-season 
precipitation minus evapotranspiration deficits over a predominant 
fraction of the land area in the last three decades, which can only be 
explained by anthropogenic forcing and is mostly related to increases 
in ET. Similarly, Williams et al. (2020) concluded that human-
induced climate change contributed to the strong soil moisture 
deficits recorded in the last two decades in Western North America 
through VPD increases associated with higher air temperatures and 
lower air humidity. There are few studies analysing the attribution 
of particular episodes of soil moisture deficits to anthropogenic 
influence. Nevertheless, the available modelling studies coincide 
in supporting an anthropogenic attribution associated with more 
extreme temperatures, exacerbating AED and increasing ET, and 
thus depleting soil moisture, as observed in southern Europe in 2017 
(García-Herrera et al., 2019) and in Australia in 2018 (Lewis et al., 
2020) and 2019 (van Oldenborgh et al., 2021), the latter event having 
strong implications in the propagation of widespread megafires 
(Nolan et al., 2020).  

11.6.4.3 Hydrological Deficits

It is often difficult to separate the role of climate trends from 
changes in land use, water management and demand for changes 
in hydrological deficits, especially on a  regional scale. However, 
a global study based on a recent multi-model experiment with global 
hydrological models and covering several AR6 regions suggests 
a  dominant role of anthropogenic radiative forcing for trends in 

low, mean and high flows, while simulated effects of water and land 
management do not suffice to reproduce the observed spatial pattern 
of trends (Gudmundsson et al., 2021). Regional studies also suggest 
that climate trends have been dominant compared to land use and 
human water management for explaining trends in hydrological 
droughts in some regions, for instance in Ethiopia (Fenta et al., 2017), 
China (Xie et al., 2015), and North America for the Missouri and 
Colorado basins, as well as in California (Shukla et al., 2015; Udall 
and Overpeck, 2017; Ficklin et al., 2018; K. Xiao et al., 2018; Glas 
et al., 2019; Martin et al., 2020; Milly and Dunne, 2020).

In other regions, the influence of human water uses can be more 
important to explain hydrological drought trends (Y. Liu et al., 2016; 
Mohammed and Scholz, 2016). There is medium confidence that 
human-induced climate change has contributed to an increase of 
hydrological droughts in the Mediterranean (Giuntoli et al., 2013; 
Vicente-Serrano et al., 2014; Gudmundsson et al., 2017), but also 
medium confidence that changes in land use and terrestrial water 
management contributed to these trends (Section 11.9; Teuling et al., 
2019; Vicente-Serrano et al., 2019). A  global study with a  single 
hydrological model estimated that human water consumption has 
intensified the magnitude of hydrological droughts by 20–40% 
over the last 50 years, and that the human water use contribution 
to hydrological droughts was more important than climatic factors 
in the Mediterranean, and central USA, as well as in parts of Brazil 
(Wada et al., 2013). However, Gudmundsson et al. (2021) concluded 
that the contribution of human water use is smaller than that of 
anthropogenic climate change to explain spatial differences in the 
trends of low flows based on a multi-model analysis. There is still 
limited evidence and thus low confidence in assessing these trends at 
the scale of single regions, with few exceptions (Section 11.9).

11.6.4.4  Atmospheric-based Drought Indices

Different studies using atmospheric-based drought indices suggest 
an attributable anthropogenic signal, characterized by the increased 
frequency and severity of droughts (Cook et al., 2018), associated to 
increased AED (Section 11.6.4.2). The majority of studies are based on 
the PDSI-PM. Williams et al. (2015) and Griffin and Anchukaitis (2014) 
concluded that increased AED has had an increased contribution to 
drought severity over the last decades, and played a dominant role in 
the intensification of the 2012–2014 drought in California. The same 
temporal pattern and physical mechanism was stressed by Z. Li et al. 
(2017) in central Asia. Marvel et al. (2019) compared tree ring-based 
reconstructions of the PDSI-PM over the past millennium with PDSI-
PM estimates based on output from CMIP5 models. The comparisons 
suggested a contribution of greenhouse gas forcing to the changes 
since the beginning of the 20th century, although characterized with 
temporal differences that could be driven by temporal variations 
in the aerosol forcing. This was in agreement with the dominant 
external forcings of aridification at global scale between 1950 and 
2014 (Bonfils et al., 2020). In the Mediterranean region, there is 
medium confidence of drying attributable to antropogenic forcing 
as a consequence of the strong AED increase (Gocic and Trajkovic, 
2014; Azorin-Molina et al., 2015; Liuzzo et al., 2016; Maček et al., 
2018), which has enhanced the severity of drought events (Vicente-
Serrano et al., 2014; Stagge et al., 2017; González-Hidalgo et al., 
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2018). In particular, this effect was identified to be the main driver of 
the intensification of the 2017 drought that affected south-western 
Europe, and was attributed to the human forcing (García-Herrera 
et al., 2019). Nangombe et al. (2020) and L. Zhang et al. (2020) 
concluded from differences between precipitation and AED that 
anthropogenic forcing contributed to the 2018 droughts that affected 
southern Africa and south-eastern China, respectively, principally as 
consequence of the high AED that characterized these two events.

11.6.4.5  Synthesis for Different Drought Types

The regional evidence on attribution for single AR6 regions generally 
shows low confidence for a human contribution to observed trends 
in meteorological droughts at regional scale, with few exceptions 
(Section 11.9). There is medium confidence that human influence has 
contributed to increases in agricultural and ecological droughts in 
the dry season in some regions and has led to an overall increase in the 
affected land area. At regional scales, there is medium confidence 
in a  contribution of human-induced climate change to increases 
in agricultural and ecological droughts in the Mediterranean and 
Western North America (Section 11.9). There is medium confidence 
that human-induced climate change has contributed to an increase 
in hydrological droughts in the Mediterranean region, but also 
medium confidence in contributions from other human influences, 
including water management and land use (Section  11.9). Several 
meteorological and agricultural and ecological drought events have 
been attributed to human-induced climate change, even in regions 
where no long-term changes are detected (medium confidence). 
However, a lack of attribution to human-induced climate change has 
also been shown for some events (medium confidence).

In summary, human influence has contributed to increases in 
agricultural and ecological droughts in the dry season in some 
regions due to increases in evapotranspiration (medium confidence). 
The increases in evapotranspiration have been driven by increases in 
atmospheric evaporative demand induced by increased temperature, 
decreased relative humidity and increased net radiation over affected 
land areas (high confidence). There is low confidence that human 
influence has affected trends in meteorological droughts in most 
regions, but medium confidence that they have contributed to the 
severity of some single events. There is medium confidence that 
human-induced climate change has contributed to increasing trends 
in the probability or intensity of recent agricultural and ecological 
droughts, leading to an increase of the affected land area. Human-
induced climate change has contributed to global-scale change in 
low flow, but human water management and land-use changes are 
also important drivers (medium confidence).

11.6.5 Projections

The SREX (Chapter 3) asssessed with medium confidence projections 
of increased drought severity in some regions, including southern 
Europe and the Mediterranean, central Europe, central America and 
Mexico, north-east Brazil, and southern Africa, and low confidence 
elsewhere given large inter-model spread. The AR5 (Chapters 11 and 
12) also assessed large uncertainties in drought projections at the 

regional and global scales. The assessment of drought mechanisms 
under future climate change scenarios depends on the model used 
(Section  11.6.3). Moreover, uncertainties in drought projections are 
affected by the consideration of plant physiological responses to 
increasing atmospheric CO2 (Cross-Chapter Box 5.1; Milly and Dunne, 
2016; Greve et al., 2019; Mankin et al., 2019; Yang et al., 2020), the 
role of soil-moisture–atmosphere feedbacks for changes in water 
balance and aridity (Berg et al., 2016; Zhou et al., 2021), and statistical 
issues related to considered drought time scales (Vicente-Serrano 
et al., 2020c). Nonetheless, the extensive literature available since AR5 
allows a substantially more robust assessment of projected changes in 
droughts, also subdivided in different drought types (meteorological 
drought, agricultural and ecological drought, and hydrological drought). 
This includes assessments of projected changes in droughts, including 
changes at 1.5°C, 2°C and 4°C of global warming, for all AR6 regions 
(Section 11.9). Projected changes show increases in drought frequency 
and intensity in several regions as function of global warming (high 
confidence). There are also substantial increases in drought hazard 
probability from 1.5°C to 2°C global warming and for further additional 
increments of global warming (high confidence) (Figures 11.18 and 
11.19). These findings are based on both CMIP5 and CMIP6 analyses 
(Section 11.9; Wartenburger et al., 2017; Greve et al., 2018; L. Xu et al., 
2019), and strengthen the conclusions of SR1.5 Chapter 3. 

11.6.5.1 Precipitation Deficits

Studies based on CMIP5, CMIP6 and Coordinated Regional 
Climate Downscaling Experiment (CORDEX) projections show 
a consistent signal in the sign and spatial pattern of projections of 
precipitation deficits. Global studies based on these multi-model 
ensemble projections (Orlowsky and Seneviratne, 2013; Martin, 
2018; Spinoni et al., 2020; Ukkola et al., 2020; Coppola et al., 
2021b) show particularly strong signal-to-noise ratios for increasing 
meteorological droughts in the following AR6 regions: MED, ESAF, 
WSAF, SAU, CAU, NCA, SCA, NSA and NES (Section 11.9). There is also 
substantial evidence of changes in meteorological droughts at 1.5°C 
versus 2°C of global warming from global studies (Wartenburger 
et al., 2017; L. Xu et al., 2019). The patterns of projected changes 
in mean precipitation are consistent with the changes in the 
drought duration, but they are not consistent with the changes in 
drought intensity (Ukkola et al., 2020). In general, CMIP6 projections 
suggest a stronger increase of the probability of precipitation deficits 
than CMIP5 projections (Cook et al., 2020; Ukkola et al., 2020). 
Projections for the number of CDDs in CMIP6 (Figure  11.19) for 
different levels of global warming relative to 1850–1900 show similar 
spatial patterns as projected precipitation deficits. The robustness of 
the patterns in projected precipitation deficits identified in the global 
studies is also consistent with results from regional studies (Giorgi 
et al., 2014; Marengo and Espinoza, 2016; Pinto et al., 2016; J. Huang 
et al., 2018; Maúre et al., 2018; Nangombe et al., 2018; Tabari and 
Willems, 2018; Abiodun et al., 2019; Dosio et al., 2019). 

In Africa, a  strong increase in the length of dry spells (CDD) is 
projected for 4°C of global warming over most of the continent, with 
the exception of central and eastern Africa (Section 11.9; Sillmann 
et al., 2013a; Giorgi et al., 2014; Han et al., 2019). In West Africa, 
a strong reduction of precipitation is projected (Sillmann et al., 2013a; 
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Diallo et al., 2016; Akinsanola and Zhou, 2019; Han et al., 2019; Todzo 
et al., 2020) at 4°C of global warming, and CDD would increase with 
stronger global warming levels (Klutse et al., 2018). The regions most 
strongly affected are southern Africa (ESAF, WSAF) (Nangombe et al., 
2018; Abiodun et al., 2019) and northern Africa (part of the MED 
region), with increases in meteorological droughts already at 1.5°C 
of global warming, and further increases with increasing global 
warming (Section  11.9). CDD is projected to increase more in the 
southern Mediterranean (northern Africa) than in the northern part of 
the Mediterranean region (Lionello and Scarascia, 2020).

In Asia, most AR6 regions show low confidence in projected changes 
in meteorological droughts at 1.5°C and 2°C of global warming, with 
a  few regions displaying a decrease in meteorological droughts at 
4°C of global warming (RAR, ESB, RFE, ECA; medium confidence), 
although there is a  projected increase in meteorological droughts 
in South East Asia at 4°C (medium confidence) (Section  11.9). In 
South East Asia, an increasing frequency of precipitation deficits is 
projected as a consequence of an increasing frequency of extreme 
El Niño (Cai et al., 2014b, 2015, 2018). 

In Central America, projections suggest an increase in mid-summer 
meteorological drought (Imbach et al., 2018) and increased CDD 
(Chou et al., 2014a; Giorgi et al., 2014; Nakaegawa et al., 2014). In 
the Amazon, there is also a projected increase in dryness (Marengo 
and Espinoza, 2016), which is the combination of a projected increase 
in the frequency and geographic extent of meteorological drought in 
the eastern Amazon, and an opposite trend in the west (Duffy et al., 
2015). In South-Western South America, there is a projected increase 
of CDD (Chou et al., 2014a; Giorgi et al., 2014) and in Chile, drying 
is projected to prevail (Boisier et al., 2018). In the South America 
monsoon region, an increase in CDD is projected (Chou et al., 2014a; 
Giorgi et al., 2014), but a decrease is projected in South-Eastern and 
Southern South America (Giorgi et al., 2014). In Central America, 
mid-summer meteorological drought is projected to intensify during 
2071–2095 for the RCP8.5 scenario (Corrales-Suastegui et al., 2020). 

An increase in the frequency, duration and intensity of meteorological 
droughts is projected in south-west, south and east Australia (Kirono 
et al., 2020; Shi et al., 2020). In Canada and most of the USA, based on 
the SPI, Swain and Hayhoe (2015) identified drier summer conditions 
in projections over most of the region, and there is a consistent signal 
toward an increase in duration and intensity of droughts in southern 
North America (Pascale et al., 2016; Escalante-Sandoval and Nuñez-
Garcia, 2017). In California, more precipitation variability is projected, 
characterized by increased frequency of consecutive drought and 
humid periods (Swain et al., 2018). 

Substantial increases in meteorological drought are projected in 
Europe, in particular in the Mediterranean region, already at 1.5°C of 
global warming (Section 11.9). In southern Europe, model projections 
display a consistent drying among models (Russo et al., 2013; Hertig 
and Tramblay, 2017; Guerreiro et al., 2018a; Raymond et al., 2019). In 
Western and Central Europe there is some spread in CMIP5 projections, 
with some models projecting very strong drying, and others close to 
no trend (Vogel et al., 2018), although CDD is projected to increase 
in CMIP5 projections under the RCP 8.5 scenario (Hari et al., 2020). 

The overall evidence suggests an increase in meteorological drought 
at 4°C in the WCE region (medium confidence) (Section 11.9). 

Overall, based on global and regional studies, several hot spot 
regions are identified, displaying more frequent and severe 
meteorological droughts with increasing global warming, including 
several AR6 regions at 1.5°C (WSAF, ESAF, SAU, MED, NES) and 
2°C of global warming (WSAF, ESAF, EAU, SAU, MED, NCA, SCA, 
NSA, NES) (Section  11.9). At 4°C of global warming, there is also 
confidence in increases in meteorological droughts in further regions 
(WAF, WCE, ENA, CAR, NWS, SAM, SWS, SSA; Section 11.9), showing 
a geographical expansion of meteorological drought with increasing 
global warming. Only few regions are projected to have less intense 
or frequent meteorological droughts (Section 11.9).

11.6.5.2 Atmospheric Evaporative Demand

Effects of AED on droughts in future projections is under debate. 
The CMIP5 models project an increase in AED over the majority of 
the world with increasing global warming, mostly as a consequence 
of strong VPD increases (Scheff and Frierson, 2015; Vicente-Serrano 
et al., 2020a). However, ET is projected to increase less than AED in 
many regions due to plant physiological responses related to: i) CO2 
effects on plant photosynthesis; and ii) soil moisture control on ET. 

Several studies suggest that increasing atmospheric CO2 could 
lead to reduced leaf stomatal conductance, which would increase 
water-use efficiency and reduce plant water needs, thus limiting ET 
(Cross-Chapter Box 5.1; Roderick et al., 2015; Milly and Dunne, 2016; 
Swann et al., 2016; Greve et al., 2017; Scheff et al., 2017; Lemordant 
et al., 2018; Swann, 2018). The implemention of a  CO2-dependent 
land resistance parameter has been suggested for the estimation 
of AED (Yang et al., 2019). Nevertheless, there are other relevant 
mechanisms, as soil moisture deficits and VPD also play an important 
role in the control of the leaf stomatal conductance (Z. Xu et al., 2016; 
Menezes-Silva et al., 2019; Grossiord et al., 2020), and a  number 
of ecophysiological and anatomical processes affect the response 
of plant physiology under higher atmospheric CO2 concentrations 
(Cross-Chapter Box  5.1; Mankin et al., 2019; Menezes-Silva et al., 
2019). The benefits of the atmospheric CO2 for plant stress and 
agricultural and ecological droughts would be minimal precisely 
during dry periods given stomatal closure in response to limited 
soil moisture (Allen et al., 2015; Z. Xu et al., 2016). In addition, CO2 
effects on plant stomatal conductance could not entirely compensate 
for the increased demand associated with warming (Liu and Sun, 
2017); in large tropical and subtropical regions (e.g., southern Africa, 
the Amazon, the Mediterranean and southern North America), AED 
is projected to increase, even considering the possible CO2 effects 
on land resistance (Vicente-Serrano et al., 2020a). Moreover, these 
CO2 effects would not affect the direct evaporation from soil and 
water bodies, which is very relevant in the reservoirs of warm areas 
(Friedrich et al., 2018). Because of these uncertainties, there is low 
confidence whether increased CO2-induced water-use efficiency 
in vegetation will substantially reduce global plant transpiration 
and will diminish the frequency and severity of soil moisture and 
streamflow deficits associated with the radiative effect of higher CO2 
concentrations (Cross-Chapter Box 5.1).
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Another mechanism reducing the ET response to increased AED in 
projections is the control of soil moisture limitations on ET, which 
leads to reduced stomatal conductance under water stress (Berg and 
Sheffield, 2018; Stocker et al., 2018; Zhou et al., 2021). This response 
may be further amplified through VPD-induced decreases in stomatal 
conductance (Anderegg et al., 2020). However, the decreased 
stomatal conductance in response to soil moisture limitation and 
enhanced CO2 would further enhance AED (Sherwood and Fu, 2014; 
Berg et al., 2016; Teuling, 2018; Miralles et al., 2019), whereby the 
overall effects on AED in ESMs are found to be of similar magnitude 
for soil moisture limitation and CO2 physiological effects on stomatal 
conductance (Berg et al., 2016). Increased AED is thus both a driver 
and a  feedback with respect to changes in ET, complicating the 
interpretation of its role on drought changes with increasing CO2 
concentrations and global warming. 

11.6.5.3 Soil Moisture Deficits

Areas with projected soil moisture decreases do not fully coincide 
with areas that have projected precipitation decreases, although 
there is substantial consistency in the respective patterns (Dirmeyer 
et al., 2013; Berg and Sheffield, 2018). However, there are more 
regions affected by increased soil moisture deficits (Figure 11.19) than 
precipitation deficits (Figures 2a,b,c and Cross-Chapter Box  11.1) 
as  a  consequence of enhanced AED and the associated increased 
ET, as highlighted by some studies (Orlowsky and Seneviratne, 2013; 
Dai et al., 2018; Section  8.2.2.1). Moisture in the top soil layer is 
projected to decrease more than precipitation at all warming levels 

(Lu et al., 2019), extending the regions affected by severe soil 
moisture deficits over most of south and central Europe (Lehner 
et al., 2017; Ruosteenoja et al., 2018; Samaniego et al., 2018; van Der 
Linden et al., 2019), southern North America (Cook et al., 2019), South 
America (Orlowsky and Seneviratne, 2013), southern Africa (Lu et al., 
2019), East Africa (Rowell et al., 2015), Southern Australia (Kirono 
et al., 2020), India (Mishra et al., 2014a) and East Asia (Figure 11.19; 
Cheng et al., 2015). Projected changes in total soil moisture display 
less widespread drying than those for surface soil moisture (Berg 
et al., 2017a), but still more than for precipitation (Cross-Chapter 
Box 11.1, Figures 2a,b,c). The severity of droughts based on surface 
soil moisture in future projections is stronger than projections 
based on precipitation and runoff (Dai et al., 2018; Vicente-Serrano 
et al., 2020c). Nevertheless, in many parts of the world where soil 
moisture is projected to decrease, the signal-to-noise ratio among 
models is low; only the projections in the Mediterranean, Europe, 
the south-western USA, and southern Africa show a  high signal-
to-noise ratio in soil moisture projections (Figure  11.19; Lu et al., 
2019). Increases in soil moisture deficits are found to be statistically 
signicant at regional scale in the Mediterranean region, southern 
Africa and western South America for changes as small as 0.5°C in 
global warming, based on differences between +1.5°C and +2°C of 
global warming (Wartenburger et al., 2017). Several other regions 
are affected when considering changes in droughts for higher 
changes in global warming (Section 11.9 and Figure 11.19). Seasonal 
projections of drought frequency for boreal winter (December–
January–February) and summer (June–July–August), from CMIP6 
multi-model ensemble for 1.5°C, 2°C and 4°C global warming 
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Figure 11.18 | Projected changes in (a) the intensity and (b) the frequency of drought under 1°C, 1.5°C, 2°C, 3°C, and 4°C global warming levels relative 
to the 1850–1900 baseline. (c) Summaries are computed for the AR6 regions in which there is at least medium confidence in an increase in agriculture/ecological drought 
at the 2°C global warming level (‘drying regions’), including Western North America, Central North America, North Central America, Southern Central America, Northern South 
America, North-Eastern South America, South American Monsoon, South-Western South America, Southern South America, West and Central Europe, Mediterranean, West 
Southern Africa, East Southern Africa, Madagascar, Eastern Australia, Southern Australia. Caribbean is not included in the calculation because the number of land grid points 
was too small. A drought event is defined as a 10-year drought event whose annual mean soil moisture was below its 10th percentile from the 1850–1900 base period. For 
each box plot, the horizontal line and the box represent the median and central 66% uncertainty range, respectively, of the frequency or the intensity changes across the multi-
model ensemble, and the ‘whiskers’ extend to the 90% uncertainty range. The line of zero in (a) indicates no change in intensity, while the line of one in (b) indicates no change 
in frequency. The results are based on the multi-model ensemble estimated from simulations of global climate models contributing to the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) under different Shared Socio-economic Pathway (SSP) forcing scenarios. Intensity changes in (a) are expressed as standard deviations of the interannual 
variability in the period 1850–1900 of the corresponding model. For details on the methods see Supplementary Material 11.SM.2. Further details on data sources and processing 
are available in the chapter data table (Table 11.SM.9).
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levels, show contrasting trends (Figure 11.19). In the boreal winter 
in the Northern Hemisphere, the areas affected by drying show high 
agreement with those characterized by an increase in meteorological 
drought projections (Figures 8.14 and 12.4). On the contrary, in the 
boreal summer, the drought frequency increases worldwide in 
comparison to meteorological drought projections, with large areas 
of the Northern Hemisphere displaying a high signal-to-noise ratio 
(low spead between models). This stresses the dominant influence 
of ET (as a result of increased AED) in intensifying agricultural and 
ecological droughts in the warm season in many locations, including 
mid- to high latitudes.

Increased soil moisture limitation and associated changes in droughts 
are projected to lead to increased vegetation stress affecting the 
global land carbon sink in ESM projections (Green et al., 2019), with 
implications for projected global warming (Cross-Chapter Box  5). 
There is high confidence that the global land sink will become less 
efficient due to soil moisture limitations and associated agricultural 
and ecological drought conditions in some regions in higher-emissions 
scenarios, specially under global warming levels above 4°C; however, 
there is low confidence in how these water cycle feedbacks will play 
out in lower-emissions scenarios (at 2°C global warming or lower; 
Cross-Chapter Box 5.1).

11.6.5.4 Hydrological Deficits

Some studies support wetting tendencies as a response to a warmer 
climate when considering globally averaged changes in runoff over 
land (Roderick et al., 2015; Greve et al., 2017; Y. Yang et al., 2018), 
and streamflow projections respond to enhanced CO2 concentrations 
in CMIP5 models (Yang et al., 2019). Nevertheless, when focusing 
regionally on low-runoff periods, model projections also show an 
increase of hydrological droughts in large world regions (Wanders 
and Van Lanen, 2015; Dai et al., 2018; Vicente-Serrano et al., 2020c). 
In general, the frequency of hydrological deficits is projected to 
increase over most of the continents, although with regionally 
and seasonally differentiated effects (Section  11.9), with medium 
confidence of increase in the following AR6 regions: WCE, MED, 
SAU, WCA, WNA, SCA, NSA, SAM, SWS, SSA, WSAF, ESAF and MDG 
(Section 11.9; Forzieri et al., 2014; Prudhomme et al., 2014; Giuntoli 
et al., 2015; Wanders and Van Lanen, 2015; Roudier et al., 2016; Marx 
et al., 2018; Cook et al., 2019; Zhao et al., 2020). However, there 
are large uncertainties related to the hydrological/impact model used 
(Prudhomme et al., 2014; Schewe et al., 2014; Gosling et al., 2017), 
limited signal-to-noise ratio (due to model spread) in several regions 
(Giuntoli et al., 2015), and also uncertainties in the projection of future 
human activities, including water demand and land cover changes, 
which may represent more than 50% of the projected changes in 
hydrological droughts in some regions (Wanders and Wada, 2015). 

Regions dependent on mountainous snowpack as a  temporary 
reservoir may be affected by severe hydrological droughts in 
a  warmer world. In the southern European Alps, both winter and 
summer low flows are projected to be more severe, with a  25% 
decrease in the 2050s (Vidal et al., 2016). In western USA, a 22% 
reduction in winter snow water equivalent is projected at around 2°C 
of global warming, with a  further decrease of a 70% reduction at 

4°C global warming (Rhoades et al., 2018). This decline would cause 
less predictable hydrological droughts in snowmelt-dominated areas 
of North America (Livneh and Badger, 2020). The exact magnitude 
of the influence of higher temperatures on snow-related droughts 
is, however, difficult to estimate (Mote et al., 2016), since the 
streamflow changes could affect the timing of peak streamflows but 
not necessarily their magnitude. In addition, projected changes in 
hydrological droughts downstream of declining glaciers can be very 
complex to assess (Chapter 9, see also SROCC).

11.6.5.5 Atmospheric-based Drought Indices

Studies show a stronger drying in projections based on atmospheric-
based drought indices compared to ESM projections of changes in 
soil moisture (Berg and Sheffield, 2018) and runoff (Yang et al., 2019). 
It has been suggested that this difference is due to physiological CO2 
effects (Section  11.6.5.2; Roderick et al., 2015; Milly and Dunne, 
2016; Swann et al., 2016; Lemordant et al., 2018; Scheff, 2018; 
Swann, 2018; Greve et al., 2019; Yang et al., 2020). Nonetheless, there 
is evidence that differences in projections between atmospheric-
based drought indices and water-balance metrics from ESMs are not 
alone due to CO2-plant effects (Berg et al., 2016; Scheff et al., 2021). 
Differences can also be related to the fact that AED is an upper bound 
for ET in dry regions and conditions (Section 11.6.1.2) and that soil 
moisture stress limits increases in ET in projections (Section 11.6.5.2; 
Berg et al., 2016; Zhou et al., 2021). In general, atmospheric-based 
indices show more drying than total column soil moisture (Berg and 
Sheffield, 2018; Cook et al., 2020; Scheff et al., 2021), but are more 
consistent with projected increases in surface soil moisture deficits 
(Dirmeyer et al., 2013; Dai et al., 2018; Lu et al., 2019; Cook et al., 
2020; Vicente-Serrano et al., 2020c). 

Atmospheric-based drought indices are not metrics of soil moisture 
or runoff (Section 11.6.1.5) so their projections may not necessarily 
reflect the same trend of online simulated soil moisture and runoff. 
Independently of effects on the land water balance, atmospheric-
based drought indices will reflect the potential vegetation stress 
resulting from deficits between available water and enhanced 
AED, even in conditions with no or low ET. Under dry conditions, 
the enhanced AED associated with human forcing would increase 
plant water stress (Brodribb et al., 2020), with effects on widespread 
forest dieback and mortality (Anderegg et al., 2013; Williams et al., 
2013; Allen et al., 2015; McDowell and Allen, 2015; McDowell et al., 
2016, 2020), and stronger risk of megafires (Flannigan et al., 2016; 
Podschwit et al., 2018; Clarke and Evans, 2019; Varela et al., 2019). 
For these reasons, there is high confidence that the future projections 
of enhanced drought severity showed by the PDSI-PM and the SPEI-
PM are representative of more frequent and severe plant stress 
episodes and more severe agricultural and ecological drought 
impacts in some regions. 

Global tendencies towards more severe and frequent agricultural and 
ecological drought conditions are identified in future projections when 
focusing on atmospheric-based drought indices such as the PDSI-PM 
or the SPEI-PM. They expand the spatial extent of drought conditions 
compared to meteorological drought to most of North America, 
Europe, Africa, Central and East Asia and Southern Australia (Cook 
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et al., 2014a; Chen and Sun, 2017a, b; Gao et al., 2017b; Lehner et al., 
2017; Zhao and Dai, 2017; Dai et al., 2018; Naumann et al., 2018; 
Potopová et al., 2018; Gu et al., 2020; Vicente-Serrano et al.,  
2020c; Dai, 2021). Projections in PDSI-PM and SPEI-PM are used to 
complement total soil moisture projections in assessing projected 
changes in agricultural and ecological drought (Section 11.9).

11.6.5.6 Synthesis for Different Drought Types

The tables in Section  11.9 provide assessed projected changes in 
metorological drought, agricultural and ecological drought, and 
hydrological droughts. The assessment shows that several regions will 
be affected by more severe agricultural and ecological droughts even 
if global warming is stabilized at 2°C, including MED, WSAF, SAM and 
SSA (high confidence), and ESAF, MDG, EAU, SAU, SCA, CAR, NSA, 
NES, SWS, WCE, NCA, WNA and CNA (medium confidence). Some 
regions are also projected to be affected by more severe agricultural 
and ecological droughts at 1.5°C (MED, WSAF, ESAF, SAU, NSA, SAM, 
SSA, can; medium confidence) At 4°C of global warming, even more 
regions would be affected by agricultural and ecological droughts 
(WCE, MED, CAU, EAU, SAU, WCA, EAS, SCA, CAR, NSA, NES, SAM, 
SWS, SSA, NCA, CNA, ENA, WNA, WSAF, ESAF and MDG). NEAF, SAS 
are also projected to experience less agricultural and ecological 
drought with global warming (medium confidence). Projected 
changes in meteorological droughts are, overall, less extended but 
also affect several AR6 regions, at 1.5°C and 2°C (MED, EAU, SAU, 
SCA, NSA, NCA, WSAF, ESAF, MDG) and 4°C of global warming 
(WCE, MED, EAU, SAU, SEA, SCA, CAR, NWS, NSA, NES, SAM, SWS, 
SSA, NCA, ENA, WAF, WSAF, ESAF, MDG). Several regions are also 
projected to be affected by more hydrological droughts at 1.5°C and 
2°C (WCE, MED, WNA, WSAF, ESAF) and 4°C of global warming (NEU, 
WCE, EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF, 
ESAF, MDG). To illustrate the changes in both intensity and frequency 
of drought in the regions where strongest changes are projected, 
Figure  11.18 displays changes in the intensity and frequency of 
soil moisture drought under different global warming levels (1.5°C, 
2°C, 4°C) relative to the 1851-1900 baseline based on CMIP6 
simulations under different SSP forcing scenarios averaged over 
“drying regions”, i.e. AR6 regions for which there is at least medium 
confidence in increase in agricultural and ecological drought at 2°C 
of global warming. The 90% uncertainty ranges for the projected 
changes in both intensity and frequency are above zero, indicating 
significant increase in both intensity and frequency of drought in 
these regions as whole.

In summary, more regions are affected by increases in agricultural 
and ecological droughts with increasing global warming (high 
confidence). New evidence strengthens the SR1.5 conclusion that 
even relatively small incremental increases in global warming 
(+0.5°C) cause a  worsening of droughts in some regions (high 
confidence). Some regions are projected to be affected by more 
severe agricultural and ecological droughts at 1.5°C of global 
warming (MED, WSAF, ESAF, SAU, NSA, SAM, SSA, can; medium 
confidence). A larger number of regions are projected to be affected 
by more severe agricultural and ecological droughts at 2°C of global 
warming, including MED, WSAF, SAM and SSA (high confidence), 
and ESAF, MDG, EAU, SAU, SCA, CAR, NSA, NES, SWS, WCE, NCA, 

WNA and CNA (medium confidence). At 4°C of global warming, 
even more regions would be affected by agricultural and ecological 
droughts (WCE, MED, CAU, EAU, SAU, WCA, EAS, SCA, CAR, NSA, 
NES, SAM, SWS, SSA, NCA, CNA, ENA, WNA, WSAF, ESAF and MDG). 
Some regions are also projected to experience less agricultural 
and ecological drought with global warming (medium confidence; 
NEAF, SAS). There is high confidence that the projected increases in 
agricultural and ecological droughts are strongly affected by AED 
increases in a warming climate, although ET increases are projected 
to be smaller than those in AED due to soil moisture limitations and 
CO2 effects on leaf stomatal conductance. Enhanced atmospheric 
CO2 concentrations lead to enhanced water-use efficiency in plants 
(medium confidence), but there is low confidence that it can alleviate 
agricultural and ecological droughts, or hydrological droughts, at 
higher global warming levels characterized by limited soil moisture 
and enhanced AED.

Projected changes in meteorological droughts are overall less 
extended than for agricultural and ecological droughts, but also 
affect several AR6 regions, even at 1.5°C and 2°C of global warming. 
Several regions are also projected to be more strongly affected by 
hydrological droughts with increasing global warming (NEU, WCE, 
EEU, MED, SAU, WCA, SCA, NSA, SAM, SWS, SSA, WNA, WSAF, ESAF, 
MDG). Increased soil moisture limitation and associated changes in 
droughts are projected to lead to increased vegetation stress in many 
regions, with implications for the global land carbon sink (Cross-
Chapter Box 5). There is high confidence that the global land carbon 
sink will become less efficient due to soil moisture limitations and 
associated drought conditions in some regions in higher-emissions 
scenarios, especially under global warming levels above 4°C; 
however, there is low confidence on how these water cycle feedbacks 
will play out in lower-emissions scenarios (at 2°C global warming or 
lower; Cross-Chapter Box5.1).

11.7 Extreme Storms

Extreme storms, such as tropical cyclones (TCs), extratropical cyclones 
(ETCs), and severe convective storms often have substantial societal 
impacts. Quantifying the effect of climate change on extreme storms 
is challenging, partly because extreme storms are rare, short-lived, 
and local, and individual events are largely influenced by stochastic 
variability. The high degree of random variability makes detection and 
attribution of extreme storm trends more uncertain than detection 
and attribution of trends in other aspects of the environment in 
which the storms evolve (e.g.,  larger-scale temperature trends). 
Projecting changes in extreme storms is also challenging because of 
constraints in the models’ ability to accurately represent the small-
scale physical processes that can drive these changes. Despite the 
challenges, progress has been made since AR5.

The SREX (Chapter 3) concluded that there is low confidence in observed 
long-term (40 years or more) trends in TC intensity, frequency, and 
duration, and any observed trends in phenomena such as tornadoes 
and hail; it is likely that extratropical storm tracks have shifted 
poleward in both the Northern and Southern Hemispheres, and that 
heavy rainfalls and mean maximum wind speeds associated with TCs 
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Figure 11.19 | Projected changes in (a–c) the number of consecutive dry days (CDD), (d–f) annual mean soil moisture over the total column, and (g–l) the 
frequency and intensity of 1-in-10-year soil moisture drought for the June-to-August and December-to-February seasons at 1.5°C, 2°C, and 4°C of global 
warming compared to the 1850–1900 baseline. The unit for soil moisture change is the standard deviation of interannual variability in soil moisture during 1850–1900. 
Standard deviation is a widely used metric in characterizing drought severity. A projected reduction in mean soil moisture by one standard deviation corresponds to soil moisture 
conditions typical of about 1-in-6-year droughts during 1850–1900 becoming the norm in the future. Results are based on simulations from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) multi-model ensemble under the Shared Socio-economic Pathway (SSP), SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. The numbers 
in the top right indicate the number of simulations included. Uncertainty is represented using the simple approach: no overlay indicates regions with high model agreement, 
where ≥80% of models agree on the sign of change; diagonal lines indicate regions with low model agreement, where <80% of models agree on the sign of change. For more 
information on the simple approach, please refer to the Cross-Chapter Box Atlas 1. For details on the methods see Supplementary Material 11.SM.2. Changes in CDDs are also 
displayed in the Interactive Atlas. Further details on data sources and processing are available in the chapter data table (Table 11.SM.9).
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will increase with continued greenhouse gas warming; it is likely that 
the global frequency of TCs will either decrease or remain essentially 
unchanged, while it is more likely than not that the frequency of the 
most intense storms will increase substantially in some ocean basins; 
there is low confidence in projections of small-scale phenomena such 
as tornadoes and hail storms; and there is medium confidence that 
there will be a reduced frequency and a poleward shift of mid-latitude 
cyclones due to future anthropogenic climate change. 

Since SREX, several IPCC Reports also assessed storms. The AR5 
(Chapter  2, Hartmann et al., 2013) assessment observed with 
low confidence long-term trends in TC metrics, but revised the 
statement from SREX to state that it is virtually certain that there 
are increasing trends in North Atlantic TC activity since the 1970s, 
with medium confidence that anthropogenic aerosol forcing has 
contributed to these trends. The AR5 concluded that it is likely that 
TC precipitation and mean intensity will increase and more likely 
than not that the frequency of the strongest storms will increase 
with continued greenhouse gas warming. Confidence in projected 
trends in overall TC frequency remained low. Confidence in observed 
and projected trends in hail storm and tornado events also remained 
low. The SROCC (Chapter 6, Collins et al., 2019) assessed past and 
projected TCs and ETCs, supporting the AR5 conclusions with some 
additional detail. Literature subsequent to AR5 adds support to the 
likelihood of increasing trends in TC intensity, precipitation, and 
frequency of the most intense storms, while some newer studies 
have added uncertainty to projected trends in overall frequency. 
A growing body of literature since AR5 on the poleward migration 
of TCs led to a  new assessment in SROCC of low confidence that 
the migration in the western North Pacific represents a detectable 
climate change contribution from anthropogenic forcing. The SR1.5 
(Chapter 3, Hoegh-Guldberg et al., 2018) essentially confirmed the 
AR5 assessment of TCs and ETCs, adding that heavy precipitation 
associated with TCs is projected to be higher at 2°C compared to 
1.5°C global warming (medium confidence).

The SREX, AR5, SROCC, and SR1.5, do not provide assessments of 
the atmospheric rivers, and SROCC and SR1.5 do not assess severe 
convective storms and extreme winds. This section assesses the state 
of knowledge on the four phenomena of TCs, ETCs, severe convective 
storms, and extreme winds. Atmospheric rivers are addressed 
in Chapter  8. In this respect, this assessment closely mirrors the 
SROCC assessment of TCs and ETCs, while updating SREX and AR5 
assessments of severe convective storms and extreme winds.

11.7.1 Tropical Cyclones

11.7.1.1 Mechanisms and Drivers

The genesis, development, and tracks of TCs depend on conditions 
of the larger-scale circulations of the atmosphere and ocean 
(Christensen et al., 2013). Large-scale atmospheric circulations, such 
as the Hadley and Walker circulations and the monsoon circulations 
can significantly affect TCs, as can internal variability acting on various 
time scales (Annex IV), from intra-seasonal (e.g., the Madden–Julian 
and Boreal Summer Intraseasonal oscillations and equatorial waves) 

and interannual (e.g.,  the El Niño–Southern Oscillation and Pacific 
and Atlantic Meridional Modes), to inter-decadal (e.g.,  Atlantic 
Multidecadal Variability and Pacific Decadal Variability). This broad 
range of natural variability makes detection of anthropogenic 
effects difficult, and uncertainties in the projected changes of these 
modes of variability increase uncertainty in the projected changes 
in TC activity. Aerosol forcing also affects sea surface temperature 
(SST) patterns and cloud microphysics, and it is likely that observed 
changes in TC activity are partly caused by changes in aerosol forcing 
(Evan et al., 2011; Ting et al., 2015; Sobel et al., 2016, 2019; Takahashi 
et al., 2017; Zhao et al., 2018; Reed et al., 2019). Among possible 
changes from these drivers, there is medium confidence that the 
Hadley cell has widened and will continue to widen in the future 
(Sections 2.3, 3.3 and 4.5). This likely causes latitudinal shifts of TC 
tracks (Sharmila and Walsh, 2018). Regional TC activity changes are 
also strongly affected by projected changes in SST warming patterns 
(Yoshida et al., 2017), which are highly uncertain (Chapters 4 and 9).

11.7.1.2 Observed Trends

Identifying past trends in TC metrics remains a challenge due to the 
heterogeneous character of the historical instrumental data, which 
are known as ‘best-track’ data (Schreck et al., 2014). There is low 
confidence in most reported long-term (multi-decadal to centennial) 
trends in TC frequency- or intensity-based metrics due to changes in 
the technology used to collect the best-track data. This should not be 
interpreted as implying that no physical (real) trends exist, but rather 
as indicating that either the quality or the temporal length of the 
data is not adequate to provide robust trend detection statements, 
particularly in the presence of multi-decadal variability. 

There are previous and ongoing efforts to homogenize the best-track 
data (Elsner et al., 2008; Kossin et al., 2013, 2020; Choy et al., 2015; 
Landsea, 2015; Emanuel et al., 2018) and there is substantial literature 
that finds positive trends in intensity-related metrics in the best-track 
during the ‘satellite period’, which is generally limited to around the 
past 40 years (Kang and Elsner, 2012; Kishtawal et al., 2012; Kossin 
et al., 2013, 2020; Mei and Xie, 2016; Zhao et al., 2018; Tauvale and 
Tsuboki, 2019). When best-track trends are tested using homogenized 
data, the intensity trends generally remain positive, but are smaller in 
amplitude (Kossin et al., 2013; Holland and Bruyère, 2014). Kossin et al. 
(2020) extended the homogenized TC intensity record to the period 
1979–2017 and identified significant global increases in major TC 
exceedance probability of about 6% per decade. In addition to trends 
in TC intensity, there is evidence that TC intensification rates and the 
frequency of rapid intensification events have increased within the 
satellite era (Kishtawal et al., 2012; Balaguru et al., 2018; Bhatia et al., 
2018). The increase in intensification rates is found in the best-track 
and the homogenized intensity data.

A subset of the best-track data corresponding to hurricanes that have 
directly impacted the USA since 1900 is considered to be reliable, and 
shows no trend in the frequency of USA landfall events (Knutson et al., 
2019). However, an increasing trend in normalized USA hurricane 
damage, which accounts for temporal changes in exposed wealth 
(Grinsted et al., 2019), and a  decreasing trend in TC translation 
speed over the USA (Kossin, 2019) have also been identified in this 
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period. A similarly reliable subset of the data representing TC landfall 
frequency over Australia shows a decreasing trend in Eastern Australia 
since the 1800s (Callaghan and Power, 2011), as well as in other parts 
of Australia since 1982 (Chand et al., 2019; Knutson et al., 2019). 
A  paleoclimate proxy reconstruction shows that recent levels of TC 
interactions along parts of the Australian coastline are the lowest 
in the past 550–1500 years (Haig et al., 2014). Existing TC datasets 
show substantial inter-decadal variations in basin-wide TC frequency 
and intensity in the western North Pacifi c, but a statistically signifi cant 
north-westward shift in the western North Pacifi c TC tracks since the 
1980s (T.-C. Lee et al., 2020). In  the case of the North Indian Ocean, 
analyses of trends are highly dependent on the details of each analysis 
(e.g., pre- and/or post-monsoon season period, or Bay of Bengal and/
or Arabian Sea region). The most consistent trends are an increase in 
the occurrence of the most intense TCs, and a decrease in the overall 
TC frequency, in particular in the Bay of Bengal (Sahoo and Bhaskaran, 
2016; Balaji et al., 2018; Singh et al., 2019; Baburaj et al., 2020). In 
the South Indian Ocean (SIO), an increase in the occurrence of the 
most intense TCs has been noted; however, there are well-known 
data quality issues there (Kuleshov et al., 2010; Fitchett, 2018). When 
the SIO data are homogenized, a signifi cant increase is found in the 
fractional proportion of global Category 3–5 TC instances (6-hourly 
intensity estimates during the lifetime of each TC) to all Category 1–5 
instances (Kossin et al., 2020). 

As with all confi ned regional analyses of TC frequency, it is generally 
unclear whether any identifi ed changes are due to a  basin-wide 

change in TC frequency, or to systematic track shifts (or both). 
From an impacts perspective, however, these changes over land are 
highly relevant and emphasize that large-scale modifi cations in TC 
behaviour can have a broad spectrum of impacts on a regional scale.

Subsequent to AR5, two metrics have been analysed that are argued 
to be comparatively less sensitive to data issues than frequency- and 
intensity-based metrics. Trends in these metrics have been identifi ed 
over the past 70 years or more (Knutson et al., 2019). The fi rst metric – 
the mean latitude where TCs reach their peak intensity  – exhibits 
a global and regional poleward migration during the satellite period 
(Kossin et al., 2014). The poleward migration can infl uence TC hazard 
exposure and risk (Kossin et al., 2016a) and is consistent with the 
independently observed expansion of the tropics (Lucas et al., 2014). 
The migration has been linked to changes in the Hadley circulation 
(Altman et al., 2018; Sharmila and Walsh, 2018; Studholme and 
Gulev, 2018). The migration is also apparent in the mean locations 
where TCs exhibit eyes (Knapp et al., 2018), which is when TCs are 
most intense. Part of the Northern Hemisphere poleward migration 
is due to basin-wide changes in TC frequency (Kossin et al., 2014, 
2016b; Moon et al., 2015, 2016) and the trends, as expected, can 
be sensitive to the time period chosen (Tennille and Ellis, 2017; 
Kossin, 2018; Song and Klotzbach, 2018) and to subsetting of the 
data by intensity (Zhan and Wang, 2017). The poleward migration is 
particularly pronounced and well-documented in the western North 
Pacifi c basin (Kossin et al., 2016a; Oey and Chou, 2016; Liang et al., 
2017; Nakamura et al., 2017; Altman et al., 2018; Daloz and Camargo, 
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Figure 11.20 | Summary schematic of past and projected changes in tropical cyclone (TC), extratropical cyclone (ETC), atmospheric river (AR), and severe 
convective storm (SCS) behaviour. Global changes (blue shading) from top to bottom: (i) Increased mean and maximum rain rates in TCs, ETCs, and ARs [past (low 
confi dence due to lack of reliable data) and projected (high confi dence)]; (ii) Increased proportion of stronger TCs [past (medium confi dence) and projected (high confi dence)]; 
(iii) Decrease or no change in global frequency of TC genesis [past (low confi dence due to lack of reliable data) and projected (medium confi dence)]; and (iv) Increased and 
decreased ETC wind speed, depending on the region, as storm tracks change [past (low confi dence due to lack of reliable data) and projected (medium confi dence)]. Regional 
changes, from left to right: (i) Poleward TC migration in the western North Pacifi c and subsequent changes in TC exposure [past (medium confi dence) and projected (medium
confi dence)]; (ii) Slowdown of TC forward translation speed over the contiguous USA and subsequent increase in TC rainfall [past (medium confi dence) and projected (low
confi dence due to lack of directed studies)]; and (iii) Increase in mean and maximum SCS rain rate and increase in spring SCS frequency and season length over the contiguous 
USA [past (low confi dence due to lack of reliable data) and projected (medium confi dence)]. 
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2018; J. Sun et al., 2019; T.-C. Lee et al., 2020; Yamaguchi and Maeda, 
2020a; Kubota et al., 2021). 

A second metric that is argued to be comparatively less sensitive 
to data issues than frequency- and intensity-based metrics is TC 
translation speed (Kossin, 2018), which exhibits a global slowdown 
in the best-track data over the period 1949–2016. TC translation 
speed is a  measure of the speed at which TCs move across the 
Earth’s surface, and is very closely related to local rainfall amounts 
(i.e.,  a slower translation speed causes greater local rainfall). TC 
translation speed also affects structural wind damage and coastal 
storm surge by changing the hazard event duration. The slowdown is 
observed in the best-track data from all basins except the Northern 
Indian Ocean, and is also found in a number of regions where TCs 
interact directly with land. The slowing trends identified in the best-
track data by Kossin (2018) have been argued to be largely due to 
data heterogeneity. Moon et al. (2019) and Lanzante (2019) provide 
evidence that meridional TC track shifts project onto the slowing 
trends, and argue that these shifts are due to the introduction of 
satellite data. Kossin (2019) provides evidence that the slowing trend 
is real by focusing on Atlantic TC track data over the contiguous USA 
in the 118-year period 1900–2017, which are generally considered 
reliable. In this period, mean TC translation speed has decreased by 
17%. The slowing TC translation speed is expected to increase local 
rainfall amounts, which would increase coastal and inland flooding. 
In combination with slowing translation speed, abrupt TC track 
direction changes  – that can be associated with track ‘meanders’ 
or ‘stalls’  – have become increasingly common along the North 
American coast since the mid-20th century, leading to more rainfall 
in the region (Hall and Kossin, 2019). 

In summary, there is mounting evidence that a  variety of TC 
characteristics have changed over various time periods. It is likely that 
the global proportion of Category 3–5 tropical cyclone instances and 
the frequency of rapid intensification events have increased globally 
over the past 40 years. It is very likely that the average location 
where TCs reach their peak wind intensity has migrated poleward in 
the western North Pacific Ocean since the 1940s. It is likely that TC 
translation speed has slowed over the USA since 1900. 

11.7.1.3 Model Evaluation

Accurate projections of future TC activity have two principal 
requirements: accurate representation of changes in the relevant 
environmental factors (e.g.,  SSTs) that can affect TC activity, and 
accurate representation of actual TC activity in given environmental 
conditions. In particular, models’ capacity to reproduce historical trends 
or interannual variabilities of TC activity is relevant to the confidence in 
future projections. One test of the models is to evaluate their ability to 
reproduce the dependency of the TC statistics in the different basins in 
the real world, in addition to their capability of reproducing atmospheric 
and ocean environmental conditions. For the evaluation of projections 
of TC-relevant environmental variables, AR5 confidence statements 
were based on global surface temperature and moisture, but not on 
the detailed regional structure of SST and atmospheric circulation 
changes such as steering flows and vertical shear, which affect 
characteristics of TCs (genesis, intensity, tracks, etc.). Various aspects of 

TC metrics are used to evaluate how capable models are of simulating 
present-day TC climatologies and variability (e.g., TC frequency, wind 
intensity, precipitation, size, tracks, and their seasonal and interannual 
changes) (Walsh et al., 2015; Camargo and Wing, 2016; Knutson et al., 
2019, 2020). Other examples of TC climatology/variability metrics are 
spatial distributions of TC occurrence and genesis (Walsh et al., 2015), 
seasonal cycles and interannual variability of basin-wide activity (Zhao 
et al., 2009; Shaevitz et al., 2014; Kodama et al., 2015; Murakami et al., 
2015; Yamada et al., 2017) or landfalling activity (Lok and Chan, 2018), 
as well as newly developed process-diagnostics designed specifically 
for TCs in climate models (D. Kim  et al., 2018; Wing et al., 2019; 
Moon et al., 2020). 

Confidence in the projection of intense TCs, such as those of 
Category 4–5, generally becomes higher as the resolution of the 
models becomes higher. The Coupled Model Intercomparison Project 
Phases 5 and 6 (CMIP5/6) class climate models (around 100–200 km 
grid spacing) cannot simulate TCs of Category 4–5 intensity. They do 
simulate storms of relatively high vorticity that are at best described 
as ‘TC-like’, but metrics such as storm counts are highly dependent 
on tracking algorithms (Camargo, 2013; Wehner et al., 2015; Zarzycki 
and Ullrich, 2017; Roberts et al., 2020a). High-resolution GCMs 
(around 10–60 km grid spacing), as used in HighResMIP (Haarsma 
et al., 2016; Roberts et al., 2020a), begin to capture some structures 
of TCs more realistically, as well as produce intense TCs of Category 
4–5 despite the effects of parametrized deep cumulus convection 
processes (Murakami et al., 2015; Wehner et al., 2015; Yamada 
et al., 2017; Roberts et al., 2018; Moon et al., 2020). Convection-
permitting models (around 1–10 km grid-spacing), such as used 
in some dynamical downscaling studies, provide further realism 
with capturing TC eye-wall structures (Tsuboki et al., 2015). Model 
characteristics besides resolution, especially details of convective 
parametrization, can influence a model’s ability to simulate intense 
TCs (Reed and Jablonowski, 2011; Zhao et al., 2012; He and Posselt, 
2015; D. Kim et al., 2018; Zhang and Wang, 2018; Camargo et al., 
2020). However, models’ dynamical cores and other physics also 
affect simulated TC properties (Reed et al., 2015; Vidale et al., 2021). 
Both wide-area regional and global convection-permitting models 
without the need for parameterized convection are becoming more 
useful for TC regional model projection studies (Tsuboki et al., 2015; 
Kanada et al., 2017a; Gutmann et al., 2018) and global model 
projection studies (Satoh et al., 2015, 2017; Yamada et al., 2017), 
as they capture more realistic TC eye wall structures (Kinter III et al., 
2013) and are becoming more useful for investigating changes in TC 
structures (Kanada et al., 2013; Yamada et al., 2017). Large ensemble 
simulations of GCMs with 60 km grid spacing provide TC statistics 
that allow more reliable detection of changes in the projections, 
which are not well captured in any single experiment (Yoshida et al., 
2017; Yamaguchi et al., 2020). Variable resolution global models offer 
an alternative to regional models for individual TC or basin-wide 
simulations (Yanase et al., 2012; Zarzycki et al., 2014; Harris et al., 
2016; Reed et al., 2020; Stansfield et al., 2020). Computationally less 
intense than equivalent uniform resolution global models, they also 
do not require lateral boundary conditions, thus reducing this source 
of error (Hashimoto et al., 2016). Confidence in the projection of TC 
statistics and properties is increased by the use of higher-resolution 
models with more realistic simulations.
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Operational forecasting models also reproduce TCs, and their use for 
climate projection studies shows promise. However, there is limited 
application for future projections as they are specifically developed 
for operational purposes, and TC climatology is not necessarily well 
evaluated. Intercomparison of operational models indicates that 
enhancement of horizontal resolution can provide more credible 
projections of TCs (Nakano et al., 2017). Likewise, high-resolution 
climate models show promise as TC forecast tools (Zarzycki and 
Jablonowski, 2015; Reed et al., 2020), further narrowing the 
continuum of weather and climate models, and increasing confidence 
in projections of future TC behaviour. However, higher horizontal 
resolution does not necessarily lead to an improved TC climatology 
(Camargo et al., 2020). 

Atmosphere–ocean interaction is an important process in TC 
evolution. Atmosphere–ocean coupled models are generally better 
than atmosphere-only models at capturing realistic processes related 
to TCs (Murakami et al., 2015; Ogata et al., 2015, 2016; Zarzycki, 2016; 
Kanada et al., 2017b; Scoccimarro et al., 2017). However, the basin-
scale SST biases commonly found in atmosphere–ocean models can 
introduce substantial errors in the simulated TC number (Hsu et al., 
2019). Higher-resolution ocean models improve the simulation of TCs 
by reducing the SST climatology bias (Li and Sriver, 2018; Roberts 
et al., 2020a). Coarse resolution atmospheric models may degrade 
coupled model performance as well. For example, in a  case study 
of Hurricane Harvey, Trenberth et al. (2018) suggested that the lack 
of realistic hurricane frequency and intensity within coupled climate 
models hampers the models’ ability to simulate SST and ocean heat 
content and their changes. 

Even with higher-resolution atmosphere–ocean coupled models, TC 
projection studies still rely on assumptions in experimental design 
that introduce uncertainties. Computational constraints often limit 
the number of simulations, resulting in relatively small ensemble 
sizes and incomplete analyses of possible future SST magnitude 
and pattern changes (Zhao and Held, 2011; Knutson et al., 2013). 
Uncertainties in aerosol forcing also are reflected in TC projection 
uncertainty (Wang et al., 2014).

Regional climate models (RCM) with grid spacing around 15–50 km  
can be used to study the projection of TCs. RCMs are run with 
lateral and surface boundary conditions, which are specified by the 
atmospheric state and SSTs simulated by GCMs. Various combinations 
of the lateral and surface boundary conditions can be chosen for RCM 
studies, and uncertainties in the projection can be further examined 
in general. They are used for studying changes in TC characteristics 
in a specific area, such as Vietnam (Redmond et al., 2015) and the 
Philippines (Gallo et al., 2019).

Less computationally expensive downscaling approaches that allow 
larger ensembles and long-term studies are also used in the projection 
of TCs (Emanuel et al., 2006; C.Y. Lee et al., 2018). A  statistical–
dynamical TC downscaling method requires assumptions of the 
rate of seeding of random initial disturbances, which are generally 
assumed to not change with climate change (Emanuel et al., 2008; 
Emanuel, 2013). The results with the downscaling approach might 

depend on the assumptions, which are required for the simplification 
of the methods. 

In summary, various types of models are useful to study how TCs 
change in response to climate changes, and there is no unique 
solution for choosing a model type. However, higher-resolution models 
generally capture TC properties more realistically (high confidence). 
In particular, models with horizontal resolutions of 10–60 km are 
capable of reproducing strong TCs with Category 4–5 and those of 
1–10 km are capable of the eye wall structure of TCs. Uncertainties in 
TC simulations come from details of the model configuration of both 
dynamical and physical processes. Models with realistic atmosphere–
ocean interactions are generally better than atmosphere-only models 
at reproducing realistic TC evolutions (high confidence).

11.7.1.4 Detection and Attribution, Event Attribution

There is general agreement in the literature that anthropogenic 
greenhouse gases and aerosols have measurably affected observed 
oceanic and atmospheric variability in TC-prone regions (see 
Chapter  3). This underpinned the SROCC assessment of medium 
confidence that humans have contributed to the observed increase in 
Atlantic hurricane activity since the 1970s (Chapter 5, Bindoff et al., 
2013). Literature subsequent to AR5 lends further support to this 
statement (Knutson et al., 2019). However, there is still no consensus 
on the relative magnitude of human and natural influences on past 
changes in Atlantic hurricane activity, and particularly on which 
factor has dominated the observed increase (Ting et al., 2015) and 
it remains uncertain whether past changes in Atlantic TC activity 
are outside the range of natural variability. A  recent result using 
high-resolution dynamical model experiments suggested that the 
observed spatial contrast in TC trends cannot be explained only by 
multi-decadal natural variability, and that external forcing plays an 
important role (Murakami et al., 2020). Observational evidence for 
significant global increases in the proportion of major TC intensities 
(Kossin et al., 2020) is consistent with both theory and numerical 
modelling simulations, which generally indicate an increase in mean 
TC peak intensity and the proportion of very intense TCs in a warming 
world (Knutson et al., 2015, 2020; Walsh et al., 2015, 2016). In 
addition, high-resolution coupled model simulations provide support 
that natural variability alone is unlikely to explain the magnitude 
of the observed increase in TC intensification rates and upward TC 
intensity trend in the Atlantic basin since the early 1980s (Bhatia 
et al., 2019; Murakami et al., 2020).

The cause of the observed slowdown in TC translation speed is not 
yet clear. Yamaguchi et al. (2020) used large ensemble simulations 
to argue that part of the slowdown is due to actual latitudinal shifts 
of TC tracks, rather than data artefacts, in addition to atmospheric 
circulation changes. G. Zhang et al. (2020) used large ensemble 
simulations to show that anthropogenic forcing can lead to a robust 
slowdown, particularly outside of the tropics at higher latitudes. 
Yamaguchi and Maeda (2020b) found a  significant slowdown in 
the western North Pacific over the past 40 years and attributed the 
slowdown to a combination of natural variability and global warming. 
The slowing trend since 1900 over the USA is robust and significant 
after removing multi-decadal variability from the time series  
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(Kossin, 2019). Among the hypotheses discussed is the physical 
linkage between warming and slowing circulation (Held and 
Soden, 2006; see also Section 8.2.2.2), with expectations of Arctic 
amplification and weakening circulation patterns through weakening 
meridional temperature gradients (Coumou et al., 2018; see also 
Cross-Chapter Box  10.1), or through changes in planetary wave 
dynamics (Mann et al., 2017). The tropics expansion and the poleward 
shift of the mid-latitude westerlies associated with warming is also 
suggested as the reason of the slowdown (G. Zhang et al., 2020). 
However, the connection of these mechanisms to the slowdown has 
not been robustly shown. Furthermore, slowing trends have not been 
unambiguously observed in circulation patterns that steer TCs, such 
as the Walker and Hadley circulations (Section  2.3.1.4), although 
these circulations generally slow down in numerical simulations 
under global warming (Sections 4.5.1.6 and 8.4.2.2). 

The observed poleward trend in western North Pacific TCs remains 
significant after accounting for the known modes of dominant 
interannual to decadal variability in the region (Kossin et al., 2016a), 
and is also found in CMIP5 model-simulated TCs (in the recent 
historical period 1980–2005), although it is weaker than observed 
and is not statistically significant (Kossin et al., 2016a). However, 
the trend is significant in 21st-century CMIP5 projections under the 
RCP8.5 scenario, with a similar spatial pattern and magnitude to the 
past observed changes in that basin over the period 1945–2016, 
supporting a possible anthropogenic greenhouse gas contribution to 
the observed trends (Kossin et al., 2016a; Knutson et al., 2019). 

The recent active TC seasons in some basins have been studied to 
determine whether there is anthropogenic influence. For 2015, 
Murakami et al. (2017b) explored the unusually high TC frequency 
near Hawaii and in the eastern Pacific basin. W. Zhang et al. (2016b) 
considered unusually high Accumulated Cyclone Energy (ACE) in the 
western North Pacific; and S.-H. Yang et al. (2018) and Yamada et al. 
(2019) looked at TC intensification in the western North Pacific. These 
studies suggest that the anomalous TC activity in 2015 was not solely 
explained by the effect of an extreme El Niño (see Box  11.4) and 
that there was also an anthropogenic contribution, mainly through 
the effects of SSTs in subtropical regions. In the post-monsoon 
seasons of 2014 and 2015, tropical storms with lifetime maximum 
winds greater than 46 m  s−1 were first observed over the Arabian 
Sea, and Murakami et al. (2017a) showed that the probability of late-
season severe tropical storms is increased by anthropogenic forcing 
compared to the preindustrial era. Murakami et al. (2018) concluded 
that the active 2017 Atlantic hurricane season was mainly caused 
by pronounced SSTs in the tropical North Atlantic and that these 
types of seasonal events will intensify with projected anthropogenic 
forcing. The trans-basin SST change, which might be driven by 
anthropogenic aerosol forcing, also affects TC activity. Takahashi 
et al. (2017) suggested that a decrease in sulphate aerosol emissions 
caused about half of the observed decreasing trends in TC genesis 
frequency in the south-eastern region of the western North Pacific 
during 1992–2011.

Event attribution is used in TC case studies to test whether the 
severities of recent intense TCs are explained without anthropogenic 
effects. In a case study of Hurricane Sandy (2012), Lackmann (2015) 

found no statistically significant impact of anthropogenic climate 
change on storm intensity, while projections in a  warmer world 
showed significant strengthening. However, Magnusson et al. (2014) 
found that, in European Centre for Medium-Range Weather Forecast 
(ECMWF) simulations, the simulated cyclone depth and intensity, 
as well as precipitation, were larger when the model was driven 
by the warmer actual SSTs than the climatological average SSTs. In 
Super Typhoon Haiyan, which struck the Philippines on 8 November 
2013, Takayabu et al. (2015) took an event attribution approach 
with cloud system-resolving (around 1  km) downscaling ensemble 
experiments to evaluate the anthropogenic effect on typhoons, and 
showed that the intensity of the simulated worst-case storm in the 
actual conditions was stronger than that in a hypothetical condition 
without historical anthropogenic forcing in the model. However, 
in a  similar approach with two coarser parametrized convection 
models, Wehner et al. (2019) found conflicting human influences 
on Haiyan’s intensity. Patricola and Wehner (2018) found little 
evidence of an attributable change in intensity of hurricanes Katrina 
(2005), Irma (2017), and Maria (2017) using a  regional climate 
model configured between 3  km and 4.5 km resolution. They did, 
however, find attributable increases in heavy precipitation totals. 
These results imply that higher resolution, such as in a  convective 
permitting 5 km or less mesh model, is required to obtain a robust 
anthropogenic intensification of a strong TC by simulating realistic 
rapid intensification (Kanada and Wada, 2016; Kanada et al., 2017a), 
and that whether the TC intensification can be attributed to the 
recent warming depends on the case.

The dominant factor in the extreme rainfall amounts during Hurricane 
Harvey’s passage onto the USA in 2017 was its slow translation speed. 
But studies published after the event have argued that anthropogenic 
climate change contributed to an increase in rain rate, which 
compounded the extreme local rainfall caused by the slow translation. 
Emanuel (2017) used a  large set of synthetically-generated storms 
and concluded that the occurrence of extreme rainfall as observed 
in Harvey was substantially enhanced by anthropogenic changes 
to the larger-scale ocean and atmosphere characteristics; Trenberth 
et al. (2018) linked Harvey’s rainfall totals to the anomalously large 
ocean heat content from the Gulf of Mexico; and van Oldenborgh 
et al. (2017) and Risser and Wehner (2017) applied extreme value 
analysis to extreme rainfall records in the Houston, Texas region, both 
attributing large increases to climate change. Large precipitation 
increases during Harvey due to global warming were also found 
using climate models (van Oldenborgh et al., 2017; S.-Y.S. Wang et al., 
2018). Harvey precipitation totals were estimated in these papers to 
be three to 10 times more probable due to climate change. A best 
estimate from a regional climate and flood model is that urbanization 
increased the risk of the Harvey flooding by a factor of 21 (W. Zhang 
et al., 2018), using a  regional climate and flood model, found that 
surface roughness from urbanization increased the risk of the Harvey 
flooding by a  factor of 21. Anthropogenic effects on precipitation 
increases were also predicted in advance from a forecast model for 
Hurricane Florence in 2018 (Reed et al., 2020). 

In summary, it is very likely that the recent active TC seasons in 
the North Atlantic, the North Pacific, and Arabian basins cannot be 
explained without an anthropogenic influence. The anthropogenic 
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influence on these changes is principally associated to aerosol forcing, 
with stronger contributions to the response in the North Atlantic. It 
is more likely than not that the slowdown of TC translation speed 
over the USA has contributions from anthropogenic forcing. It is 
likely that the poleward migration of TCs in the western North Pacific 
and the global increase in TC intensity rates cannot be explained 
entirely by natural variability. Event attribution studies of specific 
strong TCs provide limited evidence for anthropogenic effects on TC 
intensifications so far, but high confidence for increases in TC heavy 
precipitation. There is high confidence that anthropogenic climate 
change contributed to extreme rainfall amounts during Hurricane 
Harvey (2017) and other intense TCs.

11.7.1.5    Projections

A summary of studies on TC projections for the late 21st  century, 
particularly studies since AR5, is given by Knutson et al. (2020), which 
is an assessment report mandated by the World Meteorological 
Organization (WMO). Studies subsequent to Knutson et al. (2020) 
are generally consistent, and the confidence assessments here 
closely follow theirs (Cha et al., 2020), although there are some 
differences due to the varying confidence calibrations between the 
IPCC and WMO reports. 

There is not an established theory for the drivers of future changes 
in the frequency of TCs. Most, but not all, high-resolution global 
simulations project significant reductions in the total number of TCs, 
with the bulk of the reduction at the weaker end of the intensity 
spectrum as the climate warms (Knutson et al., 2020). Recent 
exceptions based on high-resolution coupled model results are 
noted in Bhatia et al. (2018) and Vecchi et al. (2019). Vecchi et al. 
(2019) showed that the representation of synoptic-scale seeds for TC 
genesis in their high-resolution model causes different projections of 
global TC frequency, and there is evidence for a decrease in cyclone 
seeds in some projected TC simulations (Sugi et al., 2020; Yamada 
et al., 2011). However, other research indicates that TC seeds are not 
an independent control on climatological TC frequency, rather the 
seeds covary with the large-scale controls on TCs (Patricola et al., 
2018). While empirical genesis indices derived from observations and 
reanalysis describe well the observed subseasonal and interannual 
variability of current TC frequency (Camargo et al., 2007, 2009; Tippett 
et al., 2011; Menkes et al., 2012), they fail to predict the decreased TC 
frequency found in most high-resolution model simulations (Zhang 
et al., 2010; Camargo, 2013; Wehner et al., 2015), as they generally 
project an increase as the climate warms. This suggests a limitation 
of the use of the empirical genesis indices for projections of TC 
genesis, in particular due to their sensitivity to the humidity variable 
considered in the genesis index for these projections (Camargo et al., 
2014). In a different approach, a statistical–dynamical downscaling 
framework assuming a constant seeding rate with warming (Emanuel, 
2013, 2021) exhibits increases in TC frequency consistent with 
genesis indices-based projections, while downscaling with a different 
model leads to two different scenarios depending on the humidity 
variable considered (C.-Y. Lee et al., 2020). This disparity in the sign 
of the projected change in global TC frequency, and the difficulty in 
explaining the mechanisms behind the different signed responses, 
further emphasize the lack of process understanding of future 

changes in tropical cyclogenesis (Walsh et al., 2015; Hoogewind 
et al., 2020). Even within a single model, uncertainty in the pattern of 
future SST changes leads to large uncertainties (including the sign) 
in the projected change in TC frequency in individual ocean basins, 
although global TCs would appear to be less sensitive (Yoshida et al., 
2017; Bacmeister et al., 2018).

Changes in SST and atmospheric temperature and moisture play 
a  role in tropical cyclogenesis (Walsh et al., 2015). Reductions in 
vertical convective mass flux due to increased tropical stability have 
been associated with a  reduction in cyclogenesis (Held and Zhao, 
2011; Sugi et al., 2012). Satoh et al. (2015) further posit that the 
robust simulated increase in the number of intense TCs, and hence 
increased vertical mass flux associated with intense TCs, must lead 
to a decrease in overall TC frequency because of this association. The 
Genesis Potential Index can be modified to mimic the TC frequency 
decreases of a model by altering the treatment of humidity (Camargo 
et al., 2014). This supports the idea that increased mid-tropospheric 
saturation deficit (Emanuel et al., 2008) controls TC frequency, 
but the approach remains empirical. Other possible controlling 
factors, such as a  decline in the number of seeds (held constant 
in Emanuel’s downscaling approach, or dependent on the genesis 
index formulation in the approach proposed by C.-Y. Lee et al., 2020) 
caused by increased atmospheric stability have been proposed, 
but questioned as an important factor (Patricola et al., 2018). The 
resolution of atmospheric models affects the number of seeds, hence 
TC genesis frequency (Vecchi et al., 2019; Sugi et al., 2020; Yamada 
et al., 2021). The diverse and sometimes inconsistent projected 
changes in global TC frequency by high-resolution models indicate 
that better process understanding and improvement of the models 
are needed to raise confidence in these changes. 

Most TC-permitting model simulations (10–60 km or finer grid 
spacing) are consistent in their projection of increases in the 
proportion of intense TCs (Category 4–5), as well as an increase in 
the intensity of the strongest TCs defined by maximum wind speed 
or central pressure fall (Murakami et al., 2012; Tsuboki et al., 2015; 
Wehner et al., 2018a; Knutson et al., 2020). The general reduction 
in the total number of TCs, which is concentrated in storms weaker 
than or equal to Category 1, contributes to this increase. The models 
are somewhat less consistent in projecting an increase in the 
frequency of Category 4–5 TCs (Wehner et al., 2018a; Knutson et al., 
2020). The projected increase in the intensity of the strongest TCs is 
consistent with theoretical understanding (e.g., Emanuel, 1987) and 
observations (e.g.,  Kossin et al., 2020). For a  2°C global warming, 
the median proportion of Category 4–5 TCs increases by 13%, 
while the median global TC frequency decreases by 14%, which 
implies that the median of the global Category 4–5 TC frequency is 
slightly reduced by 1% or almost unchanged (Knutson et al., 2020). 
Murakami et al. (2020) projected a decrease in TC frequency over the 
coming century in the North Atlantic due to greenhouse warming, 
as consistent with Dunstone et al. (2013), and a  reduction in TC 
frequency almost everywhere in the tropics in response to +1% 
CO2 forcing. Exceptions include the central North Pacific (Hawaii 
region), east of the Philippines in the North Pacific, and two relatively 
small regions in the northern Arabian Sea and Bay of Bengal. These 
projections can vary substantially between ocean basins, possibly 
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due to differences in regional SST warming and warming patterns 
(Sugi et al., 2017; Yoshida et al., 2017; Bacmeister et al., 2018). 
A  summary of projections of TC characteristics is schematically 
shown by Figure 11.20.

The increase in global TC maximum surface wind speeds is about 5% 
for a 2°C global warming across a number of high-resolution multi-
decadal studies (Knutson et al., 2020). This indicates the deepening 
in global TC minimum surface pressure under the global warming 
conditions. A regional cloud-permitting model study shows that the 
strongest TC in the western North Pacific can be as strong as 857 hPa 
in minimum surface pressure with a wind speed of 88 m s–1 under 
warming conditions in 2074–2087 (Tsuboki et al., 2015). TCs are 
also measured by quantities such as ACE and the power dissipation 
index (PDI), which conflate TC intensity, frequency, and duration 
(Murakami et al., 2014). Several TC modelling studies (Yamada et al., 
2010; H.S. Kim et al., 2014; Knutson et al., 2015) project little change 
or decreases in the globally accumulated value of PDI or ACE, which 
is due to the decrease in the total number of TCs. 

A projected increase in global average TC rain rates of about 12% 
for a 2°C global warming is consistent with the Clausius–Clapeyron 
scaling of saturation-specific humidity (Knutson et al., 2020). 
Increases substantially greater than Clausius–Clapeyron scaling are 
projected in some regions, which is caused by increased low-level 
moisture convergence due to projected TC intensity increases in those 
regions (Knutson et al., 2015; Phibbs and Toumi, 2016; Patricola and 
Wehner, 2018; M. Liu et al., 2019a). Projections of TC precipitation 
using large-ensemble experiments (Kitoh and Endo, 2019) show 
that the annual maximum one-day precipitation total is projected 
to increase, except for the western North Pacific where only a small 
change (or even a reduction) is projected, mainly due to a projected 
decrease of TC frequency. They also show that the 10-year return 
value of extreme Rx1day associated with TCs will greatly increase 
in a region extending from Hawaii to the south of Japan. TC tracks 
and the location of topography relative to TCs significantly affect 
precipitation, thus, in general, areas on the eastern and southern 
faces of mountains have more impacts of TC precipitation changes 
(Hatsuzuka et al., 2020). Projection studies using variable-resolution 
models in the North Atlantic (Stansfield et al., 2020) indicate that TC-
related precipitation rates within North Atlantic TCs and the amount 
of hourly precipitation due to TC are projected to increase by the end 
of the century compared to a  historical simulation. However, the 
annual average TC-related Rx5day over the eastern USA is projected 
to decrease because of a reduction in landfalling TCs. RCM studies 
with around 25–50 km grid spacing are used to study projected 
changes in TCs. The projected changes of TCs in South East Asia 
simulated by RCMs are consistent with those of most GCMs, showing 
a  decrease in TC frequency and an increase in the amount of TC-
associated precipitation or an increase in the frequency of intense 
TCs (Redmond et al., 2015; Gallo et al., 2019). 

Projected changes in TC tracks or TC areas of occurrence in the 
late 21st  century vary considerably among available studies, 
although there is better agreement in the western North Pacific. 
Several studies project either poleward or eastward expansion 
of TC occurrence over the western North Pacific region, and more 

TC occurrence in the central North Pacific (Yamada et al., 2017; 
Yoshida et al., 2017; Wehner et al., 2018a; Roberts et al., 2020b). 
The observed poleward expansion of the latitude of maximum TC 
intensity in the western North Pacific is consistently reproduced 
by the CMIP5 models and downscaled models, and these models 
show further poleward expansion in the future; the projected mean 
migration rate of the mean latitude where TCs reach their lifetime-
maximum intensity is 0.2±0.1° from CMIP5 model results, while it 
is 0.13±0.04° from downscaled models in the western North Pacific 
(Kossin et al., 2014, 2016a). In the North Atlantic, while the location 
of TC maximum intensity does not show clear poleward migration 
observationally (Kossin et al., 2014), it tends to migrate poleward 
in projections (Garner et al., 2017). The poleward migration is less 
robust among models and observations in the Indian Ocean, eastern 
North Pacific, and South Pacific (e.g.,  Tauvale and Tsuboki, 2019; 
Ramsay et al. 2018; Cattiaux et al. 2020). There is presently no clear 
consensus in projected changes in TC translation speed (Knutson 
et al., 2020), although recent studies suggest a  slowdown outside 
of the tropics (Kossin, 2019; Yamaguchi et al., 2020; G. Zhang et al., 
2020), but regionally there can even be an acceleration of the storms 
(Hassanzadeh et al., 2020).

The spatial extent, or ‘size’, of the TC wind field is an important 
determinant of storm surge and damage. No detectable anthropogenic 
influences on TC size have been identified to date, because TCs in 
observations vary in size substantially (Chan and Chan, 2015) and 
there is no definite theory on what controls TC size, although this 
is an area of active research (Chavas and Emanuel, 2014; Chan 
and Chan, 2018). However, projections by high-resolution models 
indicate future broadening of TC wind fields when compared to 
TCs of the same categories (Yamada et al., 2017), while Knutson 
et al. (2015) simulate a reasonable interbasin distribution of TC size 
climatology, but project no statistically significant change in global 
average TC size. A plausible mechanism is that, as the tropopause 
height becomes higher with global warming, the eye wall areas 
become wider because the eye walls are inclined outward with 
height to the tropopause. This effect is only reproduced in high-
resolution convection-permitting models capturing eye walls, and 
such modelling studies are not common. Moreover, the projected TC 
size changes are generally on the order of 10% or less, and these size 
changes are still highly variable between basins and studies. Thus, the 
projected change in both magnitude and sign of TC size is uncertain. 

The coastal effects of TCs depend on TC intensity, size, track, and 
translation speed. Projected increases in sea level, average TC 
intensity, and TC rainfall rates each generally act to further elevate 
future storm surge and fresh-water flooding (see Section  9.6.4.2). 
Changes in TC frequency could contribute toward increasing or 
decreasing future storm surge risk, depending on the net effects of 
changes in weaker vs stronger storms. Several studies (McInnes et al., 
2014, 2016; Little et al., 2015; Garner et al., 2017; Timmermans et al., 
2017, 2018) have explored future projections of storm surge in the 
context of anthropogenic climate change with the influence of both 
sea level rise and future TC changes. Garner et al. (2017) investigated 
the near-future changes in the New York City coastal flood hazard, 
and suggested a small change in storm-surge height because effects 
of TC intensification are compensated by the offshore shifts in TC 
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tracks, but concluded that the overall effect due to the rising sea 
levels would increase the flood hazard. Future projection studies 
of storm surge in East Asia, including China, Japan and Korea, also 
indicate that storm surges due to TCs become more severe (J.A. Yang 
et al., 2018; Mori et al., 2019, 2021; J. Chen et al., 2020b). For the 
Pacific Islands, McInnes et al. (2014) found that the future projected 
increase in storm surge in Fiji is dominated by sea level rise, and 
projected TC changes make only a minor contribution. Among various 
storm surge factors, there is high confidence that sea level rise will 
lead to a higher possibility of extreme coastal water levels in most 
regions, with all other factors assumed equal. 

In the North Atlantic, vertical wind shear, which inhibits TC genesis 
and intensification, varies in a quasi-dipole pattern, with one centre 
of action in the tropics and another along the south-east USA 
coast (Vimont and Kossin, 2007). This pattern of variability creates 
a protective barrier of high shear along the USA coast during periods 
of heightened TC activity in the tropics (Kossin, 2017), and appears 
to be a  natural part of the Atlantic ocean–atmosphere climate 
system (Ting et al., 2019). Greenhouse gas forcing in CMIP5 and the 
Community Earth System Model Large Ensemble (Kay et al., 2015) 
simulations, however, erodes the pattern and degrades the natural 
shear barrier along the USA coast. Following the RCP8.5 emissions 
scenario, the magnitude of the erosion of the barrier equals the 
amplitude of past natural variability (time of emergence) by the 
mid-21st century (Ting et al., 2019). The projected reduction of shear 
along the USA East Coast with warming is consistent among studies 
(e.g., Vecchi and Soden, 2007).

In summary, average peak TC wind speeds and the proportion of 
Category 4–5 TCs will very likely increase globally with warming. 
It is likely that the frequency of Category 4–5 TCs will increase in 
limited regions over the western North Pacific. It is very likely 
that average TC rain rates will increase with warming, and likely that 
the peak rain rates will increase at rate greater than the Clausius–
Clapeyron scaling rate of 7% per 1°C of warming in some regions 
due to increased low-level moisture convergence caused by regional 
increases in TC wind intensity. It is likely that the average location 
where TCs reach their peak wind intensity will migrate poleward in 
the western North Pacific Ocean as the tropics expand with warming, 
and that the global frequency of TCs over all categories will decrease 
or remain unchanged. 

11.7.2 Extratropical Storms

This section focuses on extratropical cyclones (ETCs) that are either 
classified as strong or extreme by using some measure of their 
intensity, or by being associated with the occurrence of extremes 
in variables such as precipitation or near-surface wind speed 
(Seneviratne et al., 2012). Since AR5, the high relevance of ETCs for 
extreme precipitation events has been well established (Pfahl and 
Wernli, 2012; Catto and Pfahl, 2013; Utsumi et al., 2017), with 80% 
or more of hourly and daily precipitation extremes being associated 
with either ETCs or fronts over oceanic mid-latitude regions, and 
somewhat smaller, but still very large, proportions of events over 
mid-latitude land regions (Utsumi et al., 2017). The emphasis in this 

section is on individual ETCs that have been identified using some 
detection and tracking algorithms. Mid-latitude atmospheric rivers 
are assessed in Section 8.3.2.8.

11.7.2.1 Observed Trends

Section 2.3.1.4.3 concluded that there is overall low confidence in 
recent changes in the total number of ETCs over both hemispheres, 
and that there is medium confidence in a poleward shift of the storm 
tracks over both hemispheres since the 1980s. Overall, there is also 
low confidence in past-century trends in the number and intensity 
of the strongest ETCs due to the large interannual and decadal 
variability (Feser et al., 2015; Reboita et al., 2015; Wang et al., 2016; 
Varino et al., 2019) and due to temporal and spatial heterogeneities 
in the number and type of assimilated data in reanalyses, particularly 
before the satellite era (Krueger et al., 2013; Tilinina et al., 2013; 
Befort et al., 2016; Chang and Yau, 2016; Wang et al., 2016). There 
is medium confidence that the agreement among reanalyses and 
detection and tracking algorithms is higher when considering stronger 
cyclones (Neu et al., 2013; Pepler et al., 2015; Wang et al., 2016). 
Over the Southern Hemisphere, there is high confidence that the total 
number of ETCs with low central pressures (<980 hPa) has increased 
between 1979 and 2009, with all eight reanalyses considered by 
Wang et al. (2016) showing positive trends, and five of them showing 
statistically significant trends. Similar results were found by Reboita 
et al. (2015) using a different detection and tracking algorithm and 
a  single reanalysis product. Over the Northern Hemisphere, there 
is high agreement among reanalyses that the number of cyclones 
with low central pressures (<970 hPa) has decreased in summer and 
winter during the period 1979–2010 (Tilinina et al., 2013; Chang 
et al., 2016). However, changes exhibit substantial decadal variability 
and do not show monotonic trends since the 1980s. For example, 
over the Arctic and North Atlantic, Tilinina et al. (2013) showed that 
the number of cyclones with very low central pressure (<960 hPa) 
increased from 1979 to 1990 and then declined until 2010 in all five 
reanalyses considered. Over the North Pacific, the number of cyclones 
with very low central pressure reached a peak around 2000 and then 
decreased until 2010 in the five reanalyses considered (Tilinina et al., 
2013). Overall, however, it should be noted that characterising trends 
in the dynamical intensity of ETCs (e.g.,  wind speeds) using the 
absolute central pressure is problematic because the central pressure 
depends on the background mean sea level pressure, which varies 
seasonally and regionally (e.g., Befort et al., 2016). 

11.7.2.2 Model Evaluation

There is high confidence that coarse-resolution climate models 
(e.g.,  CMIP5 and CMIP6) underestimate the dynamical intensity 
of ETCs, including the strongest ETCs, as measured using a variety of 
metrics, including mean pressure gradient, mean vorticity and near-
surface wind speeds, over most regions (Colle et al., 2013; Zappa 
et al., 2013a; Govekar et al., 2014; Di Luca et al., 2016; Trzeciak 
et al., 2016; Seiler et al., 2018; Priestley et al., 2020). There is also 
high confidence that most current climate models underestimate 
the number of explosive systems (i.e., systems showing a decrease 
in mean sea level pressure of at least 24 hPa in 24 hours) over 
both hemispheres (Seiler and Zwiers, 2016a; Gao et al., 2020;  
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Priestley et al., 2020). There is high confidence that 
the underestimation of the intensity of ETCs is associated with the 
coarse horizontal resolution of climate models, with higher 
horizontal resolution models, including HighResMIP and CORDEX, 
usually showing better performance (Colle et al., 2013; Zappa 
et al., 2013a; Di Luca et al., 2016; Trzeciak et al., 2016; Seiler et al., 
2018; Gao et al., 2020; Priestley et al., 2020). The improvement by 
higher-resolution models is found, even when comparing models 
and reanalyses after post-processing data to a common resolution 
(Zappa et al., 2013a; Di Luca et al., 2016; Priestley et al., 2020). 
The systematic bias in the intensity of ETCs has also been linked to 
the inability of current climate models to resolve diabatic processes, 
particularly those related to the release of latent heat (Willison et al., 
2013; Trzeciak et al., 2016) and the formation of clouds (Govekar 
et al., 2014). There is medium confidence that climate models 
simulate well the spatial distribution of precipitation associated with 
ETCs over the Northern Hemisphere, together with some of the main 
features of the ETC life cycle, including the maximum in precipitation 
occurring just before the peak in dynamical intensity (e.g., vorticity) 
as observed in a reanalysis and observations (Hawcroft et al., 2018). 
There is, however, large observational uncertainty in ETC-associated 
precipitation (Hawcroft et al., 2018) and limitations in the simulation 
of frontal precipitation, including overly low rainfall intensity over 
mid-latitude oceanic areas in both hemispheres (Catto et al., 2015).

11.7.2.3 Detection and Attribution, Event Attribution

Section  3.3.3.3 concluded that there is low confidence in the 
attribution of observed changes in the number of ETCs in the Northern 
Hemisphere and high confidence that the poleward shift of storm 
tracks in the Southern Hemisphere is linked to human activity, mostly 
due to emissions of ozone-depleting substances. Specific studies 
attributing changes in the most extreme ETCs are not available. 
The human influence on individual extreme ETC events has been 
considered only a few times and there is overall low confidence in 
the attribution of these changes (NASEM, 2016; Vautard et al., 2019).

11.7.2.4 Projections

The frequency of ETCs is expected to change, primarily following 
a poleward shift of the storm tracks as discussed in Section 4.5.1.6 
(see also Figure  4.31) and Section  8.4.2.8. There is medium 
confidence that changes in the dynamical intensity (e.g.,  wind 
speeds) of ETCs will be small, although changes in the location of 
storm tracks can lead to substantial changes in local extreme wind 
speeds (Zappa et al., 2013b; Chang, 2014; Li et al., 2014; Seiler and 
Zwiers, 2016b; Yettella and Kay, 2017; Barcikowska et al., 2018; Kar-
Man Chang, 2018). Yettella and Kay (2017) detected and tracked 
ETCs over both hemispheres in an ensemble of 30 Community Earth 
System Model Large Ensemble simulations, differing only in their 
initial conditions, and found that changes in mean wind speeds 
around ETC centres are often negligible between present (1986–
2005) and future (2081–2100) periods. Using 19 CMIP5 models, 
Zappa et al. (2013b) found an overall reduction in the number of 
cyclones associated with low-troposphere (850-hPa) wind speeds 
larger than 25 m s–1 over the North Atlantic and Europe with the 
number of the 10% strongest cyclones decreasing by about 8% 

and 6% in December–January–February and June–July–August 
according to the RCP4.5 scenario (2070–2099 vs. 1976–2005). Over 
the North Pacific, Chang (2014) showed that CMIP5 models project 
a decrease in the frequency of ETCs, with the largest central pressure 
perturbation (i.e.,  the depth, strongly related with low-level wind 
speeds) by the end of the century according to simulations using 
the RCP8.5 scenario. Using projections from CMIP5 GCMs under 
the RCP8.5 scenario (1981–2000 to 2081–2100), Seiler and Zwiers 
(2016b) projected a  northward shift in the number of explosive 
ETCs in the northern Pacific, with fewer and weaker events south, 
and more frequent and stronger events north of 45°N. Using 19 
CMIP5 GCMs under the RCP8.5 scenario, Kar-Man Chang (2018) 
found a significant decrease in the number of ETCs associated with 
extreme wind speeds (2081–2100 vs. 1980–99) over the Northern 
Hemisphere (average decrease of 17%) and over some smaller 
regions, including the Pacific and Atlantic regions.

Over the Southern Hemisphere, future changes (RCP8.5 scenario; 
1980–1999 to 2081–2100) in extreme ETCs were studied by Chang 
(2017) using 26 CMIP5 models, and a  variety of intensity metrics 
(850-hPa vorticity, 850-hPa wind speed, mean sea level pressure and 
near-surface wind speed). They found that the number of extreme 
cyclones is projected to increase by at least 20% and as much as 
50%, depending on the specific metric used to define extreme ETCs. 
Increases in the number of strong cyclones appear to be robust across 
models and for most seasons, although they show strong regional 
variations, with increases occurring mostly over the southern flank of 
the storm track, consistent with a shift and intensification of the storm 
track. Overall, there is medium confidence that projected changes 
in the dynamical intensity of ETCs depend on the resolution and 
formulation (e.g.,  explicit or implicit representation of convection) 
of climate models (Booth et al., 2013; Michaelis et al., 2017; Zhang 
and Colle, 2017). 

As reported in AR5 and in Section 8.4.2.8, despite small changes in 
the dynamical intensity of ETCs, there is high confidence that the 
precipitation associated with ETCs will increase in the future (Zappa 
et al., 2013b; Marciano et al., 2015; Pepler et al., 2016; Michaelis et al., 
2017; Yettella and Kay, 2017; Zhang and Colle, 2017; Barcikowska 
et al., 2018; Hawcroft et al., 2018; Zarzycki, 2018; Kodama et al., 
2019; Bevacqua et al., 2020a; Reboita et al., 2021). There is high 
confidence that increases in precipitation will follow increases in 
low-level water vapour (i.e., about 7% per 1°C of surface warming; 
see Box 11.1) and will be larger for higher warming levels (Zhang 
and Colle, 2017). There is medium confidence that precipitation 
changes will show regional and seasonal differences due to distinct 
changes in atmospheric humidity and dynamical conditions (Zappa 
et al., 2015; Hawcroft et al., 2018), with decreases in some specific 
regions such as the Mediterranean (Zappa et al., 2015; Barcikowska 
et al., 2018). There is high confidence that snowfall associated 
with winter ETCs will decrease in the future, because increases in 
tropospheric temperatures lead to a lower proportion of precipitation 
falling as snow (O’Gorman, 2014; Rhoades et al., 2018; Zarzycki, 
2018). However, there is medium confidence that extreme snowfall 
events associated with winter ETCs will change little in regions 
where snowfall will be supported in the future (O’Gorman, 2014; 
Zarzycki, 2018).
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In summary, there is low confidence in past changes in the dynamical 
intensity (e.g., maximum wind speeds) of ETCs and medium confidence 
that, in the future, these changes will be small, although changes in 
the location of storm tracks could lead to substantial changes in local 
extreme wind speeds. There is high confidence that average and 
maximum ETC precipitation-rates will increase with warming, with the 
magnitude of the increases associated with increases in atmospheric 
water vapour. There is medium confidence that projected changes in 
the intensity of ETCs, including wind speeds and precipitation, depend 
on the resolution and formulation of climate models.

11.7.3 Severe Convective Storms

Severe convective storms are convective systems that are associated 
with extreme phenomena such as tornadoes, hail, heavy precipitation 
(rain or snow), strong winds, and lightning. The assessment of changes 
in severe convective storms in SREX (Chapter 3, Seneviratne et al., 
2012) and AR5 (Chapter 12, Collins et al., 2013) is limited and focused 
mainly on tornadoes and hail storms. The SREX assessed that there 
is low confidence in observed trends in tornadoes and hail because 
of data inhomogeneities and inadequacies in monitoring systems. 
Subsequent literature assessed in the Climate Science Special Report 
(Kossin et al., 2017) led to the assessment of the observed tornado 
activity over the 2000s in the USA, with a decrease in the number 
of days per year with tornadoes and an increase in the number of 
tornadoes on these days (medium confidence). However, there 
is low confidence in past trends for hail and severe thunderstorm 
winds. Climate models consistently project environmental changes 
that would support an increase in the frequency and intensity of 
severe thunderstorms that combine tornadoes, hail, and winds 
(high confidence), but there is low confidence in the details of the 
projected increase. Regional aspects of severe convective storms and 
details of the assessment of tornadoes and hail are also assessed in 
Section 12.3.3.2 (tornadoes), Section 12.3.4.5 (hail), Section 12.4.5.3 
(Europe), Section  12.4.6.3 (North America), and Section  12.7.2 
(regional gaps and uncertainties).

11.7.3.1 Mechanisms and Drivers

Severe convective storms are sometimes embedded in synoptic-
scale weather systems, such as TCs, ETCs, and fronts (Kunkel et al., 
2013). They are also generated as individual events as mesoscale 
convective systems (MCSs) and mesoscale convective complexes 
(MCCs, a  special type of a  large, organized and long-lived MCS), 
without being clearly embedded within larger-scale weather systems. 
In addition to the general vigorousness of precipitation, hail, and 
winds associated with MCSs, characteristics of MCSs are viewed 
in new perspectives in recent years, probably because of both the 
development of dense mesoscale observing networks and advances in 
high-resolution mesoscale modelling (Sections 11.7.3.2 and 11.7.3.3). 
The horizontal scale of MCSs is discussed with their organization 
of the convective structure, and  it is examined with a  concept of 
‘convective aggregation’  in recent years (Holloway et al., 2017). 
MCSs sometimes take a linear shape and stay almost stationary with 
successive production of cumulonimbus on the upstream side (back-
building type convection), and cause heavy rainfall (Schumacher and 

Johnson, 2005). Many of the recent severe rainfall events in Japan 
are associated with band-shaped precipitation systems (Kunii et al., 
2016; Oizumi et al., 2018; Tsuguti et al., 2018; Kato, 2020), suggesting 
common characteristics of severe precipitation, at least in East Asia. 
The convective modes of severe storms in the USA can be classified 
into rotating or linear modes and preferable environmental conditions 
for these modes, such as vertical shear, have been identified (Trapp 
et al., 2005; Smith et al., 2013; Allen, 2018). Cloud microphysics 
characteristics of MCSs were examined and the roles of warm rain 
processes on extreme precipitation were emphasized recently (Sohn 
et al., 2013; Hamada et al., 2015; Hamada and Takayabu, 2018). 
Idealized studies also suggest the importance of ice and mixed-phase 
processes of cloud microphysics on extreme precipitation (Sandvik 
et al., 2018; Bao and Sherwood, 2019). However, it is unknown 
whether the types of MCS are changing in recent periods or observed 
ubiquitously all over the world.

Severe convective storms occur under conditions preferable for deep 
convection, that is, conditionally unstable stratification, sufficient 
moisture, both in lower and middle levels of the atmosphere, and 
a  strong vertical shear. These large-scale environmental conditions 
are viewed as necessary conditions for the occurrence of severe 
convective systems, or the resulting tornadoes and lightning, and 
the relevance of these factors strongly depends on the region 
(e.g.,  Antonescu et al., 2016a; Allen, 2018; Tochimoto and Niino, 
2018). Frequently used metrics are atmospheric static stability, 
moisture content, convective available potential energy (CAPE) and 
convective inhibition, wind shear or helicity, including storm-relative 
environmental helicity (Tochimoto and Niino, 2018; Elsner et al., 
2019). These metrics, largely controlled by large-scale atmospheric 
circulations or synoptic weather systems, such as TCs and ETCs, 
are then generally used to examine severe convective systems. In 
particular, there is high confidence that CAPE in the tropics and the 
subtropics increases in response to global warming (M.S. Singh et al., 
2017), as supported by theoretical studies (Singh and O’Gorman, 
2013; Seeley and Romps, 2015; Romps, 2016; Agard and Emanuel, 
2017). The uncertainty, however, arises from the balance between 
factors affecting severe storm occurrence. For example, the warming 
of mid-tropospheric temperatures leads to an increase in the freezing 
level, which leads to increased melting of smaller hailstones, while 
there may be some offset by stronger updrafts driven by increasing 
CAPE, which would favour the growth of larger hailstones, leading to 
less melting when falling (Allen, 2018; Mahoney, 2020). 

There are few studies on relations between changes in severe 
convective storms and those of the large-scale circulation patterns. 
Tornado outbreaks in the USA are usually associated with ETCs with 
their frontal systems and TCs (Fuhrmann et al., 2014; Tochimoto and 
Niino, 2016). In early June to late July in East Asia, associated with 
the Baiu/Changma/Mei-yu, severe precipitation events are frequently 
caused by MCSs. Severe precipitation events are also caused by 
remote effects of TCs, known as predecessor rain events (Galarneau 
et al., 2010). Atmospheric rivers and other coherent types of 
enhanced water vapour flux also have the potential to induce severe 
convective systems (Kamae et al., 2017a; Waliser and Guan, 2017; 
Ralph et al., 2018; see Section 8.3.2.8.2). Combined with the above 
drivers, topographic effects also enhance the intensity and duration 
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of severe convective systems and the associated precipitation 
(Ducrocq et al., 2008; Piaget et al., 2015). However, the changes in 
these drivers are not generally significant, so their relations to severe 
convective storms are unclear.

In summary, severe convective storms are sometimes embedded 
in synoptic-scale weather systems, such as TCs, ETCs and fronts, 
and modulated by large-scale atmospheric circulation patterns. 
The occurrence of severe convective storms and the associated 
severe events, including tornadoes, hail, and lightning, is affected by 
environmental conditions of the atmosphere, such as CAPE and vertical 
shear. The uncertainty, however, arises from the balance between these 
environmental factors affecting severe storm occurrence.

11.7.3.2 Observed Trends

Observed trends in severe convective storms or MCSs are not well 
documented, but the climatology of MCSs has been analysed in 
specific regions (North America, South America, Europe, Asia; regional 
aspects of convective storms are separately assessed in Chapter 12). 
As the definition of severe convective storms varies depending on 
the literature, it is not straightforward to make a synthesizing view 
of observed trends in severe convective storms in different regions. 
However, analysis using satellite observations provides a global view 
of MCSs (Kossin et al., 2017). The global distribution of thunderstorms 
is captured (Zipser et al., 2006; Liu and Zipser, 2015) by using 
the satellite precipitation measurements by the Tropical Rainfall 
Measuring Mission (TRMM) and Global Precipitation Mission (GPM) 
(Hou et al., 2014). The climatological characteristics of MCSs are 
provided by satellite analyses in South America (Durkee and Mote, 
2010; Rasmussen and Houze, 2011; Rehbein et al., 2018) and those of 
MCCs in the Maritime Continent by Trismidianto and Satyawardhana 
(2018). Analysis of the environmental conditions favourable for 
severe convective events indirectly indicates the climatology and 
trends of severe convective events (Allen et al., 2018; Taszarek et al., 
2018, 2019), though favourable conditions depend on the location, 
such as the difference for tornadoes associated with ETCs between 
the USA and Japan (Tochimoto and Niino, 2018).

Observed trends in severe convective storms are highly regionally 
dependent. In the USA, it is indicated that there is no significant 
increase in convective storms, and hail and severe thunderstorms 
(Kunkel et al., 2013; Kossin et al., 2017). There is an upward trend 
in the frequency and intensity of extreme precipitation events in the 
USA (high confidence) (Kunkel et al., 2013; Easterling et al., 2017), and 
MCSs have increased in occurrence and precipitation amounts since 
1979 (limited evidence) (Feng et al., 2016). Significant interannual 
variability of hailstone occurrences is found in the Southern Great 
Plains of the USA (Jeong et al., 2020). The mean annual number 
of tornadoes has remained relatively constant, but their variability 
of occurrence has increased since the 1970s, particularly over the 
2000s, with a  decrease in the number of days per year, but an 
increase in the number of tornadoes on these days (Brooks et al., 
2014; Elsner et al., 2015, 2019; Kossin et al., 2017; Allen, 2018). There 
has been a shift in the distribution of tornadoes, with increases in the 
mid-south of the USA and decreases over the High Plains (Gensini 
and Brooks, 2018). Trends in MCSs are relatively more visible for 

particular aspects of MCSs, such as lengthening of active seasons 
and dependency on duration. MCSs have increased in occurrence 
and precipitation amounts since 1979 (Easterling et al., 2017). Feng 
et al. (2016) analysed that the observed increases in spring total and 
extreme rainfall in the central USA are dominated by MCSs, with 
increased frequency and intensity of long-lasting MCSs. 

Studies on trends in severe convective storms and their ingredients 
outside of the USA are limited. Westra et al. (2014) found that there 
is an increase in the intensity of short-duration convective events 
(minutes to hours) over many regions of the world, except eastern 
China. In Europe, a climatology of tornadoes shows an increase in 
detected tornadoes between 1800 and 2014, but this trend might be 
affected by the density of observations (Antonescu et al., 2016a, b). 
An increase in the trend in extreme daily rainfall is found in south-
eastern France, where MCSs play a  key role in this type of event 
(Blanchet et al., 2018; Ribes et al., 2019). Trend analysis of the mean 
annual number of days with thunderstorms since 1979 in Europe 
indicates an increase over the Alps and central, south-eastern, and 
eastern Europe, with a decrease over the south-west (Taszarek et al., 
2019). In the Sahelian region, Taylor et al. (2017) analysed MCSs 
using satellite observations since 1982 and showed an increase in the 
frequency of extreme storms. In Bangladesh, the annual number of 
propagating MCSs decreased significantly during 1998–2015 based 
on TRMM precipitation data (Habib et al., 2019). Prein and Holland 
(2018) estimated the hail hazard from large-scale environmental 
conditions using a statistical approach and showed increasing trends 
in the USA, Europe, and Australia. However, trends in hail on regional 
scales are difficult to validate because of an insufficient length of 
observations and inhomogeneous records (Allen, 2018). The high 
spatial variability of hail suggests it is reasonable that there would be 
local signals of both positive and negative trends, and the trends that 
are occurring in hail globally are uncertain. In China, the total number 
of days that have either a thunderstorm or hail have decreased by 
about 50% from 1961 to 2010, and the reduction in these severe 
weather occurrences correlates strongly with the weakening of the 
East Asian summer monsoon (Q. Zhang et al., 2017). More regional 
aspects of severe convective storms are detailed in Chapter 12.

In summary, because the definition of severe convective storms varies 
depending on the literature and the region, it is not straightforward 
to make a synthesizing view of observed trends in severe convective 
storms in different regions. In particular, observational trends in 
tornadoes, hail, and lightning associated with severe convective 
storms are not robustly detected due to insufficient coverage of the 
long-term observations. There is medium confidence that the mean 
annual number of tornadoes in the USA has remained relatively 
constant, but their variability of occurrence has increased since the 
1970s, particularly over the 2000s, with a decrease in the number of 
days per year, and an increase in the number of tornadoes on these 
days (high confidence). Detected tornadoes have also increased in 
Europe, but the trend depends on the density of observations. 

11.7.3.3 Model Evaluation

The explicit representation of severe convective storms requires non-
hydrostatic models with horizontal grid spacings finer than 4  km, 
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denoted as convection-permitting models or storm-resolving models 
(Section  10.3.1). Convection-permitting models are becoming 
available to run over a wide domain, such as a continental scale or even 
over the global area, and show realistic climatological characteristics 
of MCSs (Prein et al., 2015; Guichard and Couvreux, 2017; Satoh et al., 
2019). Such high-resolution simulations are computationally too 
expensive to perform at the larger domain and for long periods, and 
alternative methods by using an RCM with dynamical downscaling 
are generally used (Section  10.3.1). Convection-permitting models 
are used as the flagship project of CORDEX to particularly study 
projections of thunderstorms (Section 10.3.3). Simulations of North 
American MCSs by a  convection-permitting model conducted by 
Prein et al. (2020) were able to capture the main characteristics of 
the observed MCSs, such as their size, precipitation rate, propagation 
speed, and lifetime. Cloud-permitting model simulations in Europe 
also showed sub-daily precipitation realistically (Ban et al., 2014; 
Kendon et al., 2014). Evaluation of precipitation conducted using 
convection-permitting simulations around Japan showed that finer 
resolution improves intense precipitation (Murata et al., 2017). MCSs 
over Africa simulated using convection-permitting models showed 
better extreme rainfall (Kendon et al., 2019) and diurnal cycles and 
convective rainfall over land than the coarser-resolution RCMs or 
GCMs (Stratton et al., 2018; Crook et al., 2019).

The other modelling approach is the analysis of the environmental 
conditions that control characteristics of severe convective storms 
using the typical climate model results in CMIP5/6 (Allen, 2018). 
Severe convective storms are generally formed in environments 
with large CAPE and tornadic storms are, in particular, formed with 
a  combination of large CAPE and strong vertical wind shear. As 
the processes associated with severe convective storms occur over 
a  wide range of spatial and temporal scales, some of which are 
poorly understood and are inadequately sampled by observational 
networks, the model calibration approaches are generally difficult 
and insufficiently validated. Therefore, model simulations and their 
interpretations should be done with much caution. 

In summary, there are typically two kinds of modelling approaches 
for studying changes in severe convective storms. One is to use 
convection-permitting models in wider regions or the global domain 
in time-sliced downscaling methods to directly simulate severe 
convective storms. The other is the analysis of the environmental 
conditions that control characteristics of severe convective 
storms by using coarse-resolution GCMs. Even in finer-resolution 
convection-permitting models, it is difficult to directly simulate 
tornadoes, hail storms, and lightning, so modelling studies of these 
changes are limited.

11.7.3.4 Detection and Attribution, Event Attribution

It is extremely difficult to detect differences in time and space of 
severe convective storms (Kunkel et al., 2013). Although some 
ingredients that are favourable for severe thunderstorms have 
increased over the years, others have not; thus, overall, changes in 
the frequency of environments favourable for severe thunderstorms 
have not been statistically significant. Event attribution studies on 
severe convective events have now been undertaken for some cases. 

For the case of the heavy rain event of July 2018 in Japan (Box 11.4), 
Kawase et al. (2020) took a  storyline approach to show that the 
rainfall during this event in Japan was increased by approximately 
7% due to recent rapid warming around Japan. For the case of the 
December 2015 extreme rainfall event in Chennai, India, the extremity 
of the event was equally caused by the warming trend in the Bay of 
Bengal SSTs and the strong El Niño conditions (van Oldenborgh et al., 
2016; Boyaj et al., 2018). For hailstorms, such as those that caused 
disasters in the USA in 2018, detection of the role of climate change 
in changing hail storms is more difficult, because hail storms are 
not, in general, directly simulated by convection-permitting models 
and not adequately represented by the environmental parameters of 
coarse-resolution GCMs (Mahoney, 2020). 

In summary, it is extremely difficult to detect and attribute changes 
in severe convective storms. There is limited evidence that extreme 
precipitation associated with severe convective storms has 
increased in some cases.

11.7.3.5 Projections

Future projections of severe convective storms are usually studied 
either by analysing the environmental conditions simulated by 
climate models, or by a time-slice approach with higher-resolution 
convection-permitting models by comparing simulations downscaled 
with climate model results under historical conditions and those 
under hypothesized future conditions (Kendon et al., 2017; Allen, 
2018). Up to now, individual studies using convection-permitting 
models gave projections of extreme events associated with severe 
convective storms in local regions, and it is not generally possible 
to obtain global or general views of projected changes of severe 
convective storms. Prein et al. (2017) investigated future projections 
of North American MCS simulations and showed an increase in 
MCS frequency and an increase in total MCS precipitation volume 
by the combined effect of increases in maximum precipitation 
rates associated with MCSs and increases in their size. Rasmussen 
et al. (2020) investigated future changes in the diurnal cycle of 
precipitation by capturing organized and propagating convection 
and showed that weak-to-moderate convection will decrease, and 
strong convection will increase in frequency in the future. Ban et al. 
(2015) found that the day-long and hour-long precipitation events 
in summer intensify in the European region covering the Alps. 
Kendon et al. (2019) showed future increases in extreme three-
hourly precipitation in Africa. Murata et al. (2015) investigated 
future projections of precipitation around Japan and showed 
a decrease in monthly mean precipitation in the eastern Japan Sea 
region in December, suggesting that convective clouds become 
shallower in the future in the winter over the Japan Sea.

The other approach is the projection of the environmental conditions 
that control characteristics of severe convective storms by analysing 
climate model results. There is high confidence that CAPE, particularly 
summer mean CAPE and high percentiles of the CAPE in the tropics 
and subtropics, increases in response to global warming in an 
ensemble of climate models including those of CMIP5, mainly from 
increased low-level specific humidity (Sobel and Camargo, 2011; 
M.S. Singh et al., 2017; J. Chen et al., 2020a). Convective inhibition 
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becomes stronger over most land areas under global warming, 
resulting mainly from reduced low-level relative humidity over land 
(J. Chen et al., 2020a). However, there are large differences within 
the CMIP5 ensemble for environmental conditions, which contribute 
to some degree of uncertainty (Allen, 2018). Because the relation 
between simulated environments in models and the occurrence of 
severe convective storms are, in general, insufficiently validated, there 
is generally low confidence in the projection of severe convective 
storms with the approach of the environmental conditions. 

In the USA, projected changes in the environmental conditions show 
an increase in CAPE and no changes or decreases in the vertical 
wind shear, suggesting favourable conditions for an increase in 
severe convective storms in the future, but the interpretation of how 
tornadoes or hail will change is an open question because  of the 
strong dependence on shear (Brooks, 2013). Diffenbaugh et al. 
(2013) showed robust increases in the occurrence of the favourable 
environments for severe convective storms with increased CAPE 
and stronger low-level wind shear in response to future global 
warming. A downscaling approach showed that the variability of the 
occurrence of severe convective storms increases in spring in late 
21st-century simulations (Gensini and Mote, 2015). Future changes in 
hail occurrence in the USA examined through convection-permitting 
dynamical downscaling suggested that the hail season may begin 
earlier in the year and exhibit more interannual variability, with 
increases in the frequency of large hail in broad areas over the USA 
(Trapp et al., 2019). There is medium confidence that the frequency 
and variability of the favourable environments for severe convective 
storms will increase in spring, and low confidence for summer 
and autumn (Diffenbaugh et al., 2013; Gensini and Mote, 2015; 
Hoogewind et al., 2017). The occurrence of hail events in Colorado in 
the USA was examined by comparing both present-day and projected 
future climates using high-resolution model simulations capable of 
resolving hailstorms (Mahoney et al., 2012), which showed that 
hail is almost eliminated at the surface in the future in most of the 
simulations, despite more intense future storms and significantly 
larger amounts of hail generated in-cloud.

Future changes in severe convection environments show 
enhancement of instability with less robust changes in the frequency 
of strong vertical wind shear in Europe (Púčik et al., 2017) and 
in Japan (Muramatsu et al., 2016). In Japan, the frequency of 
conditions favourable for strong tornadoes increases in spring, and 
partly in summer. 

In summary, the average and maximum rain rates associated 
with severe convective storms increase in a  warming world in 
some regions, including the USA (high confidence). There is high 
confidence from climate models that CAPE increases in response 
to global warming in the tropics and subtropics, suggesting more 
favourable environments for severe convective storms. The frequency 
of severe convective storms in spring is projected to increase in 
the USA, leading to a  lengthening of the severe convective storm 
season (medium confidence); evidence in other regions is limited. 
There is significant uncertainty about projected regional changes in 
tornadoes, hail, and lightning due to limited analysis of simulations 
using convection-permitting models (high confidence).

11.7.4 Extreme Winds

Extreme winds are defined here in terms of the strongest near-
surface wind speeds that are generally associated with extreme 
storms, such as TCs, ETCs, and severe convective storms. In previous 
IPCC reports, near-surface wind speed (including extremes), has not 
been assessed as a variable in its own right, but rather in the context 
of other extreme atmospheric or oceanic phenomena. The exception 
was the SREX report (Seneviratne et al., 2012), which specifically 
examined past changes and projections of mean and extreme near-
surface wind speeds. A strong decline in extreme winds compared to 
mean winds was reported for the continental northern mid-latitudes. 
Due to the small number of studies and uncertainties in terrestrial-
based surface wind measurements, the findings were assigned low 
confidence in SREX. The AR5 reported a  weakening of mean and 
maximum winds from the 1960s or 1970s to the early 2000s in the 
tropics and mid-latitudes, and increases in high latitudes, but with 
low confidence in changes in the observed surface winds over land 
(Hartmann et al., 2013). Observed trends in mean wind speed over 
land and the ocean are assessed in Section  2.3.1.4.4. Aspects of 
climate impact-drivers for winds are addressed in Sections 12.3.3 
and 12.5.2, and their regional changes are assessed in Section 12.4.

Observationally, although not specifically addressing extreme 
wind speed changes, negative surface wind speed trends (stilling) 
were found in the tropics and mid-latitudes of both hemispheres 
of –0.014 m s–1 yr–1, while positive trends were reported at high 
latitudes poleward of 70 degrees, based on a review of 148 studies 
(McVicar et al., 2012b). An earlier study attributed the stilling to 
both changes in atmospheric circulation and an increase in surface 
roughness due to an overall increase in vegetation cover (Vautard 
et al., 2010). Since then, a number of studies have mostly confirmed 
these general negative mean-wind trends based on anemometer 
data for Spain (Azorin-Molina et al., 2017), Turkey, (Dadaser-Celik 
and Cengiz, 2014), the Netherlands, (Wever, 2012), Saudi Arabia, 
(Rehman, 2013), Romania, (Marin et al., 2014), and China (Chen 
et al., 2013). Lin et al. (2013) note that wind speed variability over 
China is greater at high-elevation locations compared to those 
closer to mean sea level. Hande et al. (2012), using radiosonde 
data, found an increase in surface wind speed on Macquarie 
Island of Australia. 

A number of new studies have examined surface wind speeds over 
the ocean using ship-based measurements, satellite altimeters, and 
Special Sensor Microwave/Imagers (Tokinaga and Xie, 2011; Zieger 
et al., 2014). It has been noted that wind speed trends tend to be 
stronger in altimeter measurements, although the spatial patterns 
of change are qualitatively similar in both instruments (Zieger et al., 
2014). Q. Liu et al. (2016) found positive trends in surface wind 
speeds over the Arctic Ocean in 20 years of satellite observations. 
Small positive trends in mean wind speed were found in 33 years 
of satellite data, together with larger trends in the 90th percentile 
values over global oceans (Ribal and Young, 2019). These results 
were consistent with an earlier study that found a positive trend in 
1-in-100-year wind speeds (Young et al., 2012). A positive change 
in mean wind speeds was found for the Arabian Sea and the Bay of 
Bengal (Shanas and Kumar, 2015) and Zheng et al. (2017) found that 
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positive wind speed trends over the ocean were larger during winter 
seasons than summer seasons.

Changes in extreme winds are associated with changes in the 
characteristics (locations, frequencies, and intensities) of extreme 
storms, including TCs, ETCs, and severe convective storms. For TCs, 
as assessed in Section  11.7.1.5, it is projected that the average 
peak TC wind speeds will increase globally with warming, while the 
global frequency of TCs over all categories will decrease or remain 
unchanged; the average location where TCs reach their peak wind 
intensity will migrate poleward in the western North Pacific Ocean 
as the tropics expand with warming. Frequency, intensities, and 
geographical distributions of extreme wind events associated with 
TCs will change according to these TC changes. For ETCs, by the 
end of the century, CMIP5 models show that the number of ETCs 
associated with extreme winds will significantly decrease in the mid- 
and high latitudes of the Northern Hemisphere in winter, with the 
projected decrease being larger over the Atlantic (Kar-Man Chang, 
2018), while it will significantly increase irrespective of the season 
in the Southern Hemisphere (Section 11.7.2.4; Chang, 2017). Over 
the ocean in the subtropics, a large ensemble of 60-km global model 
simulations indicated that extreme winds associated with storm 
surges will intensify over 15–35°N in the Northern Hemisphere 
(Mori et al., 2019). However, extreme surface wind speeds will 
mostly decrease due to decreases in the number and intensity of TCs 
over most tropical areas of the Southern Hemisphere (Mori et al., 
2019). The projected changes in the frequency of extreme winds are 
associated with the future changes in TCs and ETCs.

Extreme cyclonic windstorms that share some characteristics with 
both TCs and ETCs occur regularly over the Mediterranean Sea and 
are often referred to as ‘medicanes’ (Ragone et al., 2018; Miglietta 
and Rotunno, 2019; Zhang et al., 2021). Medicanes pose substantial 
threats to regional islands and coastal zones. A  growing body 
of literature consistently found that the frequency of medicanes 
decreases under warming, while the strongest medicanes become 
stronger (Gaertner et al., 2007; Romero and Emanuel, 2013, 2017; 
Cavicchia et al., 2014; Tous et al., 2016; Romera et al., 2017; 
González-Alemán et al., 2019). This is also consistent with expected 
global changes in TCs under warming (Section 11.7.1). Based on the 
consistency of these studies, it is likely that medicanes will decrease 
in frequency, while the strongest medicanes become stronger under 
warming scenario projections (medium confidence).

In summary, the observed intensity of extreme winds is becoming 
less severe in the low to mid-latitudes, while becoming more 
severe in high latitudes poleward of 60 degrees (low confidence). 
Projected changes in the frequency and intensity of extreme winds 
are associated with projected changes in the frequency and intensity 
of TCs and ETCs (medium confidence).

11.8 Compound Events 

The SREX (SREX Chapter 3) first defined compound events as: (i) two 
or more extreme events occurring simultaneously or successively, 
(ii) combinations of extreme events with underlying conditions that 

amplify the impact of the events, or (iii) combinations of events that 
are not themselves extremes but lead to an extreme event or impact 
when combined. 

Further definitions of compound events have emerged since SREX. 
Zscheischler et al. (2018) defined compound events broadly as ‘the 
combination of multiple drivers and/or hazards that contributes to 
societal or environmental risk’. This definition is used in the present 
assessment, because of its clear focus on the risk framework 
established by the IPCC, and also highlighting that compound events 
may not necessarily result from dependent drivers. Compound events 
have been classified into: preconditioned events, where a weather-
driven or climate-driven precondition aggravates the impacts 
of a  climatic impact-driver; multivariate events, where multiple 
drivers and/or climatic impact-drivers lead to an impact; temporally 
compounding events, where a  succession of hazards leads to an 
impact; and spatially compounding events, where hazards in multiple 
connected locations cause an aggregated impact (Zscheischler et al., 
2020). Drivers include processes, variables, and phenomena in the 
climate and weather domain that may span over multiple spatial 
and temporal scales. Hazards (such as floods, heatwaves, wildfires; 
also termed ´climatic impact-drivers´ in this report, see Chapter 12) 
are usually the immediate physical precursors to negative impacts, 
but can occasionally have positive outcomes (Flach et al., 2018). The 
present assessment focuses on the physical dimension of changes in 
compound events, as it is part of the IPCC AR6 Working Group I Report.

11.8.1 Overview

The combination of two or more – not necessarily extreme – weather 
or climate events that occur: i) at the same time; ii) in close succession; 
or iii) concurrently in different regions, can lead to extreme impacts 
that are much larger than the sum of the impacts due to the occurrence 
of individual extremes alone. This is because multiple stressors can 
exceed the coping capacity of a system more quickly. The contributing 
events can be of similar types (clustered multiple events) or of 
different types (Zscheischler et al., 2020). Many major weather- and 
climate-related catastrophes are inherently of a  compound nature 
(Zscheischler et al., 2019). This has been highlighted for a  broad 
range of hazards, such as droughts, heatwaves, wildfires, coastal 
extremes, and floods (Westra et al., 2016; AghaKouchak et al., 2020; 
Ridder et al., 2020). Co-occurring extreme precipitation and extreme 
winds can result in infrastructural damage (Martius et al., 2016); the 
compounding of storm surge and precipitation extremes can cause 
coastal floods (Wahl et al., 2015); the combination of drought and 
heat can lead to tree mortality (Section 11.6; Allen et al., 2015); and 
wildfires increase occurrences of hailstorms and lightning (Y. Zhang 
et al., 2019a). Compound storm types consisting of co-located 
cyclone, front and thunderstorm systems have a  higher chance of 
causing extreme rainfall and extreme winds than individual storm 
types (Dowdy and Catto, 2017). Extremes may occur at similar times 
at different locations (De Luca et al., 2020a, b) but affect the same 
system, for instance, spatially concurrent climate extremes affecting 
crop yields and food prices (Singh et al., 2018; Anderson et al., 2019). 
Studies also show an increasing likelihood for breadbasket regions to 
be concurrently affected by climate extremes with increasing global 
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warming, even between 1.5°C and 2°C of global warming (Box 11.2; 
Gaupp et al., 2019). Concomitant extreme conditions at different 
locations become more probable as changes in climate extremes 
are emerging over an increasing fraction of the land area (Sections 
11.2.3, 11.2.4, 11.8.2 and 11.8.3, and Box 11.4). 

Finally, impacts may occur because of large multivariate anomalies in 
the climate drivers, if systems are adapted to historical multivariate 
climate variability (Flach et al., 2017). For instance, ecosystems 
are typically adapted to the local covariability of temperature and 
precipitation such that a bivariate anomaly may have a large impact, 
even though neither temperature nor precipitation may be extreme 
based on a  univariate assessment (Mahony and Cannon, 2018). 
Given that almost all systems are affected by weather and climate 
phenomena at multiple space-time scales (Raymond et al., 2020), it  
is natural to consider extremes in a  compound event framework. 
It should be noted, however, that multi-hazard dependencies can also 
decrease risk, for instance when hazards are negatively correlated 
(Hillier et al., 2020). Despite this recognition, the literature on past 
and future changes in compound events has been limited, but is 
growing. This section assesses examples of types of compound 
events in available literature. 

In summary, compound events include the combination of two or 
more  – not necessarily extreme  – weather or climate events that 
occur (i) at the same time, (ii) in close succession, or (iii) concurrently 
in different regions. The land area affected by concurrent extremes has 
increased (high confidence). Concurrent extreme events at different 
locations, but possibly affecting similar sectors (e.g., breadbaskets) 
in different regions, will become more frequent with increasing 
global warming, in particular above +2°C of global warming 
(high confidence). 

11.8.2 Concurrent Extremes in Coastal 
and Estuarine Regions

Coastal and estuarine zones are prone to a number of meteorological 
extreme events and also to concurrent extremes (see also 
Section 6.8.2 in SROCC). Floods are a major climatic impact-driver in 
coastal regions around the world (Chapter 12), and flood occurrence 
may be influenced by the dependence between storm surge, extreme 
rainfall, and river flow, but also by sea level rise, waves and tides, as 
well as groundwater for estuaries. Floods with multiple drivers are 
often referred to as ‘compound floods’ (Wahl et al., 2015; Moftakhari 
et al., 2017; Bevacqua et al., 2020c). 

At USA coasts, the probability of co-occurring storm surge and heavy 
precipitation is higher for the Atlantic/Gulf coast relative to the Pacific 
coast (Wahl et al., 2015). Furthermore, six studied locations on the 
USA coast with long overlapping time series show an increase in the 
dependence between heavy precipitation and storm surge over the 
last century, leading to more frequent co-occurring storm surge and 
heavy precipitation events at the present day (Wahl et al., 2015). Storm 
surge and extreme rainfall are also dependent in most locations on the 
Australian coasts (Zheng et al., 2013) and in Europe along the Dutch 
coasts (Ridder et al., 2018), along the Mediterranean Sea, the Atlantic 

coast and the North Sea (Bevacqua et al., 2019). The probability of 
flood occurrence can be assessed via the dependence between storm 
surge and river flow (Bevacqua et al., 2020b, c). For instance, the 
occurrence of a North Sea storm surge in close succession with an 
extreme Rhine or Meuse river discharge is much more probable due 
to their dependence, compared to if both events were independent 
(Kew et al., 2013; Klerk et al., 2015). Significant dependence between 
high sea levels and high river discharge are found for more than 
half of the available station observations, which are mostly located 
around the coasts of North America, Europe, Australia, and Japan 
(Ward et al., 2018). Combining global river discharge with a global 
storm surge model, hotspots of compound flooding have been 
discovered that are not well covered by observations in some regions, 
including Madagascar, Northern Morocco, Vietnam, and Taiwan of 
China (Couasnon et al., 2020).  In  the Dutch Noorderzijlvest area, 
there is more than a two-fold increase in the frequency of exceeding 
the highest warning level compared to the case if storm surge and 
heavy precipitation were independent (van den Hurk et al., 2015). In 
other regions and seasons, the dependence can be insignificant (W. 
Wu et al., 2018) and there can be significant seasonal and regional 
differences in the storm surge–heavy precipitation relationship. 
Assessments of flood probabilities are often not based on actual flood 
measurements; instead, they are estimated from its main drivers, 
including astronomical tides, storm surge, heavy precipitation, and 
high streamflow. Such single driver analyses might underestimate 
flood probabilities if multiple correlated drivers contribute to flood 
occurrence (e.g., van den Hurk et al., 2015). 

Many coastal areas are also prone to the occurrence of compound 
precipitation and wind extremes, which can cause damage, including 
to infrastructure and natural environments. A  high percentage of 
co-occurring wind and precipitation extremes are found in coastal 
regions and in areas with frequent tropical cyclones. Finally, the 
combination of extreme wave height and duration is also shown to 
influence coastal erosion processes (Corbella and Stretch, 2012). 

Aspects of concurrent extremes in coastal and estuarine environments 
have increased in frequency and/or magnitude over the last century in 
some regions. These include an increase in the dependence between 
heavy precipitation and storm surge over the last  century, leading 
to more frequent co-occurring storm surge and heavy precipitation 
events in the present day along USA coastlines (Wahl et al., 2015). In 
Europe, the probability of compound flooding occurrence increases 
most strongly along the Atlantic coast and the North Sea under 
strong warming. This increase is mostly driven by an intensification 
of precipitation extremes and aggravated flooding probability due 
to sea level rise (Bevacqua et al., 2019). At the global scale and 
under a  high-emissions scenario, the concurrence probability of 
meteorological conditions driving compound flooding would increase 
by more than 25%, on average, along coastlines worldwide by 2100, 
compared to the present (Bevacqua et al., 2020c). Sea level extremes 
and their physical impacts in the coastal zone arise from a complex 
set of atmospheric, oceanic, and terrestrial processes that interact 
on a range of spatial and temporal scales and will be modified by 
a  changing climate, including sea level rise (McInnes et al., 2016). 
Interactions between sea level rise and storm surges (Little et al., 
2015), and sea level and fluvial flooding (Moftakhari et al., 2017) are 
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projected to lead to more frequent and intense compound coastal 
flooding events as sea levels continue to rise. 

In summary, there is medium confidence that, over the last century, 
the probability of compound flooding has increased in some locations, 
including along the USA coastline. There is high confidence that the 
occurrence and magnitude of compound flooding in coastal regions 
will increase in the future due to both sea level rise and increases in 
heavy precipitation.

11.8.3 Concurrent Droughts and Heatwaves

Concurrent droughts and heatwaves have a  number of negative 
impacts on human society and natural ecosystems. Studies since 
SREX and AR5 show several occurrences of observed combinations 
of drought and heatwaves in various regions.

Over most land regions, temperature and precipitation are strongly 
negatively correlated during summer (Zscheischler and Seneviratne, 
2017), mostly due to land–atmosphere feedbacks (Sections 11.1.6 and 
11.3.2), but also because synoptic-scale weather systems favourable 
for extreme heat are also unfavourable for rain (Berg et al., 2015). 
This leads to a strong correlation between droughts and heatwaves 
(Zscheischler and Seneviratne, 2017). Drought events characterized 
by low precipitation and extreme high temperatures have occurred, 
for example, in California (AghaKouchak et al., 2014), inland Eastern 
Australia (King et al., 2014), and large parts of Europe (Orth et al., 
2016a). The 2018 growing season was both record-breaking dry and 
hot in Germany (Zscheischler and Fischer, 2020).

The probability of co-occurring meteorological droughts and 
heatwaves has increased in the observational period in many regions 
and will continue to do so under unabated warming (Herrera-Estrada 
and Sheffield, 2017; Zscheischler and Seneviratne, 2017; Hao et al., 
2018; Sarhadi et al., 2018; Alizadeh et al., 2020; Wu et al., 2021). Overall, 
projections of increases in co-occurring drought and heatwaves are 
reported in northern Eurasia (Schubert et al., 2014), Europe (Orth 
et al., 2016a; Sedlmeier et al., 2018), south-east Australia (Kirono 
et al., 2017), multiple regions of the USA (Diffenbaugh et al., 2015; 
Herrera-Estrada and Sheffield, 2017), north-west China (X. Li et al., 
2019; Kong et al., 2020) and India (Sharma and Mujumdar, 2017). The 
dominant signal is related to the increase in heatwave occurrence, 
which has been attributed to anthropogenic forcing (Section 11.3.4). 
This means that, even if drought occurrence is unaffected, compound 
hot and dry events will be more frequent (Sarhadi et al., 2018; Yu 
and Zhai, 2020). 

Drought and heatwaves are also associated with fire weather, related 
through high temperatures, low soil moisture, and low humidity. 
Fire weather refers to weather conditions conducive to triggering 
and sustaining wildfires, which generally include temperature, soil 
moisture, humidity, and wind (Chapter 12). Concurrent hot and dry 
conditions amplify conditions that promote wildfires (Schubert et al., 
2014; Littell et al., 2016; Dowdy, 2018; Hope et al., 2019). Burnt area 
extent in western USA forests (Abatzoglou and Williams, 2016) and 
particularly in California (Williams et al., 2019) has been linked to 

anthropogenic climate change via a  significant increase in vapour 
pressure deficit, a primary driver of wildfires. A study of the western 
USA examined the correlation between historical water-balance 
deficits and annual area burned, across a range of vegetation types, 
from temperate rainforest to desert (McKenzie and Littell, 2017). 
The relationship between temperature and dryness, and wildfire, 
varied with ecosystem type, and the fire–climate relationship was 
nonstationary and vegetation-dependent. In many fire-prone regions, 
such as the Mediterranean and China’s Daxing’anling region, 
projections for increased severity of future drought and heatwaves 
may lead to an increased frequency of wildfires relative to observed 
climatology (Tian et al., 2017; Ruffault et al., 2018). Observations 
show a long-term trend towards more dangerous weather conditions 
for bushfires in many regions of Australia, which is attributable (at 
least in part) to anthropogenic climate change (Dowdy, 2018). There 
is emerging evidence that recent regional surges in wildland fires are 
being driven by changing weather extremes (Cross-Chapter Box 3; Jia 
et al., 2019; SRCCL Chapter 2). Between 1979 and 2013, the global 
burnable area affected by long fire weather seasons doubled, and 
the mean length of the fire weather season increased by 19% (Jolly 
et al., 2015). However, at the global scale, the total burned area has 
been decreasing between 1998 and 2015 due to human activities 
mostly related to changes in land use (Andela et al., 2017). Given 
the projected high confidence increase in compound hot and dry 
conditions, there is high confidence that fire weather conditions 
will become more frequent at higher levels of global warming in 
some regions. This assessment is also consistent with Chapter 12’s 
examination of regional projected changes in fire weather. The 
SRCCL (Chapter 2) assessed with high confidence that future climate 
variability is expected to enhance the risk and severity of wildfires in 
many biomes such as tropical rainforests.

In summary, there is high confidence that concurrent heatwaves and 
droughts have increased in frequency over the last  century at the 
global scale due to human influence. There is medium confidence 
that weather conditions that promote wildfires (fire weather) have 
become more probable in southern Europe, northern Eurasia, the 
USA, and Australia over the last century. There is high confidence that 
compound hot and dry conditions become more probable in nearly 
all land regions as global mean temperature increases. There is high 
confidence that fire weather conditions will become more frequent at 
higher levels of global warming in some regions.
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Box 11.4 | Case Study: Global-scale Concurrent Climate Anomalies – the 2015–2016 Extreme 
El Niño and 2018 Boreal Spring–Summer

Occurrence of concurrent or near-concurrent extremes in 
different parts of a  region, or in different locations around the 
world, challenges adaptation and risk management capacity. This 
can occur as a  result of natural climate variability, as climates 
in different parts of the world are interconnected through large-
scale atmospheric–oceanic teleconnections. In addition, in 
a  warming climate, the probability of having several locations 
being affected simultaneously by, for example, hot extremes and 
heatwaves increases strongly as a  function of global warming, 
with detectable changes even for changes as small as +0.5°C 
of additional global warming (Sections 11.2.4 and 11.3, Cross-
chapter Box  11.1). Recent articles have highlighted the risks 
associated with concurrent extremes over large spatial scales 
(e.g.,  Lehner and Stocker, 2015; Boers et al., 2019; Gaupp 
et al., 2019). There is evidence that such global-scale extremes 
associated with hot temperature extremes are increasing in 
occurrence (Sippel et al., 2015; Vogel et al., 2019). Hereafter, the 
focus is on two case studies of recent global-scale events that 
featured concurrent extremes in several regions across the world. 
The first focuses on concurrent extremes driven by variability in 
tropical Pacific sea surface temperatures (SSTs) associated with the 2015–2016 extreme El Niño, while the second addresses the 
impacts of global warming combined with abnormal atmospheric circulation patterns in the 2018 boreal spring/summer. 

The extreme El Niño in 2015–2016
El Niño–Southern Oscillation (ENSO) is one of the phenomena that have the ability to bring multitudes of extremes in different 
parts of the world, especially in extreme El Niño (Annex IV.2.3) cases. Additionally, the background climate warming associated with 
greenhouse gas forcing can significantly exacerbate extremes in parts of the world, even under normal El Niño conditions. The 2015–
2016 extreme El Niño event was one of the three extreme El Niño events since the 1980s and the availability of satellite rainfall 
observations. According to some measures, it was the strongest El Niño in the past 145 years (Barnard et al., 2017). The 2015–2016 
warmth was unprecedented at the central equatorial Pacific (Niño4: 5°N–5°S, 150°E–150°W), and this exceptional warmth was 
unlikely to have occurred entirely naturally, appearing to reflect an anthropogenically forced trend (Newman et al., 2018). In particular, 
its signal was seen in very high monthly global mean surface temperature (GMST) values in late 2015 and early 2016, contributing 
to the highest record of GMST in 2016 (Section 2.3.1.1). Both the ENSO amplitude and the frequency of high-magnitude events since 
1950 is higher than over the pre-industrial period (medium confidence) (Section 2.4.2), suggesting that global extremes similar to 
those associated with the 2015–2016 extreme El Niño would occur more frequently under further increases in global warming. A brief 
summary of extreme events that happened in 2015–2016 is provided in Sections 6.2.2 and 6.5.1.1 of the Special Report on the Ocean 
and Cryosphere in a Changing Climate (SROCC). We provide some highlights illustrating extremes that occurred in different parts of 
the world during the 2015–2016 extreme El Niño in Box 11.4, Table 1, as well as in the short summary that follows.

Several regions were strongly affected by droughts in 2015, including Indonesia, Australia, the Amazon region, Ethiopia, southern Africa, 
and Europe. As a result, global measurements of land water anomalies were particularly low in that year (Humphrey et al., 2018). In 2015, 
Indonesia experienced a severe drought and forest fire, causing pronounced impact on economy, ecology and human health due to haze 
crisis (Field et al., 2016; Huijnen et al., 2016; Patra et al., 2017; Hartmann et al., 2018). The northern part of Australia experienced high 
temperatures and low precipitation between late 2015 and early 2016, and the extensive mangrove trees were damaged along the 
Gulf of Carpentaria in Northern Australia (Duke et al., 2017). The Amazon region experienced the most intense droughts of this century 
in 2015–2016. This drought was more severe than the previous major droughts that occurred in the Amazon in 2005 and 2010 (Lewis 
et al., 2011; Erfanian et al., 2017; Panisset et al., 2018). The 2015–2016 Amazon drought impacted the entirety of South America north 
of 20°S during the austral spring and summer (Erfanian et al., 2017). It also increased forest fire incidence by 36% compared to the 
preceding 12 years (Aragão et al., 2018) and, as a consequence, increased the biomass burning outbreaks and the carbon monoxide (CO) 
concentration in the area, affecting air quality (Ribeiro et al., 2018). This out-of-season drought affected the water availability for human 
consumption and agricultural irrigation. It also left rivers with very low water levels and large sandbanks, preventing ship transportation 
of food, medicines, and fuels (INMET, 2017). Eastern African countries were impacted by drought in 2015. The drought in Ethiopia was the 
worst in several decades and was associated with the 2015–2016 extreme El Niño (Blunden and Arndt, 2016; Philip et al., 2018b). It was 

Box 11.4, Figure 1 | Analysis of the percentage of land area affected 
by temperature extremes larger than two (blue) or three (orange) 
standard deviations in June–July–August (JJA) between 30°N and 
80°N using a normalization. This figure shows a substantial increase in the 
overall land area affected by very strong hot extremes since 1990. Adapted from 
Sippel et al. (2015).
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suggested that anthropogenic warming contributed to the 2015 Ethiopian and southern African droughts by increasing SSTs and local 
air temperatures (Funk et al., 2016, 2018b; Yuan et al., 2018a). It has also been suggested that the 2015–2016 extreme El Niño affected 
circulation patterns in Europe during the 2015–2016 winter (Geng et al., 2017; Scaife et al., 2017). 

The atmospheric CO2 growth rate was particularly high in 2015, possibly related to some of the mentioned droughts, in particular in 
Indonesia and the Amazon region, leading to higher CO2 release in combination with less CO2 uptake from land areas (Humphrey et al., 
2018). The impact of the 2015–2016 extreme El Niño on vegetation systems via drought was also shown from satellite data (Kogan 
and Guo, 2017). Overall, tropical forests were a carbon source to the atmosphere during the 2015–2016 El Niño-related drought, with 
some estimates suggesting that up to 2.3 PgC were released (Brando et al., 2019).

The 2015–2016 extreme El Niño has induced extreme precipitation in some regions. Severe rainfall events were observed in Chennai 
city in India in Devember 2015, and the Yangtze river region in China in June–July 2016, and it was shown that these rainfall events 
are partly attributed to the 2015–2016 extreme El Niño (van Oldenborgh et al., 2016; Boyaj et al., 2018; Sun and Miao, 2018; Yuan 
et al., 2018b; Zhou et al., 2018). 

In 2015, tropical cyclone activity was notably high in the North Pacific (Blunden and Arndt, 2016). Over the western North Pacific, there 
were 13 Category 4 and 5 tropical cyclones (TCs), more than twice the area’s typical annual value of 6.3 (W. Zhang et al., 2016b). 
Similarly, a record-breaking number of TCs were observed in the eastern North Pacific, particularly in the western part of that domain 
(Collins et al., 2016; Murakami et al., 2017b). These extraordinary TC activities were related to the average SST anomaly during that 
year, which were associated with the 2015–2016 extreme El Niño and the positive phase of the Pacific Meridional Mode (Murakami 
et al., 2017b; Hong et al., 2018; Yamada et al., 2019). However, it has been suggested that the intense TC activities in both the western 
and the eastern North Pacific in 2015 were not only due to the El Niño, but also to a contribution of anthropogenic forcing (Murakami 
et al., 2017b; S.-H. Yang et al., 2018). The impact of the Indian Ocean SST was also suggested to contribute to the extreme TC activity 
in the western North Pacific in 2015 (Zhan et al., 2018). In contrast, in Australia, it was the least active TC season since satellite records 
began in 1969–1970 (Blunden and Arndt, 2017).

Box 11.4, Table 1 | List of events related to the 2015–2016 Extreme El Niño in the literature.

Region Period Events References

Indonesia July 2015 to June 2016 Droughts, forest fire
Field et al. (2016); Huijnen et al. (2016); 
Patra et al. (2017); Hartmann et al. (2018)

Northern Australia
Between late 2015 
and early 2016

High temperature and drought Duke et al. (2017)

Amazon September 2015 to May 2016 Droughts, forest fire
Jiménez-Muñoz et al. (2016); Erfanian et al. 
(2017); Aragão et al. (2018); Panisset et al. (2018); 
Ribeiro et al. (2018)

The entirety of South America 
north of 20°S

Austral spring and  
2015–2016 summer 

Droughts Erfanian et al. (2017)

Ethiopia February-September 2015 Droughts Blunden and Arndt (2016); Philip et al. (2018b)

Southern Africa November 2015–April 2016 Droughts
Funk et al. (2016, 2018a); Blamey et al. (2018); 
Yuan et al. (2018a)

Europe Boreal 2015–2016 winter Effects on circulation patterns Geng et al. (2017); Scaife et al. (2017)

India May 2016 High temperature van Oldenborgh et al. (2018)

India December 2015 Extreme rainfall van Oldenborgh et al. (2016); Boyaj et al. (2018)

China June–July 2016 Extreme rainfall
Sun and Miao (2018); Yuan et al. (2018b); 
Zhou et al. (2018)

Western North Pacific Boreal summer 2015
The large number (13) of Category 4 and 
5 tropical cyclones

Blunden and Arndt (2016); B. Mueller et al. 
(2016); W. Zhang et al. (2016a); Hong et al., 
(2018); Yamada et al. (2019)

Eastern North Pacific Boreal summer 2015 A record-breaking number of tropical cyclones Collins et al. (2016); Murakami et al. (2017b)

Global 2015–2016 El Niño
High CO2 release to the atmosphere 
associated with droughts and fires 
in several affected regions

Humphrey et al. (2018); Brando et al. (2019)

 
Box 11.4 (continued)
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Global-scale temperature extremes and concurrent precipitation extremes in boreal 2018 spring and summer
In the 2018 boreal spring–summer season (May–August), wide areas of the mid-latitudes in the Northern Hemisphere experienced 
heat extremes and (in part) enhanced drought (B ox 11.4, Figure 2; Kornhuber et al., 2019; Vogel et al., 2019). The reported impacts 
included (Vogel et al., 2019): 90 deaths from heat strokes in Quebec (Canada); 1469 deaths from heat strokes in Japan (Shimpo et al., 
2019); 48 heat-related deaths in the Republic of Korea (Min et al., 2020); heat warnings affecting 90,000 students in the USA; fi res 
in numerous countries (Canada (British Columbia), USA (California), Finland (Lapland), Latvia); crop losses in the UK, Germany and 
Switzerland (Vogel et al., 2019) and overall in central and Northern Europe (leading to yield reductions of up to 50% for the main 
crops (Toreti et al., 2019); fi sh deaths in Switzerland; and melting of roads in the Netherlands and the UK, among others. In addition 
to the numerous hot and dry extremes, an extremely heavy rainfall event occurred over wide areas of Japan from 28 June to 8 July 
2018 (Tsuguti et al., 2018), which was followed by a heatwave (Shimpo et al., 2019). The heavy precipitation event caused more than 
230 deaths in Japan, and was named ‘the Heavy Rain Event of July 2018’. 

The heavy precipitation event was characterized by unusually widespread and persistent rainfall and locally anomalous total 
precipitation led by band-shaped precipitation systems, which are frequently associated with heavy precipitation events in East 
Asia (Section 11.7.3; Kato, 2020). The extreme rainfall in Japan was caused by anomalous moisture transport with a combination 
of abnormal jet condition (Takemi and Unuma, 2019; Takemura et al., 2019; Tsuji et al., 2020; Yokoyama et al., 2020), which can be 
viewed as an atmospheric river (Sections 8.2.2.8 and 11.7.2; Yatagai et al., 2019) caused by intensifi ed infl ow velocity and high SST 
around Japan (Sekizawa et al., 2019; Kawase et al., 2020). 

This precipitation event and the subsequent heatwave are related to abnormal condition of the jet stream and North Pacifi c Subtropical 
High in this month (Shimpo et al., 2019; Ren et al., 2020), which caused extreme conditions from Europe, Eurasia, and North America 
(Box 11.4, Figure 2; Kornhuber et al., 2019). A combination of the positive anomaly of the North Atlantic Oscillation (NAO, Annex IV.2.1) 
and the meandering jets is necessary to explain the pattern of the observed anomalies (Drouard et al., 2019). A role of Atlantic SST 
anomaly on the meandering jets and the subtropical high have been suggested (B. Liu et al., 2019). These dynamic and thermodynamic 
components generally have substantial infl uence on extreme rainfall in East Asia (Oh et al., 2018), but it is under investigation whether 
these factors were due to anthropogenic forcing.

Regarding the hot extremes that occurred across the Northern Hemisphere in the 2018 boreal May–July period, Vogel et al. (2019) 
found that the event was unprecedented in terms of the total area affected by hot extremes (on average, about 22% of populated 
and agricultural areas in the Northern Hemisphere) for that period, but was consistent with a +1°C climate which was the estimated 

Box 11.4 (continued)

Box 11.4, Figure 2 | Meteorological conditions in July 2018. The colour shading shows the monthly mean near-surface air temperature anomaly with respect 
to 1981–2010. Contour lines indicate the geopotential height in m, highlighted are the isolines on 12,000 m and 12,300 m, which indicate the approximate positions 
of the polar-front jet and subtropical jet, respectively. The light blue-green ellipse shows the approximate extent of the strong precipitation event that occurred at the 
beginning of July in the region of Japan and Korea. All data is from the global European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5, 
Hersbach et al., 2020).
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global mean temperature anomaly around that time (for 2017; SR1.5). This study also found that events similar to the 2018 May–July 
temperature extremes would approximately occur two out of three years under +1.5°C of global warming, and every year under +2°C 
of global warming. Imada et al. (2019) also suggest that the mean annual occurrence of extreme hot days in Japan will be expected to 
increase by 1.8 times under a global warming level of 2°C above pre-industrial levels. Kawase et al. (2020) showed that the extreme 
rainfall in Japan during this event was increased by approximately 7% due to recent rapid warming around Japan. Imada et al. (2020) 
showed that the probability of the Heavy Rain Event of July 2018 in Japan was increased from 0.22% to 2.00% due to anthropogenic 
warming. Hence, it is virtually certain that these 2018 concurrent events would not have occurred without human-induced global 
warming. Concurrent events of this type are also projected to happen more frequently under higher levels of global warming. However, 
there is currently low confidence in projected changes in the frequency or strength of the anomalous circulation patterns leading to 
concurrent extremes (e.g., Cross-Chapter Box 10.1). 

The case studies presented in this Box illustrate the current state of knowledge regarding the contribution of human-induced climate 
change to recent concurrent extremes in the global domain. Recent years have seen a more frequent occurrence of such events. 
The heatwave in Europe in the 2019 boreal summer and its coverage in the global domain is an additional example (Vautard et al., 
2020). However, very few studies investigate which types of concurrent extreme events could occur under increasing global warming. 
It has been noted that such events could also be of particular risk for concurrent impacts in the world’s breadbaskets (Zampieri et al., 
2017; Kornhuber et al., 2020; see also Section 11.8.1).

In summary, the 2015–2016 extreme El Niño and the 2018 boreal spring/summer extremes were two examples of recent concurrent 
extremes. The El Niño event in 2015–2016 was one of the three extreme El Niño events since the 1980s, and there are many extreme 
events concurrently observed in this period including droughts, heavy precipitation, and more frequent intense tropical cyclones. Both 
the ENSO amplitude and the frequency of high-magnitude events since 1950 is higher than over the pre-industrial period (medium 
confidence), suggesting that global extremes similar to those associated with the 2015–2016 extreme El Niño would occur more 
frequently under further increases in global warming. The 2018 boreal spring/summer extremes were characterized by heat extremes 
and enhanced droughts in wide areas of the mid-latitudes in the Northern Hemisphere and extremely heavy rainfall in East Asia. These 
concurrent events were generally related to the abnormal condition of the jet and North Pacific Subtropical High, but also amplified 
by background global warming. It is virtually certain that these 2018 concurrent extreme events would not have occurred without 
human-induced global warming. Recent years have seen a more frequent occurrence of such concurrent events. However, it is still 
unknown which types of concurrent extreme events could occur under increasing global warming.

 
Box 11.4 (continued)

11.9 Regional Information on Extremes

This section complements the assessments of changes in temperature 
extremes (Section  11.3), heavy precipitation (Section  11.4), and 
droughts (Section  11.6), by providing additional regional details. 
Regional changes in floods are assessed in Chapter  12. Owing to 
the large number of regions and space limitations, the regional 
assessment for each of the AR6 reference regions (see Section 1.5.2.2 
for a  description) is presented here in a  set of tables. The tables 
are organized according to types of extremes (temperature, 
heavy precipitation, droughts) for Africa (Tables 11.4–11.6), Asia 
(Tables  11.7–11.9), Australasia (Tables 11.10–11.12), Central and 
South America (Tables 11.13–11.15), Europe (Tables 11.16–11.18), 
and North America (Tables 11.19–11.21). Each table contains 
regional assessments for observed changes, the human contribution 
to the observed changes, and projections of changes in these 
extremes at 1.5°C, 2°C and 4°C of global warming. A synthesis of 
regional changes in hot extremes, heavy precipitation, agricultural 
and ecological droughts, and hydrological droughts can be found in 
the Chapter 11 Appendix in Table 11.A.2.

11.9.1 Overview

Sections 11.9.2, 11.9.3 and 11.9.4 provide brief summaries of the 
underlying evidence used to derive the regional assessments for 
temperature extremes, heavy precipitation events, and droughts, 
respectively. The assessments take into account evidence from 
studies based on global datasets (global studies), as well as regional 
studies. Global studies include analyses for all continents and AR6 
regions with sufficient data coverage, and provide an important 
basis for cross-region consistency, as the same data and methods 
are used for all regions. However, individual regional studies may 
include additional information that is missed in global studies, and 
thus provide an important regional calibration for the assessment.

The assessments are presented using the calibrated confidence and 
likelihood language (Box  1.1). Low confidence is assessed when 
there is limited evidence, either because of a lack of available data 
in the region and/or a  lack of relevant studies. Low confidence is 
also assessed when there is a  lack of agreement on the evidence 
of a  change, which may be due to large variability or inconsistent 
changes depending on the considered sub-regions, time frame, 
models, assessed metrics, or studies. In cases when the evidence is 
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strongly contradictory, for example, with substantial regional changes 
of opposite sign, ‘mixed signal’ is indicated. With an assessment of 
low confidence, the direction of change is not indicated in the tables. 
A  direction of change (increase or decrease) is provided with an 
assessment of medium confidence, high confidence, likely, or higher 
likelihood levels. Likelihood assessments are only provided in the 
case of high confidence. In some cases, there may be confidence in 
a small or no change.

For projections, changes are assessed at three global warming levels 
(GWLs; Cross-Chapter Box 11.1): 1.5°C, 2°C and 4°C. The assessments 
use literature based both on GWL projections and scenario-based 
projections. In the case of literature on scenario-based projections, 
a mapping between scenarios/time frames and GWLs was performed, 
as documented in Cross-Chapter Box 11.1. Projections of changes in 
temperature and precipitation extremes are assessed relative to two 
different baselines: the recent past (1995–2014) and pre-industrial 
(1850–1900). With smaller changes relative to the variability, in 
particular because droughts happen on longer timescales compared 
to extremes of daily temperature and precipitation, it is more difficult 
to distinguish changes in drought relative to the recent past. As such, 
changes in droughts are assessed relative to the pre-industrial 
baseline, unless indicated otherwise. 

11.9.2 Temperature Extremes

Tables 11.4, 11.7, 11.10, 11.13, 11.16, and 11.19 include assessments 
for past temperature extremes and their attribution, as well as future 
projections. The evidence is mostly drawn from changes in metrics based 
on daily maximum and minimum temperatures, similar to those used 
in Section 11.3. The regional assessments start from global studies that 
used consistent analyses for all regions globally with sufficient data. 
This includes Dunn et al. (2020) for observed changes, and Li et al. (2021) 
and the Chapter 11 Supplementary Material (11.SM) for projections 
with the CMIP6 multi-model ensemble. Evidence from regional studies, 
and those based on the CMIP5 multi-model ensemble or CORDEX 
simulations, are then used to refine the confidence assessments. 
For attribution, Seong et al. (2020) provide a  consistent analysis for 
AR6 regions, and Z. Wang et al. (2017a) for SREX regions. Additional 
regional studies, including event attribution analyses (Section  11.2), 
are used when available. In some regions that were not analysed 
in Seong et al. (2020), and those with no known event attribution 
studies, medium confidence of a  human contribution is assessed: 
when there is strong evidence of changes from observations that are 
in the direction of model-projected changes for the future; when the 
magnitude of projected changes increases with global warming; and 
where there is no other evidence to the contrary. This assessment is 
further supported by an understanding of how temperature extremes 
change with the mean temperature and overwhelming evidence of 
a  human contribution to the observed larger-scale changes in the 
mean temperature and temperature extremes. 

11.9.3 Heavy Precipitation

Tables 11.5, 11.8, 11.11, 11.14, 11.17, and 11.20 include assessments 
for past changes in heavy precipitation events and their attribution, as 
well as future projections. The evidence is mostly drawn from changes 
in metrics based on one-day or five-day precipitation amounts, as 
addressed in Section  11.4. Similar to temperature extremes, the 
assessment of changes in heavy precipitation uses global studies, 
including Dunn et al. (2020) and Sun et al. (2021) for observed 
changes, and Li et al. (2021) and the Chapter  11 Supplementary 
Material (11.SM) for projected changes using the CMIP6 multi-model 
ensemble. For attribution, Paik et al. (2020) provided continental 
analyses where data coverage was sufficient, but no attribution 
studies based on global data are available for the regional scale. 
For each region, regional studies, and studies based on the CMIP5 
multi-model ensemble or CORDEX simulations, are also considered in 
the assessments for past changes, attribution, and projections.

11.9.4 Droughts

Tables 11.6, 11.9, 11.12, 11.15, 11.18, and 11.21 provide regional 
assessments on past, attributed and projected changes in 
droughts. The assessment is subdivided in three drought categories 
corresponding to four drought types: i) meteorological droughts, 
ii)  agricultural and ecological droughts, and iii) hydrological 
droughts  (see Section  11.6). A  list of metrics and global studies 
used for the assessments is provided below. The evidence from 
global studies is complemented in each continent with evidence 
from regional studies. An overview of studies considered for the 
assessments in projections is provided in Table 11.3.

Meteorological droughts are assessed based on observed and 
projected changes in precipitation-only metrics such as the 
Standardized Precipitation Index (SPI) and Consecutive Dry Days 
(CDD). Observed changes are assessed based on two global 
studies, Dunn et al. (2020) for CDD, and Spinoni et al. (2019) for SPI. 
For  projections, evidence for changes at 1.5°C and 2°C of global 
warming is drawn from L. Xu et al. (2019) and Touma et al. (2015) 
(based on RCP8.5 for 2010–2054 compared to 1961–2005) for SPI 
(CMIP5) and the Chapter  11 Supplementary Material (11.SM) for 
CDD (CMIP6). For projections at 4°C of global warming, evidence is 
drawn from several sources, including Touma et al. (2015) and Spinoni 
et al. (2020) for SPI (from CMIP5 and CORDEX, respectively), and 
11.SM for CDD (CMIP6). No global-scale studies are available for the 
attribution of meteorological drought, so this assessment is based on 
regional detection and attribution or event attribution studies.

Agricultural and ecological droughts are primarily assessed based 
on observed and projected changes in total column soil moisture, 
complemented by evidence on changes in surface soil moisture, 
water-balance (precipitation minus evapotranspiration (ET)) and 
metrics driven by precipitation and atmospheric evaporative demand 
(AED) such as the SPEI and PDSI (Section 11.6). In the latter, only 
studies including estimates based on the Penman–Monteith equation 
(SPEI-PM and PDSI-PM) are considered because of biases associated 
with temperature-only approaches (Section  11.6). Medium to 
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high confidence in drying was assigned in the assessment for arid 
regions if a  signal was also identifiable in total soil moisture in 
addition to surface soil moisture or metrics that combine AED and 
precipitation, which tend to dry more in these regions. For observed 
changes, evidence is drawn from several sources: Padrón et al. 
(2020) for changes in precipitation minus ET, as well as soil moisture 
from the multi-model Land Surface Snow and Soil Moisture Model 
Intercomparison Project within CMIP6 (11.SM; van Den Hurk et al., 
2016); Greve et al. (2014) for changes in precipitation minus ET, and 
precipitation minus AED; Spinoni et al. (2019) for changes in SPEI-PM; 
and Dai and Zhao (2017) for changes in PDSI-PM. 

For projections at 1.5°C of global warming, evidence is drawn 
from: L. Xu et al. (2019), based on CMIP5; 11.SM based on CMIP6 
for changes in total column and surface soil moisture; and from 
Naumann et al. (2018) for changes in SPEI-PM, based on EC-Earth 
simulations driven with SSTs from seven CMIP5 Earth system models. 
For projections at 2°C of global warming, evidence is drawn from 
L. Xu et al. (2019) based on CMIP5, and Cook et al. (2020) (SSP1-2.6, 
2071–2100 compared to pre-industrial) and the Chapter  11 
Supplementary Material (11.SM) based on CMIP6, for changes in 
total column and surface soil moisture; evidence is also drawn from 
Naumann et al. (2018) for changes in SPEI-PM. For projections at 4°C 

of global warming, evidence is mostly drawn from: Cook et al. (2020) 
(SSP3-7.0, 2071–2100) and the Chapter 11 Supplementary Material 
(11.SM) based on CMIP6 for changes in total column and surface 
soil moisture; and from Vicente-Serrano et al. (2020c) for changes 
in SPEI-PM based on CMIP5. No global-scale studies with regional-
scale information are available for the attribution of agricultural 
and ecological droughts, so this assessment is based on regional 
detection and attribution or event attribution studies.

Hydrological droughts are assessed based on observed and projected 
changes in low flows, complemented by information on changes in 
mean runoff. For observed changes, evidence is drawn from three 
studies (Dai and Zhao, 2017; Gudmundsson et al., 2019, 2021). For 
projected changes at 1.5°C of global warming, evidence is drawn from 
Touma et al. (2015) based on analyses of the Standardized Runoff 
Index (SRI) (CMIP5, based on 2010–2054 compared to 1961–2005), 
complemented with regional studies when available. For projected 
changes at 2°C of global warming, evidence is also drawn from Cook 
et al. (2020) for changes in runoff in CMIP6 (Scenario SSP1-2.6, 2071–
2100), and from J. Zhai et al. (2020) for changes in low flows based 
on simulations with a single model. For projected changes at 4°C of 
global warming, evidence is drawn from: Touma et al. (2015) based on 
CMIP5 analyses of SRI; Cook et al. (2020) for changes in surface and 

Table 11.3 | Global analyses considered for the assessments of drought projections. MET refers to meteorological droughts, AGR/ECOL to agricultural and ecological 
droughts, and HYDR to hydrological droughts.

Reference Model Dataa Indexa Drought Type Projection Horizons Baseline

11.SM CMIP6
CDD, Soil moisture 
(total, surface)

MET 1.5°C, 2°C, 4°C 1850–1900

Cook et al. (2020) CMIP6
Soil moisture 
(total, surface), 
runoff (total, surface)

AGR/ECOL, 
HYDR

2071–2011, SSP1-2.6 (about 2°C,  
Cross-Chapter Box 11.1; Table 4.2)

2071–2011, SSP3-7-3 (about 4°C,  
Cross-Chapter Box 11.1; Table 4.2)

1850–1900

L. Xu et al. (2019) CMIP5
SPI, soil moisture (total, 
surface)

MET, AGR/ECOL 1.5°C, 2°C 1971–2000

Touma et al. (2015) CMIP5 SPI, SRI MET, HYDR

2010–2054, RCP8.5 (about 1.5°C;  
Cross-Chapter Box 11.1 and 11.SM.1)

2055–2099, RCP8.5 (about 3.5°C,  
Cross-Chapter Box 11.1 and 11.SM.1)

1961–2005

Spinoni et al. (2020)
CORDEX (CMIP5 driving GCMs, 
RCMs)

SPI MET

2071–2100, RCP4.5 (about 2.5°C,  
Cross-Chapter Box 11.1 and 11.SM.1)

2071–2100, RCP8.5 (about 4.5°C,  
Cross-Chapter Box 11.1 and 11.SM.1)

1981–2010

Naumann et al. (2018)
One GCM (EC-EARTH3-HR v3.1) 
driven with SST fields from seven 
CMIP5 GCMs

SPEI-PM AGR/ECOL 1.5°C, 2°C, (3°C) 0.6°C

Vicente-Serrano et al. 
(2020c)

CMIP5 SPEI-PM AGR/ECOL
2070–2100, RCP8.5 (about 4.5°C,  
Cross-Chapter Box 11.1 and 11.SM.1)

1970–2000

Giuntoli et al. (2015)
ISI-MIP (six GHMs and five 
CMIP5 GCMs)

Low-flows days HYDR
2066–2099, RCP8-5 (about 4°C,  
Cross-Chapter Box 11.1 and 11.SM.1)

1972–2005

J. Zhai et al. (2020)
One GHM (VIC) driven by four 
CMIP5 GCMs 

Extreme low runoff HYDR 1.5°C, 2°C 2006–2015

a CMIP5 and CMIP6: Coupled Model Intercomparison Project Phases 5/6; CORDEX: Coordinated Regional Downscaling Experiment; GCMs: global climate models; RCMs: 
regional climate models; SST: sea surface temperatures; ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project; GHMs: Global Hydrological Models; CDD: consecutive 
dry days index; SPI: Standardized Precipitation Index; SRI: Standardized Runoff Index; SPEI-PM: Penman–Monteith-based Standardized Precipitation Evapotranspiration Index. 
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total runoff based on CMIP6; and Giuntoli et al. (2015) for changes in 
low flows based on the Inter-Sectoral Impact Model Intercomparison 
Project (ISI-MIP) based on six Global Hydrological Models (GHMs) and 
five GCMs, including an analysis of inter-model signal-to-noise ratio. 
One global-scale study with regional-scale information is available for 
the attribution of hydrological droughts (Gudmundsson et al., 2021), 
but only in a  few AR6 regions. This information was complemented 
with evidence from regional detection and attribution, and event 
attribution studies when available.
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Frequently Asked Questions

FAQ 11.1 | How Do Changes In Climate Extremes Compare With Changes In 
Climate Averages?

Human-caused climate change alters the frequency and intensity of climate variables (e.g., surface temperature) 
and phenomena (e.g., tropical cyclones) in a variety of ways. We now know that the ways in which average and 
extreme conditions have changed (and will continue to change) depend on the variable and the phenomenon 
being considered. Changes in local surface temperature extremes closely follow the corresponding changes in 
local average surface temperatures. On the contrary, changes in precipitation extremes (heavy precipitation) 
generally do not follow those in average precipitation, and can even move in the opposite direction (e.g., with 
average precipitation decreasing but extreme precipitation increasing).

Climate change will manifest very differently depending on which region, season and variable we are interested 
in. For example, over some parts of the Arctic, temperatures will warm at rates about three to four times higher 
during winter compared to summer months. And in summer, most of northern Europe will experience larger 
temperatures increases than most places in south-east South America and Australasia, with differences that can 
be larger than 1°C, depending on the level of global warming. In general, differences across regions and seasons 
arise because the underlying physical processes differ drastically across regions and seasons.

Climate change will also manifest differently for different weather regimes and can lead to contrasting changes 
in average and extreme conditions. Observations of the recent past and climate model projections show that, 
in most places, changes in daily temperatures are dominated by a general warming where the climatological 
average and extreme values are shifted towards higher temperatures, making warm extremes more frequent and 
cold extremes less frequent. The top panels in FAQ 11.1, Figure 1 show projected changes in surface temperature 
for long-term average conditions (left) and for extreme hot days (right) during the warm season (summer in mid- 
to high latitudes). Projected increases in long-term average temperature differ substantially between different 
places, varying from less than 3°C in some places in central South Asia and southern South America to over 7°C 
in some places in North America, North Africa and the Middle East. Changes in extreme hot days follow changes 
in average conditions quite closely, although, in some places, the warming rates for extremes can be intensified 
(e.g., southern Europe and the Amazon basin) or weakened (e.g., northern Asia and Greenland) compared to 
average values.

Recent observations and global and regional climate model projections point to changes in precipitation 
extremes (including both rainfall and snowfall extremes) differing drastically from those in average precipitation. 
The bottom panels in FAQ 11.1, Figure 1 show projected changes in the long-term average precipitation (left) 
and in heavy precipitation (right). Averaged precipitation changes show striking regional differences, with 
substantial drying in places such as southern Europe and northern South America and wetting in places such as 
the Middle East and southern South America. Changes in extreme precipitation are much more uniform, with 
systematic increases over nearly all land regions. The physical reasons behind the different responses of averaged 
and extreme precipitation are now well understood. The intensification of extreme precipitation is driven by 
the increase in atmospheric water vapour (about 7% per 1°C of warming near the surface), although this is 
modulated by various dynamical changes. In contrast, changes in average precipitation are driven not only by 
moisture increases but also by slower processes that constrain future changes over the globe to only 2–3% per 
1°C of warming near the surface.

In summary, the specific relationship between changes in average and extreme conditions strongly depends on 
the variable or phenomenon being considered. At the local scale, average and extreme surface temperature 
changes are strongly related, while average and extreme precipitation changes are often weakly related. For 
both variables, the changes in average and extreme conditions vary strongly across different places due to the 
effect of local and regional processes.
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FAQ 11.1 (continued) 

FAQ 11.1: How will changes in climate extremes compare with changes in climate averages?

Climate extremeClimate average

Climate extremeClimate average

The direction and magnitude of future changes in climate extremes and averages depend on the variable considered.

-

WarmerWarmer

WetterWetterDrierDrier

Future changes
in temperature
averages and 
extremes will be
similar

Future changes
in precipitation
averages and 
extremes can be
very different

0 864°C °C2

-40% 40%0%-20 20

FAQ 11.1, Figure 1 | Global maps of future changes in surface temperature (top panels) and precipitation (bottom panels) for long-term 
average (left) and extreme conditions (right). All changes were estimated using the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble 
median for a scenario with a global warming of 4°C relative to 1850–1900 temperatures. Average surface temperatures refer to the warmest three-month season 
(summer in mid- to high latitudes) and extreme temperatures refer to the hottest day in a year. Precipitation changes, which can include both rainfall and snowfall 
changes, are normalized by 1850–1900 values and shown as a percentage; extreme precipitation refers to the largest daily precipitation in a year.
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Frequently Asked Questions

FAQ 11.2 | Will Unprecedented Extremes Occur As a Result Of Human-Induced Climate Change?

Climate change has already increased the magnitude and frequency of extreme hot events and decreased 
the magnitude and frequency of extreme cold events, and, in some regions, intensifi ed extreme precipitation 
events. As the climate moves away from its past and current states, we will experience extreme events that 
are unprecedented, either in magnitude, frequency, timing or location. The frequency of these unprecedented 
extreme events will rise with increasing global warming. Additionally, the combined occurrence of multiple 
unprecedented extremes may result in large and unprecedented impacts.

Human-induced climate change has already affected many aspects of the climate system. In addition to the increase 
in global surface temperature, many types of weather and climate extremes have changed. In most regions, the 
frequency and intensity of hot extremes have increased and those of cold extremes have decreased. The frequency 
and intensity of heavy precipitation events have increased at the global scale and over a majority of land regions. 
Although extreme events such as land and marine heatwaves, heavy precipitation, drought, tropical cyclones, and 
associated wildfi res and coastal fl ooding have occurred in the past and will continue to occur in the future, they 
often come with different magnitudes or frequencies in a warmer world. For example, future heatwaves will last 
longer and have higher temperatures, and future extreme precipitation events will be more intense in several 
regions. Certain extremes, such as extreme cold, will be less intense and less frequent with increasing warming. 

Unprecedented extremes – that is, events not experienced in the past – will occur in the future in fi ve different ways 
(FAQ 11.2, Figure 1). First, events that are considered to be extreme in the current climate will occur in the future 
with unprecedented magnitudes. Second, future extreme events will also occur with unprecedented frequency. 
Third, certain types of extremes may occur in regions that have not previously encountered those types of events. 
For example, as the sea level rises, coastal fl ooding may occur in new locations, and wildfi res are already occurring 
in areas, such as parts of the Arctic, where the probability of such events was previously low. Fourth, extreme events 
may also be unprecedented in their timing. For example, extremely hot temperatures may occur either earlier or 

later in the year than they have in the past.

Finally, compound events  – where multiple extreme 
events of either different or similar types occur 
simultaneously and/or in succession  – may be more 
probable or severe in the future. These compound 
events can often impact ecosystems and societies more 
strongly than when such events occur in isolation. 
For example, a drought along with extreme heat will 
increase the risk of wildfi res and agriculture damages 
or losses. As individual extreme events become more 
severe as a  result of climate change, the combined 
occurrence of these events will create unprecedented 
compound events. This could exacerbate the intensity 
and associated impacts of these extreme events.

Unprecedented extremes have already occurred in 
recent years, relative to the 20th century climate. Some 
recent extreme hot events would have had very little 
chance of occurring without human infl uence on the 
climate (see FAQ 11.3). In the future, unprecedented 
extremes will occur as the climate continues to warm. 
Those extremes will happen with larger magnitudes 
and at higher frequencies than previously experienced. 
Extreme events may also appear in new locations, at 
new times of the year, or as unprecedented compound 
events. Moreover, unprecedented events will become 
more frequent with higher levels of warming, for 
example at 3°C of global warming compared to 2°C of 
global warming.

FAQ 11.2: Will climate change cause 
unprecedented extremes? 

Yes, in a changing climate, 
extreme events may be 
unprecedented when they occur with...

Larger magnitude

Increased frequency

New locations

Different timing

New combinations (compound)

FAQ 11.2, Figure 1 | New types of unprecedented extremes that will 
occur as a result of climate change.
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Frequently Asked Questions

FAQ 11.3 | Did Climate Change Cause That Recent Extreme Event In My Country?

While it is diffi cult to identify the exact causes of a particular extreme event, the relatively new science of event 
attribution is able to quantify the role of climate change in altering the probability and magnitude of some 
types of weather and climate extremes. There is strong evidence that characteristics of many individual extreme 
events have already changed because of human-driven changes to the climate system. Some types of highly 
impactful extreme weather events have occurred more often and have become more severe due to these human 
infl uences. As the climate continues to warm, the observed changes in the probability and/or magnitude of some 
extreme weather events will continue as the human infl uences on these events increase. 

It is common to question whether human-caused climate change caused a major weather- and climate-related 
disaster. When extreme weather and climate events do occur, both exposure and vulnerability play an important 
role in determining the magnitude and impacts of the resulting disaster. As such, it is diffi cult to attribute a specifi c 
disaster directly to climate change. However, the relatively new science of event attribution enables scientists to 
attribute aspects of specifi c extreme weather and climate events to certain causes. Scientists cannot answer directly 
whether a particular event was caused by climate change, as extremes do occur naturally, and any specifi c weather 
and climate event is the result of a complex mix of human and natural factors. Instead, scientists quantify the relative 
importance of human and natural infl uences on the magnitude and/or probability of specifi c extreme weather 
events. Such information is important for disaster risk reduction planning, because improved knowledge about 
changes in the probability and magnitude of relevant extreme events enables better quantifi cation of disaster risks.

On a case-by-case basis, scientists can now quantify the contribution of human infl uences to the magnitude and 
probability of many extreme events. This is done by estimating and comparing the probability or magnitude of 
the same type of event between the current climate – including the increases in greenhouse gas concentrations 

and other human infl uences – and an alternate world 
where the atmospheric greenhouse gases remained 
at pre-industrial levels. FAQ 11.3 Figure  1  illustrates 
this approach using differences in temperature and 
probability between the two scenarios as an example. 
Both the pre-industrial (blue) and current (red) 
climates experience hot extremes, but with different 
probabilities and magnitudes. Hot extremes of a given 
temperature have a  higher probability of occurrence 
in the warmer current climate than in the cooler pre-
industrial climate. Additionally, an extreme hot event 
of a particular probability will be warmer in the current 
climate than in the pre-industrial climate. Climate model 
simulations are often used to estimate the occurrence 
of a specifi c event in both climates. The change in the 
magnitude and/or probability of the extreme event 
in the current climate compared to the pre-industrial 
climate is attributed to the difference between the two 
scenarios, which is the human infl uence.

Attributable increases in probability and magnitude 
have been identifi ed consistently for many hot 
extremes. Attributable increases have also been found 
for some extreme precipitation events, including 
hurricane rainfall events, but these results can vary 
among events. In some cases, large natural variations 
in the climate system prevent attributing changes in 
the probability or magnitude of a specifi c extreme to 
human infl uence. Additionally, attribution of certain 
classes of extreme weather (e.g., tornadoes) is beyond 
current modelling and theoretical capabilities. As 
the climate continues to warm, larger changes in 

FAQ 11.3: Climate change and extreme events
Extreme events have become more probable and more intense. 
Many of these changes can be attributed to human influence 
on the climate.

Same temperature 
but more probable

Current climate

Same probability 
but hotterPre-industrial 

climate

Cooler WarmerTemperature

Annual 
chance 
of event

More 
probable

Probabilities are lower 
for hotter (more extreme) events

Less 
probable

FAQ 11.3, Figure  1 | Changes in climate result in changes in the 
magnitude and probability of extremes. Example of how temperature 
extremes differ between a climate with pre-industrial greenhouse gases (shown 
in blue) and the current climate (shown in orange) for a representative region. 
The horizontal axis shows the range of extreme temperatures, while the vertical 
axis shows the annual chance of each temperature event’s occurrence. Moving 
towards the right indicates increasingly hotter extremes that are more rare (less 
probable). For hot extremes, an extreme event of a particular temperature in the 
pre-industrial climate would be more probable (vertical arrow) in the current 
climate. An event of a  certain probability in the pre-industrial climate would 
be warmer (horizontal arrow) in the current climate. While the climate under 
greenhouse gases at the pre-industrial level experiences a  range of hot 
extremes, such events are hotter and more frequent in the current climate.
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probability and magnitude are expected and, as a result, it will be possible to attribute future temperature and 
precipitation extremes in many locations to human influences. Attributable changes may emerge for other types 
of extremes as the warming signal increases.

In conclusion, human-caused global warming has resulted in changes in a wide variety of recent extreme weather 
events. Strong increases in probability and magnitude, attributable to human influence, have been found for 
many heatwaves and hot extremes around the world.

FAQ 11.3 (continued) 
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Large Tables

3  This region includes northern Africa and southern Europe.

Table 11.4 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in Africa, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details. CMIP6: Coupled Model Intercomparison Project Phase 6; TXx: hottest daily 
maximum temperature; TNn: coldest daily minimum temperature; CORDEX: Coordinated Regional Downscaling Experiment; RCM: regional climate model.

Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

All Africa 

Insufficient data for the 
continent, but there 
is high confidence 
of an increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes in 
all subregions with 
sufficient data

Limited evidence for 
the continent, but there 
is medium confidence 
in a human contribution 
to the observed increase 
in the intensity and 
frequency of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes for 
all subregions with 
sufficient data

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events, and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM. Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level 
(Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level 
(Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level 
(Li et al., 2021)

Medium confidence 
in the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence 
in a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the intensity 
and frequency of 
cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Mediterranean 
(MED)3

Significant increases 
in the intensity and 
frequency of hot 
extremes, and significant 
decreases in the 
intensity and frequency 
of cold extremes (Donat 
et al., 2013b, 2014a, 
2016a; El Kenawy 
et al., 2013; Acero et al., 
2014; Filahi et al., 2016; 
Fioravanti et al., 2016; 
Ruml et al., 2017; Türkeş 
and Erlat, 2018; Dunn 
et al., 2020; Peña-Angulo 
et al., 2020a; Driouech 
et al., 2021) 

Robust evidence of 
a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 
(Sippel and Otto, 2014; 
Z. Wang et al., 2017a; 
Wilcox et al., 2018; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0.5°C 
in the 50-year TXx and TNn 
events compared to the 
1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Zollo et al., 2016; Weber et al., 
2018; Cardoso et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency 
of TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2.5°C in 
annual TXx and TNn compred 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of hot 
extremes, and decrease in the 
intensity and frequency of cold 
extremes (Tomozeiu et al., 2014; 
Nastos and Kapsomenakis, 2015; 
Zollo et al., 2016; Abaurrea et al., 
2018; Weber et al., 2018; Cardoso 
et al., 2019; Cardell et al., 2020; 
Coppola et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 3.5°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 5°C in annual 
TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
and frequency of hot extremes, 
and decrease in the intensity and 
frequency of cold extremes (Giorgi 
et al., 2014; Tomozeiu et al., 2014; 
Engelbrecht et al., 2015; Nastos 
and Kapsomenakis, 2015; Zollo 
et al., 2016; Cardoso et al., 2019; 
Cardell et al., 2020; Driouech 
et al., 2020; Coppola et al., 2021a)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes

Low confidence

All
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

Mediterranean 
(MED)4 

continued

Very likely increase 
in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Likely human 
contribution to the 
observed increase 
in the intensity 
and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Sahara (SAH)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2014a; 
Moron et al., 2016; 
Dunn et al., 2020)

Strong evidence 
of changes from 
observations that 
are in the direction 
of model-projected 
changes for the 
future. The magnitude 
of projected 
changes increases 
with global warming

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events, and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C 
in the 50-year TXx and 
TNn events compared to the 
1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 3.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Likely increase in the 
intensity and frequency 
of hot extremes and 
decrease in the intensity 
and frequency of 
cold extremes 

Medium confidence 
in a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014))
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

4  This region includes northern Africa and southern Europe.

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

Western Africa 
(WAF)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the intensity 
and frequency of cold 
extremes (Mouhamed 
et al., 2013; Chaney 
et al., 2014; Barry et al., 
2018; Dunn et al., 2020; 
Perkins-Kirkpatrick 
and Lewis, 2020)

Strong evidence 
of changes from 
observations that 
are in the direction 
of model-projected 
changes for the future. 
The magnitude of 
projected changes 
increases with 
global warming

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C in 
the 50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 3°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Medium confidence 
in a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the  
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

North Eastern 
Africa (NEAF)

Increases in the 
intensity and frequency 
of hot extremes and 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2013b; 
Chaney et al., 2014; 
Omondi et al., 2014; 
Gebrechorkos et al., 
2018; Perkins-Kirkpatrick 
and Lewis, 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes and 
decrease in the intensity 
and frequency of cold 
extremes (Funk et al., 
2015a; Marthews et al., 
2015; Otto et al., 2015a; 
Philip et al., 2020; 
Kew et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 2.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 4°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

North Eastern 
Africa (NEAF) 
continued

Medium confidence 
in the increase in the 
intensity and frequency 
of hot extremes

Medium confidence 
in a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial)

Central Africa 
(CAF)

Insufficient data to 
assess trends (Dunn 
et al., 2020)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the intensity 
and frequency of TXx events 
and a robust decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
1°C in the 50-year TXx and 
TNn events compared to the 
1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 3°C in 
the 50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 4.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a)

Low confidence Low confidence

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

South Eastern 
Africa (SEAF)

Increases in the 
intensity and frequency 
of hot extremes and 
decreases in the 
intensity and frequency 
of cold extremes 
(Chaney et al., 2014; 
Omondi et al., 2014; 
Gebrechorkos et al., 
2018; Perkins-Kirkpatrick 
and Lewis, 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes, and 
decrease in the intensity 
and frequency of cold 
extremes (Funk et al., 
2015a; Marthews et al., 
2015; Otto et al., 2015a; 
Philip et al., 2020; 
Kew et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0.5°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of more 
than 2.5°C in the 50-year TXx 
and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Medium confidence 
in the increase in the 
intensity and frequency 
of hot extremes

Medium confidence 
in a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial)

West Southern 
Africa (WSAF)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Russo 
et al., 2016; Kruger 
and Nxumalo, 2017; 
Dunn et al., 2020; 
Mbokodo et al., 2020; 
Perkins-Kirkpatrick 
and Lewis, 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes, and 
decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Seong et al., 2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events, and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 1°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of more 
than 2.5°C in the 50-year TXx 
and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

West Southern 
Africa (WSAF) 
continued

Likely increase in the 
intensity and frequency 
of hot extremes, 
and decrease in the 
intensity and frequency 
of cold extremes 

Human influence 
likely contributed to 
the observed increase 
in the intensity and 
frequency of hot 
extremes, and decrease 
in the intensity 
and frequency 
of cold extremes 

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial)

East Southern 
Africa (ESAF)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Russo 
et al., 2016; Kruger 
and Nxumalo, 2017; 
Dunn et al., 2020; 
Mbokodo et al., 2020; 
Perkins-Kirkpatrick 
and Lewis, 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of more 
than 2.5°C in the 50-year TXx 
and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Observed trends 
Detection and 

Attribution; Event 
Attribution 

Projections

1.5°C 2°C 4°C

Madagascar 
(MDG)

Increases in the 
intensity and frequency 
of hot extremes and 
decreases in the 
intensity and frequency 
of cold extremes 
(Vincent et al., 2011; 
Donat et al., 2013a)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0.5°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0.5°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity 
and frequency of hot extremes 
(Weber et al., 2018; Coppola 
et al., 2021a) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes (Giorgi et al., 
2014; Engelbrecht et al., 2015; 
Coppola et al., 2021a) 

Medium confidence 
in the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Low confidence 

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared with 
pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared with 
pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared with 
pre-industrial)

 

 
 
 
 
Table 11.5 |  Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in Africa, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Africa

Insufficient data 
to assess trends

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 2% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 6% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 20% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with  
the recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Mediterranean 
(MED)5

Lack of agreement on 
the evidence of trends 
(Casanueva et al., 2014; 
Donat et al., 2014a; 
de Lima et al., 2015; 
Gajić-Čapka et al., 2015; 
Rajczak and Schär, 2017; 
Jacob et al., 2018; 
Mathbout et al., 2018b; 
Ribes et al., 2019; 
Dunn et al., 2020; Peña-
Angulo et al., 2020a; 
Coppola et al., 2021a; 
Sun et al., 2021)

Limited evidence  
(Añel et al., 2014)

CMIP6 models, CMIP5 
models, and RCMs project 
inconsistent changes in the 
region (Zollo et al., 2016; 
Samuels et al., 2018; Cardell 
et al., 2020; Li et al., 2021).

CMIP6 models project a robust 
increase in the intensity 
and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 2% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021), and more 
than 0% in annual Rx1day and 
Rx5day, and less than –2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Zollo et al., 2016; 
Samuels et al., 2018; Cardell 
et al., 2020) 

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 8% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021), and more than 2% in 
annual Rx1day and Rx5day, 
and less than -2% in annual 
Rx30day compared to pre-
industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation (Rajczak 
et al., 2013; Monjo et al., 2016; 
Zollo et al., 2016; Samuels 
et al., 2018; Tramblay and 
Somot, 2018; Cardell et al., 
2020; Driouech et al., 2020; 
Coppola et al., 2021b) 

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
High confidence (compared  
with pre-industrial) 

Sahara (SAH)

Insufficient data 
to assess trends 
(Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 15% 
in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 8% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021), and more than 20% 
in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 30% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021), and more than 40% 
in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

5 This region includes northern Africa and southern Europe.

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Western Africa 
(WAF)

Insufficient data and 
a lack of agreement on 
the evidence of trends 
(Mouhamed et al., 2013; 
Chaney et al., 2014; 
Sanogo et al., 2015; 
Barry et al., 2018; Zittis, 
2018; Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence (Parker 
et al., 2017)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 10% in annual 
Rx1day and Rx5day, and 8% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
of heavy precipitation (Nikulin 
et al., 2018)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 8% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 15% in annual 
Rx1day and Rx5day, and 10% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
of heavy precipitation (Déqué 
et al., 2017; Nikulin et al., 2018)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 25% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 30% in annual 
Rx1day and Rx5day, and 15% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
of heavy precipitation (Giorgi 
et al., 2014; Akinsanola and 
Zhou, 2019; Dosio et al., 2019; 
Coppola et al., 2021b)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

North Eastern 
Africa (NEAF)

Insufficient data 
to assess trends 
(Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 8% in annual 
Rx1day and Rx5day, and 6% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 8% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021), and more than 10% 
in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 25% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 35% in annual 
Rx1day and Rx5day, and 30% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with  
the recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Central Africa 
(CAF)

Insufficient data 
to assess trends 
(Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence  
(Otto et al., 2013)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 10% in annual 
Rx1day and Rx5day, and 8% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
of heavy precipitation 
(Nikulin et al., 2018)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). 
Median increase of more 
than 6% in the 50-year Rx1day 
and Rx5day events compared 
to the 1°C warming level 
(Li et al., 2021), and more than 
10% in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations 
for an increase in the intensity 
of heavy precipitation (Déqué 
et al., 2017; Nikulin et al., 2018; 
Coppola et al., 2021b)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 20% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 30% in annual 
Rx1day and Rx5day, and 20% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Diedhiou et al., 
2018; Fotso-Nguemo et al., 
2018; Sonkoué et al., 2019; 
Coppola et al., 2021b)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with  
the recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

South Eastern 
Africa (SEAF)

Insufficient data 
to assess trends 
(Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 6% in annual 
Rx1day and Rx5day, and 4% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 8% in annual 
Rx1day and Rx5day, and 6% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 25% in annual 
Rx1day and Rx5day, and 15% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared  
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

West Southern 
Africa (WSAF)

Intensification of 
heavy precipitation 
(Donat et al., 2013b; 
Sun et al., 2021)

Limited evidence
CMIP6 models project 
inconsistent changes in the 
region (Li et al., 2021, 11.SM)

CMIP6 models project 
inconsistent changes in the 
region (Li et al., 2021, 11.SM)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 10% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 4% in annual 
Rx1day and Rx5day, and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Giorgi et al., 2014; 
Pinto et al., 2016; Dosio et al., 
2019; Coppola et al., 2021b) 

Medium confidence 
in the intensification 
of heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

East Southern 
Africa (ESAF)

Intensification of 
heavy precipitation 
(Donat et al., 2013b; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 4% in annual 
Rx1day and Rx5day, and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 6% in annual 
Rx1day and Rx5day, and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 15% in annual 
Rx1day and Rx5day, and 8% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Giorgi et al., 2014; 
Pinto et al., 2016; Dosio et al., 
2019; Coppola et al., 2021b) 

Medium confidence in 
the intensification of 
heavy precipitation. 

Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Madagascar 
(MDG)

Insufficient data to 
assess trends, and trends 
in available data are 
not significant (Vincent 
et al., 2011; Donat et al., 
2013b; Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 4% in annual 
Rx1day and Rx5day, and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Weber et al., 2018)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021), 
and more than 4% in annual 
Rx1day and Rx5day, and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Weber et al., 2018)

CMIP6 models project a robust 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 15% in annual 
Rx1day and Rx5day, and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Weber et al., 2018)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared  
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

6 This region includes northern Africa and southern Europe.

 
 
 
 
Table 11.6 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in Africa, subdivided by AR6 regions. See Sections 
11.9.1 and 11.9.4 for details.

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought
Low confidence

All

Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

MED6 

MET
ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

AGR 
ECOL

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL 
 TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

HYDR
ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

ENTRY IDENTICAL  
TO EU-MED

Sahara 
(SAH)

MET
Low confidence:  
Limited evidence

Low confidence:  
Limited evidence

Low confidence: Mixed 
signals (seasonally and 
geographically varying) 
and non-robust changes 
(Cook et al., 2020). 
Slightly reduced drying 
based on Consecutive 
dry days (CDD) (11.SM)

 Low confidence: Mixed 
signals (seasonally and 
geographically varying) 
and non-robust changes 
(Cook et al., 2020). Slightly 
reduced drying based 
on CDD (11.SM)

Low confidence: Mixed 
signals (seasonally and 
geographically varying) 
and non-robust changes 
(Cook et al., 2020). 
Reduced drying based 
on CDD (11.SM)

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

Sahara 
(SAH) 
continued

AGR 
ECOL

Low confidence;  
Limited evidence

Low confidence;  
Limited evidence

Low confidence: Limited 
evidence and inconsistent 
signals in CMIP6 (11.SM)

Low confidence: 
Limited evidence 
and inconsistent 
signals in CMIP6 (11.SM)

Low confidence: 
Limited evidence and 
inconsistent signals in 
CMIP6. (Cook et al., 2020; 
Vicente-Serrano et al., 
2020c; 11.SM)

HYDR
Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence

Low confidence: Limited 
evidence. One study 
shows lack of signal 
(Touma et al., 2015)

Low confidence: Limited 
evidence. One study 
shows lack of signal 
(Touma et al., 2015)

Low confidence: 
Inconsistent trends 
(Touma et al., 2015; 
Cook et al., 2020)

Western 
Africa 
(WAF)

MET

Medium confidence: 
Increased drying based 
on CDD and Standardized 
Precipitation Index (SPI) 
(Chaney et al., 2014; Barry 
et al., 2018; Spinoni et al., 
2019; Dunn et al., 2020)

Low confidence: Mixed 
signals (Lawal et al., 2016; 
Knutson and Zeng, 2018)

Drying attributable in 
fraction of region to climate 
change over 1901–2010 
and 1951–2010 time 
frames, but trend reversal 
from 1981–2010 (Knutson 
and Zeng, 2018)

No evidence that late 
onset of 2015 wet season 
in Nigeria was due to 
human contribution 
(Lawal et al., 2016)

Low confidence: Mixed 
signal. Mean increase 
of CDD over larger part 
of Guinea Coast in 25 
CORDEX AFR runs, 1.5°C 
minus 1971–2000 (Klutse 
et al., 2016); slight increase 
in SPI-based meteorological 
drought frequency and 
magntidue in the Niger 
and Volta river basin in 
CORDEX simulations 
(Oguntunde et al., 2020); 
but inconsistent changes 
in CDD in CMIP6 global 
climate models (GCMs) 
(Diedhiou et al., 2018; 
11.SM), as well as in mean 
precipitation in CMIP6 
GCMs (Cook et al., 2020)

Low confidence: 
Mixed signal. Mean 
increase of CDD over larger 
part of Guinea Coast in 25 
CORDEX AFR runs, 1.5°C 
minus 1971–2000 (Klutse 
et al., 2016); slight increase 
in SPI-based meteorological 
drought frequency and 
magntidue in the Niger 
and Volta river basin in 
CORDEX simulations 
(Oguntunde et al., 2020); 
but inconsistent changes 
in CDD in CMIP6 GCMs 
(Diedhiou et al., 2018; 
11.SM), as well as in 
mean precipitation in 
CMIP6 GCMs (Cook 
et al., 2020)

Medium confidence: 
Increase in meteorological 
droughts, mostly on 
seasonal time scale. 
Seasonal CDD increases 
in the region for March–
April–May and June–July–
August (Dosio et al., 2019); 
increase in SPI-based 
meteorological drought 
frequency and magnitude 
in Niger and Volta river 
basins (Oguntunde et al., 
2020); and slight increase 
in SPI-based meteorological 
drought for overall region 
(Spinoni et al., 2020). 
Mixed signal in annual CDD 
(Akinsanola and Zhou, 2019; 
Dosio et al., 2019; 11.SM)

AGR 
ECOL

Medium confidence: 
Increased drying 
based on water-
balance estimates and 
Standardized Precipitation 
Evapotranspiration Index-
Penman-Monteith (SPEI-
PM), with stronger signals 
for SPEI-PM (Greve et al., 
2014; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence:  
Limited evidence

Low confidence: 
Inconsistent signals 
(geographical and inter-
model variations) in soil 
moisture and SPEI-PM 
(Naumann et al., 2018; L. 
Xu et al., 2019; 11.SM)

Low confidence: 
Inconsistent signals 
(geographical and inter-
model variations) in soil 
moisture and SPEI-PM 
(Naumann et al., 2018; L. 
Xu et al., 2019; Cook et al., 
2020; 11.SM)

Low confidence: Mixed 
signal. Inconsistent 
changes depending 
on subregion, indices, 
and season (Naumann 
et al., 2018; Cook et al., 
2020; Vicente-Serrano 
et al., 2020c; 11.SM). 
Most projections show 
a drying in Western half 
of domain. 

HYDR

Medium confidence: 
Decrease in streamflow 
(Dai and Zhao, 2017; 
Tramblay et al., 2020) 

Low confidence:  
Limited evidence

Low confidence: 
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: 
Inconsistent signal 
(Touma et al., 2015; 
Cook et al., 2020)

Low confidence: 
Inconsistent projections 
and/or non-robust 
changes (Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

North 
Eastern 
Africa 
(NEAF)

MET

Low confidence: Mixed 
signals. Increasing drought 
in part of the region, in 
particular in recent two 
decades; but decreasing 
drought trends in other part 
of domain (Note: wetting 
trend in Horn of Africa in 
Spinoni et al. 2019)(Funk 
et al., 2015b; Nicholson, 
2017; Spinoni et al., 2019).

No trends in observations 
in Ethiopia and large 
variability (Philip 
et al., 2018b)

Low confidence: Limited 
evidence on attribution of 
long-term trends.

Robust evidence that recent 
meteorological drought 
events (in 2016 and 2017) 
are not attributable to 
anthropogenic climate 
change (Lott et al., 2013; 
Marthews et al., 2015; Uhe 
et al., 2017; Funk et al., 
2018b; Otto et al., 2018a; 
Philip et al., 2018b; Kew 
et al., 2021)

Low confidence: 
Inconsistent trends. 
Inconsistent and weak 
signals in SPI (Nguvava 
et al., 2019; L. Xu et al., 
2019), with high spatial 
variation (Nguvava et al., 
2019); inconsistent signals 
in CDD in CMIP6 (11.SM)

Nguvava et al. (2019): 
projections at 1.5°C 
GWL in CORDEX AFR 
data, compared to 
1971–2000: non-significant 
changes in SPI-12-based 
meteorological drought 
frequency and intensity

Low confidence: 
Inconsistent trends. 
Inconsistent changes 
in CDD (11.SM) and 
SPI (Nguvava et al., 
2019; L. Xu et al., 2019); 
but tendency towards 
increase in mean 
precipitation 
(Cook et al., 2020)

Nguvava et al. (2019): 
projections at 2°C GWL 
in CORDEX AFR data, 
compared to 1971–2000: 
non-significant changes 
in SPI-12-based 
meteorological drought 
frequency and intensity

Medium confidence: 
Decrease in meteorological 
drought (Sillmann et al., 
2013b; Dosio et al., 2019; 
Cook et al., 2020; Spinoni 
et al., 2020), 

Sillmann et al. 2013b: 
Decrease in CDD based on 
CMIP3 and CMIP5, RCP8.5, 
2081–2100 vs 1981–2000

Dosio et al. (2019), 
(2070–2099/1981–2010), 
rcp 8.5, 23 RCM: Decrease 
in CDD

AGR 
ECOL

Low confidence: 
Inconsistent trends 
(Greve et al., 2014; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: 
Inconsistent trends 
(Naumann et al., 2018; 
L. Xu et al., 2019; 11.SM)

Low confidence: 
Inconsistent trends, 
but tendency to wetting 
(Naumann et al., 2018; 
L. Xu et al., 2019; 
Cook et al., 2020; 11.SM)

Medium confidence: 
Decrease in soil moisture-
based drought (Cook et al., 
2020; Vicente-Serrano et al., 
2020c; 11.SM) 

HYDR
Low confidence:  
Limited evidence

Low confidence: Limited 
evidence on attribution 
of long-term trends 
(Fenta et al., 2017)

Low confidence: Limited 
evidence. One study 
shows lack of signal 
(Touma et al., 2015)

Low confidence: Limited 
evidence due to lack of 
studies; inconsistent trends 
(Touma et al., 2015; Cook 
et al., 2020)

Medium confidence: 
Decrease in hydrological 
drought compared to 
pre-industrial conditions 
and recent past (Giuntoli 
et al., 2015; Cook 
et al., 2020) but some 
inconsistent signals (Touma 
et al., 2015)

Central 
Africa 
(CAF)

MET

Medium confidence 
Decrease in SPI (Spinoni 
et al., 2019) and mean 
rainfall (Aguilar et al., 
2009; Hua et al., 2016; 
Dai and Zhao, 2017)

Low confidence: 
Inconsistent signal in 
observations vs models for 
1951–2010 trends (Knutson 
and Zeng, 2018); no signal 
in single-model based study 
(Otto et al., 2013)

Low confidence: 
Mixed signal. Drying 
tendency (increasing CDD) 
in CORDEX AFR simulations 
compared to 1971–2000 
(Mba et al., 2018); but 
tendency towards less 
drying (CDD decrease) 
in CMIP6 GCMs (11.SM), 
consistent with increase 
in precipitation at higher 
warming levels (Cook et al., 
2020). Inconsistent signals 
in SPI in CMIP5 GCMs (L. 
Xu et al., 2019)

Low confidence: 
Mixed signal. Robust 
drying tendency (increasing 
CDD) in CORDEX AFR 
simulations compared to 
1971–2000 (Mba et al., 
2018); but inconsistent 
signal in CMIP6 GCMs, 
with tendency towards 
CDD decrease (11.SM); 
consistent with projected 
increase in mean 
precipitation (Cook et al., 
2020); inconsistent signals 
in CDD in CMIP5 GCMs 
(Sonkoué et al., 2019). 
Decrease frequency of SPI-
based droughts in CMIP5 
(L. Xu et al., 2019)

Low confidence: Mixed 
signal, depending on 
multi-model experiment 
and considered index 
(Fotso-Nguemo et al., 2018; 
Dosio et al., 2019; Sonkoué 
et al., 2019; Spinoni et al., 
2020; 11.SM) 

Increase in mean 
precipitation in CMIP6 
GCMs (Cook et al., 2020). 
Increase in CDD (increase 
in meteorological drought) 
in CORDEX AFR simulations 
(Dosio et al., 2019; Fotso-
Nguemo et al., 2019) but 
inconsistent CDD signals 
in CMIP6, with tendency 
towards CDD decrease; 
11.SM and CMIP5 GCMs 
(Sonkoué et al., 2019). 
Increase in SPI (less drying) 
in CMIP5 GCMs (Spinoni 
et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

Central 
Africa 
(CAF) 
continued

AGR 
ECOL

Medium confidence 
Decrease in water-balance 
availability or SPEI, but 
some regional variability 
and index dependency 
of trends (Greve et al., 
2014; Dai and Zhao, 2017; 
Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence: 
Limited evidence  
due to lack of studies

Low confidence: 
Inconsistent signals. 
Slight tendency towards soil 
moisture wetting in CMIP5 
(L. Xu et al., 2019) and 
CMIP6 (11.SM); and slight 
increase (less drying 
in SPEI-PM (Naumann 
et al., 2018) 

Low confidence: 
Inconsistent signals. 
Inconsistent trends in 
duration vs frequency 
of soil moisture-based 
drought events in CMIP5 
(L. Xu et al., 2019); 
slight mean soil moisture 
wetting in CMIP6 
(11.SM); slight wetting 
of SPEI-PM based events 
(Naumann et al., 2018) 

Low confidence: 
Inconsistent signals. 
Tendency towards wetting 
in CMIP6 soil moisture 
(Cook et al., 2020; 11.SM); 
inconsistent signals in 
SPEI-PM (Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: 
Limited evidence. 
Decrease in streamflow 
from 1950–2012 in 
southern part of domain 
(Dai and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence: Limited 
evidence. One study 
shows lack of signal 
(Touma et al., 2015)

Low confidence: 
Limited evidence and 
inconsistent trends in 
mean runoff in two studies 
(Touma et al., 2015; Cook 
et al., 2020)

Low confidence: 
Inconsistent projections 
and/or non-robust 
changes (Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

South 
Eastern 
Africa 
(SEAF)

MET

Low confidence: 
Inconsistent trends in 
SPI (Spinoni et al., 2019) 
but occurrence of strong 
drought events in recent 
years (Funk et al., 2015b; 
Nicholson, 2017)

Low confidence: 
Limited evidence 
on attribution of long-
term trends.

Robust evidence that 
recent drought events 
are not attributable to 
anthropogenic climate 
change (Uhe et al., 2017; 
Funk et al., 2018b)

Low confidence: 
Inconsistent changes 
(Osima et al., 2018; L. Xu 
et al., 2019; 11.SM) and 
lack of signal (Nangombe 
et al., 2018)

L. Xu et al. (2019): 
Inconsistent or weak 
trends in SPI

Osima et al. (2018): 
CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
consistent increase of CDD 
over southern part

11.SM: Inconsistent 
changes in CDD

Low confidence: 
Inconsistent changes 
(Osima et al., 2018; L. Xu 
et al., 2019; 11.SM) and 
lack of signal (Nangombe 
et al., 2018)

L. Xu et al. (2019): 
Inconsistent or weak 
trends in SPI

Osima et al. (2018): 
CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
Robust increase of CDD 
over southern part

11.SM: inconsistent 
changes in CDD

Low confidence: 
Inconsistent trends 
between studies and 
subregions (Sillmann et al., 
2013b; Dosio et al., 2019; 
Vicente-Serrano et al., 
2020c; 11.SM)

Inconsistent or no changes 
in SPI (Vicente-Serrano 
et al., 2020c)

Sillmann et al. (2013b), 
(2081–2100) vs (1981–
2000), RCP8.5, CMIP3–
CMIP5: Decrease of CDD

Dosio et al. (2019), (2070–
2099/1981–2010), rcp 8.5, 
23 RCM: Decrease in CDD

Inconsistent trends in CDD 
in CMIP6 (11.SM)

AGR 
ECOL

Low confidence: 
Inconsistent trends (Greve 
et al., 2014; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 
due to lack of studies

Low confidence: 
Inconsistent trends  
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Inconsistent trends 
(L. Xu et al., 2019; 
Cook et al., 2020; 11.SM)

Low confidence: 
Inconsistent trends 
(Cook et al., 2020;  
Vicente-Serrano et al., 
2020c; 11.SM)

HYDR
Low confidence: 
Inconsistent trends 
(Dai and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence; 
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: Limited 
evidence; inconsistent 
trends in runoff in two 
studies (Touma et al., 2015; 
Cook et al., 2020) 

Low confidence: 
Inconsistent trends. 
Increase in runoff in 
a study based on CMIP6 
(Cook et al., 2020) but 
inconsistent or non-robust 
trends in studies based 
on ISIMIP and CMIP5 
ensembles (Giuntoli et al., 
2015; Touma et al., 2015) 

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

West 
Southern 
Africa 
(WSAF)

MET

Low confidence: 
Inconsistent trends 
(Spinoni et al., 2019; Dunn 
et al., 2020)

Dunn et al. (2020): 
Conflicting trends in CDD 
depending on time frame

Low confidence:  
Limited evidence 
and inconsistent 
observed trends. 

But recent meteorological 
drought attributable 
to anthropogenic 
climate change 
(Bellprat et al., 2015)

Recent meteorological 
drought (2015–2016 
drought in southern 
Africa) attributable to 
anthropogenic climate 
change (Funk et al., 2018a; 
Otto et al., 2018c; Yuan 
et al., 2018a; Pascale 
et al., 2020)

Medium confidence: 
Increase. Increases in 
dryness (CDD) (Maúre et al., 
2018; 11.SM) compared 
to pre-industrial climate 
and recent past. Increase 
in CDD for changes of 
+0.5°C in global warming 
based on CMIP5 for overall 
SREX/AR5 South Africa 
region (Wartenburger et al., 
2017), but only weak shift 
in mean precipitation in 
large-ensemble single-
model experiment for 
+0.5°C of global warming 
(Nangombe et al., 2018). 
Slight but weaker increase 
in SPI compared to CDD 
(Abiodun et al., 2019; 
L. Xu et al., 2019; Naik 
and Abiodun, 2020)

Maúre et al. (2018): 
25 CORDEX AFR run, 
CTL 1971–2000, RCP8.5, 
Increase of CDD

NB: Weaker signals in SPI  
(L. Xu et al., 2019)

CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
pre-industrial reference 
period (1861–1890) 
(Abiodun et al., 2019; 
Naik and Abiodun, 2020)  
Non-significant increase 
in SPI-based drought 
frequency and intensity

High confidence: 
Increases in dryness 
(CDD, DF, NDD) (Maúre 
et al., 2018; Coppola et al., 
2021b; 11.SM); slight but 
weaker increase in SPI 
(Abiodun et al., 2019; 
L. Xu et al., 2019; Naik 
and Abiodun, 2020).

Maúre et al. (2018): 25 
CORDEX AFR run, CTL 
1971–2000, RCP8.5, 
Increase of CDD

Coppola et al. (2021b), 
(2041–2060) vs 
(1995–2014), RCP8.5, 
CMIP5-CORDEX-CMIP6 
Increase in DF (drought 
frequency) and NDD 
(number of dry days)

NB: Weaker signals in SPI  
(L. Xu et al., 2019)

CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
pre-industrial reference 
period (1861–1890) 
(Abiodun et al., 2019; Naik 
and Abiodun, 2020): Non-
significant increase in SPI-
based drought frequency 
and intensity

Likely: Increase (CDD 
amd SPI) (Sillmann et al., 
2013b; Giorgi et al., 2014; 
Touma et al., 2015; Pinto 
et al., 2016; Abiodun 
et al., 2019; Dosio et al., 
2019; Naik and Abiodun, 
2020; Spinoni et al., 2020; 
Coppola et al., 2021b)

Using CORDEX, CTL:1981–
2010, RCP8.5 2071–2100 
(Spinoni et al., 2020)  
Robust increase of 
drought frequency 
and severity (SPI-12 )

Based on Giorgi et al., 2014, 
5GCM/1RCM, CTL: 1976–
2005, RCP8.5, 2071–2100: 
Increase of CDD

Sillmann et al. (2013b), 
(2081–2100)/1981–2000, 
RCP8.5, CMIP3–CMIP5 
Increase of CDD

Coppola et al. (2021b), 
(2080–2099) vs 
(1995–2014), RCP8.5, 
CMIP5-CORDEX-CMIP6

Increase in DF (drought 
frequency) and NDD 
(number of dry days)

Dosio et al. (2019) 
(2070–2099/1981–2010), 
RCP8.5, 23 RCM: Increase 
in CDD

Pinto et al. (2016): 
(2069–2098/1976–2005), 
RCP8.5,4 GCM/2RCM: 
Increase in CDD

AGR 
ECOL

Medium confidence: 
Drought increase based 
on water-balance estimates 
and SPEI (Greve et al., 2014; 
Spinoni et al., 2019; Padrón 
et al., 2020)

Low confidence:  
Limited evidence: 
Given small number of 
studies based on soil 
moisture (Yuan et al., 
2018a) and atmospheric 
drought indices (Nangombe 
et al., 2020)

Medium confidence: 
Drought increase. 
Decrease in SM 
compared to recent past 
(L. Xu et al., 2019) and pre- 
industrial (11.SM) baselines; 
but conflicting changes of 
drought magnitude based 
on SPEI-PM compared to 
0.6°C baseline (Naumann 
et al., 2018)

High confidence: Drought 
increase. Decrease in SM 
(L. Xu et al., 2019; 11.SM; 
Cook et al., 2020); but 
conflicting changes of 
drought magnitude based 
on SPEI-PM (Naumann 
et al., 2018)

Likely: Drought increase.
Decrease in SM (11.SM; 
Cook et al., 2020) and 
SPEI-PM (Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: Limited 
evidence. Decrease 
in runoff in larger AR5 
Southern Africa region, but 
weaker signal depending on 
time frame (Gudmundsson 
et al., 2019, 2021); non-
significant drying tendency 
(Dai and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence: 
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Medium confidence: 
Increased drying 
(Touma et al., 2015; 
Cook et al., 2020; 
J. Zhai et al., 2020)

Medium confidence: 
Increased drying 
(Giuntoli et al., 2015; 
Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

East 
Southern 
Africa 
(ESAF)

MET

Medium confidence: 
Dominant increase 
in meteorological 
drought in SPI and 
CDD (Spinoni et al., 2019; 
Dunn et al., 2020)

Low confidence: Limited 
evidence on attribution of 
long-term trends. 

Medium confidence that 
human influence has 
contributed to stronger 
recent meteorological 
drought (Bellprat et al., 
2015; Funk et al., 2018a; 
Yuan et al., 2018a)

Medium confidence: 
Increases in 
meteorological drought 
based on CDD (Maúre et al., 
2018; 11.SM) compared to 
pre-industrial climate and 
recent past. Non-significant 
increase in SPI-based 
drought (Abiodun et al., 
2017); lack of signal in SPI 
compared to recent past 
(1970–2000) (L. Xu et al., 
2019). Increase in CDD for 
changes of +0.5°C in global 
warming based on CMIP5 
for overall SREX/AR5 South 
Africa region (Wartenburger 
et al., 2017), but only weak 
shift in mean precipitation 
in large-ensemble single-
model experiment for 
+0.5°C of global warming 
(Nangombe et al., 2018)

Maúre et al. (2018): 25 
CORDEX AFR run, CTL 
1971–2000, RCP8.5, 
Increase of CDD

CORDEX AFR data, 
CTL 1971–2000, RCP8.5, 
pre-industrial reference 
period (1861–1890) 
(Abiodun et al., 2019) 
SPI non-significant 
drought frequency 
and intensity increase 

High confidence: 
Increase in meteorological 
drought based on CDD, 
DF, and NDD (Maúre 
et al., 2018; Coppola 
et al., 2021b; 11.SM) and 
SPI (Abiodun et al., 2019; 
L. Xu et al., 2019) compared 
to recent past and pre-
industrial period

Maúre et al. (2018): 
25 CORDEX AFR run, 
CTL 1971–2000, RCP8.5: 
Increase of CDD

(Coppola et al., 2021b), 
(2041–2060) vs (1995–
2014), RCP8.5, CMIP5-
CORDEX-CMIP6: Increase in 
DF (drought frequency) and 
NDD (number of dry days)

Abiodun et al. (2019): 
CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
pre-industrial reference 
period (1861–1890): 
increase in SPI-based 
meteorological drought 
frequency and intensity

L. Xu et al. (2019): Drying 
in SPI at 2°C compared 
to 1970–2000 conditions

Likely: Increase in 
meteorological drought 
(CDD and SPI) (Sillmann 
et al., 2013b; Giorgi 
et al., 2014; Touma et al., 
2015; Pinto et al., 2016; 
Dosio et al., 2019; Spinoni 
et al., 2020; Coppola et al., 
2021b; 11.SM)  
Using CORDEX, CTL:1981–
2010, RCP8.5, 2071–2100 
(Spinoni et al., 2020)  
Robust increase of drought 
frequency and severity (SPI-
12, SPEI-12)

Based on Giorgi et al. 
(2014), 5GCM/1RCM, CTL: 
1976–2005, RCP8.5, 2071–
2100: Increase of CDD

Sillmann et al. (2013b) 
(2081–2100)/1981–2000, 
RCP8.5, CMIP3–CMIP5 
Increase of CDD

(Coppola et al., 2021b) 
(2080–2099) vs 
(1995–2014), RCP8.5, 
CMIP5-CORDEX-CMIP6 
Increase in DF (drought 
frequency) and NDD 
(number of dry days)

Dosio et al. (2019) 
(2070–2099/1981–2010), 
RCP8.5, 23 RCM 
Increase in CDD

Pinto et al. (2016): 
(2069–2098/1976–2005), 
RCP8.5,4 GCM/2RCM: 
Increase in CDD

AGR 
ECOL

Medium confidence 
Increase, based on water-
balances estimates, PDSI 
and SPEI-PM (Greve et al., 
2014; Dai and Zhao, 2017; 
Spinoni et al., 2019; Padrón 
et al., 2020)

Low confidence:  
Limited evidence 
(Yuan et al., 2018a)

Medium confidence: 
Increase in drought. 
Decrease in SM 
compared to recent past 
(L. Xu et al., 2019) and 
pre-industrial (11.SM) 
baselines; but inconsistent 
changes of drought 
magnitude based on 
SPEI-PM compared 
to +0.6°C baseline 
(Naumann et al., 2018)

Medium confidence: 
Increase in drought; 
decrease in SM (L. Xu et al., 
2019; Cook et al., 2020; 
11.SM); but inconsistent 
changes in drought 
magnitude based on 
SPEI-PM (Naumann et al., 
2018)

High confidence:  
Increase in drought; 
decrease in SM (11.SM; 
Cook et al., 2020) and 
SPEI-PM (Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: 
Limited evidence. 
Decrease in runoff in 
larger AR5 Southern Africa 
region, but weaker signal 
depending on time frame 
(Gudmundsson et al., 2019, 
2021); non-significant 
drying tendency (Dai 
and Zhao, 2017)

Low confidence: 
Limited evidence

Low confidence:  
Limited evidence.  
One study shows lack of 
signal (Touma et al., 2015)

Medium confidence: 
Increased drying (Touma 
et al., 2015; Cook et al., 
2020; J. Zhai et al., 2020) 

Medium confidence: 
Increased drying (Giuntoli 
et al., 2015; Touma et al., 
2015; Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

1.5°C 2°C 4°C

Mada-
gascar 
(MDG)

MET

Low confidence: 
Inconsistent trends 
(Vincent et al., 2011; 
Spinoni et al., 2019) 

Low confidence:  
Limited evidence 

Medium confidence: 
Increase in meteorological 
drought based on SPI 
compared to recent 
past (Abiodun et al., 
2019; L. Xu et al., 2019) 
and CDD compared to 
pre-industrial baseline 
(11.SM)

Abiodun et al. (2019): 
CORDEX AFR data, CTL 
1971–2000, RCP8.5,  
pre-industrial reference 
period (1861–1890)  
SPI (drought frequency 
and intensity increase)

High confidence: 
Increase in meteorological 
drought based on several 
metrics, including SPI 
(Abiodun et al., 2019; 
L. Xu et al., 2019), CDD 
(11.SM), and DF (drought 
frequency) and NDD 
(number of dry days) 
(Coppola et al., 2021b)

(Coppola et al., 2021b), 
(2041–2060)/1995–
2014, RCP8.5, CMIP5-
CORDEX-CMIP6 
Increase in DF (drought 
frequency) and NDD 
(number of dry days)

Abiodun et al. (2019): 
CORDEX AFR data, CTL 
1971–2000, RCP8.5, 
pre-industrial reference 
period (1861–1890): Increase 
in SPI-based drought 
frequency and intensity

Likely: Increase in 
meteorological drought 
based on CDD and SPI 
(Sillmann et al., 2013b; 
Giorgi et al., 2014; Touma 
et al., 2015; Pinto et al., 
2016; Dosio et al., 2019; 
Spinoni et al., 2020; 
Coppola et al., 2021b)

Sillmann et al. (2013b), 
(2081–2100)/1981–2000, 
RCP8.5, CMIP3–CMIP5 
Increase of CDD

Spinoni et al. (2020): 
Using CORDEX, CTL: 
1981–2010, RCP 8.5, 
2071–2100  
Robust increase of 
drought frequency 
and severity (SPI-12)

(Coppola et al., 2021b), 
(2080–2099)/1995–
2014, RCP8.5, CMIP5-
CORDEX-CMIP6 
Increase in DF (drought 
frequency) and NDD 
(number of dry days)

Dosio et al. (2019), (2070–
2099/1981–2010), RCP8.5, 
23 RCM: Increase in CDD

AGR 
ECOL

Low confidence: 
Inconsistent trends based 
on water-balance estimates, 
PDSI and SPEI (Greve et al., 
2014; Dai and Zhao, 2017; 
Spinoni et al., 2019; Padrón 
et al., 2020)

Low confidence:  
Limited evidence

Low confidence: 
Inconsistent or weak 
trends (L. Xu et al., 2019; 
11.SM; Naumann et al., 
2018)

Medium confidence: 
Increase in drought. 
Decrease in SM 
(11.SM; Cook et al., 2020) 
and in SPEI-PM (Naumann 
et al., 2018)

High confidence: 
Increase in drought. 
Robust decrease in SM  
(11.SM; Cook et al., 2020) 
and SPEI-PM (Vicente-
Serrano et al., 2020c)

HYDR

Low confidence: Limited 
evidence. Inconsistent 
trends in one study (Dai 
and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence: 
 Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: 
Inconsistent trends. 
Inconsistent trends 
(Cook et al., 2020) or weak 
drying (Touma et al., 2015; 
R. Zhai et al., 2020)

Medium confidence: 
Increase in drought based 
on two studies based on 
CMIP5 (Giuntoli et al., 2015; 
Touma et al., 2015), but 
some inconsistent trends in 
CMIP6 mean runoff trends 
(Cook et al., 2020).

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Table 11.7 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in Asia, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Asia 

Most subregions 
show a very likely 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Robust evidence of 
a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 
(Hu et al., 2020; 
Seong et al., 2021).

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
0.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
1°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more 
than 4.5°C in the 50-year TXx 
and TNn events compared 
to the 1°C warming level 
(Li et al., 2021)

Very likely increase 
in the intensity 
and frequency of 
hot extremes, and 
decrease in the 
intensity and frequency 
of cold extremes

Human influence very 
likely contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes, and 
decrease in the intensity 
and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity 
and frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Russian Arctic 
(RAR)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Donat 
et al., 2016a; Sui et al., 
2017; Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes and 
decrease in the intensity 
and frequency 
of cold extremes 
(Z. Wang et al., 2017a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 0.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 1.5°C in annual 
TXx and TNn compared to pre-
industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
and frequency of hot extremes 
and decrease in the intensity 
and frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 1.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 2.5°C in annual 
TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
and frequency of hot extremes 
and decrease in the intensity 
and frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 4.5°C in the 
50-year TXx and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 5.5°C in annual TXx 
and TNn compared to pre-
industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
and frequency of hot extremes 
and decrease in the intensity 
and frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b)

Very likely increase 
in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Medium confidence 
in a human contribution 
to the observed 
increase in the intensity 
and frequency of 
hot extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the intensity 
and frequency of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity 
and frequency of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Arabian 
Peninsula 
(ARP)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Almazroui et al., 2014; 
Donat et al., 2014a; 
Nazrul Islam et al., 2015; 
Barlow et al., 2016; 
Rahimi and Hejabi, 2018; 
Rahimi et al., 2018; 
Dunn et al., 2020)

Strong evidence 
of changes from 
observations that are in 
the direction of model-
projected changes 
for the future. The 
magnitude of projected 
changes increases with 
global warming

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Almazroui, 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Almazroui, 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase 
of more than 3.5°C in the 
50-year TXx  and TNn events 
compared to the 1°C warming 
level (Li et al., 2021) and 
more than 5.5°C in annual 
TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Almazroui, 2019b)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Medium confidence 
in a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

West Central 
Asia (WCA)

Significant increases 
in the intensity and 
frequency of hot 
extremes, and significant 
decreases in the 
intensity and frequency 
of cold extremes (Donat 
et al., 2013b; Jiang et al., 
2013; Hu et al., 2016)

Robust evidence of 
a human contribution to 
the observed increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity and 
frequency of cold 
extremes (Z. Wang et al., 
2017a; Dong et al., 2018; 
Kim et al., 2019; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
simulations for an increase in 
the intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency of 
cold extremes (Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency of 
cold extremes (Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 6°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
simulations for an increase in 
the intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency of 
cold extremes (Han et al., 2018)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

West Central 
Asia (WCA) 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

High confidence in 
a human contribution to 
the observed increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity and 
frequency of 
cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes:
Likely (compared with the  
ecent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

West Siberia 
(WSB)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Degefie et al., 2014; 
Salnikov et al., 2015; 
Donat et al., 2016a; 
M. Zhang et al., 2019; 
P. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity and 
frequency of cold 
extremes (Z. Wang et al., 
2017a; Dong et al., 2018; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of hot 
extremes and decrease in the 
intensity and frequency of 
cold extremes (Xu et al., 2017; 
Han et al., 2018; Khlebnikova 
et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of hot 
extremes and decrease in the 
intensity and frequency of 
cold extremes (Xu et al., 2017; 
Han et al., 2018; Khlebnikova 
et al., 2019b)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency  
of cold extremes 

High confidence in 
a human contribution to 
the observed increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity  
and frequency  
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes:
Likely (compared with the  
recent past, 1995–2014)
Very likely (compared 
 with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes:  
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency  
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

East Siberia 
(ESB)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Dashkhuu et al., 2015; 
Donat et al., 2016a; P. 
Zhang et al., 2019; Dunn 
et al., 2020)

Robust evidence of 
a human contribution to 
the observed increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity and 
frequency of cold 
extremes (Z. Wang et al., 
2017a; Dong et al., 2018; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency of 
cold extremes (Xu et al., 2017; 
Han et al., 2018; Khlebnikova 
et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency of 
cold extremes (Xu et al., 2017; 
Han et al., 2018; Khlebnikova 
et al., 2019b) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C 
in annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for  
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes (Xu 
et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b) 

Very likely increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity  
and frequency  
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency of cold 
extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency of cold 
extremes:  
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes:  
Virtually certain (compared with 
the recent past, 1995–2014) 
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency of cold 
extremes: Virtually certain 
(compared with the recent past, 
1995–2014) 
Virtually certain (compared 
with pre-industrial)

Russian Far 
East (RFE)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2016a; 
P. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Dong et al., 2018; Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency of 
cold extremes (Xu et al., 2017; 
Han et al., 2018; Khlebnikova 
et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4.5°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level (Li 
et al., 2021) and more than 
5°C in annual TXx and TNn 
compared  
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Xu et al., 2017; Han et al., 2018; 
Khlebnikova et al., 2019b).

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Russian Far 
East (RFE) 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and decrease 
in the intensity  
and frequency  
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the intensity and 
frequency of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the intensity and 
frequency of hot extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes:  
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the intensity and 
frequency of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared with 
pre-industrial) 

Decrease in the intensity and 
frequency of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared with 
pre-industrial)

East Asia 
(EAS)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Donat 
et al., 2013b; H. Wang 
et al., 2013; Lu et al., 
2016, 2018; B. Zhou 
et al., 2016; Lin et al., 
2017; Yin et al., 2017)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Imada et al., 2014, 
2019; Lu et al., 2016, 
2018; Takahashi et al., 
2016; B. Zhou et al., 
2016; Z. Wang et al., 
2017a; Ye and Li, 2017; 
Y.-H. Kim et al., 2018; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C 
in annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Seo et al., 
2014; Zhou et al., 2014; Y. Xu 
et al., 2016; X. Wang et al., 2017; 
Y. Wang et al., 2017; Guo et al., 
2018; D. Li et al., 2018; Shi et al., 
2018; Sui et al., 2018; Imada 
et al., 2019; C. Sun et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Seo et al., 
2014; Zhou et al., 2014; Y. Xu 
et al., 2016; X. Wang et al., 2017; 
Y. Wang et al., 2017; Guo et al., 
2018; D. Li et al., 2018; Shi et al., 
2018; Sui et al., 2018; Imada 
et al., 2019; C. Sun et al., 2019) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Seo et al., 2014; Zhou 
et al., 2014; Y. Xu et al., 2016; 
X. Wang et al., 2017; Y. Wang 
et al. 2017; Guo et al., 2018; 
D. Li et al., 2018; Shi et al., 2018; 
Sui et al., 2018; Imada et al., 
2019; C. Sun et al., 2019)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the recent 
past, 1995–2014)
Very likely (compared with pre-
industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared with 
pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared  
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared with 
pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

East Central 
Asia (ECA)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Dong et al., 2018; 
Kim et al., 2019; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Han et al., 2018)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared  
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial).

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Tibetan 
Plateau (TIB)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2016a; Hu 
et al., 2016; Sun et al., 
2017; Yin et al., 2019; 
P. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Yin et al., 2019; Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Zhou et al., 2014; Singh and 
Goyal, 2016; W. Zhang et al., 
2016b; Xu et al., 2017; Han 
et al., 2018; C. Li et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Zhou et al., 2014; Singh and 
Goyal, 2016; W. Zhang et al., 
2016b; Xu et al., 2017; Han 
et al., 2018; C. Li et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Zhou et al., 2014; Singh and 
Goyal, 2016; W. Zhang et al., 
2016b; Xu et al., 2017; Han 
et al., 2018; C. Li et al., 2018)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Tibetan 
Plateau (TIB) 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency 
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency 
 of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

South Asia 
(SAS)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Zahid and Rasul, 2012; 
Sheikh et al., 2015; 
Donat et al., 2016a; 
Rohini et al., 2016; 
Chakraborty et al., 2018; 
Dimri, 2019; Sen Roy, 
2019; Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Wehner et al., 2016; 
Pattanayak et al., 2017; 
Z. Wang et al., 2017a; 
van Oldenborgh et al., 
2018; Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Sillmann et al., 2013b; 
Murari et al., 2015; Xu et al., 
2017; Han et al., 2018; Kharin 
et al., 2018; Nasim et al., 2018; 
S. Ali et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Sillmann et al., 2013b; 
Murari et al., 2015; Xu et al., 
2017; Han et al., 2018; Kharin 
et al., 2018; Nasim et al., 2018; 
S. Ali et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 and RCM 
simulations for an increase 
in the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Sillmann et al., 
2013b; Murari et al., 2015; Xu 
et al., 2017; Han et al., 2018; 
Kharin et al., 2018; Nasim et al., 
2018; S. Ali et al., 2019)

High confidence in 
the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South East 
Asia (SEA)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2016a; 
Supari et al., 2017; 
Cheong et al., 2018; 
P. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (King 
et al., 2016a; Z. Wang 
et al., 2017a; Min et al., 
2020; Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Xu et al., 
2017; Han et al., 2018; Kharin 
et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Xu et al., 2017; 
Kharin et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Xu et al., 2017; 
Kharin et al., 2018)

High confidence in 
the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency 
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

 
 
 
Table 11.8 |  Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in Asia, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Asia

Significant 
intensification of 
heavy precipitation 
(Sun et al., 2021)

Robust evidence of 
a human contribution 
to the observed 
intensification of 
heavy precipitation

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
2% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
6% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation ((Li et al., 2021). 
Median increase of more than 
15% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Asia 
continued

Likely intensification of 
heavy precipitation

Human influence likely 
contributed to the 
observed intensification 
of heavy precipitation

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Russian Arctic 
(RAR)

Insufficient data and 
a lack of agreement on 
the evidence of trends 
(Dunn et al., 2020; Sun 
et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 8% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Sillmann 
et al., 2013b; Han et al., 2018; 
Kharin et al., 2018; Khlebnikova 
et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 8% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared  
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Sillmann 
et al., 2013b; Han et al., 2018; 
Kharin et al., 2018; Khlebnikova 
et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 25% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 25% in annual 
Rx1day and Rx5day and 20% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Sillmann 
et al., 2013b; Han et al., 2018; 
Kharin et al., 2018; Khlebnikova 
et al., 2019a)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Arabian 
Peninsula 
(ARP)

Insufficient data and 
a lack of agreement on 
the evidence of trends 
(Donat et al., 2014a; 
Rahimi and Fatemi, 
2019; Atif et al., 2020; 
Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 8% 
in the 50-year Rx1day and 
Rx5day events compared 
to the 1°C warming level 
(Li et al., 2021) and more than 
15% in annual Rx1day, Rx5day, 
and Rx30day compared  
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 20% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 40% in annual 
Rx1day and Rx5day and 45% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial)

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

West Central 
Asia (WCA)

Intensification of heavy 
precipitation (Hu et al., 
2016; M. Zhang et al., 
2017; Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 2% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 4% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 6% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 15% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 15% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Han et al., 2018)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

West Siberia 
(WSB)

Significant 
intensification of 
heavy precipitation 
(M. Zhang et al., 2017; 
Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 2% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 6% in annual Rx1day, 
Rx5day, and Rx30day compared 
to 
 pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 15% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 15% in annual Rx1day, 
Rx5day, and Rx30day compared  
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

High confidence in 
the intensification of 
heavy precipitation 

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

East Siberia 
(ESB)

Intensification of 
heavy precipitation 
(Knutson and Zeng, 
2018; Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 2% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 20% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 15% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018; 
Khlebnikova et al., 2019a)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Russian Far 
East (RFE)

Intensification of 
heavy precipitation 
(Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 8% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 25% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 25% in annual 
Rx1day and Rx5day and 20% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Kharin et al., 2018)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

East Asia 
(EAS)

Intensification of 
heavy precipitation 
(B. Zhou et al., 2016; 
Baek et al., 2017; Nayak 
et al., 2017; Ye and Li, 
2017; Dunn et al., 2020; 
Sun et al., 2021)

Disagreement among 
studies (Zhou et al., 
2013; Burke et al., 2016; 
Chen and Sun, 2017c; 
H. Li et al., 2017; Ma 
et al., 2017; Kawase 
et al., 2020)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 0% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Kusunoki 
and Mizuta, 2013; Seo et al., 
2014; Zhou et al., 2014; Ahn 
et al., 2016; Nayak and Dairaku, 
2016; X. Wang et al., 2017; 
Y. Wang et al., 2017; Guo 
et al., 2018; G. Kim et al., 2018; 
Kusunoki, 2018a; D. Li et al., 
2018; W. Li et al., 2018b; Ohba 
and Sugimoto, 2019, 2020; 
Hatsuzuka et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 6% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Kusunoki 
and Mizuta, 2013; Seo et al., 
2014; Zhou et al., 2014; Ahn 
et al., 2016; Nayak and Dairaku, 
2016; X. Wang et al., 2017; 
Y. Wang et al., 2017; Guo 
et al., 2018; G. Kim et al., 2018; 
Kusunoki, 2018a; D. Li et al., 
2018; W. Li et al., 2018b; Ohba 
and Sugimoto, 2019, 2020; 
Hatsuzuka et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 20% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of 
heavy precipitation (Kusunoki 
and Mizuta, 2013; Seo et al., 
2014; Zhou et al., 2014; Ahn 
et al., 2016; Nayak and Dairaku, 
2016; X. Wang et al., 2017; 
Y. Wang et al., 2017; Guo 
et al., 2018; G. Kim et al., 2018; 
Kusunoki, 2018a; D. Li et al., 
2018; W. Li et al., 2018b; Ohba 
and Sugimoto, 2019, 2020; 
Hatsuzuka et al., 2020)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

East Central 
Asia (ECA)

Intensification of 
heavy precipitation 
(Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 6% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 20% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 25% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Medium confidence in 
the intensification of 
heavy precipitation 

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Tibetan 
Plateau (TIB)

Intensification of heavy 
precipitation (Jiang 
et al., 2013; Hu et al., 
2016; Ge et al., 2017; 
Zhan et al., 2017; 
M. Liu et al., 2019b; 
Sun et al., 2021)

Limited evidence

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 2% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Zhou et al., 2014; 
R. Zhang et al., 2015; Gao et al., 
2018; Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 4% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Zhou et al., 2014; 
R. Zhang et al., 2015; Gao et al., 
2018; Han et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 20% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 25% in annual 
Rx1day and Rx5day and 20% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Zhou et al., 2014; 
R. Zhang et al., 2015; Gao et al., 
2018; Han et al., 2018)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

South Asia 
(SAS)

Significant 
intensification of heavy 
precipitation (Hussain 
and Lee, 2013; Singh 
et al., 2014a; Pai 
et al., 2015; Sheikh et al., 
2015; Malik et al., 2016; 
Rohini et al., 2016; Roxy 
et al., 2017; Kim et al., 
2019; Dunn et al., 2020)

Disagreement among 
studies (Singh et al., 
2014b; van Oldenborgh 
et al., 2016; Mukherjee 
et al., 2018b)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Mukherjee et al., 
2018b; S. Ali et al., 2019; Rai 
et al., 2019)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 6% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 8% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Mukherjee et al., 
2018b; S. Ali et al., 2019; Rai 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 25% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 30% in annual 
Rx1day and Rx5day and 25% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 simulations for an 
increase in the intensity of heavy 
precipitation (Sillmann et al., 
2013b; Xu et al., 2017; Han 
et al., 2018; Mukherjee et al., 
2018b; S. Ali et al., 2019; Rai 
et al., 2019)

High confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South East 
Asia (SEA)

Intensification of heavy 
precipitation (Siswanto 
et al., 2015; Villafuerte 
and Matsumoto, 2015; 
Supari et al., 2017; 
Cheong et al., 2018; 
X. Li et al., 2018; 
Sun et al., 2021)

Evidence of a human 
contribution for 
some events (Otto 
et al., 2018a), but cannot 
be generalized

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 0% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Marzin et al., 
2015; Basconcillo et al., 2016; 
Ge et al., 2017; Xu et al., 2017; 
Han et al., 2018; Tangang et al., 
2018; Trinh-Tuan et al., 2019)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Marzin et al., 
2015; Basconcillo et al., 2016; 
Ge et al., 2017; Xu et al., 2017; 
Han et al., 2018; Tangang et al., 
2018; Trinh-Tuan et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 10% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Marzin et al., 
2015; Basconcillo et al., 2016; 
Ge et al., 2017; Xu et al., 2017; 
Han et al., 2018; Tangang et al., 
2018; Trinh-Tuan et al., 2019)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

 
Table 11.9 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in Asia, subdivided by AR6 regions. See Sections 11.9.1 
and 11.9.4 for details.

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought Low confidence

All

Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

Russian 
Arctic 
(RAR)

MET

Low confidence: 
Limited evidence. 
Tendency towards decrease 
in Consecutive dry days 
(CDD) (Dunn et al., 2020). 
Lack of data in (Spinoni 
et al., 2019)

Low confidence:  
Limited evidence 

Low confidence: 
Limited evidence. 
Slight decrease in CDD 
in CMIP6 (11.SM)

Low confidence: Limited 
evidence, but some 
evidence of decrease in dry 
spell duration (Khlebnikova 
et al., 2019a;11.SM)

Medium confidence: 
Decrease in drought 
severity based on SPI 
(Touma et al., 2015; 
Spinoni et al., 2020) 
and CDD (11.SM)

AGR, 
ECOL

Low confidence: 
Inconsistent trends 
(Greve et al., 2014; 
Padrón et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent changes 
in soil moisture (L. Xu et al., 
2019; 11.SM)

Low confidence: 
Inconsistent changes 
in soil moisture, variations 
across subregions (L. Xu 
et al., 2019; 11.SM)

Low confidence: 
Inconsistent trends across 
models and subregions 
for surface and total soil 
moisture (Dai et al., 2018; Lu 
et al., 2019; Cook et al., 2020; 
11.SM); slight drying in PDSI 
(Dai et al., 2018); inconsistent 
trends or wetting in SPEI-PM 
in CMIP5 (Cook et al., 2014a; 
Vicente-Serrano et al., 2020c)

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

Russian 
Arctic 
(RAR) 
continued

HYDR
Low confidence:  
Limited evidence

Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: 
Inconsistent changes. 
Increasing runoff in 
CMIP6 (Cook et al., 
2020), inconsistent signal 
in Standardized Runoff 
Index (SRI) depending on 
subregion in CMIP5 (Touma 
et al., 2015), or lack of 
signal (R. Zhai et al., 2020) 
in available studies

Cook et al. (2020): 
Increasing runoff in 
one study based on 
CMIP6 global climate 
models (GCMs)

R. Zhai et al. (2020): Lack 
of signal in one study based 
on single hydrological 
model driven by HAPPI-
MIP GCM simulations

Touma et al. (2015): 
Inconsistent signal in SRI 
depending on subregion 
(CMIP5 GCMs)

Low confidence: 
Mixed signals among 
studies (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Arabian 
Peninsula 
(ARP)

MET

Low confidence: 
Inconsistent or no 
signal (Almazroui, 2019a; 
Almazroui and Islam, 2019)

(Dunn et al., 2020): Wetting 
based on CDD in part of 
domain, but missing data in 
large fraction of region

(Spinoni et al., 2019): 
Missing data in this region

Low confidence: 
Limited evidence 
(Barlow and Hoell, 2015; 
Barlow et al., 2016)

Low confidence: 
Limited evidence and 
inconsistent trends 
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Limited evidence and 
inconsistent trends 
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Limited evidence and 
inconsistent trends 
(Touma et al., 2015; Tabari 
and Willems, 2018; 11.SM) 

(Touma et al., 2015): 
Inconsistant projections 
in CMIP5 (Tabari 
and Willems, 2018): 
Dominant lack of signal

11.SM): decreasing dryness 
based on CDD

AGR, 
ECOL 

Low confidence: Limited 
evidence. Drying in 
fraction of region in one 
study, but missing data 
in rest of region (Greve 
et al., 2014)

(Greve et al., 2014): 
Drying in part of region, 
but missing data in large 
fraction of region

(Padrón et al., 2020): 
Missing data

(Spinoni et al., 2019): 
Missing data

Low confidence:  
Limited evidence 

Low confidence: 
Limited evidence and 
inconsistent trends 
(L. Xu et al., 2019; 11.SM)

Naumann et al. (2018): 
Missing data

Low confidence:

Limited evidence and 
inconsistent trends (L. Xu 
et al., 2019; Cook et al., 
2020; 11.SM)

Low confidence: Mixed 
signal between different 
metrics, including total 
and surface soil moisture 
(11.SM; Rajsekhar and 
Gorelick, 2017; Dai et al., 
2018; Lu et al., 2019; Cook 
et al., 2020), PDSI (Dai 
et al., 2018) and SPEI-PM 
(Cook et al., 2014a; Vicente-
Serrano et al., 2020c)

HYDR

Low confidence: 
Limited evidence Drying 
in one study in northern 
part of region but missing 
data in rest of region 
(Dai and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence: 
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: 
Limited evidence 
and inconsistent 
trends (Touma et al., 
2015; Cook et al., 2020; 
R. Zhai et al., 2020)

Low confidence: 
Inconsistent trends 
between models and 
studies (Prudhomme et al., 
2014; Giuntoli et al., 2015; 
Touma et al., 2015; Cook 
et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

West 
Central 
Asia (WCA)

MET

Low confidence: 
Inconsistent trends 
between subregions, based 
on CDD and SPI (Spinoni 
et al., 2019; Dunn et al., 
2020; Sharafati et al., 2020; 
Yao et al., 2021)

Low confidence:  
Limited evidence 

Low confidence: 
Limited evidence. 
Inconsistent or weak 
trends in available analyses 
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Inconsistent, weak and/
or non-significant trends 
in SPI and CDD (L. Xu et al., 
2019; Spinoni et al., 2020; 
Yao et al., 2021; 11.SM)

Low confidence: 
Mixed signals between 
models and between 
regions (Touma et al., 
2015; Han et al., 2018; 
Tabari and Willems, 2018; 
Spinoni et al., 2020; 
Yao et al., 2021; 11.SM) 

AGR, 
ECOL

Medium confidence: 
Increase in drought 
severity Dominant 
signal shows drying for 
soil moisture, water-
balance (precipitation-
evapotranspiration), 
PDSI-PM and SPEI-PM, 
but with some differences 
between subregions and 
studies (Greve et al., 2014; 
Dai and Zhao, 2017; Z. Li 
et al., 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence:  
Limited evidence 
One study by Z. Li 
et al. (2017) concluded 
that anthropogenic 
forcing has increased 
AED and contributed 
to drought severity over 
the last decades

Low confidence: 
Mixed signals in changes 
in drought severity, 
depending on model 
and index (Naumann et al., 
2018; L. Xu et al., 2019; 
Gu et al., 2020; 11.SM)

Weak signals and 
inconsistent trends between 
models for total and surface 
soil moisture (L. Xu et al., 
2019; 11.SM), but increased 
drying based on SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: 
Mixed signals in changes 
in drought severity, 
depending on model 
and index (Naumann et al., 
2018; L. Xu et al., 2019; 
Cook et al., 2020; Gu et al., 
2020; 11.SM)

Weak signals and 
inconsistent trends 
between models and 
subregions for total 
and surface soil moisture 
(L. Xu et al., 2019; Cook 
et al., 2020; 11.SM), but 
increased drying based on 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Medium confidence: 
Increased drying in 
several metrics, but 
substantial inter-model 
spread and lack of signal 
for total soil moisture 
(Dai et al., 2018; Cook et al., 
2020; Vicente-Serrano et al., 
2020c 11.SM)

Increase in drought 
severity based on surface 
soil moisture (Dai 
et al., 2018; Lu et al., 2019; 
Cook et al., 2020).

(11.SM): only median, 
not 83.5 percentile), 
PDSI (Dai et al., 2018), 
and SPEI-PM (Cook 
et al., 2014a; Vicente-
Serrano et al., 2020c); 
but increase in median 
response and substantial 
inter-model spread for total 
soil moisture (Cook et al., 
2020; 11.SM)

HYDR
Low confidence:  
Limited evidence

Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015)

Low confidence: 
Inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Medium confidence: 
Increase of hydrological 
drought severity 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 
2020); but large inter-model 
spread (only 2/3 of models 
showing signal) (Touma 
et al., 2015) and weak 
signal-to-noise ratio in 
eastern half of domain 
(Giuntoli et al., 2015)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

West 
Siberia 
(WSB)

MET

Medium confidence: 
Decrease in dryness 
based on SPI and CDD, but 
some inconsistent trends in 
part of domain (M. Zhang 
et al., 2017, 2019; 
Khlebnikova et al., 2019a; 
Spinoni et al., 2019; Dunn 
et al., 2020)

Khlebnikova et al. (2019a): 
In part, mixed signals 
within domain

(Dunn et al., 2020): Mostly 
decreasing trend, including 
significant changes

(Spinoni et al., 2019): 
Mostly decreasing trends

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent 
evidence in CMIP5 
(L. Xu et al., 2019) and 
CMIP6 projections (11.SM)

Low confidence: 
Inconsistent trends  
(11.SM) or slight decrease 
in drought (Khlebnikova 
et al., 2019a; L. Xu et al., 
2019; Spinoni et al., 2020)

Khlebnikova et al. (2019a): 
Mostly decrease in CDD 
in a regional climate 
model driven by several 
CMIP5 models (RCP8.5, 
2050–2059 relative to 
1990–1999)

11.SM: Tendency 
towards decrease but lack 
of model agreement

Low confidence: 
Inconsistent trends,  
but slight decrease in some 
studies (Touma et al., 2015; 
Spinoni et al., 2020; 11.SM)

Spinoni et al. (2020):  
Slight decrease

Touma et al. (2015): 
Tendency towards  
decrease but partly lack  
of model agreement

11.SM: Lack of 
model agreement

AGR, 
ECOL 

Low confidence: 
Inconsistent trends 
according to subregions 
or indices based on soil 
moisture, PDSI-PM and 
SPEI-PM (Greve et al., 2014; 
Dai and Zhao, 2017; Z. Li 
et al., 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent trends 
among different metrics 
and models. Inconsistent 
soil moisture projections 
in CMIP5 (L. Xu et al., 
2019) and CMIP6 (11.SM), 
and decrease in drought 
severity based on SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: 
Inconsistent trends 
among different metrics. 
No signal with total soil 
moisture (11.SM) and 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020), 
and wetting trend with 
surface soil moisture 
(L. Xu et al., 2019) 

Low confidence: Mixed 
signals between different 
models and metrics, 
including total and surface 
soil moisture in CMIP6 
(11.SM; Cook et al., 2020), 
surface soil moisture in 
CMIP5 (Dai et al., 2018; 
Lu et al., 2019), PDSI (Dai 
et al., 2018) and SPEI-PM 
(Cook et al., 2014a; Vicente-
Serrano et al., 2020c)

Difference in signal in 
CMIP6 vs CMIP5: CMIP6 
models show drying in soil 
moisture, while CMIP5 
models show wetting 
(Cook et al., 2020)

HYDR

Low confidence: Limited 
evidence. One study 
suggests increasing 
weak (wetting) trend in 
runoff (Dai and Zhao, 
2017). Some increase in 
runoff at stations from 
1951–1990 and 1961–2000 
(Gudmundsson et al., 2019)

Low confidence:  
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
drying (Touma et al., 2015)

Low confidence: 
Inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

(Cook et al., 2020): 
Inconsistent trends 
including large 
seasonal variations 

(R. Zhai et al., 2020): 
Inconsistent trends in study 
with single hydrological 
model driven with HAPPI-
MIP GCM simulations

(Touma et al., 2015): 
Increase in the frequency 
of hydrological droughts 
based on SRI in CMIP5

Low confidence: 
Inconsistent trends. 
Mixed signals among 
studies and low signal-to-
noise ratio (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

East Siberia 
(ESB)

MET

Medium confidence: 
Decrease in the duration 
and frequency of 
meteorological droughts 
(Khlebnikova et al., 2019a; 
Spinoni et al., 2019; Dunn 
et al., 2020) 

(Khlebnikova et al., 2019a): 
Decrease in fraction of 
dry days and decrease in 
mean CDD, but inconsistent 
trends for maximum CDD, 
for 1991–2015 compared 
to 1966–1990.

(Dunn et al., 2020): 
Significant CDD decrease 

(Spinoni et al., 2019): 
Mostly decrease in SPI, 
but partly mixed signals 
and inconsistent trends

Low confidence:  
Limited evidence 

Low confidence: Limited 
evidence. Tendency 
towards decrease in SPI in 
CMIP5 (L. Xu et al., 2019) 
and CDD in CMIP6 (11.SM) 

Medium confidence: 
Decrease in frequency 
and severity of 
meteorological droughts 
(Khlebnikova et al., 2019a; 
L. Xu et al., 2019; Spinoni 
et al., 2020; 11.SM)

Khlebnikova et al. (2019a): 
Projections with a regional 
climate model driven with 
several CMIP5 GCMs 

RCP8.5 (2050–2059 
compared with 1990–
1999): Mostly decrease 
in CDD but increase in part 
of domain, in particular in 
the south

Medium confidence: 
Decrease in meteorological 
drought severity (Touma 
et al., 2015; Spinoni et al., 
2020;11.SM)

AGR, 
ECOL

Low confidence: 
Inconsistent trends 
depending on subregion 
and index based on 
soil moisture, PDSI-PM 
and SPEI-PM (Greve 
et al., 2014; Dai and Zhao, 
2017; Spinoni et al., 2019; 
Padrón et al., 2020).

Low confidence: 
Limited evidence 

Low confidence: Mixed 
signal in changes in 
drought severity depending 
on models and metrics 

Inconsistent trends in 
soil moisture (L. Xu et al., 
2019; 11.SM), but wetting 
tendency for SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: Mixed 
signal in changes in 
drought severity depending 
on models and metrics

Inconsistent trends in 
soil moisture (L. Xu et al., 
2019)(11.SM), but wetting 
tendency for SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: Mixed 
signal in drought changes 
depending on models and 
metrics, including total and 
surface soil moisture in 
CMIP6 (11.SM; Cook et al., 
2020), surface soil moisture 
in CMIP5 (Dai et al., 2018; 
Lu et al., 2019), PDSI (Dai 
et al., 2018) and SPEI-PM 
(Cook et al., 2014a; Vicente-
Serrano et al., 2020c)

Difference in signal in 
CMIP6 vs CMIP5: CMIP6 
models show drying in soil 
moisture, while CMIP5 
models show wetting 
(Cook et al., 2020).

HYDR

Low confidence: Limited 
evidence. One study 
suggests increasing 
(wetting) trend in 
runoff (Dai and Zhao, 
2017). Some increase in 
runoff at stations from 
1951–1990 and 1961–2000 
(Gudmundsson et al., 2019)

Low confidence:  
Limited evidence 

Low confidence: 
Limited evidence. One 
study shows lack of signal 
(Touma et al., 2015).

Low confidence: 
Inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Cook et al. (2020): 
Inconsistent trends, 
including large 
seasonal variations

R. Zhai et al. (2020): 
Inconsistent trends 
in one study based on 
single hydrological model 
driven by HAPPI-MIP 
GCM simulations.

Touma et al. (2015):  
Mixed signals

Low confidence: 
Mixed signal among 
studies (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

Russian Far 
East (RFE)

MET

Low confidence: 
Mixed signals between 
subregions and studies 
(Knutson and Zeng, 2018; 
Khlebnikova et al., 2019a; 
Spinoni et al., 2019; Dunn 
et al., 2020)

Low confidence: 
Limited evidence. 
One study, Wilcox et al., 
but mostly inconclusive

Low confidence: Limited 
evidence. Weak decrease 
in available analyses 
(L. Xu et al., 2019; 11.SM)

Medium confidence: 
Decrease (Khlebnikova 
et al., 2019a; L. Xu et al., 
2019; 11.SM)

(Khlebnikova et al., 
2019a): Regional climate 
model driven by several 
CMIP5 models (RCP8.5, 
2050–2059 relative to 
1990–1999): Mostly 
decrease in CDD but also 
increase in part of region 
(Kamtchatka Peninsula)

Medium confidence: 
Decrease in drought 
severity (Touma et al., 2015; 
Han et al., 2018; Spinoni 
et al., 2020; 11.SM)

AGR, 
ECOL

Low confidence: 
Inconsistent trends 
depending on subregion 
based on soil moisture, 
PDSI-PM and SPEI-PM 
(Greve et al., 2014; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent trends 
depending on model 
and index

Inconsistent trends in total 
and surface soil moisture in 
CMIP6 (11.SM), but wetting 
trends from CMIP5-based 
surface soil moisture 
(L. Xu et al., 2019) and 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Naumann et al. (2018):  
EC-Earth driven by SSTs 
from several CMIP5 models

Low confidence: 
Inconsistent trends 
depending on model 
and index

Inconsistent trends in 
CMIP6 total and surface 
soil moisture (11.SM; 
Cook et al., 2020), but 
wetting trends from CMIP5-
based surface soil moisture 
(L. Xu et al., 2019) and 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Low confidence: Mixed 
signals between different 
models and metrics, 
including CMIP6 total 
and surface soil moisture 
(11.SM; Cook et al., 
2020), and CMIP5-based 
surface soil moisture (Dai 
et al., 2018; Lu et al., 2019), 
PDSI (Dai et al., 2018) 
and SPEI-PM (Cook et al., 
2014a; Vicente-Serrano 
et al., 2020c)

Difference in signal in 
CMIP6 vs CMIP5: CMIP6 
models show drying in 
soil moisture, while CMIP5 
models show wetting 
(Cook et al., 2020)

HYDR

Low confidence: Limited 
evidence. One study 
suggests decreasing 
(drying) trend in runoff 
(Dai and Zhao, 2017)

Low confidence:  
Limited evidence 

Low confidence: 
Limited evidence. One 
study shows lack of signals 
(Touma et al., 2015)

Low confidence: 
Inconsistent trends. 
Available studies show 
inconsistent signals with 
high seasonal variations 
(Cook et al., 2020) or weak 
signal (Touma et al., 2015; 
R. Zhai et al., 2020)

Low confidence: 
Inconsistent signals 
among studies and metrics, 
with generally weak 
drying trend in summer 
season (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

East Asia 
(EAS) 

MET

Low confidence: Lack of 
signal and mixed trends 
between subregions 
(Spinoni et al., 2019; 
J. Zhang et al., 2019; 
Dunn et al., 2020; L. Li et al., 
2020). Drying trends in 
Southwestern China (N. Qin 
et al., 2015) and Northern 
China (Y. Qin et al., 2015), 
but not for overall China 
(L. Li et al., 2020)

Low confidence: Limited 
evidence (N. Qin et al., 
2015; Herring et al., 2019)

Low confidence: Limited 
evidence. Inconsistent 
subregional trends (L. Xu 
et al., 2019) or drying 
tendency (11.SM)

Low confidence: 
Inconsistent trends 
depending on model, region 
or index (Guo et al., 2018; 
L. Xu et al., 2019; Spinoni 
et al., 2020; 11.SM)

Spinoni et al. (2020): 
Tendency towards 
decreased in drought 
severity based on SPI

J. Huang et al. (2018): 
Important subregional 
differences in SPI 
projections in a single GCM

11.SM: Tendency towards 
drying based on CDD 
(increasing CDD), but 
inconsistent trends 
depending on model

L. Xu et al. (2019): 
Inconsistent subregional 
trends based on SPI

Low confidence: 
Inconsistent trends 
between different models 
and important spatial 
variability (Zhou et al., 
2014; Touma et al., 2015; 
Kusunoki, 2018a; Spinoni 
et al., 2020; 11.SM)

Zhou et al. (2014): Tendency 
towards wetting in the 
north and drying in the 
south based on CDD

Kusunoki (2018a): 
Increasing CDD (drying 
trend) over Japan based 
on one GCM

AGR, 
ECOL 

Medium confidence: 
Increase in drying, 
especially since around 
1990; but wetting tendency 
beforehand and partly 
inconsistent subregional 
trends. Large-scale studies 
based on observed soil 
moisture, modelled soil 
moisture or water balance 
driven by meteorological 
observations, and SPEI-PM, 
show drying in northern 
part of domain (northern 
China, Russian part of 
domain, Japan) as well as in 
Southwest China (east of 
Tibetan Plateau), but there 
are some inconsistent 
trends in part of region or 
some studies, as well as for 
different time frames (Greve 
et al., 2014; Chen and Sun, 
2015b; Cheng et al., 2015; 
Qiu et al., 2016; Dai and 
Zhao, 2017; Jia et al., 2018; 
Spinoni et al., 2019; L. Li 
et al., 2020; Padrón et al., 
2020). Identified trends are 
also confirmed by regional 
studies (Liu et al., 2015; 
Y. Qin et al., 2015; Liang 
et al., 2020; Wang et al., 
2020). Most of the drying 
trend took place from 
1990, with wetting trend 
beforehand (Chen and Sun, 
2015b; Z. Wu et al., 2020)

Low confidence:  
Limited evidence 

L. Zhang et al.  
(2020) concluded that 
anthropogenic forcing 
contributed to 2018 
drought, principally 
as consequence of 
enhanced AED

One study suggests 
that soil moisture 
drought conditions in 
northern China have been 
intensified by agriculture 
(Liu et al., 2015)

Low confidence: 
Inconsistent trends 
depending on model, 
subregion and index 
(J. Huang et al., 2018; 
Naumann et al., 2018; 
L. Xu et al., 2019; Gu et al., 
2020; 11.SM)

J. Huang et al. (2018): 
Inconsistent projections 
in a study with a single 
GCM for the time 
frame 2016–2050 (for 
different scenarios) 
compared to 1960–2005, 
i.e corresponding to 
1.5°C projections 
compared to recent past

Low confidence: Mixed 
signals depending on 
model, subregion and 
index (Gao et al., 2017b; 
Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Gu et al., 
2020; 11.SM)

Gao et al. (2017b): 
Study for very small region 
(Loess Plateau)

Medium confidence: 
Increasing dryness 
as dominant signal in 
projections and over larger 
part of domain, but also 
inconsistent signal for some 
indices and part of the 
domain (Cook et al., 2014a, 
2020; Cheng et al., 2015; 
Dai et al., 2018; Naumann 
et al., 2018; Lu et al., 2019; 
Vicente-Serrano et al., 
2020c; 11.SM)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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+1.5°C +2°C +4°C

East Asia 
(EAS) 
continued

HYDR

Medium confidence: 
Increase in hydrological 
drought in the region, in 
particular in northern China; 
inconsistent trends in part 
of the region (Liu et al., 
2015; Dai and Zhao, 2017; 
D. Zhang et al., 2018)

Drying in large part of 
domain, in particular in 
northern China (Zhao 
and Dai, 2017)

Increase of hydrological 
droughts in the Yangtze 
River (D. Zhang et al., 2018)

Low confidence: Limited 
evidence and mixed 
signals. Available evidence 
suggests that a combination 
of change in climatic drivers 
(precipitation, Epot) and 
human drivers (agriculture, 
water management) 
are responsible for 
trends (Liu et al., 2015; 
D. Zhang et al., 2018)

Increasing hydrological 
droughts trends in 
the Yangtze River are 
dominantly driven by 
precipitation, but increases 
in potential evaporation 
and human activities also 
play a role (D. Zhang et al., 
2018). Drought conditions 
in northern China (soil 
moisture and runoff) 
have been intensified by 
agriculture (Liu et al., 2015)

Low confidence: 
Limited evidence. One 
study shows lack of signals 
(Touma et al., 2015)

Low confidence: 
Limited evidence and 
inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Low confidence: 
Inconsistent trends 
between models and 
studies, and generally 
low signal-to-noise ratio 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; 
Touma et al., 2015; 
Cook et al., 2020)

Touma et al. (2015); Cook 
et al. (2020): Generally 
inconsistent trends 
between models, with 
low model agreement

Giuntoli et al. (2015): 
Trend towards drying 
but generally low signal-
to-noise ratio except in 
small subregions

East 
Central 
Asia (ECA)

MET

Low confidence: 
Inconsistent trends 
between subregions, 
with overall tendency to 
decrease (Spinoni et al., 
2019; Dunn et al., 2020)

Low confidence:  
Limited evidence 

Low confidence. Limited 
evidence; slight decrease 
in meteorological drought 
in available analyses 
(Xu et al., 2013; 11.SM)

Medium confidence: 
Decrease in drought 
severity, with weakly 
inconsistent changes 
for some indices (L. Xu 
et al., 2019; Spinoni 
et al., 2020; 11.SM)

Spinoni et al. (2019): Strong 
decrease in drought for 
SPI-based metrics in RCP4.5 
compared to 1981–2010

L. Xu et al. (2019): 
Decrease in frequency of 
SPI-based events but slight 
increase or inconsistent 
changes in duration  
of SPI-based events

11.SM: Substantial 
decrease in CDD

Medium confidence: 
Decrease in drought 
severity (Touma et al., 2015; 
Spinoni et al., 2020; 11.SM)

AGR, 
ECOL

Medium confidence: 
Increase in drying, but 
some conflicting trends 
between drought metrics 
and sub-regions (Greve 
et al., 2014; Cheng et al., 
2015; Dai and Zhao, 2017; 
Z. Li et al., 2017; Spinoni 
et al., 2019; Padrón et al., 
2020; P. Zhang et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: 
Mixed signal in changes 
in drought severity, lack of 
signal based in total column 
soil moisture (L. Xu et al., 
2019; 11.SM) and SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: 
Mixed signal in changes 
in drought severity. 
Inconsistent trends in total 
and surface soil moisture, 
with stronger tendency to 
wetting, (L. Xu et al., 2019; 
Cook et al., 2020; 11.SM), 
and drying based on the 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Low confidence: Mixed 
trends between different 
models and drought metrics 
(11.SM; Cook et al., 2014a, 
2020; Dai et al., 2018; Lu 
et al., 2019; Vicente-Serrano 
et al., 2020c)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

East 
Central 
Asia (ECA) 
continued

HYDR

Low confidence: 
Limited evidence. Mostly 
inconsistent trends in one 
study (Dai and Zhao, 2017)

Low confidence:  
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
lack of signals (Touma 
et al., 2015)

Low confidence: 
Limited evidence 
and inconsistent 
trends (Touma et al., 2015; 
Cook et al., 2020; R. Zhai 
et al., 2020)

Low confidence: 
Mixed trends. 
Model disagreement 
and inconsistent changes 
among studies, seasons 
and metrics, with overall 
low signal-to-noise ratio 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; 
Touma et al., 2015; 
Cook et al., 2020)

Tibetan 
Plateau 
(TIB)

MET

Low confidence: 
Inconsistent trends (Jiang 
et al., 2013; Donat et al., 
2016a; Hu et al., 2016; 
Dunn et al., 2020) 

Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence. Weak 
or inconsistent trends in 
available analyses (L. Xu 
et al., 2019; 11.SM) 

Low confidence: 
Inconsistent trends, but 
tendency towards wetting 
(L. Xu et al., 2019; Cook 
et al., 2020; 11.SM)

Spinoni et al. (2019): 
No data in the region

Cook et al. (2020): 
Only analysis of mean 
precipitation but tendency 
towards wetting in all 
seasons in the region

L. Xu et al. (2019); 11.SM: 
Weak trends but tendency 
towards wetting

Low confidence: 
Inconsistent trends 
between models, but 
tendency towards wetting 
and decrease in drought 
(Zhou et al., 2014; Touma 
et al., 2015; 11.SM). 

Zhou et al. (2014): Decrease 
of CDD is projected but 
there is large uncertainty 

AGR, 
ECOL

Low confidence: 
Inconsistent trends. 
Spatially varying trends, 
with slight tendency to 
overall wetting (Cheng 
et al., 2015; Dai and Zhao, 
2017; Jia et al., 2018; 
C. Zhang et al., 2018; 
X. Li et al., 2020; 
Wang et al., 2020) 

(Greve et al., 2014; Spinoni 
et al., 2019; Padrón et al., 
2020): Missing data in most 
of region

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent trends 
between models, indices 
and subregions (Naumann 
et al., 2018; L. Xu 
et al., 2019; Gu et al., 
2020; 11.SM) 

Low confidence: 
Inconsistent trends 
between models, indices 
and subregions (Naumann 
et al., 2018; L. Xu et al., 
2019; Cook et al., 2020; 
Gu et al., 2020; 11.SM) 

Low confidence: 
Inconsistent trends 
between models, indices 
and subregions (Cook 
et al., 2014a, 2020; Dai 
et al., 2018; Lu et al., 2019; 
Vicente-Serrano et al., 
2020c; 11.SM)

HYDR
Low confidence:  
Limited evidence

Low confidence:  
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
lack of signals (Touma 
et al., 2015).

Low confidence: 
Limited evidence and 
inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Low confidence: 
Inconsistent trends 
between models and 
studies, and low signal-to-
noise ratio (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1653

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

South Asia 
(SAS)

MET

Medium confidence: 
Increase in 
meteorological drought. 
Subregional differences but 
drying is dominant (Mishra 
et al., 2014a; Malik et al., 
2016; Guhathakurta et al., 
2017; Spinoni et al., 2019; 
Dunn et al., 2020; see also 
Section 10.6.3)

Low confidence:  
Limited evidence 
(Fadnavis et al., 2019)

Low confidence: 
Limited evidence and 
inconsistent trends  
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Inconsistent trends, with 
light tendency to decreased 
drying (L. Xu et al., 2019; 
Spinoni et al., 2020; 11.SM)

Low confidence: 
Inconsistent trends 
depending on model and 
subregion, with light 
tendency to decreases in 
meteorological drought 
in CMIP5 and CMIP6 
(Mishra et al., 2014a; 
Touma et al., 2015; Salvi 
and Ghosh, 2016; Spinoni 
et al., 2020; 11.SM); light 
increased drying in number 
of dry days (NDD) in 
CORDEX-CORE (Coppola 
et al., 2021b). Overall poor 
climate model performance 
for South Asia monsoon 
in CMIP5 and CORDEX 
(Mishra et al., 2014b; Saha 
et al., 2014; Sabeerali 
et al., 2015; S. Singh et al., 
2017). See also Section 
10.6.3 for assessment of 
changes in Indian summer 
monsoon rainfall

AGR, 
ECOL

Low confidence: 
Lack of signal and 
inconsistent trends 
depending on subregion 
based on soil moisture, 
PDSI-PM and SPEI-PM 
(Greve et al., 2014; Mishra 
et al., 2014a; Dai and Zhao, 
2017; Spinoni et al., 2019; 
Padrón et al., 2020) and 
decrease of the drying 
effect of the atmospheric 
evaporative demand 
(Jhajharia et al., 2015)

Low confidence: 
 Limited evidence

Low confidence: 
Inconsistent trends 
in drought between 
models and subregions 
(Naumann et al., 2018; 
L. Xu et al., 2019; Gu et al., 
2020; 11.SM) 

Low confidence: 
Inconsistent trends in 
drought between models, 
subregions and studies, 
but slight dominant 
tendency towards wetting 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Gu et al., 2020; 
CMIP6.11.SM-CH11) 

Medium confidence: 
Decreased drying trend 
(11.SM; Cook et al., 2014a, 
2020; Mishra et al., 2014a; 
Dai et al., 2018; Lu et al., 
2019; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: Limited 
evidence. Inconsistent 
trends or limited data in 
available studies (Zhao and 
Dai, 2017; Gudmundsson 
et al., 2019, 2021)

Low confidence:  
Limited evidence

Low confidence:  
Limited evidence. One 
study shows lack of signal 
(Touma et al., 2015)

Low confidence: Limited 
evidence. Lack of signal 
in CMIP5 (Touma et al., 
2015). Decrease in dryness 
in CMIP6 (Cook et al., 
2020); mostly inconsistent 
trends in HAPPI-MIP-
driven simulations with 
one hydrological model 
(R. Zhai et al., 2020)

Low confidence: 
Inconsistent trends 
between models and 
studies (Prudhomme et al., 
2014; Giuntoli et al., 2015; 
Touma et al., 2015; Cook 
et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution 
Projections

+1.5°C +2°C +4°C

South East 
Asia (SEA)

MET

Low confidence: 
Inconsistent trends 
between subregions 
(Spinoni et al., 2019; 
Dunn et al., 2020)

Low confidence: 
Limited evidence 
(McBride et al., 2015; 
King et al., 2016a) 
although the equatorial 
Asia drought of 2015 
has been attributed to 
anthropogenic warming 
effects (Shiogama 
et al., 2020)

Low confidence: Limited 
evidence (L. Xu et al., 
2019; 11.SM)

Low confidence: 
Inconsistent trends 
between models, 
subregions and studies 
(Tangang et al., 2018; L. Xu 
et al., 2019; Spinoni et al., 
2020; 11.SM) but with 
overall drying in CMIP6 
and CORDEX simulations 
(Tangang et al., 2018; Cook 
et al., 2020; Coppola et al., 
2021b; 11.SM).

Tangang et al. (2018): 
Projected drying based on 
CDD in CORDEX simulations 
for Indonesia

L. Xu et al. (2019): 
Inconsistent trends across 
region based on SPI, 
but with slight drying 
over Indonesia

Spinoni et al. (2020): 
Wetting trend based on SPI

11.SM: Drying trend based 
on CDD

Medium confidence: 
Increase in drying in 
CMIP6 and CORDEX 
simulations (Cook et al., 
2020; Supari et al., 2020; 
Coppola et al., 2021b; 
11.SM) but inconsistent 
trends or wetting in CMIP5-
based projections (Touma 
et al., 2015; Cook et al., 
2020; Spinoni et al., 2020; 
Supari et al., 2020)

Supari et al. (2020): 
Strong drying trend 
based on CDD in CORDEX 
simulations for Indonesia

Coppola et al. (2021b): 
Drying based on number of 
dry days (NDD) in CORDEX-
CORE projects

Cook et al. (2020): 
Decreasing trend in mean 
precipitation which is 
only found in CMIP6 
and not in CMIP5.

11.SM: Strong projected 
drying trend based on CDD 
in CMIP6 projections

Touma et al. (2015): 
Inconsistent trends in SPI 
in CMIP5 projections

Spinoni et al. (2020): 
Wetting trend based on 
SPI in CMIP5 projections

Cai et al. (2014b, 2015, 
2018): An increasing 
frequency of precipitation 
deficits is projected as 
a consequence of an 
increasing frequency 
of extreme El Niño. 

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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+1.5°C +2°C +4°C

South East 
Asia (SEA) 
continued

AGR, 
ECOL 

Low confidence: 
Inconsistent trends 
depending on subregion 
and index based on 
soil moisture, PDSI-PM 
and SPEI-PM (Greve 
et al., 2014; Dai and Zhao, 
2017; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence:  
Limited evidence

Low confidence: 
Inconsistent trends 
depending on model, 
subregion, index or study 
(Naumann et al., 2018; 
L. Xu et al., 2019; Gu et al., 
2020; 11.SM)  

Low confidence: 
Inconsistent trends 
depending on model, 
subregion, index or study 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Gu et al., 
2020; 11.SM) 

Low confidence: Mixed 
signals depending on 
model and metric. Drying 
tendency based on CMIP6 
soil moisture projections 
(Cook et al., 2020; 11.SM), 
inconsistent trends in 
CMIP5 surface soil moisture 
(Dai et al., 2018; Lu et al., 
2019), but wetting trends 
with PDSI (Dai et al., 2018) 
and SPEI-PM (Cook et al., 
2014a; Vicente-Serrano 
et al., 2020c) in studies 
driven with CMIP5 data

Cook et al. (2020): Drying 
trend in in the region in 
CMIP6), but not in CMIP5

HYDR

Low confidence: Limited 
evidence. Regionally 
inconsistent trends in one 
study (Dai and Zhao, 2017)

Low confidence:  
Limited evidence

Low confidence: 
Limited evidence. 
One study shows decrease 
in hydrological drought 
(Touma et al., 2015)

Low confidence: 
Limited evidence and 
inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Low confidence: 
Inconsistent trends 
between models and 
studies (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

 
 
 
 
Table 11.10 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in Australasia, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Australasia

Significant increases 
in the intensity and 
frequency of hot 
extremes and 
decreases in the 
intensity and frequency 
of cold extremes 
(CSIRO and BOM, 2015; 
Jakob and Walland, 
2016; Alexander 
and Arblaster, 2017)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Hu et al., 2020; Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
0°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more 
than 0.5°C in the 50-year TXx 
and TNn events compared 
to the 1°C warming level 
(Li et al., 2021)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
2.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes

Low confidence

All

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Australasia 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Human influence very 
likely contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Northern 
Australia 
(NAU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Perkins 
and Alexander, 2013; 
X.L. Wang et al., 2013a; 
CSIRO and BOM, 2015; 
Donat et al., 2016a; 
Alexander and Arblaster, 
2017; Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Arblaster et al., 2014; 
Knutson et al., 2014b; 
Lewis and Karoly, 2014; 
Perkins et al., 2014; 
Hope et al., 2015, 2016; 
Perkins and Gibson, 
2015; Z. Wang et al., 
2017a; Hu et al., 2020; 
Seong et al., 2021).

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

High confidence in 
the increase in the 
intensity and frequency 
of hot extremes and 
likely decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Central 
Australia 
(CAU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and 
significant decreases 
in the intensity and 
frequency 
of cold extremes 
(Perkins and Alexander, 
2013; X.L. Wang et al., 
2013a; CSIRO and BOM, 
2015; Donat et al., 
2016a; Alexander and 
Arblaster, 2017; Dunn 
et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Arblaster et al., 2014; 
King et al., 2014; 
Knutson et al., 2014b; 
Lewis and Karoly, 2014; 
Perkins et al., 2014; 
Hope et al., 2015, 2016; 
Perkins and Gibson, 
2015; Z. Wang et al., 
2017a; Hu et al., 2020; 
Seong et al., 2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Eastern 
Australia 
(EAU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Perkins 
and Alexander, 2013; 
X.L. Wang et al., 2013a; 
CSIRO and BOM, 2015; 
Donat et al., 2016a; 
Alexander and Arblaster, 
2017; Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Arblaster et al., 2014; 
Knutson et al., 2014b; 
Lewis and Karoly, 2014; 
Perkins et al., 2014; 
Hope et al., 2015, 2016; 
King et al., 2015a; 
Perkins and Gibson, 
2015; Z. Wang et al., 
2017a; Hu et al., 2020; 
Seong et al., 2021)  

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Eastern 
Australia 
(EAU) 
continued

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Southern 
Australia 
(SAU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (Perkins 
and Alexander, 2013; 
X.L. Wang et al., 2013a; 
Dittus et al., 2014; CSIRO 
and BOM, 2015; Crimp 
et al., 2016; Donat et al., 
2016a; Alexander and 
Arblaster, 2017; Dunn 
et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Arblaster et al., 2014; 
Knutson et al., 2014b; 
Lewis and Karoly, 2014; 
Perkins et al., 2014; 
Hope et al., 2015, 2016; 
Perkins and Gibson, 
2015; Black and Karoly, 
2016; Z. Wang et al., 
2017a; Hu et al., 2020; 
Seong et al., 2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Alexander 
and Arblaster, 2017; Herold 
et al., 2018; Grose et al., 2020; 
Evans et al., 2021)

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency  
of hot extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:  
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

New Zealand 
(NZ)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Caloiero, 2017; Dunn 
et al., 2020; Harrington, 
2020; MfE and Stats 
NZ, 2020)

Limited evidence 
(Z. Wang et al., 2017a; 
Seong et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of TXx events and 
a decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 1°C in annual 
TXx and TNn compared  
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Low confidence 

Increase in the 
intensity and frequency  
of hot extremes: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: High 
confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency  
of hot extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
 Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

 
 
 
 
Table 11.11 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in Australasia, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Australasia

Limited evidence 
(Jakob and Walland, 
2016; Guerreiro et al., 
2018b; Dey et al., 2019b; 
Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence
CMIP6 models project 
inconsistent changes in the 
region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 4% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
10% in the 50-year Rx1day 
and Rx5day events compared 
to the 1°C warming level 
(Li et al., 2021)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Northern 
Australia 
(NAU)

Intensification of heavy 
precipitation (Donat 
et al., 2016a; Alexander 
and Arblaster, 2017; 
Evans et al., 2017; Dey 
et al., 2019b; Dunn et al., 
2020; Sun et al., 2021)

Limited evidence (Dey 
et al., 2019a)

CMIP6 models project 
inconsistent changes in the 
region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 10% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Medium confidence in 
the intensification of 
heavy precipitation

Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Central 
Australia 
(CAU) 

Limited evidence (Donat 
et al., 2016a; Alexander 
and Arblaster, 2017; 
Evans et al., 2017; Dey 
et al., 2019b; Dunn et al., 
2020; Sun et al., 2021).

Limited evidence
CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 10% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 4% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Eastern 
Australia 
(EAU) 

Lack of agreement 
on the evidence 
of trends (Donat 
et al., 2016a; Alexander 
and Arblaster, 2017; 
Evans et al., 2017; 
Dey et al., 2019b; 
Dunn et al., 2020; 
Sun et al., 2021)

Limited evidence
CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 10% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 8% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Southern 
Australia 
(SAU) 

Limited evidence (Donat 
et al., 2016a; Alexander 
and Arblaster, 2017; 
Evans et al., 2017; Dey 
et al., 2019b; Dunn et al., 
2020; Sun et al., 2021)

Limited evidence
CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 10% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

New Zealand 
(NZ)

Lack of agreement on 
the evidence of trends 
(Donat et al., 2016a; 
Dunn et al., 2020; MfE 
and Stats NZ, 2020)

Limited evidence (Rosier 
et al., 2015)

CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 15% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Table 11.12 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in Australasia, subdivided by AR6 regions.  
See Sections 11.9.1 and 11.9.4 for details.

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought Low confidence

All

Region and
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Northern 
Australia 
(NAU)

MET

Medium confidence: 
Decrease in the 
frequency and intensity of 
meteorological droughts 
(Gallant et al., 2013; 
Delworth and Zeng, 2014; 
Alexander and Arblaster, 
2017; Knutson and Zeng, 
2018; Dey et al., 2019a; 
Dunn et al., 2020) 

Low confidence 
in attribution 
(Delworth and Zeng, 2014; 
Knutson and Zeng, 2018; 
Dey et al., 2019a)

Low confidence: 
Increases or non-robust 
changes (Alexander and 
Arblaster, 2017; Kirono 
et al., 2020; Spinoni et al., 
2020; 11.SM)

Model disagreement in 
Standardized Precipitation 
Index (SPI) projections 
(Spinoni et al., 2020)

Increase in Consecutive 
dry days (CDD)-based 
drought in CMIP5, but 
generally not significant 
(Alexander and 
Arblaster, 2017)

Slight increase in  
CDD-based drought 
in CMIP6 (11.SM)

Low confidence: 
Increases or non-robust 
changes (Alexander and 
Arblaster, 2017; Kirono 
et al., 2020; Spinoni et al., 
2020; 11.SM)

Large inter-model 
spread in changes in 
SPI in CMIP5 projections 
(Kirono et al., 2020)

Model disagreement in 
SPI projections (Spinoni 
et al., 2020)

Increase in CDD-based 
drought in CMIP5, but 
generally not significant 
(Alexander and 
Arblaster, 2017)

Slight increase in  
CDD-based drought 
CMIP6 (11.SM)

Low confidence: Increases 
or non-robust changes 
(Alexander and Arblaster, 2017; 
Grose et al., 2020; Kirono 
et al., 2020; Spinoni et al., 2020; 
Ukkola et al., 2020; 11.SM)

Large inter-model spread 
in changes in SPI in CMIP5 
projectons, but slight drying 
for median (Kirono et al., 2020)

Model disagreement in SPI 
projections (Spinoni et al., 2020)

Increase in CDD-based 
drought in CMIP5, but generally 
not significant (Alexander 
and Arblaster, 2017)

Increase in CDD-based 
drought in CMIP6 (Grose et al., 
2020; 11.SM)

Inconsistent trends in mean 
precipitation in CORDEX 
regional climate models (RCMs), 
but drying trend on annual 
scale at northern tip of region 
(Evans et al., 2021)

AGR 
ECOL

Medium confidence: 
Decrease in agricultural 
and ecological drought

Decrease in frequency 
(but not intensity) of soil 
moisture-based droughts 
(Gallant et al., 2013). 
Inconsistent signals in 
changes in water-balance 
(Greve et al., 2014; 
Padrón et al., 2019). 
Decrease in agricultural 
and ecological drought 
based on SPEI-PM from 
1950–2009 (Beguería 
et al., 2014; Spinoni et al., 
2019) and PDSI-PM (Dai 
and Zhao, 2017)

Low confidence  
Limited evidence 

Lack of studies 
although (Lewis 
et al., 2020) supported an 
anthropogenic attribution 
of 2018 drought 
associated with more 
extreme temperatures that 
exacerbated atmospheric 
evaporative demand (AED) 
and evapotranspiration, 
and depleting 
soil moisture 

Low confidence: 
Increase or non-robust 
change (Naumann et al., 
2018; L. Xu et al., 2019; 
Cook et al., 2020; Kirono 
et al., 2020; 11.SM)

Cook et al. (2020): 
non-robust changes in 
surface and column soil 
moisture in both summer 
and winter half years 
(CMIP6 projections) 

Low confidence: 
Increase or non-robust 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Kirono et al., 
2020; 11.SM)

Cook et al. (2020): 
non-robust changes in 
surface and column soil 
moisture in both summer 
and winter half years 
(CMIP6 projections)

Kirono et al. (2020): 
Standardized soil moisture 
index based on surface 
soil moisture: drying trend 
for median in CMIP5 but 
large inter-model spread 

Low confidence: Increase 
or non-robust, with higher 
increases in SPEI-PM but non-
robust changes in CMIP6 soil 
moisture (Naumann et al., 2018; 
Cook et al., 2020; Kirono et al., 
2020; Vicente-Serrano et al., 
2020c; 11.SM)

Cook et al. (2020): non-robust 
changes in surface and 
column soil moisture in both 
summer and winter half years 
(CMIP6 projections)

Kirono et al. (2020): Standardized 
soil moisture index based on 
surface soil moisture: drying 
trend for median in CMIP5, 
but larger inter-model spread

HYDR
Low confidence 
because of lack of 
data and studies

Low confidence: Limited 
evidence because of lack 
of data and studies

Low confidence: Limited 
evidence. One study 
shows lack of signals 
(Touma et al., 2015)

Low confidence: Limited 
evidence and generally 
non-robust change in 
two studies (Touma et al., 
2015; Cook et al., 2020)

Low confidence: Non-robust 
changes or high model 
disagreement (Giuntoli et al., 
2015; Touma et al., 2015; Cook 
et al., 2020)
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Region and
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Central 
Australia 
(CAU)

MET

Medium confidence: 
decrease in the 
frequency/intensity 
of droughts (Gallant 
et al., 2013; Beguería 
et al., 2014; Delworth 
and Zeng, 2014; Greve 
et al., 2014; Alexander 
and Arblaster, 2017; 
Knutson and Zeng, 2018)

Low confidence in 
attribution (Delworth 
and Zeng, 2014; 
Knutson and Zeng, 2018) 

Low confidence: 
Inconsistent or 
non-robust changes 
in meteorological 
droughts (Alexander and 
Arblaster, 2017; Kirono 
et al., 2020; Spinoni et al., 
2020; 11.SM)

Tendency to increasing 
SPI-based drought in 
CMIP6, but to decreasing 
SPI-based drought 
in CORDEX (Spinoni 
et al., 2020) 

Low confidence: 
Inconsistent or 
non-robust changes 
in meteorological 
droughts (Alexander 
and Arblaster, 2017; 
Kirono et al., 2020; Spinoni 
et al., 2020; 11.SM)

Tendency to increasing 
SPI-based drought 
in CMIP6, but to 
decreasing SPI-based 
drought in CORDEX 
(Spinoni et al., 2020)

Kirono et al. (2020): 
CMIP6 models project 
increased in SPI in much 
of region for 2006–2100 
under RCP8.5

Low confidence: Inconsistent 
or non-robust changes in 
meteorological droughts 
(Alexander and Arblaster, 2017; 
Grose et al., 2020; Kirono 
et al., 2020; Spinoni et al., 2020; 
Ukkola et al., 2020; 11.SM)

Tendency to increasing SPI-
based drought in CMIP6, but to 
decreasing SPI-based drought 
in CORDEX (Spinoni et al., 2020)

Kirono et al. (2020): CMIP6 
models project increased 
in SPI in much of region for 
2006–2100 under RCP8.5

AGR 
ECOL

Low confidence: 
Inconsistent changes 
in frequency/intensity 
of droughts (Gallant 
et al., 2013; Beguería 
et al., 2014; Delworth 
and Zeng, 2014; Greve 
et al., 2014; Dai and Zhao, 
2017; Knutson and Zeng, 
2018; Padrón et al., 2019; 
Spinoni et al., 2019)

Low confidence because 
of lack of studies

Low confidence: 
Inconsistent changes in 
soil moisture and SPEI-PM 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Kirono et al., 
2020; 11.SM)

Low confidence: 
Inconsistent changes in 
soil moisture and SPEI-PM 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Kirono et al., 
2020; 11.SM)

Medium confidence: 
Increased drying for some 
metrics or part of domain for 
soil moisture and SPEI-PM 
with stronger changes for 
SPEI-PM (Naumann et al., 2018; 
Cook et al., 2020; Kirono et al., 
2020; Vicente-Serrano et al., 
2020c; 11.SM)

HYDR
Low confidence 
because of lack of data 
and studies

Low confidence  
Limited evidence, 
because of lack of studies

Low confidence: Limited 
evidence. One study 
shows lack of signals 
(Touma et al., 2015)

Low confidence: Limited 
evidence and generally 
non-robust change in 
two studies (Touma et al., 
2015; Cook et al., 2020)

Low confidence: Non-robust 
changes or high model 
disagreement (Giuntoli et al., 
2015; Touma et al., 2015; Cook 
et al., 2020)

Eastern 
Australia 
(EAU)

MET

Low confidence: 
Inconsistent trends 
(Gallant et al., 2013; 
Delworth and Zeng, 2014; 
Alexander and Arblaster, 
2017; Knutson and Zeng, 
2018; Spinoni et al., 2019)

Gallant et al. (2013): 
Inconsistent trends, 
wetting on average 
in MDB

Delworth and Zeng (2014): 
no trend

Knutson and Zeng (2018): 
no trend

Alexander and Arblaster 
(2017); Dunn et al. (2020): 
no trends in CDD

Spinoni et al. (2019): 
Inconsistent trends, some 
increased severity in part 
of the region

Low confidence in 
attribution (Delworth 
and Zeng, 2014; King 
et al., 2014; Knutson 
and Zeng, 2018)

Low confidence: 
Increase in 
meteorological droughts 
based on CDD (11.SM) 
and SPI (Kirono et al., 
2020), but weak signals 
and lack of other studies 
at this GWL 

Medium confidence: 
Increases in 
meteorological 
droughts (Alexander and 
Arblaster, 2017; Kirono 
et al., 2020; Spinoni et al., 
2020; 11.SM)

Medium confidence: Increases 
in meteorological droughts 
(Alexander and Arblaster, 2017; 
Grose et al., 2020; Kirono 
et al., 2020; Spinoni et al., 2020; 
Ukkola et al., 2020; 11.SM)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Eastern 
Australia 
(EAU) 
continued

AGR 
ECOL

Low confidence: 
Inconsistent trends 
(Gallant et al., 2013; 
Beguería et al., 2014; 
Greve et al., 2014; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence because 
of lack of studies, although 
enhanced AED-driven by 
extreme temperatures 
increased the severity 
of the 2019 drought (van 
Oldenborgh et al., 2021)

Low confidence: 
Inconsistent changes in 
soil moisture and SPEI-PM, 
but tendency to increase 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Kirono et al., 
2020; 11.SM)

Medium confidence: 
Increase in drought based 
on soil moisture and SPEI-
PM, but partly inconsistent 
changes for some studies 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020; Kirono et al., 
2020; 11.SM)

High confidence: Increased 
drying for some metrics or part 
of domain for soil moisture and 
SPEI-PM with stronger changes 
for SPEI-PM (Naumann et al., 
2018; Cook et al., 2020; Kirono 
et al., 2020; Vicente-Serrano 
et al., 2020c; 11.SM)

HYDR

Low confidence: Limited 
evidence because of lack 
of data and studies 
(X.S. Zhang et al., 2016)

Low confidence: Limited 
evidence, because of lack 
of studies

Low confidence: Limited 
evidence. One study 
shows lack of signals 
(Touma et al., 2015)

Low confidence: Lack 
of studies and generally 
non-robust change in 
two studies (Touma et al., 
2015; Cook et al., 2020)

Low confidence: Non-robust 
changes or high model 
disagreement (Giuntoli et al., 
2015; Touma et al., 2015; Cook 
et al., 2020)

Southern 
Australia 
(SAU)

MET

Low confidence: Mixed 
signals depending on 
subregion, index and 
season (Gallant et al., 
2013; Delworth and Zeng, 
2014; Alexander and 
Arblaster, 2017; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Dunn et al., 2020; 
Rauniyar and Power, 2020)

Gallant et al. (2013): 
Wetting in eastern part, 
drying in eastern part

Rauniyar and Power 
(2020): Recovery from 
Millenium drought

Delworth and Zeng 
(2014): Only drying in 
the western part, not 
in the eastern part

Alexander and Arblaster 
(2017); Dunn et al. (2020): 
Overall decreasing 
CDD trends

Spinoni et al. (2019): 
Decreasing droughts 
in most of domain

Low confidence: Mixed 
signals in observations

Increase in the frequency/
intensity of meteorological 
droughts can be attributed 
to anthropogenic forcing 
(greenhouse gases, ozone 
and aerosols) (Cai et al., 
2014a; Delworth and 
Zeng, 2014; Karoly 
et al., 2016; Knutson 
and Zeng, 2018)

Medium confidence: 
Increase overall in 
meteorological droughts 
based on CDD (11.SM) 
and SPI (Kirono et al., 
2020); but weak signals 
and lack of other studies 
at this GWL

Medium confidence: 
Increases in 
meteorological 
droughts (Alexander 
and Arblaster, 2017; 
Kirono et al., 2020; Spinoni 
et al., 2020; 11.SM)

Medium confidence: Increases 
in meteorological droughts 
(Alexander and Arblaster, 2017; 
Grose et al., 2020; Kirono 
et al., 2020; Spinoni et al., 2020; 
Ukkola et al., 2020; 11.SM)

AGR 
ECOL

Medium confidence: 
Increase. Dominant 
increasing drying signal 
but some inconsistent 
trends depending on 
subregion and index; 
strongest drying trend in 
Western SAU. (Gallant 
et al., 2013; Beguería 
et al., 2014; Greve et al., 
2018; Spinoni et al., 2019; 
Padrón et al., 2020) 

Low confidence:  
Limited evidence,  
Enhanced AED driven 
by extreme temperatures 
increased the severity 
of the 2019 drought (van 
Oldenborgh et al., 2021)

Medium confidence: 
Increase in soil 
moisture and SPEI-PM, 
but partly inconsistent 
changes for some 
studies (Naumann et al., 
2018; L. Xu et al., 2019; 
Kirono et al., 2020; 11.SM)

Medium confidence: 
Increase in drought 
based on soil moisture 
and SPEI-PM, but partly 
inconsistent changes for 
some studies (Naumann 
et al., 2018; L. Xu et al., 
2019; Cook et al., 2020; 
Kirono et al., 2020; 11.SM)

High confidence: Increased 
drying for some metrics or part 
of domain for soil moisture and 
SPEI-PM with stronger changes 
for SPEI-PM (Naumann et al., 
2018; Cook et al., 2020; Kirono 
et al., 2020; Vicente-Serrano 
et al., 2020c; 11.SM)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Southern 
Australia 
(SAU) 
continued

HYDR

Medium confidence: 
Increasing drying 
signal in the southeast 
and particularly the 
southwest. Some 
dependence on time 
frame in available studies 
(X.S. Zhang et al., 2016; 
Gudmundsson et al., 
2019, 2021)

Low confidence: 
Limited evidence 
because of lack of studies 
(Cai and Cowan, 2008)

Low confidence: Limited 
evidence. One study 
shows lack of signal 
(Touma et al., 2015)

Medium confidence: 
Increase in drought, 
but some inconsistent 
and non-robust change, 
including subregional/
seasonal differences 
(Touma et al., 2015; 
Zheng et al., 2019; 
Cook et al., 2020)

Medium confidence: 
Increase in drought, but some 
inconsistent changes depending 
on season or study (Giuntoli 
et al., 2015; Touma et al., 2015; 
Cook et al., 2020) 

New 
Zealand 
(NZ)

MET

Low confidence: 
Inconsistent changes 
(Caloiero, 2015; Spinoni 
et al., 2015; Knutson and 
Zeng, 2018)

Low confidence in 
attribution of trends 
(Harrington et al., 2014, 
2016; Knutson and 
Zeng, 2018)

Low confidence: 
Lack of studies and 
lack of signal for CDD 
in CMIP6 (11.SM)

Low confidence: 
Inconsistent changes, but 
increase in Northern Island 
(MfE, 2018; MfE and Stats 
NZ, 2020; Spinoni et al., 
2020; 11.SM)

Low confidence: Inconsistent 
changes, but increase in 
Northern Island (MfE, 2018; 
MfE and Stats NZ, 2020; Spinoni 
et al., 2020; 11.SM)

AGR 
ECOL

Low confidence: 
Inconsistent trends. 
Increase in drying in part 
of the country based on 
soil mosture and SPEI-PM 
(Beguería et al., 2014; 
Spinoni et al., 2019; MfE 
and Stats NZ, 2020); 
decrease in PDSI-PM (Dai 
and Zhao, 2017)

Low confidence: 
Limited evidence 
because of lack of studies

Low confidence: Lack 
of studies and lack of 
signal for soil moisture 
in CMIP6 (11.SM)

Low confidence: 
Inconsistent changes, 
but increase in Northern 
Island (MfE, 2018; MfE 
and Stats NZ, 2020; 
Spinoni et al., 2020)

Low confidence: Inconsistent 
changes, but increase in 
Northern Island (MfE, 2018; 
MfE and Stats NZ, 2020; Spinoni 
et al., 2020)

HYDR
Low confidence:  
Lack of data and studies

Low confidence:  
Lack of studies

Low confidence:  
Lack of studies

Low confidence:  
Lack of studies

Low confidence:  
Lack of studies

 
 
 
 
Table 11.13 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in Central and South America, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Central and 
South America

Most subregions show 
a likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Hu et al., 2020; 
Seong et al., 2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
0.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021) 

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
1°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
2.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021) 

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes, decreasing heavy precipitation

Low confidence

All

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Central and 
South America 
continued

High confidence in 
the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Southern 
Central 
America (SCA) 

Increases in the 
intensity and frequency 
of hot extremes and 
decreases in the 
intensity and frequency 
of cold extremes 
(Aguilar et al., 2005; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Wang et al., 2017, 
Seong et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; Angeles-Malaspina et al., 
2018; Imbach et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; Angeles-Malaspina et al., 
2018; Coppola et al., 2021b)

Medium confidence 
in the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Caribbean 
(CAR)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(McLean et al., 2015; 
Angeles-Malaspina 
et al., 2018; 
Dunn et al., 2020) 

Strong evidence 
of changes from 
observations that 
are in the direction 
of model-projected 
changes for the future. 
The magnitude of 
projected changes 
increases with 
global warming.

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (11.SM). Median 
increase of more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; Angeles-Malaspina 
et al., 2018) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). More than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou 
et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). More than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Hall 
et al., 2013; Chou et al., 2014a; 
Angeles-Malaspina et al., 2018; 
Coppola et al., 2021b)

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

North-Western 
South America 
(NWS)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Dereczynski et al., 2020; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
TXx events and a robust 
decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level (Li 
et al., 2021) and more than 2°C 
in annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase 
in the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

North-Western 
South America 
(NWS) 
continued

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Northern South 
America (NSA)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Geirinhas et al., 2018; 
Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes 
and decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b) 

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South 
American 
Monsoon 
(SAM)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Geirinhas et al., 2018; 
Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b) 

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

North-Eastern 
South America 
(NES)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Geirinhas et al., 2018; 
Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

North-Eastern 
South America 
(NES) 
continued

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

South-Western 
South America 
(SWS)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Dereczynski et al., 2020; 
Dunn et al., 2020; Olmo 
et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b) 

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1671

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South-Eastern 
South America 
(SES)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Rusticucci et al., 2017; 
Geirinhas et al., 2018; 
Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Z. Wang et al., 2017a; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b)

High confidence in 
the increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial)

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Southern 
South America 
(SSA)

Inconsistent trends 
and insufficient data 
(Ceccherini et al., 2016; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 2.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5/CMIP3 and RCM 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Chou et al., 
2014a; López-Franca et al., 2016; 
Coppola et al., 2021b)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Southern 
South America 
(SSA) 
continued

Low confidence Low confidence 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial).

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

 
 
Table 11.14 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in Central and South America, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details.

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Central 
and South 
America 

Insufficient data 
to assess trends

Limited evidence

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 0% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021). Median increase 
of more than 4% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
10% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

South Central 
America (SCA) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Stephenson et al., 2014; 
Dunn et al., 2020; Sun 
et al., 2021)

Limited evidence

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Imbach et al., 
2018; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Nakaegawa 
et al., 2014; Kusunoki et al., 
2019; Coppola et al., 2021b; 
Li et al., 2021)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Low confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Caribbean 
(CAR) 

Insufficient data and 
a lack of agreement on 
the evidence of trends 
(Stephenson et al., 2014; 
McLean et al., 2015; 
Dunn et al., 2020; Sun 
et al., 2021)

Evidence of a human 
contribution for some 
events (Patricola and 
Wehner, 2018), but 
cannot be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 
models, and RCMs project 
inconsistent changes in the 
region (Hall et al., 2013; Chou 
et al., 2014a; Nakaegawa et al., 
2014; Coppola et al., 2021b; 
Li et al., 2021)

Low confidence Low confidence. Low confidence Low confidence Low confidence

North-Western 
South America 
(NWS) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Dereczynski et al., 2020; 
Dunn et al., 2020; Sun 
et al., 2021)

Disagreement among 
studies (Otto et al., 
2018a; S. Li et al., 2020)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

Low confidence Low confidence Low confidence Low confidence Low confidence

Northern 
South America 
(NSA) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Avila-Diaz et al., 2020; 
Dereczynski et al., 
2020; Dunn et al., 2020; 
Sun et al., 2021)

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to 
the CMIP6 results

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

South 
American 
Monsoon 
(SAM) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020; Sun 
et al., 2021) 

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021) 

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 10% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 4% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South 
American 
Monsoon 
(SAM) 
continued

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

North-Eastern 
South America 
(NES) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020; Sun 
et al., 2021) 

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 15% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Conflicting projections by the 
CMIP6 multi-model ensemble 
and limited RCM simulations; 
more weight is given to the 
CMIP6 results

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
Medium confidence (compared 
with pre-industrial) 

South-Western 
South America 
(SWS) 

Insufficient data 
coverage and trends 
in available data are 
generally not significant 
(Dereczynski et al., 
2020; Dunn et al., 2020; 
Olmo et al., 2020; 
Sun et al., 2021)

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021) 

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

Low confidence Low confidence Low confidence Low confidence Low confidence

South-Eastern 
South America 
(SES) 

Significant 
intensification of heavy 
precipitation (Avila-Diaz 
et al., 2020; Dereczynski 
et al., 2020; Dunn et al., 
2020; Olmo et al., 2020)

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 8% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 20% in annual Rx1day 
and Rx5day and 15% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

South-Eastern 
South America 
(SES) 
continued

High confidence in 
intensification of 
heavy precipitation

Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Southern 
South America 
(SSA) 

Insufficient data 
coverage and trends are 
generally not significant 
(Dereczynski et al., 
2020; Dunn et al., 2020; 
Sun et al., 2021)

Evidence of a human 
contribution for 
some events (S. Li 
et al., 2020), but cannot 
be generalized

CMIP6 models, CMIP5 models, 
and RCMs project inconsistent 
changes in the region (Chou 
et al., 2014a; Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2% in annual 
Rx1day and Rx5day and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 15% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Chou et al., 2014a)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 
1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

 
 
 
Table 11.15 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in Central and South America, subdivided by AR6 
regions. See Sections 11.9.1 and 11.9.4 for details. 

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought Low confidence

All

Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Southern 
Central 
America 
(SCA)

MET

Low confidence: Mixed 
signal. Dominant decrease 
in drought duration but 
mixed trends between 
subregions (Aguilar et al., 
2005; Spinoni et al., 2019; 
Dunn et al., 2020)

Low confidence:  
Limited evidence

Low confidence: Limited 
evidence. Available 
evidence suggests increase 
in drought severity (11.SM; 
Chou et al., 2014a; Imbach 
et al., 2018)

(Chou et al., 2014a): 
RCM simulations with Eta 
model driven with two 
different GCMs

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Imbach et al., 2018; L. Xu 
et al., 2019; Spinoni et al., 
2020; 11.SM) 

(Chou et al., 2014a): 
RCM simulations with Eta 
model driven with two 
different GCMs

High confidence: Increase 
in drought severity (Chou 
et al., 2014a; Nakaegawa 
et al., 2014; Touma et al., 
2015; Kusunoki et al., 2019; 
Corrales-Suastegui et al., 
2020; Spinoni et al., 2020; 
Coppola et al., 2021b; 11.SM)

Chou et al. (2014a): 
RCM simulations with Eta 
model driven with two 
different GCMs

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Southern 
Central 
America 
(SCA) 
continued

AGR 
ECOL

Low confidence: Mixed 
signal. Mixed trends in 
different subregions and 
in different drought metrics, 
including soil moisture, 
PDSI-PM and SPEI-PM (Greve 
et al., 2014; Dai and Zhao, 
2017; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence:  
Limited evidence

Low confidence: Mixed 
signal in drought trends. 
Inconsistent drying trend 
(but stronger tendency 
towards drying) based on 
total column soil moisture 
(Imbach et al., 2018; L. Xu 
et al., 2019; 11.SM) and 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Medium confidence: 
Increase in drought based 
on total and surface soil 
moisture (L. Xu et al., 2019; 
Cook et al., 2020; 11.SM) 
and on SPEI-PM (Naumann 
et al., 2018; L. Xu et al., 
2019; Gu et al., 2020)

High confidence: Increase 
in drought severity with 
different metrics and high 
agreement between studies 
(11.SM; Cook et al., 2014a, 
2020; Dai et al., 2018; Lu 
et al., 2019; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: 
Insufficient evidence 
(Dai and Zhao, 2017; 
Gudmundsson et al., 2021)

Low confidence:  
Limited evidence

Low confidence: Limited 
evidence. One study shows 
inconsistent changes (Touma 
et al., 2015).

Low confidence: Limited 
evidence. Inconsistent 
changes (Touma et al., 2015) 
or drying in part of region 
(Cook et al., 2020)

Medium confidence: 
Increase in drought severity 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

Caribbean 
(CAR)

MET

Low confidence: Mixed 
signals. Mixed trends 
between subregions, but 
some evidence of increases in 
drought duration (Stephenson 
et al., 2014; McLean et al., 
2015; Spinoni et al., 2019; 
Dunn et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: Increase 
in drought duration (Chou 
et al., 2014a); inconsistent 
changes in CDD (11.SM) 

Low confidence: Limited 
evidence and inconsistent 
changes. One study 
suggests increase in drought 
duration (Chou et al., 2014a), 
but CMIP6 projections 
show inconsistent changes 
in CDD (11.SM)

Medium confidence: 
Increase in drought duration 
(11.SM; Chou et al., 2014a; 
Nakaegawa et al., 2014; 
Stennett-Brown et al., 2017; 
Coppola et al., 2021b)

AGR 
ECOL

Low confidence: Mixed 
signal. Mixed trends 
between subregions with 
PDSI-PM and SPEI-PM (Dai 
and Zhao, 2017; Spinoni 
et al., 2019)

Low confidence:  
Limited evidence 

Low confidence: 
Inconsistent trends in total 
column and surface soil 
moisture (11.SM), and SPEI-
PM (Naumann et al., 2018; 
Gu et al., 2020)

Medium confidence: 
Increase, but including 
mixed signals in changes of 
drought severity, with median 
decrease in total soil moisture 
in large sample of CMIP6 
simulations but substantial 
spread between models 
(11.SM), and drying trend 
based on SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020). 
See also Chapter 12

Medium confidence: 
Increase. Drying trend with 
surface soil moisture (Dai 
et al., 2018; Lu et al., 2019), 
PDSI (Dai et al., 2018) and 
SPEI-PM (Cook et al., 2014a; 
Vicente-Serrano et al., 
2020c). Total soil moisture 
shows weak (11.SM) or no 
signal (Cook et al., 2020)

HYDR
Low confidence:  
Limited evidence

Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence

Low confidence:  
Limited evidence

Low confidence: Mixed 
signals among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

North-
Western 
South 
America 
(NWS)

MET

Low confidence: Mixed 
signal. Mixed trends 
between subregions (Skansi 
et al., 2013; Spinoni et al., 
2019; Dereczynski et al., 
2020; Dunn et al., 2020)

Low confidence: 
 Limited evidence 

Low confidence: 
Inconsistent trends 
(11.SM; Chou et al., 2014a; 
Touma et al., 2015; L. Xu 
et al., 2019)

Low confidence: Mixed 
signals between different 
studies and models (Chou 
et al., 2014a; Touma et al., 
2015; L. Xu et al., 2019; 
Spinoni et al., 2020; 11.SM) 

Medium confidence: 
Increase. Dominant signal 
is positive CDD trend 
(increasing dryness; 11.SM); 
also some mixed signals 
between different studies 
(Chou et al., 2014a; Duffy 
et al., 2015; Touma et al., 
2015; Spinoni et al., 2020; 
Coppola et al., 2021b)

AGR 
ECOL

Low confidence: Mixed 
trends between subregions 
and drought metrics, 
including soil moisture, 
PDSI-PM and SPEI-PM (Greve 
et al., 2014; Dai and Zhao, 
2017; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence:  
Limited evidence 

Low confidence: Mixed 
trends based on different 
metrics, including decrease 
in total column soil moisture, 
(11.SM), weak drying with 
surface soil moisture (L. Xu 
et al., 2019) and wetting 
based on the SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: Mixed 
signals in changes in 
drought severity with drying 
in total column soil moisture, 
(11.SM), lack of signal in 
the surface soil moisture 
(L. Xu et al., 2019) and 
wetting trends with SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: Mixed 
trends between different 
drought metrics (Cook et al., 
2014a, 2020; Dai et al., 2018; 
Lu et al., 2019; Vicente-
Serrano et al., 2020c; 11.SM)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

North-
Western 
South 
America 
(NWS) 
continued

HYDR
Low confidence:  
Limited evidence 

Low confidence:  
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
inconsistent changes (Touma 
et al., 2015).

Low confidence: Limited 
evidence. Inconsistent 
changes (Touma et al., 2015; 
Cook et al., 2020)

Low confidence: Lack of 
signals (Prudhomme et al., 
2014; Giuntoli et al., 2015; 
Touma et al., 2015; Cook 
et al., 2020)

Northern 
South 
America 
(NSA)

MET

Low confidence: Mixed 
trends between subregions, 
but some evidence of 
increased drought duration 
(Skansi et al., 2013; Marengo 
and Espinoza, 2016; Spinoni 
et al., 2019; Avila-Diaz et al., 
2020; Dereczynski et al., 
2020; Dunn et al., 2020)

Low confidence: 
Limited evidence 

Medium confidence: 
Available evidence suggests 
drying (Chou et al., 2014a; 
Touma et al., 2015; L. Xu 
et al., 2019; 11.SM)

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; L. Xu 
et al., 2019; Spinoni et al., 
2020; 11.SM)

High confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Duffy et al., 2015; Touma 
et al., 2015; Marengo and 
Espinoza, 2016; Spinoni 
et al., 2020; Coppola et al., 
2021b; 11.SM)

AGR 
ECOL

Low confidence: Mixed 
trends between subregions 
and different drought 
metrics, including soil 
moisture, PDSI-PM and SPEI-
PM, but some evidence of 
decrease in drought severity 
(Greve et al., 2014; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Medium confidence: 
Increase in drying. Tendency 
towards increase in drought 
severity in total and surface 
soil moisture (11.SM; L. Xu 
et al., 2019) inconsistent 
trends in studies based on 
the SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Medium confidence: 
Increase. Tendency towards 
increase in drought severity 
in total soil moisture 
(11.SM), surface soil 
moisture (L. Xu et al., 2019) 
and SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

High confidence: Increase 
in drought severity with 
different metrics and high 
agreement between studies 
(11.SM; Cook et al., 2014a, 
2020; Dai et al., 2018; Lu 
et al., 2019; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: Limited 
evidence. Available 
evidence suggests lack 
of signal (Marengo 
and Espinoza, 2016; 
Gudmundsson et al., 2021)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study 
shows mixed trends 
(Touma et al., 2015)

Low confidence: Limited 
evidence. Tendency to 
drying in two studies 
(Touma et al., 2015; 
Cook et al., 2020)

High confidence:  
Increase in drought 
severity (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

South 
American 
Monsoon 
(SAM)

MET

Medium confidence: 
Increase in the 
frequency and severity of 
meteorological droughts 
based on SPI and CDD 
(Spinoni et al., 2019; Avila-
Diaz et al., 2020; Dereczynski 
et al., 2020)

Low confidence: Limited 
evidence and recent 
droughts in 2010 were not 
attributed to anthropogenic 
climate change (Shiogama 
et al., 2013).

Medium confidence: 
Increase meteorological 
droughts (11.SM; Chou et al., 
2014a; Touma et al., 2015; 
L. Xu et al., 2019). Drying 
trends in CDD in CMIP6 and 
SPI in CMIP5 (Touma et al., 
2015; L. Xu et al., 2019) but 
divergent trends in an RCM 
driven by two GCMs (Chou 
et al., 2014a)

Medium confidence: 
Increase in meteorological 
droughts (Chou et al., 
2014a; Touma et al., 2015; 
L. Xu et al., 2019; 11.SM). 
Drying trend in CDD in 
CMIP6 and SPI in CMIP5 
(Touma et al., 2015; L. Xu 
et al., 2019) but divergent 
trends in an RCM driven 
by two GCMs (Chou et al., 
2014a) and weak trends in 
CMIP5-based SPI projections 
(Spinoni et al., 2020)

High confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; Spinoni 
et al., 2020; Coppola et al., 
2021b; 11.SM)

AGR 
ECOL

Low confidence: Mixed 
trends depending on 
subregions and drought 
metrics, including soil 
moisture, PDSI-PM and SPEI-
PM (Greve et al., 2014; Dai 
and Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Medium confidence: 
Increase in agricultural and 
ecological droughts based on 
total column and surface soil 
moisture, (11.SM; L. Xu et al., 
2019), and inconsistent signal 
with SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

High confidence: Increase 
in drought severity with 
different metrics (Naumann 
et al., 2018; L. Xu et al., 
2019; Gu et al., 2020; 11.SM)

High confidence: Increase 
in drought severity with 
different metrics and high 
agreement between studies 
(11.SM (Cook et al., 2014a, 
2020; Dai et al., 2018; 
Lu et al., 2019; Vicente-
Serrano et al., 2020c)

HYDR

Low confidence: 
Limited evidence. Available 
evidence suggests lack 
of signal (Gudmundsson 
et al., 2021)

Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence. One 
study shows mixed signal 
(Touma et al., 2015)

Low confidence: Limited 
evidence. Mixed signals 
(Touma et al., 2015) 
or tendency to drying 
(Cook et al., 2020) 

High confidence: Increase 
in drought severity 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

North-
Eastern 
South 
America 
(NES)

MET

High confidence: Increase 
in drought duration 
(Marengo et al., 2017; Brito 
et al., 2018; Spinoni et al., 
2019; Avila-Diaz et al., 2020; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Low confidence: Low 
confidence in human 
influence on meteorological 
drought in the region 
(Otto et al., 2015b; 
Martins et al., 2018)

Medium confidence: 
Increase of CDD (11.SM; 
Chou et al., 2014a) and SPI 
(Xu et al. 2019, Touma et al. 
2015). Increase in CDD for 
change of +0.5°C in global 
warming based on CMIP5 
(Wartenburger et al., 2017; 
SR1.5, Chapter 3)

Medium confidence: 
Increase in drought 
severity (Chou et al., 
2014a; Touma et al., 2015; 
L. Xu et al., 2019; Spinoni 
et al., 2020; Chapter 11 
Supplementary Material)

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; Spinoni 
et al., 2020; Coppola 
et al., 2021b; Chapter 11 
Supplementary Material)

AGR 
ECOL

Medium confidence: 
Increase in drought severity 
based on different drought 
metrics, including soil 
moisture, PDSI-PM and SPEI-
PM (Greve et al., 2014; Dai 
and Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Lack of 
signal based on different 
metrics, including total and 
surface column soil moisture 
(11.SM; L. Xu et al., 2019), 
and SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

Medium confidence: 
Increase. Dominant 
increase in drying with some 
inconsistencies between 
different drought metrics 
and models (Naumann et al., 
2018; L. Xu et al., 2019; Gu 
et al., 2020; 11.SM)

Medium confidence: 
Increase in drought severity 
with different metrics and 
high agreement between 
different studies (11.SM; 
Cook et al., 2014a, 2020; Dai 
et al., 2018; Lu et al., 2019; 
Vicente-Serrano et al., 2020c)

HYDR

Low confidence: Limited 
evidence. One study shows 
an increase in drought 
severity (Gudmundsson 
et al., 2021).

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study 
shows a weak drying 
(Touma et al., 2015).

Low confidence: Limited 
evidence. Weak drying 
(Touma et al., 2015) 
or inconsistent trends 
(Cook et al., 2020)

Low confidence: Mixed 
signals among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

South-
Western 
South 
America 
(SWS)

MET

Medium confidence: 
Increase in drought 
duration and severity (Skansi 
et al., 2013; Garreaud et al., 
2017, 2020; Saurral et al., 
2017; Boisier et al., 2018; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Medium confidence that 
human-induced climate 
change has contributed to 
long-term trends and Central 
Chile drought between 2010 
and 2018 (Boisier et al., 
2016; Garreaud et al., 2020)

Low confidence: 
Inconsistent trends. 
Increase in meteorological 
drought based on CDD in 
CMIP6 GCMs (11.SM, but 
inconsistent trends in SPI 
in CMIP5 (Touma et al., 
2015; L. Xu et al., 2019) and 
substantial model spread in 
Eta-RCM driven with two 
GCMs (Chou et al., 2014a)

Low confidence: Mixed 
trends between studies 
and models. Increase in 
meteorological drought 
based on CDD in CMIP6 
GCMs (11.SM), but 
inconsistent trends in SPI 
in CMIP5 (Touma et al., 
2015; L. Xu et al., 2019) and 
substantial model spread in 
Eta-RCM driven with two 
GCMs (Chou et al., 2014a)

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; Spinoni 
et al., 2020)

AGR 
ECOL

Low confidence: Mixed 
trends according to 
subregions and different 
drought metrics, including soil 
moisture, PDSI-PM and SPEI-
PM (Greve et al., 2014; Dai 
and Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Mixed 
trends based on different 
metrics, including decrease 
in total column and surface 
soil moisture in CMIP6 
(11.SM), weak drying in total 
and surface soil moisture in 
CMIP5 (L. Xu et al., 2019), 
and weak signal based on 
the SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Medium confidence: 
Increase in drought severity 
based on total and surface 
soil moisture in CMIP6 
(11.SM) and CMIP5 (L. Xu 
et al., 2019), and SPEI-PM 
(Naumann et al., 2018; Gu 
et al., 2020)

High confidence: Increase 
in drought severity with 
different metrics and high 
agreement between studies 
(11.SM; Cook et al., 2014a, 
2020; Dai et al., 2018; Lu 
et al., 2019; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: Limited 
evidence. General lack 
of signal in one study 
(Gudmundsson et al., 2021) 
but streamflow decrease in 
subregions in another study 
(Boisier et al. (2018)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
drying (Touma et al., 2015)

Low confidence: Limited 
evidence. Strong drying in 
(Cook et al., 2020); weak 
drying in (Touma et al., 2015)

High confidence: 
Increase in drought 
severity (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

South-
Eastern 
South 
America 
(SES)

MET

Low confidence: Mixed 
signals in observed 
trends depending on 
subregion (Saurral et al., 
2017; Knutson and Zeng, 
2018; Spinoni et al., 2019; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Low confidence: Limited 
evidence Wetting trend in 
models and observations in 
part of region in one study 
(Knutson and Zeng, 2018)

Low confidence: 
Inconsistent trends. Weak 
drying trend based on CDD 
CMIP6 (11.SM), inconsistent 
trend between models based 
on SPI in CMIP5 (Touma 
et al., 2015; L. Xu et al., 2019) 
and lack of signal in study 
with one RCM driven by two 
GCMs (Chou et al., 2014a)

Low confidence: Mixed 
signals between studies and 
models (Chou et al., 2014a; 
Touma et al., 2015; L. Xu 
et al., 2019; Spinoni et al., 
2020; 11.SM) 

Low confidence: Mixed 
signals between studies and 
models (Chou et al., 2014a; 
Touma et al., 2015; Spinoni 
et al., 2020; Coppola et al., 
2021b; 11.SM)

AGR 
ECOL

Low confidence: Mixed 
trends according to 
subregions and different 
drought metrics, including soil 
moisture, PDSI-PM and SPEI-
PM (Greve et al., 2014; Dai 
and Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Mixed 
trends based on different 
metrics, including lack of 
signal in total column soil 
moisture, (11.SM), weak 
drying with surface soil 
moisture (L. Xu et al., 2019) 
and wetting based on the 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Low confidence: Mixed 
signal in changes in drought 
severity with different 
metrics, (11.SM; Naumann 
et al., 2018; L. Xu et al., 
2019; Gu et al., 2020)

Low confidence: Mixed 
signals. Inconsistent trends 
or lack of signal in total and 
surface soil moisture (11.SM; 
Dai et al., 2018; Lu et al., 
2019; Cook et al., 2020); 
decreasing drought severity 
in PDSI and SPEI-PM (Cook 
et al., 2014a; Dai et al., 2018; 
Vicente-Serrano et al., 2020c) 

HYDR

Medium confidence: 
Decrease. Reduction of 
hydrological droughts 
(Dai and Zhao, 2017; 
Rivera and Penalba, 2018)

Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence. One 
study shows mixed signal 
(Touma et al., 2015).

Low confidence: Limited 
evidence. Mixed signal 
(Touma et al., 2015) or 
wetting (Cook et al., 2020)

Low confidence: Mixed 
signal among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

Southern 
South 
America 
(SSA)

MET

Medium confidence: 
Increase in the frequency 
of droughts (Skansi et al., 
2013; Spinoni et al., 2019; 
Dereczynski et al., 2020; 
Dunn et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: 
Lack of signal (11.SM; 
Chou et al., 2014a)

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; L. Xu 
et al., 2019; Spinoni et al., 
2020; 11.SM)

Medium confidence: 
Increase in drought 
severity (Chou et al., 2014a; 
Touma et al., 2015; Spinoni 
et al., 2020; Coppola et al., 
2021b; 11.SM)

AGR 
ECOL

Low confidence: Mixed 
trends depending on 
subregions and drought 
metrics, including soil 
moisture, PDSI-PM and SPEI-
PM (Greve et al., 2014; Dai 
and Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Medium confidence: 
Increase in drought severity 
considering total column 
soil moisture, (11.SM), and 
surface soil moisture (L. Xu 
et al., 2019) and weak drying 
with the SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

High confidence: Increase 
in drought severity (Naumann 
et al., 2018; L. Xu et al., 2019; 
Gu et al., 2020; 11.SM) 

High confidence: Increase 
in drought severity with 
different metrics and high 
agreement between studies 
(11.SM; Cook et al., 2014a, 
2020; Dai et al., 2018; Lu 
et al., 2019; Vicente-Serrano 
et al., 2020c)

HYDR
Low confidence: Limited 
evidence and lack of signal 
(Gudmundsson et al., 2021)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
drying (Touma et al., 2015)

Low confidence: Limited 
evidence. Drying (Touma 
et al., 2015; Cook et al., 
2020) or inconsistent trend 
(R. Zhai et al., 2020)

High confidence: Increase 
in drought severity 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 2020)

 

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Table 11.16 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in Europe, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details. 

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All Europe

All subregions show 
a very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Hu et al., 2020; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
0.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
1.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
5°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Human influence very 
likely contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes  

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Extremely 
likely (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Greenland/
Iceland (GIC)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Mernild et al., 2014; 
Sui et al., 2017; Dunn 
et al., 2020; Peña-Angulo 
et al., 2020a) 

Strong evidence 
of changes from 
observations that are in 
the direction of model-
projected changes 
for the future. The 
magnitude of projected 
changes increases with 
global warming

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Wehner et al., 2018b; Cardell 
et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Wehner et al., 2018b; Cardell 
et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared 
to the 1°C warming level (Li 
et al., 2021) and more than 
2.5°C in annual TXx and TNn 
compared  
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Sillmann et al., 
2013b; Cardell et al., 2020)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Greenland/
Iceland (GIC) 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Mediterranean 
(MED) 7

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes (El 
Kenawy et al., 2013; 
Peña-Angulo et al., 
2020a) for Spain, Donat 
et al., 2013b, 2014a, 
2016a; Acero et al., 
2014; Filahi et al., 2016; 
Fioravanti et al., 2016; 
Ruml et al., 2017; 
Türkeş and Erlat, 2018; 
Driouech et al., 2021)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Sippel and Otto, 2014; 
Z. Wang et al., 2017a; 
Wilcox et al., 2018; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared  
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Zollo et al., 2016; Weber et al., 
2018; Cardoso et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Tomozeiu et al., 2014; Nastos 
and Kapsomenakis, 2015; 
Zollo et al., 2016; Abaurrea 
et al., 2018; Weber et al., 
2018; Cardoso et al., 2019; 
Cardell et al., 2020; Coppola 
et al., 2021a)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Giorgi et al., 2014; Tomozeiu 
et al., 2014; Engelbrecht et al., 
2015; Nastos and Kapsomenakis, 
2015; Zollo et al., 2016; Cardoso 
et al., 2019; Cardell et al., 2020; 
Driouech et al., 2020; Coppola 
et al., 2021a)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the recent 
past (19952–014))
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

7 This region includes northern Africa and southern Europe.

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Western and 
Central Europe 
(WCE)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Twardosz and 
Kossowska-Cezak, 2013; 
Shevchenko et al., 2014; 
Christidis et al., 2015; 
Scherrer et al., 2016; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Dong 
et al., 2014, 2016a; 
Christidis et al., 2015; 
Sippel et al., 2016, 
2017a, 2018; Z. Wang 
et al., 2017a; Cattiaux 
and Ribes, 2018; 
Leach et al., 2020; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes 
(Lau and Nath, 2014; Lhotka 
et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 3°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes (Lau 
and Nath, 2014; Russo et al., 
2015; Lhotka et al., 2018) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 5.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 6°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes (Lau 
and Nath, 2014; Lhotka et al., 
2018)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Eastern 
Europe (EEU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Donat et al., 2016a; 
P. Zhang et al., 2019; 
Dunn et al., 2020; Peña-
Angulo et al., 2020a)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Sippel and Otto, 2014; 
Hauser et al., 2016; 
Z. Wang et al., 2017a; 
Leach et al., 2020; 
Seong et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX 
simulations for an increase in 
the intensity and frequency 
of hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Wehner et al., 
2018b; Cardell et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Wehner et al., 2018b; 
Khlebnikova et al., 2019b; 
Cardell et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Sillmann et al., 2013b; 
Khlebnikova et al., 2019b; 
Cardell et al., 2020)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Eastern 
Europe (EEU) 
continued

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past (19952–014))
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Northern 
Europe (NEU)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Matthes et al., 2015; 
Vikhamar-Schuler et al., 
2016; Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 
(Massey et al., 2012; 
Otto et al., 2012; 
King et al., 2015b; 
Z. Wang et al., 2017a; 
Christiansen et al., 2018; 
Roth et al., 2019; Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Laliberté et al., 
2015; Forzieri et al., 2016; Dosio 
and Fischer, 2018; Jacob et al., 
2018; Sigmond et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Laliberté et al., 
2015; Forzieri et al., 2016; Dosio 
and Fischer, 2018; Jacob et al., 
2018; Sigmond et al., 2018)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence 
from CMIP5 simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Laliberté et al., 
2015; Forzieri et al., 2016; Dosio 
and Fischer, 2018; Jacob et al., 
2018; Sigmond et al., 2018)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes 

Human influence likely 
contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

 

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Table 11.17 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in Europe, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details.

8 This region includes northern Africa and southern Europe.

Region
Observed 

Trends

Detection and 
Attribution; 

Event Attribution

Projections

1.5°C 2°C 4°C

All Europe 

Significant 
intensification of 
heavy precipitation 
(Sun et al., 2021)

Robust evidence 
of a human 
contribution to 
the observed 
intensification of 
heavy precipitation 
(Paik et al., 2020)

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021). 
Median increase lartger than zero 
in the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the intensity and 
frequency of heavy precipitation (Li 
et al., 2021). Median increase of more 
than 2% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the intensity and 
frequency of heavy precipitation (Li 
et al., 2021). Median increase of more 
than 8% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021) 

Likely 
intensification of 
heavy precipitation

Human influence 
likely contributed 
to the observed 
intensification of 
heavy precipitation

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial)

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Greenland/
Iceland (GIC) 

Intensification of 
heavy precipitation 
(Peña-Angulo 
et al., 2020a)

Limited evidence

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 2% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021) and 
more than 10% in annual Rx1day, 
Rx5day, and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and CORDEX simulations for 
an increase in the intensity of heavy 
precipitation (Cardell et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 11.SM). 
Median increase of more than 
8% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021) and 
more than 15% in annual Rx1day, 
Rx5day, and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Cardell et al., 2020)

CMIP6 models project 
a robust increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 30% in the 
50-year Rx1day and Rx5day events 
compared to the 1°C warming level 
(Li et al., 2021) and more than 30% 
in annual Rx1day and Rx5day and 
35% in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 and 
CORDEX simulations for an increase 
in the intensity of heavy precipitation 
(Cardell et al., 2020)

Medium 
confidence in the 
intensification of 
heavy precipitation 

Low confidence 

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Mediterranean 
(MED)8

Lack of agreement 
on the evidence 
of trends 
(Casanueva et al., 
2014; Donat et al., 
2014a; de Lima 
et al., 2015; Gajić-
Čapka et al., 2015; 
Rajczak and Schär, 
2017; Jacob et al., 
2018; Mathbout 
et al., 2018b; 
Ribes et al., 2019; 
Dunn et al., 2020; 
Peña-Angulo et al., 
2020a; Coppola 
et al., 2021a; 
Sun et al., 2021)

Limited evidence 
(Añel et al., 2014) 

CMIP6 models, CMIP5 models, and 
RCMs project inconsistent changes 
in the region (Zollo et al., 2016; 
Samuels et al., 2018; Cardell et al., 
2020; Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 11.SM). 
Median increase of more than 
2% in the 50-year Rx1day and 
Rx5day events compared to the 
1°C warming level (Li et al., 2021) 
and larger than 0 in annual Rx1day 
and Rx5day and less than -2% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Zollo et al., 2016; 
Samuels et al., 2018; Cardell 
et al., 2020) 

CMIP6 models project 
a robust increase in the intensity and 
frequency of heavy precipitation (Li 
et al., 2021; 11.SM). Median increase 
of more than 8% in the 50-year 
Rx1day and Rx5day events compared 
to the 1°C warming level (Li et al., 
2021) and more than 2% in annual 
Rx1day and Rx5day and less than 
-2% in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Rajczak et al., 
2013; Monjo et al., 2016; Zollo 
et al., 2016; Samuels et al., 2018; 
Tramblay and Somot, 2018; Cardell 
et al., 2020; Driouech et al., 2020; 
Coppola et al., 2021b) 

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region
Observed 

Trends

Detection and 
Attribution; 

Event Attribution

Projections

1.5°C 2°C 4°C

Mediterranean 
(MED)9 

continued
Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with the 
recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared with 
the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Western and 
Central Europe 
(WCE)

Intensification of 
heavy precipitation 
(Croitoru et al., 
2013; Willems, 
2013; Casanueva 
et al., 2014; 
Roth et al., 2014; 
Fischer et al., 2015; 
Sun et al., 2021).

Disagreement 
among studies 
(Schaller et al., 2014; 
Vautard et al., 2015; 
Philip et al., 2018a; 
Wilcox et al., 2018)

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 0% in the 50-year Rx1day 
and Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Donnelly et al., 2017; 
Rajczak and Schär, 2017) 

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 2% in the 50-year Rx1day 
and Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Donnelly et al., 2017; 
Rajczak and Schär, 2017) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 11.SM). 
Median increase of more than 
10% in the 50-year Rx1day and 
Rx5day events compared to the 
1°C warming level (Li et al., 2021) 
and more than 15% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Madsen et al., 2014; 
Rajczak and Schär, 2017) 

Medium 
confidence in the 
intensification of 
heavy precipitation

Low confidence

Intensification of heavy precipitation: 
Medium confidence (compared with 
the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Eastern 
Europe (EEU)

Significant 
intensification of 
heavy precipitation 
(Ashabokov 
et al., 2017; Dunn 
et al., 2020; Sun 
et al., 2021)

Limited evidence

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 2% in the 50-year Rx1day 
and Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Cardell et al., 2020)

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 4% in the 50-year Rx1day 
and Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and CORDEX simulations for an 
increase in the intensity of heavy 
precipitation (Cardell et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 11.SM). 
Median increase of more than 
15% in the 50-year Rx1day and 
Rx5day events compared to the 
1°C warming level (Li et al., 2021) 
and more than 15% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5/
CMIP3 and CORDEX simulations for 
an increase in the intensity of heavy 
precipitation (Rajczak et al., 2013; 
Cardell et al., 2020)

High confidence in 
the intensification 
of heavy 
precipitation 

Low confidence

Intensification of 
heavy precipitation: 
Medium confidence (compared with 
the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

9 This region includes northern Africa and southern Europe.

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region
Observed 

Trends

Detection and 
Attribution; 

Event Attribution

Projections

1.5°C 2°C 4°C

Northern 
Europe (NEU)

Significant 
intensification of 
heavy precipitation 
(Dunn et al., 2020; 
Sun et al., 2021)

Robust evidence 
of a human 
contribution to 
the observed 
intensification of 
heavy precipitation 
in winter (Schaller 
et al., 2016; 
Vautard et al., 
2016; Otto et al., 
2018b), but not in 
summer (Schaller 
et al., 2014; Otto 
et al., 2015c; 
Wilcox et al., 2018)

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 0% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021) and 
more than 6% in annual Rx1day, 
Rx5day, and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Donnelly et al., 2017)

CMIP6 models project an increase 
in the intensity and frequency of 
heavy precipitation (Li et al., 2021; 
11.SM). Median increase of more 
than 4% in the 50-year Rx1day 
and Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Ramos et al., 2016; 
Donnelly et al., 2017; Romero and 
Emanuel, 2017)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 11.SM). 
Median increase of more than 
15% in the 50-year Rx1day and 
Rx5day events compared to the 1°C 
warming level (Li et al., 2021) and 
more than 15% in annual Rx1day, 
Rx5day, and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Madsen et al., 2014; 
Ramos et al., 2016; Donnelly et al., 
2017; Romero and Emanuel, 2017)

High confidence in 
the intensification 
of heavy 
precipitation
High confidence 
in the changes in 
flood seasonality 
High confidence 
in the increase in 
extreme snow-
melt events

High confidence 
in a human 
contribution to 
the observed 
intensification of 
heavy precipitation 
in winter

Intensification of 
heavy precipitation: 
Medium confidence (compared with 
the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

 
Table 11.18 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in Europe, subdivided by AR6 regions. See Sections 
11.9.1 and 11.9.4 for details. 

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought Low confidence

All

Region and 
Drought Types

Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

+1.5°C +2°C +4°C

Greenland/ 
Iceland 
(GIC)

MET

Low confidence: Limited 
evidence, given limited 
number of studies and 
limited data (Dunn et al., 
2020; Walsh et al., 2020) 

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence given limited 
number of studies (Walsh 
et al., 2020); tendency to 
decrease in meteorological 
drought based on CDD 
(11.SM) and SPI (Touma 
et al., 2015)

Low confidence: Limited 
evidence given limited 
number of studies (Walsh 
et al., 2020); tendency to 
decrease in meteorological 
drought based on CDD 
(11.SM) and SPI (Touma 
et al., 2015); also consistent 
with mixed index combining 
SPI and SPEI in Iceland 
(Spinoni et al., 2018a)

Based on (Spinoni et al., 
2018a) in Iceland (11 EURO-
CORDEX RCPs 4.5 and 8.5). 
Based on the Standardized 
Precipitation Index: Decrease 
of drought frequency

Low confidence: Limited 
evidence given limited 
number of studies (Walsh 
et al., 2020); tendency to 
decrease in meteorological 
drought based on CDD 
(11.SM) and SPI (Touma 
et al., 2015); also consistent 
with mixed index combining 
SPI and SPEI in Iceland 
(Spinoni et al., 2018a)

Based on (Spinoni et al., 
2018a) in Iceland (11 EURO-
CORDEX RCPs 4.5 and 8.5). 
Based on the Standardized 
Precipitation Index: Decrease 
of drought frequency

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1687

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Region and 
Drought Types

Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

+1.5°C +2°C +4°C

Greenland/ 
Iceland 
(GIC) 
continued

AGR 
ECOL

Low confidence: 
Limited evidence, given 
limited number of 
studies and limited data 
(Walsh et al., 2020)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence because of lack 
of studies (Walsh et al., 
2020) and inconsistent 
changes in soil moisture in 
CMIP6 (11.SM)

Low confidence: Limited 
evidence because of lack 
of studies (Walsh et al., 
2020) and inconsistent 
changes in soil moisture in 
CMIP6 (11.SM)

Low confidence: Limited 
evidence because of lack 
of studies (Walsh et al., 
2020) and inconsistent 
changes in soil moisture in 
CMIP6 (11.SM)

HYDR

Low confidence: 
Limited evidence given 
limited number of 
studies and limited data 
(Walsh et al., 2020)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence because of lack 
of studies

Mediter-
ranean 
(MED)10

MET

Low confidence: Mixed 
signals. Observed land 
precipitation trends show 
pronounced variability 
within the region, with 
magnitude and sign of 
trends in the path century 
depending on time period 
(Donat et al., 2014a; Stagge 
et al., 2017; Mathbout 
et al., 2018a; Zittis, 2018). 
There is low confidence 
in an increase of drought 
frequency and severity 
based on SPI (Spinoni et al., 
2015; Gudmundsson and 
Seneviratne, 2016; MedECC, 
2020; Peña-Angulo et al., 
2020a; Driouech et al., 2021; 
Vicente-Serrano et al., 2021)

Low confidence: Mixed 
signals. There are mixed 
signals within the region 
and low confidence in 
human influence on 
meteorological drought 
over MED (Kelley et al., 
2015; Gudmundsson and 
Seneviratne, 2016; Knutson 
and Zeng, 2018; Wilcox 
et al., 2018)

Medium confidence: 
Increase. With medium 
confidence CMIP5 and 
CMIP6 show a decline in 
winter and summer total 
precipitation and increase in 
number of CDD (percentage 
precipitation change per 
degree of local warming is 
with high confidence larger 
in June–July–August (JJA) 
than December–January–
February (DJF) (Interactive 
Atlas, Cardell et al., 2020; 
Li et al., 2021; 11.SM). 
Also weak increase in 
meteorological drought 
based on SPI (Touma et al., 
2015; L. Xu et al., 2019)

Medium confidence: 
Increase. With medium 
confidence CMIP5 and 
CMIP6 show a decline in 
winter and summer total 
precipitation and increase in 
number of CDD (percentage 
precipitation change per 
degree of local warming 
is with high confidence 
larger in JJA than DJF) 
(Interactive Atlas, Cardell 
et al., 2020; Li et al., 2021; 
11.SM). Also weak increase 
in meteorological drought 
based on SPI (Touma et al., 
2015; L. Xu et al., 2019) 

High confidence: Increase. 
With high confidence 
CMIP5 and CMIP6 (and 
EURO-CORDEX) show 
a decline in winter and 
summer total precipitation 
and increase in number of 
CDD. Drought intensity and 
frequency increase with high 
confidence, particularly in 
the southern Mediterranean 
(11.SM; Interactive Atlas; 
Samuels et al., 2018; Cardell 
et al., 2020; Cook et al., 
2020; Driouech et al., 2020; 
Spinoni et al., 2020; Coppola 
et al., 2021a; Li et al., 2021)

AGR 
ECOL

Medium confidence: 
Increase. 

Increases in probability 
and intensity of agricultural 
and ecological droughts 
based on soil moisture 
and water-balance deficits, 
but weakers signals in 
some studies (Greve et al., 
2014; Hanel et al., 2018; 
García-Herrera et al., 2019; 
Moravec et al., 2019; 
Padrón et al., 2020; 
Markonis et al., 2021).

Medium confidence: of 
attribution of increasing 
trend in ecological and 
agricultural drought, based 
on soil moisture and water-
balance metrics (Mariotti 
et al., 2015; García-Herrera 
et al., 2019; Marvel et al., 
2019; Padrón et al., 2020)

García-Herrera 
et al. (2019): Attribution 
of the 2016–2017 drought 
in southwestern Europe 
to climate change based 
on NCEP trends in soil 
moisture for weather 
anologues to 2016–
2017 event 

Medium confidence: 
Drought increase for 
pre-industrial and recent 
past baselines

Recent past baseline:

Decreasing soil water 
availability during drought 
events compared to 
1971–2000, even when 
accounting for adaptation 
to mean conditions 
(Samaniego et al., 2018)

Increasing drought 
duration and frequency 
compared to 1971–2000 
(L. Xu et al., 2019)

High confidence: 
Drought increase for 
pre-industrial and recent 
past baselines

Recent past baseline:

Decreasing soil water 
availability during drought 
events compared to 
1971–2000, even when 
accounting for adaptation 
to mean conditions; 
about twice larger signal 
compared to response 
at +1.5°C (Samaniego 
et al., 2018)

Very likely: 
Drought increase 
for pre-industrial and 
recent past baselines

Recent past baseline:

Based on projections at 
+3°C: Large decreasing soil 
water availability during 
drought events compared 
to 1971–2000, even when 
accounting for adaptation 
to mean conditions; 
more than three times 
larger signal compared 
to response at +1.5°C 
(Samaniego et al., 2018)

10  This region includes northern Africa and southern Europe.

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Types

Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

+1.5°C +2°C +4°C

Mediter-
ranean 
(MED)11 
continued

AGR 
ECOL 
cont.

Also increases based 
on analyses using the 
Standardized Precipitation 
Evapotranspiration Index 
(SPEI) and the Palmer 
Drought Severity Index 
(PDSI). Increase of drought 
severity in South Europe 
(Dai and Zhao, 2017; Stagge 
et al., 2017; Spinoni et al., 
2019), the Iberian Peninsula 
(Vicente-Serrano et al., 
2014; González-Hidalgo 
et al., 2018)

(Markonis et al., 2021): 
Increase in duration of 
agricultural droughts based 
on soil moisture déficits 
from 1901–2015

(García-Herrera et al., 2019): 
Increase in soil moisture 
anomalies for weather 
analogues to 2016/2017 
drought events in 
1985–2018 vs 1948–1984

(Padrón et al., 2020): 
Weak signals in water-
balance (precipitation-
evapotranspiration) deficits 
in the dry season (1985–
2014) to (1902–1950)

(Greve et al., 2014): 
Increase in water-
balance (precipitation-
evapotranspiration) deficits 
on annual scale, (1985–
2005) to (1948–1968)

(Hanel et al., 2018): 
Significant decrease in 
soil moisture in Southern 
Europe from 1766–2015 
from hydrological model 
driven with reconstructed 
meteorological data

Mariotti et al. (2015): 
Attributable trend to CC: 
Decrease in soil moisture 
in summer that agrees with 
CMIP5 models. However, 
no emergence yet in soil 
moisture or P–E at grid cell 
scale (see Cross-Chapter 
Box A.1. on Uncertainty)

Padrón et al. (2020): 
Increasing drying trend in 
P–E during dry season over 
land areas, including in 
Mediterranean region (but 
attribution done at global 
scale, not regional scale)

Marvel et al. (2019): 
Attributable drying trend 
in larger continental 
region with tree-ring data, 
including strong signal 
in Mediterranean from 
1900–1950 and currently 
increasing again after 
masking from aerosols

Recent past baseline 
(continued):

Increasing drought 
magnitude based on 
SPEI-PM compared to 
+0.6°C baseline, using 
simulations within single 
ESM driven with sea surface 
temperature and sea ice 
conditions of seven ESMs 
(Naumann et al., 2018)

Pre-industrial baseline:

Decrease in soil moisture 
during drought events 
in CMIP6 models at  
+1.5°C vs pre-industrial  
baseline (11.SM)

Recent past baseline 
(continued):

Increasing drought duration 
and frequency compared 
to 1971–2000, with 
about twice larger signal 
compared to response at 
+1.5°C (L. Xu et al., 2019)

Increasing drought 
magnitude based on 
SPEI-PM compared to 
+0.6°C baseline, using 
simulations within single 
ESM driven with sea surface 
temperature and sea ice 
conditions of seven ESMs 
(Naumann et al., 2018) 

Pre-industrial baseline:

Decreases of surface and 
total soil moisture, in 
AMJJAS and ONDJFM half 
years (Cook et al., 2020)

Decrease in soil moisture 
during drought events 
in CMIP6 models at 
+2°C vs pre-industrial  
baseline (11.SM) 

Recent past baseline 
(continued):

Based on projections at 
+3°C: About five-fold 
increase in drought 
magnitude based on 
SPEI-PM compared to 
+0.6°C baseline, using 
simulations within single 
ESM driven with sea surface 
temperature and sea ice 
conditions of seven ESMs 
(Naumann et al., 2018) 

Pre-industrial baseline:

Strong decreases of surface 
and total soil moisture, in 
spring-summer (AMJJAS) 
and autumn-winter 
(ONDJFM) half years, with 
about twice larger response 
compared to +2°C (Cook 
et al., 2020)

Very large decrease in soil 
moisture during drought 
events in CMIP6 models 
at +4°C vs pre-industrial  
baseline (11.SM) 

11  This region includes northern Africa and southern Europe.

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

+1.5°C +2°C +4°C

Mediter-
ranean 
(MED)12 
continued

HYDR

High confidence: Increase 
in frequency and severity 
of hydrological droughts, 
particularly in northern 
part of the domain (Section 
8.3.1.6; Lorenzo-Lacruz 
et al., 2013; Dai and Zhao, 
2017; Gudmundsson et al., 
2017, 2019, 2021) 

Medium confidence: 
Increase. Model-based 
assessment shows with 
medium confidence 
a human fingerprint 
on increased hydrological 
drought, related to 
rising temperature and 
atmospheric demand 
(Gudmundsson et al., 
2017, 2021) and recent 
events. There is medium 
confidence that change 
in land use and terrestrial 
water management 
contribute to trends in 
hydrological drought 
(Teuling et al., 2019; 
Vicente-Serrano et al., 2019)

Medium confidence: 
Increase in 
hydrological drought for 
pre-industrial and recent 
past baseline

Recent past baseline:

Forzieri et al. (2014): 
20-year deficit volumes 
are projected to increase 
by 50% by the 2020s 
compared to 1961–1990 
(based on simulations with 
LISFLOOD model driven 
by 12 RCM simulations 
with different GCM-RCM 
pairs; CMIP3 GCMs, A1B 
scenario). Frequency of 
hydrological droughts 
is projected to increase 
(Touma et al., 2015)

High confidence: 
Increase.

Recent past baseline:

Forzieri et al. (2014) 
[LISFLOOD simulations 
driven by 12 RCM-GCM 
pairs using CMIP3 GCMs]: 
Strong increase in the 20-
year return level minimum 
flow and deficit volumes 
in 2050 in A1B scenario 
compared to 1961–1990

Roudier et al. (2016) [11 
RCMs]: Increase in the 
severity of the low flows 
at +2°C compared to 1971–
2000 conditions in the 
Iberian Peninsula, Southern 
France and Greece 

Schewe et al. (2014). 
Decrease between 30 and 
50% of the annual runoff 
compared to 1980–2010

Touma et al. (2015): 
Increase in the frequency 
of hydrological droughts 
relative to 1961–2005

Pre-industrial baseline:

Cook et al. (2020) [13 
CMIP6 models and SSP1-
2.6] Decrease in surface and 
total runoff, in both spring-
summer (AMJJAS) and 
autumn–winter (ONDJFM) 
half years, with strongest 
decreases for total runoff in 
spring–summer half years

Very likely: Increase

Recent past baseline:

Forzieri et al. (2014) 
[LISFLOOD simulations 
driven by 12 RCM-GCM pairs 
using CMIP5 GCMs]: Strong 
increase in the 20-year 
return level minimum flow 
and deficit volumes in 2080 
in A1B scenario compared 
to 1961–1990

Prudhomme et al. (2014) 
[five CMIP5 models driving 
seven global impact models. 
RCP8.5, 2070–2099] Strong 
increase (40–60%) of dry 
days compared to 1976–2005 

Giuntoli et al. (2015) (five 
CMIP5 models driving six 
global hydrology models): 
50–60% increase in 
frequency of days under 
low flow in 2066–2099 
compared to 1972–2005. 
Strong signal-to-noise ratio 
in terms of model agreement, 
strongest hot spot globally

Pre-industrial baseline:

Cook et al. (2020) [13 CMIP6 
models and SSP3-7.0. Very 
strong decrease (40–60%) of 
total runoff in spring-summer 
half-year in southern Europe. 
Also strong decreases 
(>20%) for total runoff in 
autumn-winter half-year, and 
for surface runoff in both half 
years (AMJJAS, ONDJFM)

Western 
and 
Central 
Europe 
(WCE)

MET

Low confidence: Limited 
evidence in change in 
severity. Small and non-
significant changes and 
some dependency on season 
and location. Small and 
non-significant changes in 
the frequency of dry spells 
(Zolina et al., 2013), CDD 
(Dunn et al., 2020), and 
in drought severity (SPI) 
(Orlowsky and Seneviratne, 
2013; Stagge et al., 2017; 
Caloiero et al., 2018; Spinoni 
et al., 2019); but wet days 
decrease in summer (Gobiet 
et al., 2014)

Low confidence: No 
signal or varying signal 
depending on considered 
index (Gudmundsson and 
Seneviratne, 2016; Hauser 
et al., 2017)

Low confidence: 
Inconsistent signal 
in CDD in CMIP6 
(11.SM) and in SPI in CMIP5 
(Orlowsky and Seneviratne, 
2013; Touma et al., 2015; 
L. Xu et al., 2019)

Low confidence: 
Inconsistent signal, 
but with weak tendency 
to drying in CDD in CMIP6 
(11.SM) and SPI in CMIP5 
(Orlowsky and Seneviratne, 
2013; Touma et al., 2015; 
L. Xu et al., 2019)

Medium confidence: 
Increase based on CDD 
(11.SM). Also partial drying 
based on CMIP5 SPI, 
but strong geographical 
gradients and trends, in part 
not signficant (Orlowsky and 
Seneviratne, 2013; Touma 
et al., 2015; Vicente-Serrano 
et al., 2020c). Summer 
decrease in wet days 
projected in Switzerland 
(Fischer et al., 2015)

12  This region includes northern Africa and southern Europe.

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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+1.5°C +2°C +4°C

Western 
and 
Central 
Europe 
(WCE) 
continued

AGR 
ECOL

Medium confidence: 
Increase. Dominant 
signal shows an increase 
in available studies based 
on soil moisture models 
and SPEI-PM (Greve et al., 
2014; Trnka et al., 2015b; 
Hanel et al., 2018; Moravec 
et al., 2019; Spinoni et al., 
2019; Padrón et al., 2020; 
Markonis et al., 2021), 
despite some conflicting 
trends in some subregions 
(Spinoni et al., 2019; Padrón 
et al., 2020)

Low confidence: Limited 
evidence due to limited 
number of studies; one 
study suggests attribution 
of the 2017 drought event 
to climate change due to 
decreasing trends in soil 
moisture (García-Herrera 
et al., 2019)

Low confidence: 
Inconsistent signal 
in CMIP6 (11.SM) or 
weak (L. Xu et al., 2019) 
or insignificant signal 
(Samaniego et al., 2018), 
mostly in summer season. 
A bit stronger signal based 
on SPEI-PM projections 
(Naumann et al., 2018)

Medium confidence: 
Increase of drought 
frequency and severity 
based on some AGR and 
ECOL drought metrics, for 
surface soil moisture and 
SPEI-PM (11.SM; Naumann 
et al., 2018; Samaniego 
et al., 2018; L. Xu et al., 
2019), mostly for summer 
season, but inconsistent 
trends for CMIP6 total 
soil moisture (Cook et al., 
2020; 11.SM) 

Medium confidence: 
Increase of drought 
frequency and severity 
based on some AGR and 
ECOL drought metrics, for 
CMIP6 surface soil moisture, 
root-zone soil moisture in 
hydrological models, and 
SPEI-PM (11.SM; Naumann 
et al., 2018; Samaniego 
et al., 2018; L. Xu et al., 
2019; Cook et al., 2020), 
mostly in summer season, 
but inconsistent trends for 
CMIP6 total soil moisture 
(11.SM) despite projected 
drying in substantial 
fraction of domain, in 
particular over France 
(Cook et al., 2020)

HYDR

Low confidence: Weak 
or insignificant trends 
(Stahl et al., 2010; Bard 
et al., 2015; Caillouet et al., 
2017; Moravec et al., 2019; 
Vicente-Serrano et al., 2019; 
Gudmundsson et al., 2021) 

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: No or 
weak changes; CORDEX 
simulations: no change 
in most of domain, slight 
wetting over the Alps 
(Forzieri et al., 2014; 
Touma et al., 2015; 
Marx et al., 2018) 

Medium confidence: 
Increase in drying, mostly 
in western part of domain: 
summer season surface 
runoff compared to 
pre-industrial (Cook et al., 
2020); annual discharge in 
substantial part of domain 
(Schewe et al., 2014); 
increase in duration and 
magnitude of low flows 
over France, decrease in 
eastern part of domain 
(Touma et al., 2015; Roudier 
et al., 2016); CORDEX 
simulations. drying in 
western and southeastern 
parts of domain, but 
wetting over the Alps 
(Forzieri et al., 2014; 
Marx et al., 2018) 

Medium confidence: 
Increase based on 
several lines of evidence: 
Tendency towards 
drying but geographical 
variations (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Eastern 
Europe 
(EEU)

MET

Low confidence: 
Inconsistent or 
insignificant changes. 
Inconsistent or insignificant 
changes in CDD 
(Khlebnikova et al., 2019a; 
Dunn et al., 2020). No 
change or insignificant 
changes in SPI (Stagge 
et al., 2017; Caloiero et al., 
2018; Spinoni et al., 2019) 

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: 
Inconsistent changes. 
Inconsistent changes 
in CDD in CMIP6 
(11.SM) and in SPI in 
CMIP5 (Touma et al., 2015; 
L. Xu et al., 2019)

Low confidence: 
Inconsistent changes. 
Inconsistent changes 
in CDD in CMIP6 
(11.SM) and in SPI in CMIP5 
(Touma et al., 2015; L. Xu 
et al., 2019)

Low confidence: 
Inconsistent changes. 
Inconsistent CDD changes 
in CMIP6 (11.SM) and 
weak decrease in drying 
or inconsistent changes 
in SPI projections 
(Touma et al., 2015; 
Spinoni et al., 2020; Vicente-
Serrano et al., 2020c)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Eastern 
Europe 
(EEU) 
continued

AGR 
ECOL

Low confidence: 
Inconsistent or weak 
changes (Greve et al., 
2014; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence based 
on different metrics: 
Inconsistent trends in 
CMIP6 surface and total 
soil moisture (11.SM); 
weak trends in CMIP5 soil 
moisture (L. Xu et al., 2019) 
or SPEI-PM (Naumann 
et al., 2018) projections

Low confidence based 
on different metrics: 
Inconsistent trends in 
CMIP6 surface and total 
soil moisture (11.SM); 
weak trends in CMIP5 soil 
moisture (L. Xu et al., 2019) 
or SPEI-PM (Naumann 
et al., 2018) projections 

Low confidence: 
Inconsistent trends based 
on different metrics: Slight 
wetting or inconsistent 
trends in total soil moisture 
(11.SM; Cook et al., 2020); 
slight drying in surface soil 
moisture (11.SM; Cook 
et al., 2020). Increasing 
drying of measures based 
on evaporative demand 
(Naumann et al., 2018) 

HYDR

Low confidence: Not 
enough data and limited 
studies (Gudmundsson 
et al., 2021)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: Limited 
evidence. One study 
shows lack of signals 
(Touma et al., 2015)

Low confidence: 
Inconsistent changes. Some 
studies with increases in 
drought/decrease in runoff: 
(Forzieri et al., 2014) [11 
RCMs forced with CMIP5 
models and the LISFLOOD 
model]: Decrease in the 20-
year return level minimum 
flow and deficit volumes; 
(Cook et al., 2020): decrease 
in summer surface runoff 
in CMIP6 models. Some 
studies with no change in 
HYDR drought or runoff: 
(Touma et al., 2015; Roudier 
et al., 2016) [11 RCMs]: No 
substantial changes in the 
severity of the low flows; 
(Schewe et al., 2014): No 
substantial changes in the 
annual runoff

Medium confidence: 
Weak increase. (Forzieri 
et al., 2014) [11 RCMs 
forced with CMIP5 models 
and the LISFLOOD model]: 
Decrease in the 20-year 
return level minimum flow 
and deficit. (Cook et al., 
2020) [13 CMIP6 models 
and SSP3-7.0. Moderate 
decrease (20%) of total 
runoff in eastern Europe 
during the warm season. 
(Prudhomme et al., 2014) 
[five CMIP5 models and 
seven global impact models. 
RCP8.5] Small increase 
(10%) of dry days. (Giuntoli 
et al., 2015): Weak increase 
in probability of low 
flow but low signal-to-
noise ratio

Northern 
Europe 
(NEU)

MET

Medium confidence: 
Decrease in intensity and 
frequency; but dependence 
on considered index, time 
frame and region, including 
negligible trends over 
shorter periods or some 
subregions (Orlowsky and 
Seneviratne, 2013; Stagge 
et al., 2017; Spinoni et al., 
2019; Dunn et al., 2020)

Medium confidence: 
Human contribution to 
decrease (Gudmundsson 
and Seneviratne, 2016)

Medium confidence: 
Decrease of drought 
frequency and severity 
based on SPI indices 
(Touma et al., 2015; L. Xu 
et al., 2019), but unclear 
sign in CDD (11.SM)

Medium confidence: 
Decrease of drought 
frequency and severity 
based on SPI indices 
(Touma et al., 2015; L. Xu 
et al., 2019), but unclear 
sign in CDD (11.SM)

Medium confidence: 
Decrease of drought 
frequency and severity 
based on SPI indices (Touma 
et al., 2015; Spinoni et al., 
2020; Vicente-Serrano et al., 
2020c) but unclear sign and 
drying tendency in CDD 
(11.SM). Same assessment 
for pre-industrial and recent 
past baselines

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Types

Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

+1.5°C +2°C +4°C

Northern 
Europe 
(NEU) 
continued

AGR 
ECOL

Low confidence: Overall 
weak signals and signs 
depend on considered 
season and index (Greve 
et al., 2014; Spinoni et al., 
2019; Padrón et al., 2020; 
Markonis et al., 2021)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: 
Inconsistent signal in 
CMIP6 total soil moisture 
at +1.5°C compared to 
pre-industrial baseline 
(11.SM). Overall inconsistency 
of signals between studies 
for different indices 
(e.g. total soil moisture, 
surface soil moisture, 
SPEI-PM) independently 
of global warming level 
(Naumann et al., 2018; 
L. Xu et al., 2019; Cook 
et al., 2020), but some 
spatial variations in trends 
and stronger signals in 
summer (Samaniego et al., 
2018). Same assessment 
for pre-industrial and recent 
past baseline

Low confidence: 
Inconsistent signal in 
CMIP6 total soil moisture 
at +2°C compared to 
pre-industrial baseline 
(11.SM). Overall inconsistency 
of signals between studies 
for different indices (e.g. 
total soil moisture, surface 
soil moisture, SPEI-PM) 
independently of global 
warming level (Naumann 
et al., 2018; L. Xu et al., 
2019; Cook et al., 2020); 
but some spatial variations 
in trends and stronger 
signals in summer and over 
Scandinavia compared 
to UK (Samaniego et al., 
2018). Same assessment 
for pre-industrial and 
recent past baseline

Low confidence: 
Inconsistent signal in 
CMIP6 total soil moisture 
at +4°C compared to 
pre-industrial baseline 
(11.SM). Overall inconsistency 
of signals between studies 
for different indices (e.g. 
total soil moisture, surface 
soil moisture, SPEI-PM) 
independently of global 
warming level (Naumann 
et al., 2018; L. Xu et al., 
2019; Cook et al., 2020; 
Vicente-Serrano et al., 
2020c), but some spatial 
variations in trends 
and stronger signals 
in summer and over 
Scandinavia compared 
to UK (Samaniego et al., 
2018). Same assessment 
for pre-industrial and 
recent past baseline

HYDR

Medium confidence: 
Decrease in hydrological 
drought for overall region, 
but trends are weak, 
can be of different sign 
in sub-regions, and are 
dependent on time frame 
(Harrigan et al., 2018; Kay 
et al., 2018; Barker et al., 
2019; Gudmundsson et al., 
2019, 2021; Vicente-Serrano 
et al., 2019)

Low confidence: Limited 
evidence because of lack 
of studies

Low confidence: 
Weak and inconsistent 
signals. Slight increase 
in Scandinavia, slight 
decrease or no change 
in the UK (Forzieri et al., 
2014; Touma et al., 2015; 
Marx et al., 2018)

Low confidence: 
Inconsistent changes, 
generally with drying in 
ESMs (CMIP5, CMIP6) and 
wetting in CORDEX (Forzieri 
et al., 2014; Touma et al., 
2015; Roudier et al., 2016; 
Dai et al., 2018; Marx et al., 
2018; Cook et al., 2020)

Cook et al. (2020): Weak 
increase in hydrological 
drought (decrease in runoff) 
in summer in Scandinavia

Roudier et al. (2016): 
Decrease in magnitude 
and duration of low-flows 
(wetting trend)

Dai et al. (2018): CMIP5, 
RCP4.5, (2070–2099) –
(1970–1999): slight drying 
trend, but lack of model 
agreement 

Forzieri et al. (2014), 
for 2050 compared to 
1961–1990 baseline, 
CORDEX simulations: 
Decrease in magnitude 
of low flow in Scandinavia; 
no change in UK 

Marx et al. (2018), CORDEX 
simulations: slight wetting 
in Scandinavia

Medium confidence: 
Weak increase in 
hydrological drought in 
summer but low signal-to-
noise ratio (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Table 11.19 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for temperature 
extremes in North America, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.2 for details. 

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All North 
America 

Most subregions show 
a likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seong 
et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
0.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
1°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021). 
Median increase of more than 
4.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

Human influence very 
likely contributed to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Extremely 
likely (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

North Central 
America 
(NCA)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Martinez-Austria and 
Bandala, 2017; Montero-
Martínez et al., 2018; 
García-Cueto et al., 
2019; Dunn et al., 2020)

Strong evidence 
of changes from 
observations that are in 
the direction of model-
projected changes 
for the future. The 
magnitude of projected 
changes increases with 
global warming

CMIP6 models project an 
increase in the intensity and 
frequency of TXx events and 
a decrease in the intensity and 
frequency of TNn events (Li 
et al., 2021; 11.SM). Median 
increase of more than 0.5°C 
in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 1.5°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Kharin et al., 2013; Sillmann 
et al., 2013b; Alexandru, 2018; 
Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
1°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Kharin et al., 2013; Sillmann 
et al., 2013b; Alexandru, 2018; 
Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 3.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 4.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Kharin et al., 2013; Sillmann 
et al., 2013b; Alexandru, 2018; 
Wehner et al., 2018b)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing hot extremes, decreasing cold extremes

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

North Central 
America 
(NCA) 
continued

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Medium 
confidence (compared with the 
recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes:
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial)

Western North 
America 
(WNA)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Vose et al., 2017; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Seager 
et al., 2015a; Angélil 
et al., 2017)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
0°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Palipane 
and Grotjahn, 2018; 
Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
1°C in the 50-year TXx and TNn 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 3°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Palipane 
and Grotjahn, 2018; 
Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Palipane 
and Grotjahn, 2018; 
Wehner et al., 2018b)

Likely increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes

Medium confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Medium 
confidence (compared with the 
recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: High 
confidence (compared with the 
recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Central North 
America (CNA)

Weak and 
inconsistent trends 
(Dunn et al., 2020)

Evidence of a human 
contribution for some 
events but cannot 
be generalized

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
0.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease 
in the intensity and frequency 
of cold extremes (Vose et al., 
2017; Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a decrease in the 
intensity and frequency of TNn 
events (Li et al., 2021; 11.SM). 
Median increase of more than 
1.5°C in the 50-year TXx and 
TNn events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 3°C in annual 
TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the 
intensity and frequency of 
hot extremes and decrease in 
the intensity and frequency 
of cold extremes (Vose et al., 
2017; Wehner et al., 2018b)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of more 
than 4.5°C in the 50-year TXx 
and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes (Vose 
et al., 2017; Wehner et al., 2018b)

Low confidence Low confidence 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Medium 
confidence (compared with the 
recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: High 
confidence (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial)

Eastern North 
America (ENA)

Weak and inconsistent 
trends (Dunn et al., 
2020)

Evidence of a human 
contribution for some 
events, but cannot be 
generalized

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Wehner et al., 
2018b; X. Zhang et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Wehner et al., 
2018b; X. Zhang et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Vose et al., 2017; Wehner et al., 
2018b; X. Zhang et al., 2019)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Eastern North 
America (ENA) 
continued

Low confidence Low confidence 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

North-East 
North America 
(NEN)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Vincent et al., 2018; 
X. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Wan 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(G. Li et al., 2018; X. Zhang 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(G. Li et al., 2018; X. Zhang 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(G. Li et al., 2018; X. Zhang 
et al., 2019)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

North-West 
North America 
(NWN)

Significant increases 
in the intensity and 
frequency of hot 
extremes and significant 
decreases in the 
intensity and frequency 
of cold extremes 
(Vincent et al., 2018; 
X. Zhang et al., 2019; 
Dunn et al., 2020)

Robust evidence of 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes (Wan 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 0.5°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 1.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Bennett and Walsh, 2015; 
G. Li et al., 2018; X. Zhang 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 1°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 2.5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Bennett and Walsh, 2015; 
G. Li et al., 2018; X. Zhang 
et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of TXx 
events and a robust decrease 
in the intensity and frequency 
of TNn events (Li et al., 2021; 
11.SM). Median increase of 
more than 4°C in the 50-year 
TXx and TNn events compared to 
the 1°C warming level (Li et al., 
2021) and more than 5°C in 
annual TXx and TNn compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations for 
an increase in the intensity and 
frequency of hot extremes and 
decrease in the intensity and 
frequency of cold extremes 
(Bennett and Walsh, 2015; 
G. Li et al., 2018; X. Zhang 
et al., 2019)

Very likely increase 
in the intensity and 
frequency of hot 
extremes and 
decrease in the 
intensity and frequency 
of cold extremes

High confidence in 
a human contribution 
to the observed 
increase in the 
intensity and frequency 
of hot extremes 
and decrease in the 
intensity and frequency 
of cold extremes 

Increase in the 
intensity and frequency of hot 
extremes: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Likely 
(compared with the recent past, 
1995–2014)
Very likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Very likely 
(compared with the recent past, 
1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increase in the 
intensity and frequency of hot 
extremes: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

Decrease in the 
intensity and frequency 
of cold extremes: Virtually 
certain (compared with the 
recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial)

Increasing hot extremes, decreasing cold extremes All

Medium 
 confidence Low confidenceFact

 
 
 
 
Table 11.20 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for heavy 
precipitation in North America, subdivided by AR6 regions. See Sections 11.9.1 and 11.9.3 for details. 

Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All North 
America

Significant 
intensification of 
heavy precipitation 
(Dunn et al., 2020; 
Sun et al., 2021)

Robust evidence of 
a human contribution 
to the observed 
intensification of 
heavy precipitation 
(Kirchmeier-Young 
and Zhang, 2020; 
Paik et al., 2020)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
2% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
6% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021). 
Median increase of more than 
15% in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li et al., 
2021)

Fact Extremely likelyVirtually certain Very likely Likely Medium 
confidenceHigh confidence

Increasing heavy precipitation

Low confidence

All
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

All North 
America 
continued

Likely intensification 
of heavy precipitation 

Human influence likely 
contributed to the 
observed intensification 
of heavy precipitation

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Virtually certain (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

North Central 
America 
(NCA) 

Trends are generally not 
significant (Donat et al., 
2016a; García-Cueto 
et al., 2019; Dunn et al., 
2020; Sun et al., 2021)

Disagreement among 
studies (Hoerling et al., 
2014; Eden et al., 2016; 
Pall et al., 2017)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 2% in annual 
Rx1day and Rx5day and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 0% 
in annual Rx30day compared 
to pre-industrial (11.SM)

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 15% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 2% 
in annual Rx30day compared 
to pre-industrial (11.SM)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
Medium confidence 
(compared with the 
recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with 
the recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Western North 
America 
(WNA) 

Lack of agreement on 
the evidence of trends 
(Wu, 2015; Easterling 
et al., 2017; Dunn et al., 
2020; Sun et al., 2021)

Evidence of a human 
contribution for some 
events (Easterling et al., 
2017; Kirchmeier-Young 
and Zhang, 2020), but 
cannot be generalized

CMIP6 models project 
inconsistent changes in 
the region (Li et al., 2021)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Easterling et al., 2017)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 10% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Easterling et al., 2017)

Low confidence Low confidence 

Intensification of 
heavy precipitation: 
Low confidence (compared with 
the recent past, 1995–2014)
Medium confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

Central North 
America (CNA) 

Significant 
intensification of heavy 
precipitation (Wu, 2015; 
Easterling et al., 2017; 
Emanuel, 2017; Risser 
and Wehner, 2017; van 
Oldenborgh et al., 2017; 
Trenberth et al., 2018; 
S.-Y.S. Wang et al., 2018; 
Dunn et al., 2020)

Evidence of a human 
contribution to the 
observed intensification 
of heavy precipitation 
(Easterling et al., 2017; 
Emanuel, 2017; Risser 
and Wehner, 2017; van 
Oldenborgh et al., 2017; 
Trenberth et al., 2018; 
S.-Y.S. Wang et al., 2018; 
Kirchmeier-Young and 
Zhang, 2020)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 4% in annual 
Rx1day and Rx5day and 2% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Easterling et al., 2017)

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li 
et al., 2021) and more than 
6% in annual Rx1day, Rx5day, 
and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Easterling et al., 2017)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 10% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Knutson et al., 
2015; Easterling et al., 2017; 
Kossin et al., 2017)

High confidence in the 
intensificationof heavy 
precipitation 

Medium confidence in 
a human contribution 
to the intensification of 
heavy precipitation 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 1995–2014)
High confidence (compared 
with pre-industrial)

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial)

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Eeastern 
North America 
(ENA) 

Significant 
intensification of heavy 
precipitation (Wu, 2015; 
Easterling et al., 2017; 
Emanuel, 2017; Risser 
and Wehner, 2017; 
van Oldenborgh et al., 
2017; Trenberth et al., 
2018; S.-Y.S. Wang et al., 
2018; Dunn et al., 2020; 
Sun et al., 2021), but 
a lack of a significant 
trend over Canada 
(Shephard et al., 2014; 
Mekis et al., 2015; 
Vincent et al., 2018)

Evidence of a human 
contribution for some 
events (Easterling 
et al., 2017; Teufel et al., 
2019; Kirchmeier-Young 
and Zhang, 2020), but 
cannot be generalized

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 6% in annual 
Rx1day and Rx5day and 4% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Easterling et al., 
2017; X. Zhang et al., 2019) 

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 4% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Easterling et al., 
2017; X. Zhang et al., 2019) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 15% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 15% in annual 
Rx1day and Rx5day and 10% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from CMIP5 
and RCM simulations for an 
increase in the intensity of heavy 
precipitation (Knutson et al., 
2015; Easterling et al., 2017; 
Kossin et al., 2017; X. Zhang 
et al., 2019)

High confidence in the 
intensification of heavy 
precipitation

Low confidence 

Intensification of 
heavy precipitation: 
Medium confidence (compared 
with the recent past, 1995–2014)
High confidence (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Very likely (compared with the 
recent past, 1995–2014)
Extremely likely (compared 
with pre-industrial) 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Region Observed Trends
Detection and 

Attribution; Event 
Attribution

Projections

1.5°C 2°C 4°C

North-East 
North America 
(NEN) 

Limited evidence 
(Shephard et al., 2014; 
Mekis et al., 2015; 
Vincent et al., 2018)

Evidence of a human 
contribution for some 
events (Szeto et al., 
2015), but cannot be 
generalized

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% in 
the 50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 8% in annual 
Rx1day and Rx5day and 6% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(X. Zhang et al., 2019) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 6% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 10% in annual 
Rx1day and Rx5day and 8% in 
annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(X. Zhang et al., 2019) 

CMIP6 models project 
a robust increase in the 
intensity and frequency of 
heavy precipitation (Li et al., 
2021; 11.SM). Median increase 
of more than 20% in the 
50-year Rx1day and Rx5day 
events compared to the 1°C 
warming level (Li et al., 2021) 
and more than 20% in annual 
Rx1day and Rx5day and 15% 
in annual Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(X. Zhang et al., 2019)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

North-West 
North America 
(NWN)

Lack of agreement on 
the evidence of trends 
(Shephard et al., 2014; 
Mekis et al., 2015; 
Vincent et al., 2018; 
Dunn et al., 2020; Sun 
et al., 2021)

Evidence of a human 
contribution for some 
events (Teufel et al., 
2017; Kirchmeier-Young 
and Zhang, 2020), but 
cannot be generalized

CMIP6 models project an 
increase in the intensity and 
frequency of heavy precipitation 
(Li et al., 2021; 11.SM). Median 
increase of more than 2% 
in the 50-year Rx1day and 
Rx5day events compared to 
the 1°C warming level (Li 
et al., 2021) and more than 
6% in annual Rx1day, Rx5day, 
and Rx30day compared to 
pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Bennett and Walsh, 2015; 
X. Zhang et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 6% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 10% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Bennett and Walsh, 2015; 
X. Zhang et al., 2019)

CMIP6 models project 
a robust increase in the 
intensity and frequency of heavy 
precipitation (Li et al., 2021; 
11.SM). Median increase of 
more than 20% in the 50-year 
Rx1day and Rx5day events 
compared to the 1°C warming 
level (Li et al., 2021) and more 
than 20% in annual Rx1day, 
Rx5day, and Rx30day compared 
to pre-industrial (11.SM)

Additional evidence from 
CMIP5 and RCM simulations 
for an increase in the intensity 
of heavy precipitation 
(Bennett and Walsh, 2015; 
X. Zhang et al., 2019)

Low confidence Low confidence

Intensification of 
heavy precipitation: 
High confidence (compared with 
the recent past, 1995–2014)
Likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Likely (compared with the 
recent past, 1995–2014)
Very likely (compared 
with pre-industrial) 

Intensification of 
heavy precipitation: 
Extremely likely (compared with 
the recent past, 1995–2014)
Virtually certain (compared 
with pre-industrial) 

 

Increasing heavy precipitation All

Medium 
 confidence Low confidenceFact
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Table 11.21 | Observed trends, human contribution to observed trends, and projected changes at 1.5°C, 2°C and 4°C of global warming for meteorological 
droughts (MET), agricultural and ecological droughts (AGR/ECOL), and hydrological droughts (HYDR) in North America, subdivided by AR6 regions. 
See Sections 11.9.1 and 11.9.4 for details.

Fact

Fact

Extremely likely

Extremely likely

Virtually certain

Virtually certain

Very likely

Very likely

Likely

Likely

Medium 
confidence

Medium 
confidence

High confidence

High confidence

Decreasing drought

Increasing drought Low confidence

All

Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

North 
Central 
America 
(NCA)

MET

Low confidence: 
Inconsistent changes in 
the duration and frequency 
of droughts, (Spinoni et al., 
2019; Dunn et al., 2020)

Low confidence: No 
signal in precipitation 
(Funk et al., 2014; Swain 
et al., 2014; Wang and 
Schubert, 2014)

Low confidence: 
Limited evidence. 
Evidence suggests tendency 
towards drying (L. Xu 
et al., 2019; 11.SM) 

Medium confidence: 
Increase in drought 
duration (L. Xu et al., 2019; 
Spinoni et al., 2020; 11.SM)

L. Xu et al. (2019): 
Strong drying signal for 
meteorological drought 
duration using SPI at 2°C 
compared to recent past

Spinoni et al. (2020): for 
RCP4.5 compared to recent 
past: SPI-based drying 
trends in CORDEX GCMs, 
but inconsistent signals 
in CORDEX RCMs

High confidence: Increase 
in meteorological drought 
severity in the majority of 
models (Sillmann et al., 
2013b; Touma et al., 2015; 
Escalante-Sandoval and 
Nuñez-Garcia, 2017; 
Spinoni et al., 2020; 11.SM)

AGR 
ECOL

Limited evidence: No 
signal in the duration and 
severity of droughts based 
on soil moisture, PDSI and 
SPEI and conflicting trend 
depending of the subregion 
(Greve et al., 2014; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Limited evidence: Mixed 
signal between the 
different drought metrics, 
including total column soil 
moisture, (11.SM), surface 
soil moisture (L. Xu et al., 
2019) and a weak drying by 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020)

Medium confidence: 
Increase of drought 
severity. This is consistent 
between the different 
drought metrics including 
total column soil moisture, 
(11.SM), surface soil 
moisture (L. Xu et al., 2019) 
and SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

Likely: Increase of drought 
severity. This is consistent 
between the different 
drought metrics including 
total column soil moisture, 
(11.SM), surface soil 
moisture (Dai et al., 2018; 
Lu et al., 2019), PDSI (Dai 
et al., 2018) and SPEI-PM 
(Cook et al., 2014a; Vicente-
Serrano et al., 2020c)

HYDR
Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence. 
One study shows 
inconsistent trends 
(Touma et al., 2015)

Low confidence: 
Limited evidence. 
Inconsistent trends in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Low confidence: Mixed 
signal among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 
2020), but slight stronger 
tendency towards drying

Western 
North 
America 
(WNA)

MET

Low confidence: 
Inconsistent trends 
depending on subregion 
(Swain and Hayhoe, 2015; 
Wehner et al., 2017; 
Spinoni et al., 2019; 
Dunn et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence and 
inconsistent trends 
depending on models 
and seasons (Swain and 
Hayhoe, 2015; L. Xu et al., 
2019; 11.SM) 

Low confidence: 
Limited evidence and 
inconsistent trends 
depending on models and 
seasons (Swain and Hayhoe, 
2015; L. Xu et al., 2019; 
Spinoni et al., 2020)

Low confidence: Mixed 
signal among models, 
seasons, and studies 
(Swain and Hayhoe, 2015; 
Touma et al., 2015; Spinoni 
et al., 2020; 11.SM), with 
tendency towards drying 
in the spring and wetting 
in summer (Swain and 
Hayhoe, 2015) 

Fact

Increasing hot extremes, decreasing cold extremes, decreasing heavy precipitation
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Western 
North 
America 
(WNA) 
continued

AGR 
ECOL

Medium confidence: 
Increase. Dominant 
increase but some 
inconsistent trends based 
on soil moisture, water-
balance estimates, PDSI and 
SPEI, but some inconsistent 
trends depending study, 
index and the subregion 
(Greve et al., 2014; Griffin 
and Anchukaitis, 2014; 
Williams et al., 2015, 
2020; Ahmadalipour and 
Moradkhani, 2017; Dai and 
Zhao, 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Medium confidence: 
Human contribution 
to observed trend.

Williams et al. (2020) 
concluded human-induced 
climate change contributed 
to the strong soil moisture 
deficits recorded in the 
last two decades in 
Western North America 
through VPD (and AED) 
increases associated with 
higher air temperatures 
and lower air humidity. 
Williams et al. (2015) 
and Griffin and Anchukaitis 
(2014) concluded that 
increased AED has had 
an increased contribution 
to drought severity 
over the last decades, 
and played a dominant 
role in the intensification 
of the 2012–2014 drought 
in California. 

Limited evidence: 
Inconsistent signal 
between models, with 
weak tendency to increased 
drying in total and surface 
soil moisture (L. Xu 
et al., 2019; 11.SM) and 
the SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020). 
Weak soil moisture drying 
projection for California 
(Louise et al., 2018)

Medium confidence: 
Increase of drought 
severity. There are 
differences depending on 
metrics and models, with 
weak median drying and 
substantial inter-model 
spread for total soil 
moisture (Cook et al., 2020; 
11.SM) and larger drying for 
surface soil moisture (L. Xu 
et al., 2019; Cook et al., 
2020; 11.SM) and SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020). Stronger 
soil moisture drying in 
southern part of domain 
(Cook et al., 2020)

Medium confidence: 
Increase of drought 
severity. There are 
differences depending 
on metrics and models, 
with weak drying in total 
column soil moisture (Cook 
et al., 2020; 11.SM), and 
substantial drying with 
surface soil moisture (Dai 
et al., 2018; Lu et al., 2019; 
Cook et al., 2020; 11.SM), 
PDSI (Dai et al., 2018) 
and SPEI-PM (Cook et al., 
2014a; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: Mixed 
signal between different 
time frames and subregions 
(Poshtiri and Pal, 2016; 
Gudmundsson et al., 2019, 
2021; Dudley et al., 2020). 
Strong spatial variability 
in the recent trends of 
low flows in the region 
(Poshtiri and Pal, 2016) 
but dominant increase 
of hydrological drought 
in California and in the 
Colorado basin (M. Xiao 
et al., 2018; Milly and 
Dunne, 2020)

Low confidence:  
Mixed signal for overall 
region in observations. But 
evidence that temperature 
increase has been the 
main driver of increased 
hydrological drought 
in California and in the 
Colorado basin (Shukla 
et al., 2015; Udall and 
Overpeck, 2017; M. Xiao 
et al., 2018; Milly and 
Dunne, 2020)

Low confidence: Limited 
evidence. One study shows 
drying (Touma et al., 2015)

Medium confidence: 
Increase in hydrological 
drought (more intense 
low flows, less runoff and 
more frequent hydrological 
droughts) (Touma et al., 
2015; Cook et al., 2020; 
R. Zhai et al., 2020)

Particularly strong evidence 
of increasing hydrological 
droughts in regions 
dependent on snow pack 
reservoirs (Wehner et al., 
2017; Ackerly et al., 2018; 
Rhoades et al., 2018)

Medium confidence: 
Increase in hydrological 
droughts (Prudhomme 
et al., 2014; Giuntoli et al., 
2015; Touma et al., 2015; 
Cook et al., 2020)

Particularly strong evidence 
of increasing hydrological 
droughts in regions 
dependent on snow pack 
reservoirs (Wehner et al., 
2017; Ackerly et al., 2018; 
Rhoades et al., 2018)

Central 
North 
America 
(CNA)

MET

Medium confidence: 
Decrease in the duration 
and frequency of 
meteorological droughts 
(Wehner et al., 2017; 
Spinoni et al., 2019; Dunn 
et al., 2020)

Low confidence: 
Limited evidence 
(Rupp et al., 2013; 
Easterling et al., 2017) 

Low confidence: 
Limited evidence and 
inconsistent trends 
(L. Xu et al., 2019; 11.SM)

Low confidence: 
Mixed signal among 
different models (Sillmann 
et al., 2013b; Spinoni et al., 
2020; 11.SM) 

Low confidence: Mixed 
signal among different 
models (Sillmann et al., 
2013b; Touma et al., 2015; 
Spinoni et al., 2020; 11.SM); 
drying trend in spring 
and summer (Swain and 
Hayhoe, 2015)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Central 
North 
America 
(CNA) 
continued

AGR 
ECOL

Low confidence: Mixed 
signal based on soil 
moisture, water-balance 
estimates, PDSI and SPEI 
and conflicting trend 
depending of the subregion 
(Greve et al., 2014; Dai and 
Zhao, 2017; Seager et al., 
2019; Spinoni et al., 2019; 
Padrón et al., 2020)

Low confidence: Limited 
evidence. Human influence 
on surface soil moisture 
deficits due to increased 
evapotranspiration caused 
by higher temperatures 
(Easterling et al., 2017)

Medium confidence: 
Increase in drought. 
Dominant signal shows 
drought increase based 
on total and surface soil 
moisture (L. Xu et al., 
2019; 11.SM) and SPEI-PM 
(Naumann et al., 2018; Gu 
et al., 2020)

Medium confidence: 
Increase in drought 
severity or frequency. 
Changes are consistent 
between different drought 
metrics, including total 
column soil moisture, 
(11.SM; Cook et al., 2020), 
surface soil moisture (L. Xu 
et al., 2019) and SPEI-PM 
(Naumann et al., 2018; Gu 
et al., 2020)

High confidence: Increase 
of drought severity. 
Changes are consistent 
between different drought 
metrics, including total 
column soil moisture, 
(11.SM; Cook et al., 2020), 
surface soil moisture (Dai 
et al., 2018; Lu et al., 2019; 
Cook et al., 2020), PDSI (Dai 
et al., 2018), and SPEI-PM 
(Cook et al., 2014a; Feng 
et al., 2017; Vicente-Serrano 
et al., 2020c)

HYDR

Low confidence: 
Mixed signal. No signal 
in changes (Mo and 
Lettenmaier, 2018; Dudley 
et al., 2020; Gudmundsson 
et al., 2021). Poshtiri and 
Pal (2016) show strong 
spatial variability in the 
recent trends of low flows, 
although there is an 
increase of hydrological 
droughts in the Missouri 
(Martin et al., 2020; 
Woodhouse and Wise, 
2020) and in the Colorado 
basins (M. Xiao et al., 2018; 
Milly and Dunne, 2020). 
A wetting trend is shown 
in Dai and Zhao (2017)

Low confidence: 
Inconsistent trends in 
observations. Two studies 
suggest that temperature 
increase has been the 
main driver of increased 
hydrological drought in 
the Missouri basin (Martin 
et al., 2020; Woodhouse 
and Wise, 2020)

Low confidence: Limited 
evidence. One study shows 
drying (Touma et al., 2015)

Low confidence: 
Limited evidence 
and inconsistent 
trends (Touma et al., 
2015; Cook et al., 2020; 
R. Zhai et al., 2020)

Low confidence: 
Mixed signals among 
studies (Prudhomme et al., 
2014; Giuntoli et al., 2015; 
Touma et al., 2015; Cook 
et al., 2020)

Eastern 
North 
America 
(ENA)

MET

Low confidence: 
Inconsistent trends 
depending on the region 
(Wehner et al., 2017; 
Spinoni et al., 2019; Dunn 
et al., 2020)

Low confidence: 
Limited evidence 
(Easterling et al., 2017) 

Low confidence: 
Limited evidence and 
inconsistent trends 
(L. Xu et al., 2019; 11.SM)  

Low confidence: 
Limited evidence 
(L. Xu et al., 2019; Spinoni 
et al., 2020; 11.SM)

Medium confidence: 
Increase in drought 
severity in the majority 
of models, but weaker or 
inconsistent trends in part 
of region (Sillmann et al., 
2013b; Touma et al., 2015; 
Spinoni et al., 2020; 11.SM)

AGR 
ECOL

Low confidence: Mixed 
signals. Inconsistent trends 
depending on metric, 
subregion, time frame 
and studies, based on soil 
moisture, water-balance 
estimates, PDSI, and SPEI 
(Greve et al., 2014; Dai and 
Zhao, 2017; Park Williams 
et al., 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: Limited 
evidence. Human influence 
on surface soil moisture 
deficits due to increased 
evapotranspiration caused 
by higher temperatures 
(Easterling et al., 2017)

Low confidence: 
Inconsistent trends 
between models, metrics 
and studies based on total 
and surface soil moisture 
(L. Xu et al., 2019; 11.SM) 
and SPEI-PM (Naumann 
et al., 2018; Gu et al., 2020)

Low confidence: 
Inconsistent trends 
between models, metrics 
and studies based on total 
and surface soil moisture 
(L. Xu et al., 2019; Cook 
et al., 2020; 11.SM), and 
SPEI-PM (Naumann et al., 
2018; Gu et al., 2020), but 
with stronger tendency 
towards drying

Medium confidence: 
Increase of drought 
severity. Consistent signal 
between different drought 
metrics, including total 
column soil moisture, 
(11.SM; Cook et al., 2020), 
surface soil moisture (Dai 
et al., 2018; Lu et al., 2019), 
PDSI (Dai et al., 2018) 
and SPEI-PM (Cook et al., 
2014a; Vicente-Serrano 
et al., 2020c)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

Eastern 
North 
America 
(ENA) 
continued

HYDR

Low confidence: Limited 
evidence. Decrease in low 
flows from 1971–2020, 
but not since 1950 
(Gudmundsson et al., 
2019, 2021). Poshtiri and 
Pal (2016) and Dudley 
et al. (2020) show strong 
spatial variability in the 
recent trends of low flows 
in the region

Low confidence: 
Limited evidence 

Low confidence: 
Limited evidence. 
One study shows lack of 
signal (Touma et al., 2015).

Low confidence: 
Limited evidence and 
inconsistent trends 
(Touma et al., 2015; 
Cook et al., 2020; R. Zhai 
et al., 2020) 

Low confidence: Mixed 
signal among models and 
studies (Prudhomme et al., 
2014; Giuntoli et al., 2015; 
Touma et al., 2015; Cook 
et al., 2020)

North-East 
North 
America 
(NEN)

MET

Low confidence: No or 
limited signal in duration 
and frequency of droughts 
(Bonsal et al., 2019; Dunn 
et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. Available 
evidence suggest decrease 
in meteorological drought 
(L. Xu et al., 2019; 11.SM)

Medium confidence: 
Decrease in meteorological 
drought (Sillmann et al., 
2013b; L. Xu et al., 2019; 
Spinoni et al., 2020; 11.SM)

Medium confidence: 
Decrease in meteorological 
drought (Touma et al., 
2015; Spinoni et al., 2020; 
Vicente-Serrano et al., 
2020c; 11.SM) 

AGR 
ECOL

Low confidence: Mixed 
signals between different 
drought metrics and strong 
spatial differences (Greve 
et al., 2014; Dai and Zhao, 
2017; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Mixed 
signals between different 
models and metrics. 
Substantial inter-model 
variations and weak drying 
trend in soil moisture 
(L. Xu et al., 2019; 11.SM) 
and slight decrease in 
drought severity in SPEI-PM 
(Naumann et al., 2018; Gu 
et al., 2020)

Low confidence: Mixed 
signals between different 
models and drought 
metrics. Substantial inter-
model spread for total 
column soil moisture, with 
overall weak or no change 
(11.SM; Cook et al., 2020), 
slight drying in surface soil 
moisture (L. Xu et al., 2019; 
11.SM) and tendency to 
wetting trend in SPEI-PM 
(Naumann et al., 2018; 
Gu et al., 2020)

Low confidence: Mixed 
signals between models 
and different drought 
metrics, including total 
column soil moisture, which 
shows inconsistent changes 
(11.SM; Cook et al., 2020), 
surface soil moisture, which 
suggest drying (Dai et al., 
2018; Lu et al., 2019; Cook 
et al., 2020; 11.SM), and 
PDSI (Dai et al., 2018) 
and SPEI-PM (Cook et al., 
2014a; Vicente-Serrano 
et al., 2020c), which 
shows a tendency for 
wetting trend

HYDR

Low confidence: Limited 
evidence. Inconsistent 
trends in one study (Dai and 
Zhao, 2017)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
inconsistent signals (Touma 
et al., 2015)

Low confidence: 
Inconsistent trends and 
limited evidence. Available 
studies suggest inconsistent 
trends in low flow (R. Zhai 
et al., 2020) and the SRI 
(Touma et al., 2015), and 
seasonally inconsistent 
trends in runoff, with 
decrease in summer and 
increase in winter (Cook 
et al., 2020)

Low confidence: Mixed 
signals among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 
2020). Some evidence 
(medium confidence) 
for strong seasonality of 
trends, with decrease in 
summer and increase in 
winter (Giuntoli et al., 2015; 
Cook et al., 2020)

North-West 
North 
America 
(NWN)

MET

Low confidence: Mixed 
signals with conflicting 
trends depending on the 
region (Bonsal et al., 2019; 
Spinoni et al., 2019; Dunn 
et al., 2020)

Low confidence: 
Limited evidence 

Low confidence: Limited 
and inconsistent 
evidence. Some evidence 
points to decrease in 
meteorological drought 
severity or intensity based 
on SPI (L. Xu et al., 2019) 
and CDD (11.SM)

Medium confidence: 
Decrease in meteorological 
drought severity or intensity 
(Sillmann et al., 2013b; 
L. Xu et al., 2019; Spinoni 
et al., 2020; 11.SM)

Medium confidence: 
Decrease in meteorological 
drought severity in 
the majority of models 
(Sillmann et al., 2013b; 
Swain and Hayhoe, 2015; 
Touma et al., 2015; Spinoni 
et al., 2020; 11.SM)

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Region and 
Drought Type

Observed Trends Human Contribution
Projections

+1.5°C +2°C +4°C

North-West 
North 
America 
(NWN) 
continued

AGR 
ECOL

Low confidence: No 
signal or inconsistent 
signals in the duration and 
severity of droughts based 
on soil moisture, PDSI and 
SPEI and conflicting trends 
depending of the subregion 
(Greve et al., 2014; Dai and 
Zhao, 2017; Park Williams 
et al., 2017; Spinoni et al., 
2019; Padrón et al., 2020)

Low confidence: 
Limited evidence 

Limited evidence: 
Mixed signals in changes 
in drought severity. 
Inconsistent changes 
between models in 
CMIP6 and CMIP5 total 
and surface soil moisture 
(L. Xu et al., 2019; 11.SM); 
SPEI-PM also suggests 
inconsistent changes in 
drought severity (Naumann 
et al., 2018; Gu et al., 2020)

Low confidence: Mixed 
signals between different 
models, drought metrics 
and studies, including total 
and surface soil moisture, 
as well as SPEI-PM (11.SM; 
Naumann et al., 2018; L. Xu 
et al., 2019; Cook et al., 
2020; Gu et al., 2020)

Low confidence: Mixed 
signals between different 
models and drought 
metrics, including total 
and surface soil moisture, 
PDSI and SPEI-PM (11.SM; 
Cook et al., 2014a, 2020; 
Dai et al., 2018; Lu et al., 
2019; Vicente-Serrano et al., 
2020c), with slight larger 
tendency towards wetting

HYDR

Low confidence: Limited 
evidence. Regionally 
inconsistent trends in one 
study (Dai and Zhao, 2017)

Low confidence: 
Limited evidence 

Low confidence: Limited 
evidence. One study shows 
lack of signals (Touma 
et al., 2015)

Low confidence: 
Limited evidence and 
inconsistent signals in 
available studies (Touma 
et al., 2015; Cook et al., 
2020; R. Zhai et al., 2020)

Low confidence: Mixed 
signals among studies 
(Prudhomme et al., 2014; 
Giuntoli et al., 2015; Touma 
et al., 2015; Cook et al., 
2020), but slight stronger 
tendency towards wetting

Decreasing drought

Medium 
 confidenceFact

All

Low  
confidence

Increasing drought

Medium 
 confidenceFact
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Appendix 11.A

Figure 11.A.1 | As Figure 11.3 but for the an nual minimum temperature (TNn).
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Table 11.A.1 | Common drought metrics, associated drought types, drought indices, general description and associated references.

Drought Metric
Associated 

Drought Type
Drought Indices Comments Representative References

Precipitation deficit
Referred to as 
‘meteorological 
drought’

Standardized Precipitation 
Index (SPI), Consecutive dry 
days (CDD), Precipitation 
deciles and percentiles

SPI is defined for given time scales in order to identify 
precipitation deficits over different periods. The SPI 
shows flexibility to account for different time scales 
by summing precipitation over k months, termed 
accumulation periods. CDD is usually based on daily 
precipitation records. ‘Dry-spell length’ is another 
commonly used term. The number of dry days (NDD) 
is also used in some publications.

Donat et al. (2013b); Orlowsky and 
Seneviratne (2013); Sillmann et al. 
(2013a); Spinoni et al.(2014); Kingston 
et al. (2015); Stagge et al. (2017); 
Coppola et al. (2021b)

Excess atmospheric 
evaporative 
demand (AED) 

Driver for agricultural 
and ecological 
drought, together 
with precipitation 
through its impact on 
evapotranspiration 
(ET) and vegetation 
stress under soil 
moisture deficits 

Potential evaporation 
anomalies, Evaporative 
Demand Drought 
Index (EDDI)

AED can be measured locally by means of evaporation 
pans. Physically-based models (e.g., Penman–Monteith) 
using all aerodynamic and radiative drivers from 
observations produce robust estimates of the observed 
magnitude and variability of the evaporative demand. 
Empirical estimates based on air temperature are 
affected by more uncertainties (Section 11.6.1.2), 
especially when applied to climate change projections. 
AED is an upper bound for actual ET but also induces 
additional vegetation stress under dry conditions 
(Section 11.6.1.2). 

Hobbins et al. (2012, 2016); Sheffield 
et al. (2012); Wang et al. (2012); McEvoy 
et al. (2016); Roberts et al. (2018); 
Stephens et al. (2018); Z. Sun et al. 
(2018); Vicente-Serrano et al. (2020a) 

Soil moisture 
deficits

Usually referred to as 
‘agricultural drought’. 
Also relevant for 
ecological droughts

Soil moisture anomalies 
(SMA), Standardized Soil 
Moisture Index (SSMI)

Networks of ground-based soil moisture measurements 
are available in different regions, but are very sparse 
and cover very short periods. Surface soil moisture can 
be monitored from satellites, but only since the 1980s 
at the earliest. Physically based land surface models 
compute soil moisture using meteorological variables 
(precipitation, radiation, wind, temperature, humidity) 
as input. 

Dorigo et al. (2011, 2015, 2017); 
Orlowsky and Seneviratne (2013); 
Seneviratne et al. (2013); AghaKouchak 
(2014); Sohrabi et al. (2015); Zhao 
and Dai (2015); Stillman et al. (2016); 
Yuan and Quiring (2017); Berg and 
Sheffield (2018); Hanel et al. (2018); 
Samaniego et al. (2018); Ford and 
Quiring (2019); Moravec et al. (2019); 
Seager et al., (2019)

 Streamflow 
and surface 
water deficits

Usually referred to as 
‘hydrological drought’

Standardized Runoff 
Index (SRI), Standardized 
Streamflow Index (SSI), 
threshold level methods, 
Standardized Grounwater 
Index (SGI)

Usually based on monthly records of hydrological 
variables (e.g., streamflow, groundwater, reservoir 
storages), although daily streamflow is also used using 
threshold level methods. Observational data is available 
but not in all regions.

Bloomfield and Marchant (2013); Van 
Lanen et al. (2013); Wada et al. (2013); 
Forzieri et al. (2014); Prudhomme et al. 
(2014); Schewe et al. (2014); Van Loon 
(2015); Van Loon and Laaha (2015); 
Gosling et al. (2017)

Atmospheric-based 
drought indices

Metrics of drought 
severity based on 
meteorological 
variables, combining 
precipitation and AED 
as drivers

Standardized Precipitation 
Evapotranspiration Index 
(SPEI), Palmer Drought 
Severity Index (PDSI)

These drought indices are generated using 
precipitation and AED. The quality of the outputs 
depend on the method used to determine the 
AED. They are widely used for drought monitoring 
and early warning. These indices are not intended 
to be a soil moisture or water-balance proxy. 

Dai, (2013); Beguería et al. (2014); Cook 
et al. (2014a); Mitchell et al. (2014); 
Stagge et al. (2015); Vicente-Serrano 
et al. (2015); Dai et al. (2018); Mukherjee 
et al. (2018a); Yang et al. (2020)

https://doi.org/10.1017/9781009157896.013
Downloaded from https://www.cambridge.org/core. IP address: 3.147.44.134, on 10 Jul 2024 at 02:33:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.013
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


1761

Weather and Climate Extreme Events in a Changing Climate Chapter 11

11

Table 11.A.2 | Synthesis table summarising assessments presented in Tables 11.4-11.21 for hot extremes (HOT EXT.), heavy precipitation (HEAVY PRECIP.), 
agriculture and ecological droughts (AGR./ECOL. DROUGHT), and hydrological droughts (HYDR. DROUGHT). It shows the direction of change and level of 
confidence in the observed trends (column OBS.), human contribution to observed trends (ATTR.), and projected changes at 1.5°C, 2°C and 4°C of global warming for each 
AR6 region. Projections are shown for two different baseline periods: 1850–1900 (pre-industrial) and 1995–2014 (modern or recent past) – see Section 1.4.1 for more details. 
Direction of change is represented by an upward arrow (increase) and a downward arrow (decrease). Level of confidence is reported for LOW: low, MED.: medium, HIGH: high; 
levels of likelihood (only in cases of high confidence) include: L: likely, VL: very likely, EL: extremely likely, VC: virtual certain. See Section 11.9, Tables 11.4–11.21 for details. Dark 
orange shading highlights high confidence (also including likely, very likely, extremely likely and virtually certain changes) increases in hot temperature extremes, agricultural 
and ecological drought, or hydrological droughts. Yellow indicates medium confidence increases in these extremes, and blue shadings indicate decreases in these extremes. High 
confidence increases in heavy precipitation are highlighted in dark blue, while medium confidence increases are highlighted in light blue. No assessment for changes in drought 
with respect to the 1995–2014 baseline is provided, which is why the respective cells are empty.

Sub-region OBS. ATTR.
1.5°C 2°C 4°C 1.5°C 2°C 4°C

BASELINE: PRE-INDUSTRIAL BASELINE: 1995–2014

Mediterranean 
(same region as 
for Europe) MED

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ HIGH LOW ↑ MED. ↑ HIGH

AGR./ECOL. DROUGHT ↑ MED. ↑ MED. ↑ MED. ↑ HIGH ↑ V. L.

HYDR. DROUGHT ↑ HIGH ↑ MED. ↑ MED. ↑ HIGH ↑ V. L.

Sahara SAH

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

West-Africa 
WAF

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW LOW LOW

HYDR. DROUGHT ↑ MED. LOW LOW LOW LOW

N.Eastern-Africa 
NEAF

HOT EXT. ↑ MED. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW ↓ MED.

HYDR. DROUGHT LOW LOW LOW LOW ↓ MED.

Central-Africa 
CAF

HOT EXT. LOW LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

S.Eastern-Africa 
SEAF

HOT EXT. ↑ MED. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

W.Southern- 
Africa WSAF

HOT EXT. ↑ L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW LOW ↑ MED. ↑ L. LOW LOW ↑ HIGH

AGR./ECOL. DROUGHT ↑ MED. LOW ↑ MED. ↑ HIGH ↑ L.

HYDR. DROUGHT LOW LOW LOW ↑ MED. ↑ MED.

E.Southern- 
Africa ESAF

HOT EXT. ↑ L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT ↑ MED. LOW ↑ MED. ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW ↑ MED. ↑ MED.

Low confidence

High confidence (including likely, very likely, extremely likely and virtually certain changes) increases 

High confidence (including likely, very likely, extremely likely and virtually certain changes) decreases  Medium confidence decreases  

Medium confidence increases 

Confidence levels for changes in hot temperature extremes, agricultural and ecological drought, or hydrological droughts

Confidence levels for changes in heavy precipitation
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Sub-region OBS. ATTR.
1.5°C 2°C 4°C 1.5°C 2°C 4°C

BASELINE: PRE-INDUSTRIAL BASELINE: 1995–2014

Madagascar 
MDG

HOT EXT. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ HIGH ↑ L. ↑ E. L. MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ MED.

Russian Arctic 
RAR

HOT EXT. ↑ V. L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Arabian- 
Peninsula ARP

HOT EXT. ↑ V. L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ V. L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

W.C.Asia WCA

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW LOW ↑ MED.

HYDR. DROUGHT LOW LOW LOW LOW ↑ MED.

W.Siberia WSB

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

E.Siberia ESB

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Russian-Far-East 
RFE

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

E.Asia EAS

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW LOW ↑ MED.

HYDR. DROUGHT ↑ MED. LOW LOW LOW LOW

E.C.Asia ECA

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Tibetan-Plateau 
TIB

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Low confidence

High confidence (including likely, very likely, extremely likely and virtually certain changes) increases 

High confidence (including likely, very likely, extremely likely and virtually certain changes) decreases  Medium confidence decreases  

Medium confidence increases 

Confidence levels for changes in hot temperature extremes, agricultural and ecological drought, or hydrological droughts

Confidence levels for changes in heavy precipitation
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Sub-region OBS. ATTR.
1.5°C 2°C 4°C 1.5°C 2°C 4°C

BASELINE: PRE-INDUSTRIAL BASELINE: 1995–2014

S.Asia SAS

HOT EXT. ↑ HIGH ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW ↓ MED.

HYDR. DROUGHT LOW LOW LOW LOW LOW

S.E.Asia SEA

HOT EXT. ↑ HIGH ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

N.Australia NAU

HOT EXT. ↑ HIGH ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ MED. ↑ HIGH ↑ V. L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT ↓ MED. LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

C.Australia CAU

HOT EXT. ↑ L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ V. L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW ↑ MED.

HYDR. DROUGHT LOW LOW LOW LOW LOW

E.Australia EAU

HOT EXT. ↑ L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW ↑ MED. ↑ L. LOW LOW ↑ HIGH

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW LOW

S.Australia SAU

HOT EXT. ↑ L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW ↑ MED. ↑ L. LOW LOW ↑ HIGH

AGR./ECOL. DROUGHT ↑ MED. LOW ↑ MED. ↑ MED. ↑ HIGH

HYDR. DROUGHT ↑ MED. LOW LOW ↑ MED. ↑ MED.

New-Zealand 
NZ

HOT EXT. ↑ L. LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

HEAVY PRECIP. LOW LOW LOW ↑ MED. L. LOW LOW HIGH

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

S.Central- 
America SCA

HOT EXT. ↑ MED. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW LOW ↑ MED. LOW LOW LOW

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ MED.

Caribbean CAR

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW LOW LOW LOW LOW LOW

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ MED.

HYDR. DROUGHT LOW LOW LOW LOW LOW

N.W.South- 
America NWS

HOT EXT. ↑ L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW LOW LOW LOW LOW LOW

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Low confidence

High confidence (including likely, very likely, extremely likely and virtually certain changes) increases 

High confidence (including likely, very likely, extremely likely and virtually certain changes) decreases  Medium confidence decreases  

Medium confidence increases 

Confidence levels for changes in hot temperature extremes, agricultural and ecological drought, or hydrological droughts

Confidence levels for changes in heavy precipitation
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Sub-region OBS. ATTR.
1.5°C 2°C 4°C 1.5°C 2°C 4°C

BASELINE: PRE-INDUSTRIAL BASELINE: 1995–2014

N.South-
America NSA

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ MED. ↑ MED. LOW ↑ MED. ↑ MED.

AGR./ECOL. DROUGHT LOW LOW ↑ MED. ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ HIGH

South-
American- 
Monsoon
SAM

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ MED. ↑ MED. LOW ↑ MED. ↑ MED.

AGR./ECOL. DROUGHT LOW LOW ↑ MED. ↑ HIGH ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ HIGH

N.E.South- 
America NES

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ MED. ↑ MED. LOW ↑ MED. ↑ MED.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW ↑ MED. ↑ MED.

HYDR. DROUGHT LOW LOW LOW LOW LOW

S.W.South- 
America SWS

HOT EXT. ↑ L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW LOW LOW LOW LOW LOW LOW

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ HIGH

S.E.South- 
America SES

HOT EXT. ↑ HIGH ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH LOW ↑ MED. ↑ HIGH ↑ L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT ↓ MED. LOW LOW LOW LOW

S.South-America 
SSA

HOT EXT. LOW LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ V. L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT LOW LOW ↑ MED. ↑ HIGH ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW ↑ HIGH

Greenland/
Icelan d
GIC

HOT EXT. ↑ V. L. ↑ MED. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Mediterranean 
(same region as 
for Africa)

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ HIGH LOW ↑ MED. ↑ HIGH

AGR./ECOL. DROUGHT ↑ MED. ↑ MED. ↑ MED. ↑ HIGH ↑ V. L.

HYDR. DROUGHT ↑ HIGH ↑ MED. ↑ MED. ↑ HIGH ↑ V. L.

West&Central- 
Europe WCE

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ MED. LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT ↑ MED. LOW LOW ↑ MED. ↑ MED.

HYDR. DROUGHT LOW LOW LOW ↑ MED. ↑ MED.

E.Europe EEU

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW ↑ MED.

Low confidence

High confidence (including likely, very likely, extremely likely and virtually certain changes) increases 

High confidence (including likely, very likely, extremely likely and virtually certain changes) decreases  Medium confidence decreases  

Medium confidence increases 

Confidence levels for changes in hot temperature extremes, agricultural and ecological drought, or hydrological droughts

Confidence levels for changes in heavy precipitation
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Sub-region OBS. ATTR.
1.5°C 2°C 4°C 1.5°C 2°C 4°C

BASELINE: PRE-INDUSTRIAL BASELINE: 1995–2014

N.Europe NEU

HOT EXT. ↑ V. L. ↑ L. ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH ↑ HIGH ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT ↓ MED. LOW LOW LOW ↑ MED.

N.Central- 
America NCA

HOT EXT. ↑ L. ↑ MED. ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

HEAVY PRECIP. LOW LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW ↑ MED. ↑ L.

HYDR. DROUGHT LOW LOW LOW LOW LOW

W.North- 
America WNA

HOT EXT. ↑ L. ↑ MED. ↑ V.L. ↑ E.L. ↑ V.C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ MED. ↑ HIGH ↑ V. L. LOW ↑ MED. ↑ L.

AGR./ECOL. DROUGHT ↑ MED. ↑ MED. LOW ↑ MED. ↑ MED.

HYDR. DROUGHT LOW LOW LOW ↑ MED. ↑ MED.

C.North-
America CNA

HOT EXT. LOW LOW ↑ V.L. ↑ E.L. ↑ V.C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH ↑ MED. ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW ↑ MED. ↑ MED. ↑ HIGH

HYDR. DROUGHT LOW LOW LOW LOW LOW

E.North-America 
ENA

HOT EXT. LOW LOW ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. ↑ HIGH LOW ↑ HIGH ↑ L. ↑ E. L. ↑ MED. ↑ HIGH ↑ V. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW ↑ MED.

HYDR. DROUGHT LOW LOW LOW LOW LOW

N.E.North- 
America NEN

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

N.W.North- 
America

HOT EXT. ↑ V. L. ↑ HIGH ↑ V. L. ↑ E. L. ↑ V. C. ↑ L. ↑ V. L. ↑ V. C.

HEAVY PRECIP. LOW LOW ↑ L. ↑ V. L. ↑ V. C. ↑ HIGH ↑ L. ↑ E. L.

AGR./ECOL. DROUGHT LOW LOW LOW LOW LOW

HYDR. DROUGHT LOW LOW LOW LOW LOW

Low confidence

High confidence (including likely, very likely, extremely likely and virtually certain changes) increases 

High confidence (including likely, very likely, extremely likely and virtually certain changes) decreases  Medium confidence decreases  

Medium confidence increases 

Confidence levels for changes in hot temperature extremes, agricultural and ecological drought, or hydrological droughts

Confidence levels for changes in heavy precipitation
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