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SUFFICIENCY AND THE JACOBI CONDITION IN 
THE CALCULUS OF VARIATIONS 

FRANK H. CLARKE AND VERA ZEIDAN 

1. Introduction. Besides stating the problem and the results, we shall 
give in this section a brief overview of the classical necessary and sufficient 
conditions in the calculus of variations, in order to clearly situate the 
contribution of this article. 

1.1 The problem. We are given an interval [a, b], two points xa, xh in R", 
and a function L (the Lagrangian) mapping [a, b] X Rn X R" to R. The 
basic problem in the calculus of variations, labeled (P), is that of 
minimizing the functional 

fb 
J(x): = J L(t, x(t), x(t) )dt 

over some class X of functions x and subject to the constraints 
x(a) = xa, x(b) = xh. Let us take for now the class X of functions to be 
the continuously differentiable mappings from [a, b] to R"; we call such 
functions smooth arcs. 

A tube T(x; e) about the smooth arc JC, where € is a positive number, 
consists of all points (/, y) in [a, b] X R" satisfying 

\x(t) - y\ <e. 

A restricted tube RT{x\ e) consists of all (t, y, v) in [a, b] X R" X R" 
satisfying 

\y - x(t) | < c and |v - x(t) | < e. 

An arc y is said to lie in T(x; c) (for example) if for each t in [a, b], the 
point (/, y(t) ) lies in T(x; e). The feasible arc x (i.e., element of X 
satisfying the boundary conditions) is said to be a weak local minimum if 
for some restricted tube RT(x; c), for all feasible y in RT(x; e), one has 
J(y) = J(x). A strong local minimum corresponds to replacing RT(x; e) 
by T(x; e) in this definition. 

1.2 Necessary and sufficient conditions for a weak local minimum. Let us 
suppose that L is C and that x is a weak local minimum. The best-known 
necessary condition satisfied by x is due to Euler (1744): 
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(E) —Lv{t, x, x) = Lx(t, x, x) on [a, b]. 
dt 

The Legendre condition (1786) states that in addition 

(L) Lvv(t, x, x) = 0 on[a, b] (positive semidefinite). 

Unlike the above, the Jacobi necessary condition (J) (1837) has a global 
(i.e., not pointwise) nature. It states that (if strict inequality holds in (L) ) 
there is no point c in (a, b) corresponding to which there is a nontrivial 
solution h on [a, c] of the homogeneous boundary-value problem 

^[Lvv(t)h(t) + Lvx(t)h(t)} - Lxv(t)h(t) - Lxx(t)h(t) = 0 
at 

h(a) = h(c) = 0, 

where (for example) Lvv(t) is an abbreviation of Lvv(t, x(t), x(t)). (The 
differential equation is called the Jacobi equation.) A point c for which a 
nontrivial solution does exist is called a conjugate point, so that the Jacobi 
condition may be rephrased as: 

(J) there are no conjugate points in (a, b). 

Jacobi was the first to observe that a slight strengthening of the necessary 
conditions (E) (L) (J) was adequate to render them sufficient. We 
define: 

(L)' Lvv(t, x, i ) > 0 on [a, b]. 

(JX there are no conjugate points in (a, b\. 

THEOREM 1. A smooth arc x satisfying (E), (L)r and (J)r is a weak local 
minimum for the problem (P). 

1.3 Necessary and sufficient conditions for a strong local minimum. Of 
course (E), (L) and (J) continue to be necessary conditions if x is a strong 
local minimum for the problem (P). Weierstrass (c. 1879) provided another 
for this case, in terms of the "excess function" 

E(t, xy v, w): = L(t, x, w) — L(t, JC, V) — (w — v) • Lv(/, _x, v). 

The Weierstrass necessary condition asserts 

(W) E(t, x(t), x(t), w) S 0 for / in [a, b] and 

for all w in R". 

The strengthened form of this leading to a set of sufficient conditions is 

(W)r E(t, y, v, w) g 0 for (t, y, v) in RT(x; e) and 

for all w in R". 
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THEOREM 2. (E) (L)' (J)' (W)' together imply that x is a strong local 
minimum for (P). 

We remark that (W)' is satisfied whenever L is (globally) convex in v 
(i.e., Lvv i= 0). 

1.4 The Hamilton-Jacobi inequality. The purpose of this article is to 
provide a new, simple and unified proof of Theorems 1 and 2. It utilizes an 
observation concerning an inequality for a C1 function W(t, y): 

(1.1) Wt(t,y) + Wy(t,y)'v -L(t,y,v) 

â Wt(t,x(t) ) + W£(f, JC(0 ) • x(t) - L(t, x(t), x(t) ). 

PROPOSITION 3. Suppose that there is a function W satisfying (\.\)for all 
(/, y, v) in a restricted tube RT(x; e). Then x is a weak local minimum. If 
(1.1) is satisfied by all (/, y) in a tube T(x; e) and for all v, then x is a strong 
local minimum. 

The proof consists of substituting (/, y(t), y(t) ) for (/, y, v) in (1.1) and 
integrating, where y is any arc feasible for (P). 

The connection between certain equalities related to (1.1) on the one 
hand and fields (geodesic coverings) on the other is well known [4][11] 
[14, Chapter 15][16][17]. Perhaps less appreciated is the utility of this 
simple (one-sided) verification technique in the absence of fields of 
extremals, especially when extended to a nonsmooth setting (see for 
example [1][6][7, Section 3.7][8] ). 

Our proof of Theorems 1 and 2 will hinge upon exhibiting a verification 
function W for x, thereby forging a pedagogically useful link to a different 
approach. Besides the fact that both theorems can be proven at once this 
way, we achieve a reduction in the smoothness required of L (i.e., from C 
to C ), and we gain a lot in simplicity. In particular, we eliminate the need 
to invoke general imbedding or field theorems of the theory of differential 
equations, an integral component of the usual proofs (see for example 
[2][3][4][10][12][13][16] ). Our approach actually yields the optimality of x 
relative to all absolutely continuous feasible arcs, since Proposition 3 is 
robust for this modification. (Surprisingly, this fact does not follow from 
simple approximation, as shown by the possibility of the "Lavrentiev 
phenomenon" [5][9] ). Finally, we remark that the proof adapts very easily 
to the situation in which the arc x is piecewise-smooth (see Section 3) 
which is not a feature of the classical approach (see for example the 
discussion, in [10, Section 3.8] ). 

None of the components of our approach is new per se; it is a matter of 
how they are used. In a related vein, we remark that the relationships 
between the Jacobi condition and the Hamilton-Jacobi inequality, and 
between both these concepts and that of convex integrands and canonical 
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transformations, are studied in depth in [18][19][20] in a more general 
setting. 

2. An associated matrix equation. There exists a complete theory 
relating the Jacobi equation to a certain Riccati equation and to a certain 
quadratic variational problem; see for example [15]. In order to make this 
article self-contained, we shall give an elementary proof of just those 
results of differential equations needed later. The hypotheses are those of 
Theorem 1. We define the following continuous n X «-matrix-valued 
functions on [a, b]. 

A(t) = -L~\t)Lvx(t) 

B(t) = L;v\t) 

C(t) = Lxx{t) - Lxv(t)L-\t)Lvx(t). 

Note that B is symmetric and positive definite. We shall consider the 
linear matrix system 

( Û(t) = A(t)U(t) + B(t)V(t) 
1 • } \ V(t) = C(t)U(t) - A*(t)V(t). 

The corresponding system in R" is 

fii(f) =A(t)u(t) + B(t)v(t) 
(-> \ v ( 0 = C(t)u(t) - A*(t)v(t), 

which is easily seen to be the Jacobi equation rewritten as a first-order 
system (the correspondence being u to h and v to Lvv h 4- Lvxh). (In fact 
(2.2) defines the Jacobi equation when A, B, C are not differentiable.) In 
the following, * denotes transpose. 

PROPOSITION 4. There is a solution (U, V) of (2.1) on [a, b] with 
detU(t) * 0 and U*(t)V(t) = V*(t)U(t). 

Proof. For ease of notation, let us take [a, b] = [0, 1]. Define (U0, V0) to 
be the solution of (2.1) on [0, 1] satisfying 

(l/0, KoXO) = (0, / ) 

(where / is the n X n identity matrix), and (Ux, Vx) to be the one 
satisfying 

(f/„ rçxi) = (0, /). 
We note 

(2.3) £7,(0) and UQ(t) are invertible for t > 0. 

To prove the first of these assertions, simply suppose that ^ ( 0 ) ^ = 0 for 
some nonzero element f of Rn. Then 
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u(t): = Ux(t)£ and v(t): = W 

provides a solution of (2.2) with w(-) non trivial (since v is nontrivial) but 
vanishing at 0 and 1. This contradicts the strengthened Jacobi condition 
(J)'. The proof for U0(t) is the same. We note further 

(2.4) Uf(t)Vt(t) = VfWiit), t e [a, b]9 i = 0, 1. 

This results from the fact that the quantity 

vernit) - mWiO) 
has zero derivative (substitution of (2.1) ) and value 0 at / = 0 (for i = 0) 
or t = 1 (for / = 1). One final property is useful: 

(2.5) U$(t)Vx(t) - V%{t)Ux(t) = -M'x 

for some constant invertible M. That the left side of (2.5) is constant 
is easily seen by differentiating it and substituting (2.1); the constant is 
invertible since the value of the left side at t = 0 is nonsingular 
by (2.3). 

We now define 

(£/, V) = (I/0, V0) + (UXM, VXM\ 

The desired property U*V = V*U is an immediate consequence of (2.4) 
and (2.5), and U(0), U(\) are invertible by (2.3). Thus we need only prove 
that U(y) is invertible when y lies in (0, 1). 

Suppose not. Then for some nonzero f in R" we have 

(2.6) £/(y)f = I/0(y)f + I/,(Y)Mf = 0. 

We proceed to define 

( « ( 0 , v ( 0 ) = (f/0(0f, ^o(0f) on[0,y] 

= {-Ux(t)Ml -Vx(t)MÇ) on(y, 1]. 

Note that (w, v) satisfies (2.2) on each of the subintervals [0, y) and (y, 1], 
and that u (but not necessarily v) is continuous on [0, 1] and vanishes at 0 
and at 1. The following fact follows from substitution of (2.2): 

(2.7) y <M(0, v(0 > = (u(t), C(t)u(t) > + <v(/), Bv(t) >. 
at 

Let / denote the value obtained when the right side of (2.7) is integrated 
over [0, 1]. In view of (2.7) we have 

/ = <ii(v),v(y-)> - <«(y),v(y + )> 

= <I/0(Y)?, V0(y)O - (Ut(y)MS, Vt(y)M^ 

= (-Ux(y)Ml V0(y)O - (~U0(y)L Vx{y)MÇ) (by (2.6)) 
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= ( ( US (y) mW - V$y) 17, (y)M% £> 

= (-LO = - K f < 0 (by (2.5)). 

We shall now calculate / a different way to deduce that it is nonnegative, 
which gives the desired contradiction. We set 

h(t) = f on [0, y] 

= Uô\t)u(t) on [y, 1] 

(note that UQ (t) exists by (2.3), and that h is continuous), and we 
define 

w(t) = V0(t)h(t). 

Note that u(t) = U0(t)h(t). It follows from this and (2.1) (2.4) that we 
have 

(2.8) l(u(t),w(t)) = (w(t),B(t)w(t)) 
at 

+ 2(V0(t)h(t), U0(t)h(0) 

+ <H(0, C(t)u(t) >. 

We calculate 

/ = J o{(u, Cu) + (B~\ù - Au), ù - Au) }dt (by (2.2) ) 

= J 0 { (u, Cu) + (B~l(Ù0h + (/0Â - >4«), 

f/0/i + f/0Â - Au) }dt 

(putting u = Ah) 

= JQ { (w, Cw> + (w, 5w> -h 2<F0/z, U0h) 

4- (U0h,B~lU0h ) }dt 

(after substituting from (2.1) for Ù0) 

= /ô {̂ <«. *> + W , ^ '^ >}* 
(by (2.8) ) 

= f0(U0h,B'lU0h)dt^0 

(since B > 0). 
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This completes the proof. The following corollary results immediately 
from the proposition by taking 

6 ( 0 = V(t)U~\t) 

and expanding the equation 

y (QU) = V: 
dt 

COROLLARY. There exists a symmetric solution Q on [a, b] of the matrix 
Rice at i equation 

Q(t) + Q(t)A(t) 4- A*(t)Q(t) + Q(t)B(t)Q(t) - C(t) = 0. 

The following technical result asserts that the Jacobi condition actually 
holds in a somewhat "stricter" form. 

PROPOSITION 5. Consider the system (2.2) with C replaced by C — 81. 
Then for 8 > 0 sufficiently small, there is no nontrivial solution (w, v) for 
which u vanishes both at a and at some point c in (a, b]. 

If the result is false, then there exist a sequence 8t decreasing to 0 and 
corresponding (ui9 vz) and ct in {a, b] such that on [a, b] we have 

(2.9) [Ù>=fi + *' „ 
ut(a) = ufa) = 0, 

and without loss of generality 

2.10) max | (!/,•(/), v,.(0) I = 1. 
[a,b] 

The relation (2.9) implies 

(2.11) | ( i i f , i * ) l =i k\(ui9Vi)\ ^ k o n [a,b] 

for some constant k not depending on z, whence 

(2.12) | (ufa, vfa )\^K\ (ufal vfa) ) | = K\vfa) \ 

by Gronwall's lemma. We may assume ci —» c0, vt(a) —> v0. In view of (2.12) 
and (2.10), we have v0 ¥= 0. Since B is invertible, we have Bv0 ¥= 0; let w be 
a vector such that (w, Bv0) = 1. 

In view of (2.11), we have for some constant kx: 

\Aufa | ^ kfa - a), 

\Bvfa - Bvfa) | ^ kfa - a) for t e [A, c j . 

If c0 = a (i.e., ct —* a) it follows that for z sufficiently large we have 

| (w, Au fa > | < i , <w, 5vf.(0 ) > j , / e [ f l , c,-]. 
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But this together with (2.9) implies 

<«,-(/), w) > 0 on [a, c j , 

a contradiction since 

ut(a) = Ui(Ci) = 0. 

Thus c0 > a. 
Now { (ui9 Vj)} is uniformly equicontinuous on [a, b] by (2.11) and 

bounded, so by the theorem of Arzela-Ascoli, there is a subsequence (we 
eschew relabeling) converging uniformly to (w0, v0). It follows from (2.9) 
that 

{ («,, v. + 8lUl) } = { (Aut + Bv, Cut ~ A\) } 

is also equicontinuous (and bounded by (2.11)), so that a further 
subsequence is such that ut and v- + 8tut converge uniformly, to w0 and v0 

necessarily, in view of, for example, 

*i(t) = JaÙr 

But then (w0, v0) is a nontrivial solution of the original system (2.2) 
admitting a conjugate point c0 in (a, b]. This contradiction completes the 
proof. 

The following is obtained by applying the Corollary to Proposition 
4 with C replaced by C — 81, which is permissible in light of 
Proposition 5. 

COROLLARY. There exists a symmetric solution Q on [a, b] of the matrix 
Riccati inequality 

Q(t) + Q(t)A{t) + A*(t)Q(t) + Q(t)B(t)Q(t) - C(t) < 0. 

We remark that the results of this section remain valid if A, B, C are 
only assumed piecewise-continuous, with minor and evident changes in 
the proof. 

3. The proof of theorems 1 and 2. We set 

p(t): = L v ( / , x ( f ) , i ( 0 ) 

W(Uy): = (p(t\y) + ^(y - x(t), Q(t)(y - *(*))>, 

where Q is provided by the Corollary to Proposition 5, Section 2. The 
proof consists of showing that W has the properties of a verification 
function described in Proposition 3, Section 1. 

The Euler equation (E) asserts that/?(/) is equal to Lx(t, x, x); it follows 
that p and hence W are C . Consider the equation 
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(3.1) pit) + Q(t)(y - x(t) )( = Wy(t, y) ) = Lv(t, y, ft. 

A solution is £ = i(y) when / = y, y = x(y), and we have 

Lvv(y, x, x) > 0 

by (L)'. The implicit function theorem guarantees the existence of a C 
function Ç(t, y) defining near (y, x(y) ) the locally unique solution of (3.1). 
By an application of the Heine-Borel theorem, we may suppose that f is 
defined on a neighborhood of the graph of x\ i.e., on a tube T(x; ej). By 
reducing ex if necessary we may further suppose 

(3.2) LJt9y, v) > 0 on RT(x; e2\ 

where 

|f(/, y) ~ x(t) | < £2 for all (f, y) in r (x ; € l ) . 

Thus for fixed (/, y) in T(x; €j), the function 

v-»<»£(/, >0,v> ~ L(/,^, v) 

is concave by (3.2) on the set |v — x(t)\ < c2 and has zero gradient at 
v = f(f, >>) by (3.1). We deduce 

(3.3) max {Wt(U y) + (Wy(t, y), v> - L(t, y, v) } 
| V - * | < € 2 

= : F(t, y) = Wt(t, y) + (Wy«, y), ?(/, 7) > - L(t, y9 f(/, 7) ). 

The function F defined above is also given by 

(p(t),y) - (x{t), Q{t)(y - xit))) 

+ ^<j - x ( 0 , 0(0(.V - * ( ' ) ) > 

+ </»(/) + Q(t)(y~ x(t))A(t,y)) 

- L{t, y,&, y)) 

once the derivatives Wt and W are substituted. Routine calculation then 
confirms that F, Fyy are continuous in it, y) and satisfy 

f^(r, *(/)) = 0_ 
(*-v \Fyyit, xit) ) = Q + QA + A*Q + QBQ - C < 0. 

It follows from Taylor's formula that for every is, y) near it, xit) ) , one 
has 

Fis, y) g Fis, xis) ) . 

Another application of the Heine-Borel theorem yields a tube T(x; e3) 
with the property that for every (/, y) in T(x; e3) one has 
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(3.5) F(t, y) ^ F(t, x(t) ) - Wt(t9 x) + (Wy(t, x), x) - L(t9 x9 x). 

The inequality combined with (3.3) immediately yields the Hamilton-
Jacobi inequality (1.1) on RT(x; c), where 

€ = min[€l5 c2, c3]. 

The fact that x is a weak local minimum results (Theorem 1). 
Suppose now that (W)' also holds. Let (t, y) belong to T(x\ e) and let v 

be any point in R'7. Then 

Wt(t9y) + (Wy(t,y\v) - L(t, y, v) 

= Wt(u y) + (Lv(t9 y9 Ut9 y) ), v> - L{u y, v) 

(by (3.1)) 

S Wt{u y) + (Lv{u y, S(t9 y) ), f(/, j ) > - L(/, j , «*, ^) ) 

(by (W)r with v = f(r, >;), w = v) 

(by (3.3) and (3.1)) 

^ F(/, x(r) ) = wt(t9 x) + <^;(r, JC), X) - L(t9 x9 x) 

(by (3.5) ). That x is a strong local minimum (Theorem 2) follows, again by 
Proposition 3. 

Remarks. Because the inequalities in (3.2) and (3.4) are strict, the 
inequality (3.5) holds strictly for y ¥- x(t). This leads to the additional 
assertion that x is the unique (weak or strong) local minimum relative to 
RT(x; e) or T(x; e). 

If x is piecewise-smooth, then A, B9 C are piecewise-continuous and the 
resulting Q is piecewise-smooth. We proceed to verify (1.1) (for the same 
W, by the same method), on subintervals of [a9 b] on which x is 
continuous. W is now itself piecewise-smooth (rather than C ), but this 
is quite adequate for Proposition 3. Thus Theorems 1 and 2 follow as 
before. 
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