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FORMAL LIFTING OF DUALIZING COMPLEXES AND
CONSEQUENCES

SHIJI LYU

Abstract. We show that for a Noetherian ring A that is I -adically complete

for an ideal I, if A/I admits a dualizing complex, so does A. This gives an

alternative proof of the fact that a Noetherian complete local ring admits a

dualizing complex. We discuss several consequences of this result. We also

consider a generalization of the notion of dualizing complexes to infinite-

dimensional rings and prove the results in this generality. In addition, we give

an alternative proof of the fact that every excellent Henselian local ring admits

a dualizing complex, using ultrapower.

§1. Introduction

The following problem has a long history in commutative algebra, cf. [8, remarque 7.4.8].

Question 1.1. What properties P of rings satisfy the lifting property, that is, for every

Noetherian ring A and ideal I of A, if A is I -adically complete and A/I satisfies P, then A

satisfies P.

There have been numerous studies on the lifting property and its variants, for many

important properties P. For example, lifting property holds for P=“Nagata” [18] and

P=“quasi-excellent” [15], but not for P=“excellent” or P=“universally catenary” [7]. We

refer the reader to [15, Appendix] for more information.

One main objective of this article is to show that the property of admitting a dualizing

complex satisfies the lifting property, which, as fundamental as it may be, seems to be

missing in the literature. For applications, especially Theorem 6.5, we consider the following

generalization of dualizing complexes to infinite-dimensional rings.

Definition 1.2. Let A be a Noetherian ring. Let K ∈ D(A). We say K is a pseudo-

dualizing complex if K ∈Db
Coh(A) and Kp is a dualizing complex for Ap for all p∈ Spec(A).

We now state our main result (Theorem 5.1) on lifting. Note that applying to the case

A local and I maximal, we recover the existence of dualizing complexes for Noetherian

complete local rings. Therefore, this fact now admits a proof that does not use the Cohen

structure theorem.

Theorem 1.3. Let A be a Noetherian ring, I an ideal of A. Assume that A is I-adically

complete. If A/I admits a pseudo-dualizing (resp. dualizing) complex K1, then A admits a

pseudo-dualizing (resp. dualizing) complex K such that RHomA(A/I,K)∼=K1.

This result implies, quite formally, certain openness results (Theorem 6.2 and Corollary

6.3). In turn, we characterize when a Noetherian scheme of dimension 1 admits a dualizing

complex (Corollary 7.6) and obtain that a quasi-excellent ring admits a pseudo-dualizing
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2 S. LYU

complex étale-locally (Theorem 6.5), via a known result of Hinich [11] that an excellent

Henselian local ring admits a dualizing complex. We point out to the reader that the

results in Section 6 are new even for finite-dimensional rings to the best of our knowledge,

except where noted.

Another main objective of this article is to illustrate that Definition 1.2 is, hopefully,

a robust generalization of the classical concept of dualizing complexes. We show that

pseudo-dualizing complexes are preserved by upper shriek (Corollary 4.5), induce a dualizing

functor on Db
Coh (Corollary 4.9), and are unique up to twist (Corollary 4.11). The author

believes it should be possible to develop the coherent duality theory for infinite-dimensional

schemes using pseudo-dualizing complexes in place of dualizing complexes. Moreover,

Sharp’s conjecture is true in this generality by the same proof, see Theorem 4.12. One

can also expect that the concept of fundamental dualizing complexes [9] and related results

can be extended to this generality.

To make our article accessible to a broader audience, we do not use E∞- or animated

rings and the derived ∞-category, although they helped a lot in the thought process. The

author hopes that many results in this article can be generalized to truncated animated

rings and dgas. We also produce an alternative proof of Hinich’s result, avoiding the use

of dgas in the original proof. In exchange, we use ultrapowers of a local ring. We show a

flatness result (Theorem 3.2) that may be of independent interest. It is a strengthening of

[17, Lemma 3.5]. We will not use Hinich’s result except for Theorem 6.5.

Our article is structured as follows. Section 2 is a short preparation. In Section 3, we

give an alternative proof of Hinich’s result. In Section 4, we introduce pseudo-dualizing

complexes and show several desirable properties. In Section 5, we prove our main result on

formal lifting. In Sections 6 and 7, we discuss consequences. Finally, in Section 8, we make

some remarks on quotient of Cohen–Macaulay rings that do not rely on the material on

pseudo-dualizing complexes.

We thank Rankeya Datta, Longke Tang, and Kevin Tucker for helpful discussions.

We thank Karl Schwede and Kevin Tucker for bringing the lifting problem of dualizing

complexes to the author’s attention.

We use the following facts about dualizing complexes for local rings without explicit

reference. They all follow from [25, Tag 0A7U], for M =A.

Fact 1.4. Let A be a Noetherian local ring, K a dualizing complex for A. Then

dimA − depthA = max{b − a | a ≤ b,Ha(K) �= 0,Hb(K) �= 0}. If a ∈ Z is such that

dimSupp(Ha(K)) = dimA, then K ∈D≥a(A). K is normalized if and only if the minimal

a so that Ha(K) �= 0 is −dimA.

§2. Bounded pseudo-coherent complexes

Lemma 2.1. Let A be a Noetherian ring. Let K,M ∈Db
Coh(A). Let S be a multiplicative

subset of A. Assume S−1K ∼= S−1M . Then for some f ∈ S, Kf
∼=Mf .

Proof. For any X,Y ∈Db
Coh(A), we have

S−1HomD(A)(X,Y ) = HomD(S−1A)(S
−1X,S−1Y ),

by [25, Tag 0A6A]. Thus, we can spread out a quasi-isomorphism and its inverse and the

results are inverse quasi-isomophisms.
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 3

Lemma 2.2. Let (Ai)i be a direct system of rings, A= colimiAi. Assume that Ai →A is

flat for all i. Let K ∈Db(A). Assume K is pseudo-coherent. Then K ∼=K•
i ⊗L

Ai
A for some

i and some finite complex K•
i of finitely presented Ai-modules.

If a≤ b ∈ Z are given such that K ∈D[a,b](A), we can choose K•
i so that Km

i = 0 for all

m �∈ [a,b] and Km
i free for all a <m≤ b.

Proof. K is represented by a bounded above complex F • of finite free A-modules such

that Fm = 0 for all m > b. Let K• be the complex of A-modules with Km = Fm (m >

a),Ka = coker(F a−1 →F a),Km =0 (m<a), that is, K• is the canonical truncation τ≥aF
•.

Then K• also represents K, and K• is a finite complex of finitely presented A-modules such

that Km = 0 for all m �∈ [a,b] and Km free for all a <m≤ b. By [25, Tag 05N7], there exists

an index i and a complex of finitely presented Ai-modules K•
i such that Km

i = 0 for all

m �∈ [a,b] and Km
i free for all a <m≤ b, and that K•

i ⊗Ai A is isomorphic to K• as cochain

complexes. Since Ai →A is flat, K ∼=K•
i ⊗L

Ai
A.

§3. Dualizing complexes for Henselian local rings

In this section, we prove a generalization of the main result of [11], Theorem 3.5. We will

only use the original result of [11] for the application, Theorem 6.5.

For ultraproducts of rings, first-order statements, and �Loś’s Theorem, see [23, Chapter 2].

Lemma 3.1. Let A be a Noetherian local ring or an ultraproduct of Noetherian local

rings, f ∈A a noninvertible nonzerodivisor. Let (E•,d•) be a cochain complex of A-modules.

If E•/fE• is exact at some degree m and Em−1,Em,Em+1 are finite free, then E• is exact

at degree m.

Proof. Choose a basis of Em−1,Em,Em+1, so dm−1 and dm are represented by matrices

with coefficients in A. The statement of the lemma is a first-order statement of the

coefficients and f, so it suffices to show the lemma for a Noetherian local A.

The condition E•/fE• is exact at degree m implies ker(dm) = im(dm−1) + (fEm ∩
ker(dm)). Since f is a nonzerodivisor on Em+1, fEm∩ker(dm) = f ker(dm). Thus, ker(dm) =

im(dm−1)+f ker(dm). By Nakayama’s Lemma, ker(dm) = im(dm−1).

Theorem 3.2. Let (A,m,k) be a Noetherian local ring, (B,n, l) a Noetherian local flat

A-algebra with n=mB. Let A� be an ultrapower of A. Then any A-algebra map B →A�, if

exists, is faithfully flat.

Proof. Since A�/mA� �= 0, it suffices to show B →A� is flat.

We know A → A� is flat [23, Corollary 3.3.3]. By [25, Tag 051C], we may base change

to the reduction of A and assume A reduced. If dimA= 0, then A= k, so B = l is a field.

Thus, we may assume dimA> 0, so depthA> 0.

We need to show N⊗L
BA� is concentrated in degree 0 for all finite B -modules N. If N = l,

then since n=mB, N ⊗L
BA� = k⊗L

AA� is concentrated in degree 0 as A→A� is flat. Thus,

N ⊗L
B A� is concentrated in degree 0 for all N of finite length.

For a general N, we may assume, by Noetherian induction, that N⊗L
BA� is concentrated

in degree 0 for all proper quotients N of N. Since N [n∞] is of finite length, we may thus

assume N [n∞] = 0, i.e., depthN > 0.

Since depthA> 0 and since mB = n, there exists an f ∈m that is both a nonzerodivisor

in A (thus a noninvertible nonzerodivisor in both B and A�) and a nonzerodivisor in N.
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4 S. LYU

Thus, N⊗L
BA�/fA�

∼=N/fN⊗L
BA� is concentrated in degree 0. Since N and thus N⊗L

BA�

can be represented by a complex of finite free modules, Lemma 3.1 implies that N ⊗L
B A�

is concentrated in degree 0.

Lemma 3.3. Let (A,m,k) be a Noetherian local ring, d= dimA. Let b ∈ Z and let M ∈
D≤b

Coh(A). If Ext
m
A (k,M) = 0 for all b+1≤m≤ b+d+1, then ExtmA (N,M) = 0 for all m>b

and all finite A-modules N.

Proof. We show by induction on h = dimSuppN that ExtmA (N,M) = 0 for all b+

1 ≤ m ≤ b+ d+ 1− h, for all finite A-modules N. This implies the result, since then

Extb+1
A (N,M) = 0 for all finite A-modules N, so dimension shifting and the factM ∈D≤b(A)

shows ExtmA (N,M) = 0 for all finite A-modules N and all m> b.

If h = 0, then N has finite length, thus is a successive extension of k and the

vanishing holds by the assumption. Assume h > 0, so there exists f ∈ m such that

dim(V (fA)∩SuppN) < h. Let C = Cone(N
×f−−→ N), so we have a distinguished triangle

N
×f−−→N → C →+1. We note that C ∈D

[−1,0]
Coh (A) and that the dimension of the support

of the cohomology modules of C is less than h. Thus, the induction hypothesis tells us

ExtmA (C,M) = 0 for all b+2 ≤ m ≤ b+ d+2− h. The distinguished triangle above and

Nakayama’s Lemma tells us ExtmA (N,M) = 0 for all b+1≤m≤ b+d+1−h, as desired.

Corollary 3.4. Let (A,m,k) be a Noetherian local ring of dimension d, and let a ∈Z.

Let M ∈D
[a,0]
Coh(A). Assume that

τ≤d+1RHomA(k,M)∼= k.

τ≥aτ≤−aRHomA(M,M) =A.

Then M is a normalized dualizing complex.

Proof. By Lemma 3.3, ExtmA (N,M) = 0 for all finite A-modules N and all m > 0.

Thus, M has injective amplitude [a,0] and RHomA(k,M)∼= k. Since M ∈D[a,0](A), we see

RHomA(M,M) ∈D[a,−a](A). Thus, RHomA(M,M) = A, so M is a normalized dualizing

complex.

Theorem 3.5. Let (A,I) be a Henselian pair where (A,m,k) is a Noetherian local ring.

Assume that

(i) The I-adic completion map A→B := limnA/I
n is regular.

(ii) B admits a dualizing complex.

Then A admits a dualizing complex.

Note that (i) is always true for quasi-excellent A, see [25, Tag 0AH2].

Proof. By Popescu’s theorem [25, Tag 07GC], B is the colimit of a direct system of

smooth A-algebras Ai. The composition Ai → B → B/IB ∼= A/I gives an A-algebra map

Ai → A/I, thus Ai admits a section Ai → A since (A,I) is Henselian, see [25, Tag 07M7].

Thus [23, Theorem 7.1.1] applies (see also [17, Lemma 3.4]), so there exists an A-algebra

map B → A� where A� = AX/U = S−1
U AX is an ultrapower of A. Here X is a set, U is an

ultrafilter on X, and SU = {eU | U ∈ U}, where eU is defined by (eU )x = 1 when x ∈ U and

(eU )x = 0 when x �∈ U . This map is flat by Theorem 3.2.
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 5

Let K ∈ Db
Coh(B) be a normalized dualizing complex. Then F := K ⊗L

B A� ∈ D(A�) is

pseudo-coherent and bounded. Writing k� = k⊗L
AA� = k⊗L

B A�, we have

RHomA�
(k�,F ) =RHomB(k,K)⊗L

B A�
∼= k�,

RHomA�
(F,F ) =RHomB(K,K)⊗L

B A� =A�,

by [25, Tag 0A6A] and by the fact K is a normalized dualizing complex.

Let d = dimA. Then K ∈ D[−d,0](B) and thus F ∈ D[−d,0](A�). By Lemma 2.2, there

exists an e ∈ SU and an M ∈D((AX)e) represented by a complex M• of finitely presented

(AX)e-modules such that M ⊗L
(AX)e

A�
∼= F , that Mm = 0 for all m> 0 and m< −d, and

that Mm is free for all −d < m ≤ 0. Note that if e = eU , then (AX)e = AU , thus after

replacing X by a subset in U we may assume e= 1.

We note that another application of Lemma 2.2 with a=−2d shows that, after replacing

X by a subset, M is also represented by a complex of free A-modules P • such that Pm = 0

for allm> 0 and that Pm is finite for allm≥−2d−1. Thus, RHomAX (M,M) is represented

by the Hom complex E• := Hom•
AX (P •,M•), and Em is finitely presented for all m≤ d+1.

Also note that RHomAX (kX ,M) is represented by a complex of finitely presented modules

in degrees ≥−d, since kX =AX ⊗L
A k is represented by a complex of finite free modules in

degrees ≤ 0.

Let T−1 → T 0 → T be a three-term complex of finitely presented AX -modules. Fix

presentations P i,−1 → P i,0 → T i → 0 (i = −1,0,1), where P i,j are finite free, and maps

P−1,0 → P 0,0 → P 1,0 lifting T−1 → T 0 → T 1. We do not require the composition P−1,0 →
P 1,0 to be zero. Fix bases of P i,j , so the maps between P i,j are represented by matrices. The

statement that the cohomology ker(T 0 → T 1)/ im(T−1 → T 0) is 0 (resp. AX ,kX) is a first-

order statement of the coefficients of the matrices. This observation and the observation on

Hom complexes above tells us that after replacing X by a subset in U , we have

τ≤d+1RHomAX (kX ,M)∼= kX ,

τ≥−dτ≤dRHomAX (M,M) =AX .

Apply the projection AX → A to some coordinate, we get an object M1 ∈D
[−d,0]
Coh (A) such

that

τ≤d+1RHomA(k,M1)∼= k,

τ≥−dτ≤dRHomA(M1,M1) =A.

Then M1 is a dualizing complex for A by Corollary 3.4.

An elementary étale-local ring map is a local map (R,m,k)→ (S,n, l) of local rings such

that S is the localization of an étale R-algebra at a prime ideal and that l = k.

Corollary 3.6. Let A be a Noethrian local G-ring. Then there exists an elementary

étale-local ring map A→A′ such that A′ admits a dualizing complex.

Proof. Let Ah be the Henselization of A, so Ah is a Henselian G-ring [25, Tag 07QR].

Thus, Ah admits a dualizing complex K ∈D(Ah) by Theorem 3.5 (and [25, Tag 0BFR]

or our Theorem 1.3). Since A → Ah is the filtered colimit of elementary étale-local ring

maps A → A′ [25, Tag 04GN] and since each A′ → Ah is flat (cf. [25, Tag 08HS]), by

Lemma 2.2 there exists an A′ and a K ′ ∈Db
Coh(A

′) such that K ′⊗L
A′ Ah =K. Since K is a
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6 S. LYU

dualizing complex for Ah, by flatness again we see K ′ is a dualizing complex for A′, see [25,

Tag 0E4A].

§4. Pseudo-dualizing complexes

Definition 4.1. Let A be a Noetherian ring. Let K ∈ D(A). We say K is a pseudo-

dualizing complex if K ∈Db
Coh(A) and Kp is a dualizing complex for Ap for all p∈ Spec(A).

Thus, A is Gorenstein if and only if A ∈D(A) is a pseudo-dualizing complex.

Let X be a Noetherian scheme. K ∈D(X) is a pseudo-dualizing complex if K ∈Db
Coh(X)

and Kx is a dualizing complex for OX,x for all x ∈X.

It is clear thatK ∈Db
Coh(A) is a pseudo-dualizing complex if and only ifKm is a dualizing

complex for Am for all maximal ideals m of A.

Remark 4.2. A pseudo-dualizing complex is a dualizing complex if and only if A (resp.

X ) is finite-dimensional. See [10, Chapter V, Proposition 8.2].

The existence of a pseudo-dualizing complex implies being catenary, in fact implies the

existence of a codimension function, see [10, p. 287].

Lemma 4.3. Let A be a Noetherian ring. Assume that for every p∈ Spec(A), Spec(A/p)

contains a nonempty Cohen–Macaulay open subscheme. Let K ∈D(A) be such that Kp is

a dualizing complex for all p ∈ Spec(A). Then K is bounded.

Proof. For all p ∈ Spec(A), we have

htp−depthAp =max{b−a | a≤ b,Ha(Kp) �= 0,Hb(Kp) �= 0}.

By [8, Proposition 6.10.6], the function on the left-hand side is constructible on Spec(A).

Let N be the maximum of this function, and for each minimal prime q of A let cq be the

unique integer such that Hcq(Kq) �= 0. Then it is clear that K is concentrated in degrees

[−N +minq cq,maxq cq+N ]. (In fact, [minq cq,maxq cq+N ].)

Lemma 4.4. Let f : A → B be a finite map of Noetherian rings. Let K ∈ D(A) be a

pseudo-dualizing complex. Then L :=RHomA(B,K)∈D(B) is a pseudo-dualizing complex.

Proof. Since K is a pseudo-dualizing complex, we have, for all p ∈ Spec(A),

htp−depthAp =max{b−a | a≤ b,Ha(Kp) �= 0,Hb(Kp) �= 0}.

Since K ∈ Db
Coh(A), the function on the right-hand side is constructible. Therefore,

[8, Proposition 6.10.6] shows that for every p ∈ Spec(A), Spec(A/p) contains a nonempty

Cohen–Macaulay open subscheme. Since B is finite over A the same is true for B. Since K is

bounded, L∈DCoh(B). It is clear that Lq is a dualizing complex for Bq for all q∈ Spec(B).

We conclude by Lemma 4.3.

Lemma 4.4 has a number of consequences that tell us pseudo-dualizing complexes

resemble various properties of dualizing complexes.

Corollary 4.5. Let f : X → Y be a morphism separated of finite type between

Noetherian schemes. Then f ! sends a pseudo-dualizing complex for Y to a pseudo-dualizing

complex for X.

Proof. Recall that f ! is well defined for all separated morphisms of finite type [25, Tag

0AA0], compatible with composition [25, Tag 0ATX], flat base change [25, Tag 0E9U], and

open immersion [25, Tag 0AU0].
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 7

Let K be a pseudo-dualizing complex for Y. Since the result is true after base change

to Spec(OY,y) for all y ∈ Y [25, Tag 0AA3], we see (f !K)x is a dualizing complex for OX,x

for all x ∈X. Thus it suffices to show f !K ∈Db
Coh(X). We may assume X and Y affine by

compatibility with open immersion. By compatibility with composition, it suffices to treat

the cases X =A1
Y and f is finite (or even closed immersion). If X =A1

Y the result is trivial,

see [25, Tag 0AA1]. If f is finite, the result is true by [25, Tag 0AA2] and Lemma 4.4.

Therefore, the result is true for any f.

Definition 4.6. Let A be a Noetherian ring. We say A is Gor-2 if Spec(A/p) has

a nonempty Gorenstein open subset for all p ∈ Spec(A). This is equivalent to that the

Gorenstein locus of any finite type A-algebra is open, see [6, Proposition 1.7]. We recover

this fact in Corollaries 4.8 and 6.3, and we will not use it.

A locally Noetherian scheme is Gor-2 if it can be covered by affine opens Spec(A) where

A is Gor-2.

Corollary 4.7. Let A be a Noetherian ring that admits a pseudo-dualizing complex.

Then every finite type A-algebra admits a pseudo-dualizing complex, and A is Gor-2 and

universally catenary. In particular, a Gorenstein ring is Gor-2.

Proof. The “in particular” statement follows from the fact that A is a pseudo-dualizing

complex for a Gorenstein A.

Every finite type A-algebra admits a pseudo-dualizing complex by Corollary 4.5, so A is

universally catenary by Remark 4.2. To see A is Gor-2, we may assume by Lemma 4.4 that

A is an integral domain, and we must show Af is Gorenstein for some nonzero f. This is

clear: a pseudo-dualizing complex K ∈Db
Coh(A) is a shift of the fraction field at the generic

point of A, thus for some f �= 0, Kf is a shift of Af by Lemma 2.1.

Corollary 4.8. Let A be a Noetherian ring that is Gor-2. Then every finite type

A-algebra is Gor-2.

Proof. By definition, we may assume A Gorenstein, and we conclude by

Corollary 4.7.

Corollary 4.9. Let A be a Noetherian ring, K ∈ D(A) a pseudo-dualizing complex.

Then the functor DK(−) =RHomA(−,K) maps Db
Coh(A) into Db

Coh(A), and the canonical

map id→DK ◦DK is an isomorphism of functors.

Proof. By Lemma 4.4,DK(A/p)∈Db
Coh(A) for all p∈ Spec(A). ThusDK mapsDb

Coh(A)

into Db
Coh(A). The fact that id → DK ◦DK is an isomorphism can be checked locally by

[25, Tag 0A6A], and the local case is well-known, cf. [25, Tag 0A7C].

Remark 4.10. The functor DK(−) does not map D+
Coh(A) into either D−(A) or

DCoh(A) when A is not finite-dimensional. To see this, for p∈ Spec(A) let ap be the smallest

integer with Hap(Kp) �= 0. Then p �→ ap is a bounded function since K is bounded, and

RHomA(A/m,K)∼=A/m[−am−htm] for all maximal ideals m of A. Thus if we pick mn so

that htmn ≥ 2n then

DK

(⊕
n

A/mn[−n]

)
∼=
⊕
n

A/mn[−amn +n−htmn],
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8 S. LYU

is not in D−(A); and if we pick mn so that htmn > htmn−1 then

DK

(⊕
n

A/mn[−htmn]

)
∼=

⊕
n

A/mn[−amn ],

is not in DCoh(A).

On the other hand, DK(−) always map D−(A) (resp. D−
Coh(A)) into D+(A) (resp.

D+
Coh(A)), as this is true for any K ∈D+(A) (resp. D+

Coh(A)).

Corollary 4.11. Let A be a Noetherian ring, K,K ′ ∈ D(A) two pseudo-dualizing

complexes. Then there exists an invertible object L ∈D(A) such that K ′ ∼=K⊗L
AL.

Proof. Let L = RHomA(K,K ′). Then L = DK′ ◦DK(A) is an invertible object by

Corollary 4.9 and [25, Tag 0A7E]. The statement that the canonical map K ⊗L
A L → K ′

is an isomorphism can be checked locally by [25, Tag 0A6A], and when A is local it follows

from [25, Tag 0A69].

We can characterize the existence of a pseudo-dualizing complex as follows. For finite-

dimensional rings this is due to Kawasaki [13].

Theorem 4.12. Let A be a Noetherian ring. Then A admits a pseudo-dualizing complex

if and only if there exists a finite type A-algebra B that is Gorenstein and admits a section

B →A.

Proof. “If” follows from Lemma 4.4.

We proceed to show “only if.” Every finite type A-algebra admits a pseudo-dualizing

complex, Corollary 4.5, so we may replace A by any finite type A-algebra that admits a

section.

By Remark 4.2, Corollary 4.7, and [25, Tag 0AWY], A is universally catenary, has a

codimension function, is Gor-2, and has Gorenstein formal fibers. By [14, p. 2738, proof of

Theorem 1.3], there exists a finite type A-algebra B that is Cohen–Macaulay and admits a

section. Replace A by B, we may assume our A is Cohen–Macaulay.

Assume A is Cohen–Macaulay. We may assume Spec(A) is connected, and K is

concentrated in degree 0. Then the square-zero extension A⊕H0(K) is Gorenstein by

[22] (see also [1, Corollary 2.12]), finishing the proof.

Remark 4.13. Since our A actually has a pseudo-dualizing complex, we can avoid the

materials in [14]; the materials in [13] are sufficient with a minor twist. The constructions

are the same; [14] proved it works in a greater generality.

§5. Formal lifting of pseudo-dualizing complexes

In this section, we prove the following theorem, which, in particular, recovers the existence

of dualizing complexes for complete local rings.

Theorem 5.1. Let A be a Noetherian ring, I an ideal of A. Assume that A is I-adically

complete. If A/I admits a pseudo-dualizing (resp. dualizing) complex K1, then A admits a

pseudo-dualizing (resp. dualizing) complex K such that RHomA(A/I,K)∼=K1.

Note that this implies A is universally catenary by Corollary 4.7. Compare with [7,

Proposition 1.1].

From Lemma 4.4 and Theorem 3.5 we get the following immediate
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 9

Corollary 5.2. Let (A,I) be a Henselian pair where (A,m,k) is a Noetherian local

ring. Assume that the I-adic completion map A→ limnA/I
n is regular. Then A admits a

dualizing complex if and only if A/I does.

We need some preparations for Theorem 5.1.

Lemma 5.3. Let A be a Noetherian ring, I an ideal of A. Assume that I is contained in

the Jacobson radical of A.

Let K ∈Db
Coh(A). If RHomA(A/I,K) is a pseudo-dualizing complex for A/I, then K is

a pseudo-dualizing complex for A.

Proof. We may assume (A,m,k) local. We have

RHomA(k,K) =RHomA/I(k,RHomA(A/I,K))

is a shift of k, so K is a dualizing complex by [10, Chapter V, Proposition 3.4].

Lemma 5.4. Let A be a Noetherian ring, f ∈A. Let M ∈Db(A). Consider the following

conditions.

(i) RHomA(A/fA,M) ∈DCoh(A/fA).

(ii) RHomA(Cone(A
×f−−→A),M) ∈DCoh(A/fA).

(iii) M ∈DCoh(A).

Then (i) implies (ii), and if A is f-adically complete and M is derived f-adically complete,

then (ii) implies (iii).

Proof. Note that RHomA(A/fA,M) ∈D+(A/fA) since M ∈D+(A). If (i) holds, then

RHomA(A/fA,M) ∈D+
Coh(A/fA), so for any X ∈Db

Coh(A/fA),

RHomA(X,M) =RHomA/fA(X,RHomA(A/fA,M)),

is in DCoh(A/fA), in particular this holds for X = C := Cone(A
×f−−→A). Thus (ii) holds.

Now assume (ii), and assume A is f -adically complete and M is derived f -adically

complete. From the distinguished triangle A
×f−−→A→ C →+1 We know RHomA(C,M)∼=

Cone(M
×f−−→ M)[−1], so Cone(M

×f−−→ M) ∈ DCoh(A/fA). Let b be an integer such that

M ∈ D≤b(A). Then Hb(M)/fHb(M) = Hb(Cone(M
×f−−→ M)) is finite. Thus there exists

a finite free A-module F and a map F [−b] → M in D(A) inducing a surjective map on

Hb(−)/fHb(−). Since F [−b] is also derived f -adically complete [25, Tag 091T], we see

F [−b] → M induces a surjective map on Hb(−) by [25, Tag 09B9]. Thus Cone(F [−b] →
M) ∈D≤b−1(A), and we see inductively Hc(M) is finite for all c.

The following two lemmas are not used in the case A, or equivalently A/I, is finite-

dimensional.

Lemma 5.5 [16, Lemma 6.4.3.7 and Proposition 6.6.4.6]. Let A be a Noetherian ring, I

a nilpotent ideal of A.

Let K ∈D+(A), L=RHomA(A/I,K). Then the followings hold.

(i) If L ∈DCoh(A/I), then K ∈DCoh(A).

(ii) If L is a pseudo-dualizing complex for A/I, then K is a pseudo-dualizing complex for A.
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10 S. LYU

Proof. For (i), we may assume I = fA principal. Let a be the smallest integer such

that Ha(K) �= 0. Then Ha(K)[f ] =Ha(L) is finite. The exact sequences 0→Ha(K)[f ]→
Ha(K)[fn+1]

×f−−→ Ha(K)[fn] tells us Ha(K) is finite. Apply dimension shifting to the

distinguished triangle

Ha(K)[−a]→K → τ>aK →+1,

we see inductively Hc(K) is finite for all c ∈ Z.

For (ii), from Corollary 4.7 we know A/I is Gor-2, so A is Gor-2 by definition, since I is

nilpotent. By Lemma 4.3, it suffices to show (ii) when (A,m,k) is local. Then

RHomA(k,K) =RHomA/I(k,RHomA(A/I,K)),

is a shift of k, so K has finite injective dimension [25, Tag 0AVJ], in particular bounded.

Since K ∈ DCoh(A) by (i), (ii) follows from

Lemma 5.3.

Lemma 5.6. Let A be a Noetherian ring, p ∈ Spec(A),f ∈ p. Assume that Spec(A/p)

contains a nonempty Cohen–Macaulay open subscheme. Then there exists g �∈ p such that

for all q ∈ V (p)∩D(g),

ht(q/fnA)−depth(Aq/f
nAq)≤ ht(p),

for all n ∈ Z≥1.

Proof. Let N ∈Z≥1 be such that J :=A[f∞] =A[fN ]. After replacing A by some Ag, we

may assume A/p Cohen–Macaulay and our inequality holds for all q ∈ V (p) and all n <N

by [8, Proposition 6.10.6]. By the same proposition may also assume that, for all q ∈ V (p),

depthJq ≥ ht(q/p) and depth(Aq/Jq)≥ ht(q/p)+1. Since f is a nonzerodivisor on A/J we

have depth(Aq/(f
nA+J)q)≥ ht(q/p) for all n ∈ Z≥1.

For n≥N , the sequence

0 −−−−→ J −−−−→ A/fnA −−−−→ A/(fnA+J) −−−−→ 0,

is exact. Thus the depth inequalities above imply depth(Aq/f
nAq) ≥ ht(q/p) for all

n ∈ Z≥N . Now for all n≥N we have ht(q/fnA)−depth(Aq/f
nAq)≤ ht(q)−ht(q/p). The

right-hand side equals ht(p) after localization by [8, Proposition 6.10.6].

Proof of Theorem 5.1. A pseudo-dualizing complex is a dualizing complex if and only

if the ring is finite-dimensional, see Remark 4.2. Since I is in the Jacobson radical of A, A

is finite-dimensional if and only if A/I is. Thus it suffices to prove the result for pseudo-

dualizing complexes.

We may assume I = fA principal. Let An =A/fnA.

Let (J•
1 ,d

•
1) be a bounded below complex of injective A1-modules that represents K1. Fix

a ∈ Z so that Jm
1 = 0 for all m< a. Further, fix c0 ∈ Z≥a such that for all minimal primes

q of fA, there exists c≤ c0 such that Hc(J•
1 )q �= 0.

For each m, let Jm be an injective hull of Jm
1 as an A-module. Thus Jm is an essential

extension of Jm
1 and Jm

1 = Jm[f ]. Let Jm
∞ = Jm[f∞]. Then Jm

∞ is an injective A-module by

[25, Tag 08XW].

Claim 5.7. There exist maps dm∞ : Jm
∞ → Jm+1

∞ extending dm1 such that (J•
∞,d•∞) is a

complex.
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 11

The proof is given after the main argument. Granting Claim 5.7, J•
∞ is now a bounded

below complex of f∞-torsion injective A-modules. We next show that J•
∞ ∈ D(A) is

bounded. Note that if dimA1 is finite, then K1 has finite injective dimension, so we could

choose J•
1 so that Jm

1 = 0 for m � 1, and J∞ is automatically bounded. Without this

assumption, writing Jm
n = Jm[fn], we have that RHomAn(A1,J

•
n) = J•

n[f ] = J•
1 ∈ D(A1),

since J•
n is a bounded below complex of injectives. Thus J•

n is a pseudo-dualizing complex

for An by Lemma 5.5. Let q be a minimal prime of fA. Then (J•
n)q is exact except at a

single degree c, and applying RHomAq/fnAq
(Aq/fAq,−) we see (J•

1 )q is exact except at

degree c, so c≤ c0. Thus for all p ∈ V (fA), Hc(J•
n)p �= 0 for some c≤ c0.

Note that A/fA is Gor-2 by Corollary 4.7, so Lemma 5.6 shows that there exists b∈Z≥1

such that for all p ∈ V (fA) and all n ∈ Z≥1,

ht(p/fnA)−depth(Ap/f
nAp)≤ b.

Therefore, (J•
n)p ∈D[a,b+c0](A), so (J•

∞)p ∈D[a,b+c0](A) for all p ∈ V (fA). Since f is in the

Jacobson radical of A we have J•
∞ ∈D[a,b+c0](A).

Let K ∈D(A) be the derived f -adic completion of J•
∞, so K ∈Db(A) by for example [25,

Tag 091Z]. By [25, Tag 0A6Y] (and [25, Tags 091T and 0A6R]) we have

RHomA(A/fA,K) =RHomA(A/fA,J
•
∞),

and the right-hand side is just J•
∞[f ] = J•

1 since J•
∞ is a bounded below complex of injectives.

Thus K ∈Db
Coh(A) by Lemma 5.4. We conclude that K is a pseudo-dualizing complex for

A by Lemma 5.3.

Proof of Claim 5.7. We first show that there exist maps dm2 : Jm
2 → Jm+1

2 extending dm1
such that (J•

2 ,d
•
2) is a complex. This follows from the dual version of [25, Tag 0DYR]. We

give the proof in our case for the reader’s convenience.

Let δm2 : Jm
2 → Jm+1

2 be arbitrary maps extending dm1 . Composing, we get maps δm+1
2 ◦

δm2 : Jm
2 → Jm+2

2 . Since (J•
1 ,d

•
1) is a complex, δm+1

2 ◦ δm2 is zero on Jm
1 = Jm

2 [f ]. Since

f2 = 0 ∈A2, we have fJm
2 ⊆ Jm

1 , so im(δm+1
2 ◦ δm2 ) ⊆ Jm+2

1 . This tells us (J•
2 /J

•
1 , δ

•
2) is a

complex, and that δm+1
2 ◦ δm2 induces a map Jm

2 /Jm
1 → Jm+2

1 . It is clear that δ•+1
2 ◦ δ•2 :

J•
2 /J

•
1 → J•+2

1 is a map of complexes.

Since Jm
2 is injective, we have canonical isomorphisms

Jm
2 /Jm

1 =HomA2(fA2,J
m
2 ) = HomA1(fA2,J

m
1 ).

Therefore, J•
2 /J

•
1 represents RHomA1(fA2,J

•
1 ), so RHomA1(J

•
2 /J

•
1 ,J

•+2
1 ) = RHomA1

(RHomA1(fA2,J
•
1 ),J

•
1 [2]) = fA2[2] by Corollary 4.9. Thus δ•+1

2 ◦ δ•2 : J•
2 /J

•
1 → J•+2

1 is

zero in D(A1), hence homotopic to zero (see [25, Tag 05TG]). Let g•2 : J•
2 /J

•
1 → J•+1

1 be

a homotopy between δ•+1
2 ◦ δ•2 and 0. View each gm2 as a map gm2 : Jm

2 → Jm+1
2 , we see

dm2 = δm2 −gm2 is what we want.

Now J•
2 is a bounded below complex of injective A2-modules, so

RHomA2(A1,J
•
2 ) = J•

2 [f ] = J•
1 ,

thus J•
2 is a pseudo-dualizing complex for A2 by Lemma 5.5. The same argument as above

tells us we can extend d•2 to d•3, ad infinitum, showing Claim 5.7.

Remark 5.8. We record the dual version of [25, Tag 0DYR] in our mind for the reader’s

convenience: for a ring A and an ideal I with I2 = 0, the obstruction for a K ∈D+(A/I) to
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12 S. LYU

be of the form RHomA(A/I,K
′) is a map RHomA/I(I,K)→K[2] in D(A/I). The author

does not know a reference for this.

For pseudo-dualizing complexes, this obstruction vanishes automatically by Corollary 4.9,

as seen in the proof above. Alternatively, one can use the argument as in [16, Lemma 6.6.4.9],

if willing to use animated rings.

§6. Openness of loci

For basics about canonical modules refer to [1, §1].

Lemma 6.1. Let A be a Noetherian ring, p ∈ Spec(A). Assume Spec(A/p) contains a

nonempty Gorenstein open subset. Then the followings hold.

(i) Let K ∈Db
Coh(A). If Kp is a dualizing complex for Ap, then there exists an f ∈ A\p

such that Kq is a dualizing complex for Aq for all q ∈ V (p)∩D(f).

(ii) Let M be a finite A-module. If Mp is a canonical module for Ap, then there exists an

f ∈A\p such that Mq is a canonical module for Aq for all q ∈ V (p)∩D(f).

Proof. We may assume A/p Gorenstein. Let B be the p-adic completion of A, so A→B

is a flat ring map with A/p = B/pB, thus open subsets of V (p) in Spec(A) are in one-to-

one correspondence with open subsets of V (pB) in Spec(B). Note that for all P ∈ V (p),

A∧
P = B∧

PB since A/pn = B/pnB for all n. Thus, the base change of a dualizing complex

for (resp. canonical module of) Ap to BpB is a dualizing complex for (resp. canonical

module of) BpB, and we may apply flat descent ([25, Tag 0E4A] and [1, Theorem 4.2]) for

P ∈ V (p). Thus it suffices to prove the lemma in the case A is p-adically complete and A/p

is Gorenstein.

In this case, A admits a pseudo-dualizing complex E by Theorem 5.1, and we have

Kp
∼= Ep (resp. Mp

∼=H0(Ep) and Ep ∈D≥0(Ap); [1, (1.5)]) after a shift. After localizing

we have K ∼= E by Lemma 2.1 (resp. M ∼=H0(E) and E ∈D≥0(A)), as desired.

We say a finite module M over a Noetherian ring A a canonical module if Mp is a

canonical module of A for all p∈ Spec(A). Localization of a canonical module is a canonical

module, see [1, Corollary 4.3], so it suffices to check at the maximal ideals of A.

Theorem 6.2. Let A be a Noetherian ring that is Gor-2. Then the followings hold.

(i) If p∈ Spec(A) is such that Ap admits a dualizing complex, then there exists an f ∈A\p
such that Af admits a pseudo-dualizing complex.

(ii) Let K ∈Db
Coh(A). If p ∈ Spec(A) is such that Kp is a dualizing complex for Ap, then

there exists an f ∈A\p such that Kf is a pseudo-dualizing complex for Af .

(iii) If p∈ Spec(A) is such that Ap admits a canonical module, then there exists an f ∈A\p
such that Af admits a canonical module.

(iv) Let M be a finite A-module. If p ∈ Spec(A) is such that Mp is a canonical module of

Ap, then there exists an f ∈A\p such that Mf is a canonical module of Af .

Proof. We know (ii) implies (i) and (iv) implies (iii) by Lemma 2.2. On the other hand,

(ii) and (iv) follows from Lemma 6.1 and general topology [25, Tag 0541].

Apply to the case K = A and M = A, we get the following. The Gorenstein case is [6,

Proposition 1.7], but the quasi-Gorenstein case seems to be new.
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 13

Corollary 6.3. The Gorenstein and quasi-Gorenstein loci of a Gor-2 Noetherian ring

is open.

Remark 6.4. If we assume in addition that A is Cohen–Macaulay, then Theorem 6.2

follows from the characterization of canonical modules [22] (see also [1, Corollary 2.12]) and

[6, Proposition 1.7].

Theorem 6.5. Let A be a Noetherian ring (resp. a Noetherian ring of finite dimension).

Assume

1. A is a G-ring.

2. A is Gor-2.

Then there exists a faithfully flat, étale ring map A → A′ such that A′ admits a pseudo-

dualizing complex (resp. a dualizing complex).

Proof. Let p ∈ Spec(A). By Corollary 3.6, there exists an étale ring map A→ B and a

prime q ∈ Spec(B) lying above p such that Bq admits a dualizing complex. Note that B is

Gor-2 since it is of finite type over A, Corollary 4.8. By Theorem 6.2, localizing B near q

we may assume B admits a pseudo-dualizing complex. If A is finite-dimensional then so is

B, so B admits a dualizing complex. Now we take A′ to be a finite product of such B so

that Spec(A′)→ Spec(A) is surjective.

Corollary 6.6. Let A be a Noetherian quasi-excellent ring. Then there exists a

faithfully flat, étale ring map A→A′ such that A′ is excellent.

Remark 6.7. Corollary 6.6 is not difficult by itself and may be well known. We sketch

an argument. First, consider a finite injective map A→ B of Noetherian domains with B

universally catenary. Then for p ∈ Spec(A), Ap is universally catenary if and only if for

all q ∈ Spec(B) above p, ht(q) = ht(p). This follows from [25, Tags 02IJ and 0AW6]. This

condition is constructible by for example [8, Proposition 6.10.6].

Since a normal quasi-excellent ring is universally catenary [25, Tag 0AW6], and since a

quasi-excellent ring is Nagata [25, Tag 07QV], we can take B to be the normalization of

A=R/p where p is a minimal prime of a given quasi-excellent ring R. It is now clear that

the universally catenary locus of a quasi-excellent ring is open, and that a unibranch quasi-

excellent local ring is universally catenary. We thus get Corollary 6.6 from [25, Tag 0CB4].

Using [3, Lemma 2.5 and Theorem 2.13], replacing normalization with an (S2)-ification,

the argument above tells us that every (S2)-quasi-excellent [3, (2.12)] Noetherian ring A

has open universally catenary locus and admits an étale, faithfully flat ring map A→ A′

such that A′ is (S2)-excellent; and a Noetherian unibranch local ring with (S2) formal fibers

is universally catenary.

§7. One-dimensional schemes

Lemma 7.1. Let (A,m,k) → (B,n, l) be a flat local map of Noetherian local rings.

Assume that A admits a dualizing complex K, and that B/mB is Gorenstein. Then K⊗L
AB

is a dualizing complex for B.

Proof. RHomA(k,K) is a shift of k, so RHomB(B/mB,K⊗L
AB) is a shift of B/mB by

[25, Tag 0A6A]. We conclude by Lemma 5.3.

Lemma 7.2. Let A be a Noetherian local ring of dimension 1. Assume that the formal

fibers of A are Gorenstein. Then A admits a dualizing complex.
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Proof. Let a be a parameter of A. The aA-adic completion A∧ of A is a complete local

ring, thus admits a normalized dualizing complex M.

Let E be a dualizing complex for the Artinian ring Aa concentrated in degree −1.

The map Aa → (A∧)a is a flat map between Artinian rings with Gorenstein fibers by our

assumptions, thus E⊗L
Aa

(A∧)a is a dualizing complex by Lemma 7.1. On the other hand

Ma is another dualizing complex of (A∧)a concentrated in degree −1 by [25, Tag 0A7V].

Thus E⊗L
Aa

(A∧)a ∼=Ma as (A∧)a is Artinian. By [2, Theorem 1.4], there exists K ∈D(A)

such that K⊗L
AA∧ ∼=M . Then K is a dualizing complex for A [25, Tag 0E4A].

Remark 7.3. Lemma 7.2 also follows from [4, Theorem 5.3] and, say, [21, Corollary 3.7].

Theorem 7.4. Let X be a Noetherian scheme. Assume the followings.

1. X is Gor-2.

2. Every local ring of X of dimension 1 has Gorenstein formal fibers.

Let U be an open subscheme of X, K a pseudo-dualizing complex on U such that for all

generic points ξ ∈ U , Kξ is concentrated in degree 0 (for example U = ∅). Then there exists

an open subset W ⊇ U of X such that dimOX,x > 1 for all x �∈ W and that W admits a

pseudo-dualizing complex KW with KW |U =K such that Kξ is concentrated in degree 0 for

all generic points ξ ∈X.

Proof. We may assume (U,K) cannot be enlarged to any (W,KW ), and we shall show

dimOX,x > 1 for all x �∈ U .

Let x �∈ U , and assume dimOX,x ≤ 1. Let V = Spec(A) be an affine open neighborhood

of x ∈X such that A has a pseudo-dualizing complex L, which exists by Lemma 7.2 and

Theorem 6.2. We may assume that all generic points of V specialize to x. Since dimOX,x =1,

we see from [25, Tag 0A7V] that, after shifting, we may assume Lq is concentrated at degree

0 for all minimal primes q of A.

If U ×X Spec(OX,x) is empty, then we may assume U ∩V = ∅, so we can enlarge U to

U ∪V . Otherwise U×X Spec(OX,x) has dimension zero, so it is affine. Thus, we may assume

U ∩V is affine by [25, Tag 01Z6]. Write B = O(U ∩V ), so B admits a dualizing complex

K0 given by the restriction of K to U ∩V . Then L⊗L
ABp

∼=K0⊗L
B Bp, where p ∈ Spec(A)

corresponds to x, since dimBp = 0 and both sides are dualizing complexes concentrated in

degree 0. Thus there exists g ∈ A\p such that L⊗L
ABg

∼=K0⊗L
B Bg by Lemma 2.1, so we

can enlarge U to U ∪Spec(Ag).

Remark 7.5. The ring A/I in [7, §1] does not admit a dualizing complex by

Theorem 5.1. A/I is a semi-local ring with two maximal ideals m′,n′ with ht(m′) = 1,

ht(n′) = 2. Both localizations (A/I)m′ and (A/I)n′ admit dualizing complexes, see [7,

Lemma 1.5], but the restrictions of a dualizing complex for (A/I)n′ to the generic points

are concentrated in different degrees by [25, Tag 0A7V], so Theorem 7.4 does not apply.

Together with Theorem 6.2, this tells us that admitting dualizing complexes is not a Zariski

local property.

Corollary 7.6. Let X be a Noetherian scheme of dimension 1. Then X admits a

dualizing complex if and only if X is Gor-2 and the local rings of X has Gorenstein formal

fibers.

Proof. “Only if” follows from [25, Tag 0AWY] and Corollary 4.7. “If” follows from

Theorem 7.4 with U = ∅.
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Remark 7.7. There exists a Noetherian local domain of dimension 1 with non-

Gorenstein formal fibers, see [5, Remarque 3.2]. Such a ring is Gor-2, and even J-2, being

one-dimensional and local.

There also exists a one-dimensional G-ring that is not Gor-2. Such a ring can be

constructed using the general method in [12].

Therefore, neither of the two conditions in Corollary 7.6 implies the other.

Remark 7.8. In the terminology of [24], Corollary 7.6 says that a Noetherian scheme

of dimension 1 admits a dualizing complex if and only if it is acceptable.

Remark 7.9. There exists a two-dimensional excellent local UFD that does not admit

a dualizing complex. See [20, Example 6.1].

§8. Remarks on quotients of Gorenstein and Cohen–Macaulay rings

Our Lemma 4.4 and Theorem 4.12 imply the following result, originally due to Kawasaki

[13] for finite-dimensional rings.

Theorem 8.1. Let A be a Noetherian ring. Then the followings are equivalent.

(i) A is a quotient of a Gorenstein ring.

(ii) There exists a finitely generated A-algebra B that is Gorenstein and admits a section

B →A.

(iii) A admits a pseudo-dualizing complex.

Therefore, Theorem 5.1 can be rewritten as

Theorem 8.2. Let A be a Noetherian ring, I an ideal of A. If A is I-adically complete,

then A/I is a quotient of a Gorenstein ring if and only if A is.

On the other hand, quotients of Cohen–Macaulay rings were also studied by Kawasaki

[14]. Note that the conditions (C1)-(C3) there are equivalent to CM-excellence as in

[3, Definition 1.2] (cf. [3, Remark 1.5]). Therefore, [14, Theorem 1.3] and its proof tell

us the following.

Theorem 8.3. Let A be a Noetherian ring. Then the followings are equivalent.

(i) A is a quotient of a Cohen–Macaulay ring.

(ii) There exists a finitely generated A-algebra B that is Cohen–Macaulay and admits a

section B →A.

(iii) A is CM-excellent and admits a codimension function.

Pham Hung Quy asks the author if the analog of Theorem 8.2 holds for Cohen–Macaulay

instead of Gorenstein. We can answer this question affirmatively under some additional

assumptions.

Theorem 8.4. Let A be a Noetherian ring, I an ideal of A. Assume that A/I is either

quasi-excellent, or semilocal and Nagata. If A is I-adically complete, then A/I is a quotient

of a Cohen–Macaulay ring if and only if A is.

We need two lemmas for Theorem 8.4.
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Lemma 8.5. Let A be a Noetherian ring, I an ideal of A. Assume that the pair (A,I)

is Henselian.

Assume that A is catenary, and that A/I admits a codimension function c : Spec(A/I)→
Z. For p ∈ Spec(A) and Q ∈ V (I) containing p, let c(p,Q) = c(Q/I)−ht(Q/p). Then the

followings hold.

(i) For every p ∈ Spec(A), c(p,Q) is independent of the choice of Q.

(ii) The assignment p �→ c(p,Q), where Q∈ V (I+p) is arbitrary, is a codimension function

on A.

Proof. Since c(−) is a codimension function of A/I, for Q ⊆ Q′ ∈ V (I + p), we have

c(p,Q′)− c(p,Q) = ht(Q′/Q)+ht(Q/p)−ht(Q′/p). Since A is catenary, the number on the

right-hand side is 0. Thus for Q ⊆ Q′ ∈ V (I + p), we have c(p,Q′) = c(p,Q). Since (A,I)

is Henselian, V (I+ p) is connected, see [25, Tag 09Y6]. This shows (i). For (ii), note that

V (I + p) is nonempty for all p ∈ Spec(A), so our function is well defined. To show it is a

codimension function, it suffices to show for p⊆ p′ ⊆Q where Q ∈ V (I), we have c(p′,Q)−
c(p,Q) = ht(p′/p). This is clear as A is catenary.

Lemma 8.6. Let A be a Noetherian ring, I an ideal of A. Assume that the pair (A,I)

is Henselian.

Assume the followings hold.

(i) For every minimal prime p of A, there exists a finite injective ring map A/p→B such

that B is universally catenary.

(ii) A/I is universally catenary and admits a codimension function.

Then A is universally catenary and admits a codimension function.

Proof. By Lemma 8.5, it suffices to show A is universally catenary. We may, therefore,

assume A is an integral domain and there exists a finite injective ring mapA→B such that B

is universally catenary. We may also assume B is an integral domain. Let c : Spec(A/I)→Z

be a codimension function. Let δ(Q) = c((Q∩A)/I)−ht(Q) for Q ∈ V (IB). For Q⊆Q′ ∈
V (IB), we have

c((Q′∩A)/I)− c((Q∩A)/I) = ht((Q′∩A)/(Q∩A))

= ht(Q′/Q)

= ht(Q′)−ht(Q),

where the first identity is because c is a codimension function, the second identity follows

from the dimension formula [25, Tag 02IJ] as A/I is universally catenary, and the third

identity is because B is a catenary domain. Therefore, δ(Q′) = δ(Q). Since the pair (B,IB)

is Henselian [25, Tag 09XK], V (IB) is connected, see [25, Tag 09Y6]. Thus, δ is a constant

function on V (IB). Therefore, for all maximal ideals n of B, which necessarily contains IB,

ht(n) depends only on n∩A, and thus must equal to ht(n∩A). As discussed in Remark 6.7,

we see A is universally catenary, as desired.

Proof of Theorem 8.4. Assume that A is I -adically complete, A/I is a quotient of a

Cohen–Macaulay ring, and A/I is either quasi-excellent or semilocal and Nagata. Note

that (A,I) is a Henselian pair [25, Tag 0ALJ].
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FORMAL LIFTING OF DUALIZING COMPLEXES AND CONSEQUENCES 17

If A/I is quasi-excellent, then A is quasi-excellent [15], in particular CM-quasi-excellent.

If A/I is semilocal and Nagata, then A is semilocal and Nagata [18], and thus has

Cohen–Macaulay formal fibers by [19, Theorem C]. Then A is CM-quasi-excellent, see [8,

Proposition 7.3.18]. Consequently, in both cases, A is CM-quasi-excellent.

Now A satisfies condition (i) in Lemma 8.6 by the discussions in Remark 6.7, thus is

universally catenary and admits a codimension function by Lemma 8.6. By Theorem 8.3,

A is a quotient of a Cohen–Macaulay ring.

Acknowledgments. We thank Rankeya Datta, Longke Tang, and Kevin Tucker for helpful
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