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Abstract

When analyzing scaling conditions in latent variable Structural Equation Models
(SEMs) with continuous observed variables, analysts scaling a latent variable typically
set the factor loading of one indicator to one and either set its intercept to zero or the
mean of its latent variable to zero. When binary and ordinal observed variables are
part of SEMs, the identification and scaling choices are more varied and multifaceted.
Longitudinal data further complicate this. In SEM software, such as lavaan and
Mplus, fixing the underlying variables’ variances or the error variances to one are
two primary scaling conventions. As demonstrated in this paper, choosing between
these constraints can significantly impact longitudinal analysis, affecting model fit,
degrees of freedom, and assumptions about the dynamic process and error structure.
We explore alternative parameterizations and conditions of model equivalence with
categorical repeated measures.

Using data from the National Longitudinal Survey of Youth 1997, we empirically
explore how different parameterizations lead to varying conclusions in longitudinal
categorical analysis. More specifically, we provide insights into the specifications
of the autoregressive latent trajectory model and its special cases—the linear growth
curve and first-order autoregressive models—for categorical repeated measures. These
findings have broader implications for a wide range of longitudinal models.

Keywords: Underlying variables, variance constraints, threshold invariance, autoregressive

latent trajectory models, model equivalence.

1 Introduction

Researchers increasingly use categorical endogenous observed variables in their Structural

Equation Models (SEMs). Binary and ordinal variables are among the most common. Ex-

amples include binary variables registering life events such as divorce, job loss, or pregnancy
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or ordinal variables such as general health status (e.g., poor, fair, good, very good, excel-

lent). Although SEMs with and without such categorical endogenous variables share many

similarities, there are differences. Identification issues, which are absent with continuous

endogenous variables, arise with their categorical counterparts when assuming a continu-

ous latent variable underlies the observed categorical response. This issue is particularly

pronounced in the context of longitudinal data analysis, where the choice of constraints

becomes pivotal. The common diagonally Weighted Least Squares with Mean and Variance

adjustments (WLSMV) estimator, such as that in Mplus 8.6 (Muthén and Muthén, 1998-

2017) and lavaan 0.6-16 (Rosseel, 2012)1, offers various techniques for estimating models

with categorical data. Many textbooks and papers recommend imposing constraints on

thresholds, errors and/or underlying variable variances to establish model identification

when using WLSMV. This advice implies that researchers can apply these constraints

almost automatically without a clear preference for one over the other. Our paper demon-

strates that such constraints are not universally applicable, especially with longitudinal

data. Different constraints can lead to alternative model specifications that are not always

equivalent (Stelzl, 1986; Lee and Hershberger, 1990; Raykov and Penev, 1999; Levy and

Hancock, 2007).

Furthermore, relying on default parameterizations in SEM software that set the vari-

ance of the normally distributed variable underlying the observed categorical response to

one is not always appropriate. For instance, Grimm and Liu (2016) argue that this is inap-

propriate with linear growth curve models, and they suggest setting the error variances to

one. While researchers agree that the choice of setting the variances of the underlying vari-

able or its error variance to one does not impact the fit of factor models in cross-sectional

applications (Muthén and Asparouhov, 2002; Kamata and Bauer, 2008; Paek et al., 2018;

Wang et al., 2023), this interchangeability need not carry over to repeated measures. Sev-

eral papers empirically compare the two specifications for linear latent growth models but

arrive at contrasting conclusions. For Grimm and Liu (2016) and Lee et al. (2018), param-

eterization affects both model fit and parameter estimation because different assumptions

1The WLSMV” estimator is the default estimation option in Mplus 8.6 and lavaan 0.6-16 when some
observed (endogenous) variables are categorical. It uses the diagonal of the asymptotic covariance matrix
of the sample statistics and the full matrix for inference (standard errors and test statistics), while “MV”
refers to Satterthwaite’s mean- and variance-adjusted test statistics (Satterthwaite, 1941).
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about the dynamic process and its errors are embedded in the chosen specification. On the

other hand, for Newsom and Smith (2020), the choice between these two parameterizations

is otherwise arbitrary as they are equivalent, and one solution can be transformed into

another.

Various authors have proposed alternative parameterizations for latent variable SEMs

for longitudinal data, mainly focusing on linear growth models. Muthén and Asparouhov

(2002) and Grimm and Liu (2016) propose to allow the means and variances of the un-

derlying variables to be freely estimated except on the first occasion. Thresholds are kept

invariant over time, but for a multigroup confirmatory factor model, Millsap and Tein

(2004) relaxed this assumption for all but two thresholds. Mehta et al. (2004) propose

a different parameterization for the linear growth model applied to categorical data. It

consists of freely estimating all the latent response means and variances and fixing the first

two thresholds to zero and one, respectively, keeping the remaining thresholds invariant

over time. Prior to their work, Joreskog (2001) relaxed the threshold invariance condition

in this parameterization.

Taken together, we find conflicting advice on the identifying constraints to impose when

analyzing longitudinal data with endogenous categorical variables and incompatible claims

on the equivalency of the constraints. The result is confusion and possible misapplication

of categorical SEM techniques.

This paper examines the technical aspects of parameterization and modeling in ana-

lyzing binary and ordered categorical repeated measures. We provide a clear and easily

accessible summary of the closed-form relations between longitudinal model specifications

under alternative parameterizations. The role of these parameterizations is examined for

the Autoregressive Latent Trajectory (ALT) model introduced by Bollen and Curran (2004)

for continuous outcomes and its special cases, the linear latent growth curve and the autore-

gressive model. Unlike existing research, our study provides a comprehensive overview of

possible parameterizations, evaluating necessary and sufficient conditions for model equiv-

alence. Drawing on established comparisons, we determine when different models are em-

pirically indistinguishable, shedding light on the practical implications of choosing specific

constraints in the analysis of longitudinal categorical data.
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2 Motivating data and example

The autoregressive latent trajectory model has proven invaluable for exploring longitudi-

nal dynamics, especially with regard to changes in multiple variables over time. This is

evidenced by its application to a diverse range of phenomena, including developmental

trajectories of anxiety and depression (McLaughlin and King, 2015; Lee and Vaillancourt,

2020; Connell et al., 2021), trends in disposition and happiness (Caprara et al., 2017), and

between aggressive behaviors and peer victimization in preadolescence (Yao and Enright,

2022). In the literature, it has been compared with other models that incorporate lagged

effects alongside random components, such as the Random-Intercept Cross-Lagged Panel

Model (RI-CLPM) (Hamaker et al., 2015) and the general cross-lagged panel model (Zy-

phur et al., 2020). A comprehensive discussion can be found in Usami (2021). A recent

study by Andersen (2022) has also clarified and proven that the RI-CLPM is a constrained

version of the ALT model.

While the model has been extensively applied to continuous variables, its application

to categorical variables remains underexplored in the literature. This paper addresses this

gap by presenting alternative specifications of the ALT model and two special cases - the

linear growth curve and autoregressive of order one model - tailored for scenarios involving

categorical variables.

To illustrate the practical implications of our study, we turn to a concrete example

examining the co-occurrence of illegal drug use, depressive symptoms, and general health

over time. Previous research by Silver et al. (2023) touched upon this nexus but applied

default lavaan parameterization, treating illegal drug use as binary and depressive symp-

toms and general health as continuous variables. They separately analyzed autoregressive

and cross-lagged effects and multivariate latent growth patterns for the three variables.

Utilizing data from the National Longitudinal Survey of Youth 1997 (NLSY97), our study

focuses on repeated measures of these variables as respondents transition from adolescence

to adulthood, covering waves from 2000 to 2010. NLSY97 is a national study of 8984

respondents born in the US between January 1, 1980, and December 31, 1984. The re-

spondents participated in in-person or phone interviews annually from 1997 (wave 1) to

2013 (wave 16), with two additional interviews in 2015 (wave 17) and 2017 (wave 18). For
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information on NLSY97 sampling and interviewing methods, refer to Moore et al. (2000).

Due to the lack of consensus on how to handle missing data with categorical variables,

we followed the default option in lavaan 0.6-16 and applied listwise deletion, reducing the

sample from 8,984 to 5,309 cases2. Participants’ age ranged from 13 to 17 (average age:

14.92) during wave 4 and from 23 to 27 during wave 14. Data were analyzed for 2000 (wave

4), 2002 (wave 6), 2004 (wave 8), 2006 (wave 10), 2008 (wave 12), and 2010 (wave 14).

Illegal drug use was assessed by a single item asking respondents if they had used any

illegal drugs (excluding marijuana and alcohol) since the previous interview. Responses

were coded as one if the respondent had used illegal drugs and zero if he/she had not.

Depressive symptoms were evaluated based on respondents’ answer to the question:

“How much of the time during the last month have you felt so down in the dumps that

nothing could cheer you up?”. Ordinal responses were “all of the time”, “most of the

time”, “some of the time”, and “none of the time”, with higher scores indicating more

frequent depressive symptoms.

General health status was self-reported by respondents in answer to the question: “In

general, how is your health?”. Choices were “excellent”, “very good”, “fair”, and “poor”.

The measures of general health were coded with higher scores, indicating better perceived

general health.

Table 1 presents the marginal proportions for each category of the observed variables at

each time point. The frequency of adolescents experiencing depressive symptoms indicates

a decrease in the likelihood of being more depressed as they age into adulthood. Similarly,

the propensity to use illegal drugs and the perception of excellent health decreases over

time, while the perception of good and very good health remains relatively constant, espe-

cially in the adulthood period (waves 10-14).

2In handling missing data for categorical endogenous variables, lavaan 0.6-16 and Mplus 8.6 use dif-
ferent default strategies. lavaan 0.6-16 uses listwise deletion with the WLSMV estimator. That is, only
observations with complete data on all the variables included in the model are used in the analysis. Mplus
8.6 uses, by default, pairwise deletion, meaning that for each pair of variables, only cases with complete
data on both variables are used in the estimation. In lavaan 0.6-16, the pairwise deletion can be applied by
selecting the option missing=“pairwise” in conjunction with estimator = “WLSMV”. Alternatively, Mplus
supports multiple imputation to handle missing data. Based on Bayesian estimation, it creates several
imputed data sets using the posterior distribution of the missing data and then pools the results. Lavaan
0.6-16 does not directly perform multiple imputation, but external packages like mice or Amelia should be
used, and lavaan 0.6-16 applies to the imputed datasets.
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wave (year) Depressive symptoms Illegal drug use

None of the time Some of the time Most of the time All the time No Yes

4 (2000) 0.637 0.297 0.054 0.012 0.930 0.070

6 (2002) 0.639 0.296 0.052 0.014 0.937 0.063

8 (2004) 0.687 0.262 0.043 0.008 0.943 0.057

10 (2006) 0.721 0.238 0.035 0.007 0.950 0.050

12 (2008) 0.718 0.242 0.032 0.008 0.960 0.040

14 (2010) 0.732 0.230 0.030 0.008 0.968 0.032

wave (year) General health status

Poor Fair Good Very good Excellent

4 (2000) 0.006 0.052 0.241 0.330 0.371

6 (2002) 0.006 0.061 0.254 0.369 0.311

8 (2004) 0.005 0.065 0.264 0.371 0.295

10 (2006) 0.007 0.070 0.271 0.373 0.280

12 (2008) 0.008 0.076 0.298 0.375 0.244

14 (2010) 0.013 0.094 0.293 0.368 0.232

Table 1: Proportions for each year of the categories related to depressive symptoms, general health status,
and illegal drug use.

In contrast to conventional approaches, we explore various specifications of the ALT

model, considering different constraints on thresholds, means of the underlying variables,

and error variances. Our findings reveal that the choice of these identification constraints

significantly influences the results, challenging the notion of interchangeable specifications.

Figure 1 illustrates different estimated ALT specifications, demonstrating the impact of

different parameterizations on cross-lagged and autoregressive relationships (on the right)

as well as growth components (on the left). Only statistically significant (p−value < 0.05)

path coefficients are presented for simplicity. The two ALT components - the multivariate

growth and the cross-lagged and autoregressive part - are shown separately for illustrative

purposes, although they are estimated simultaneously to describe the temporal dynamic of
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the underlying latent variables.
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Figure 1: Path diagram depicting the cross-lagged and autoregressive component (right) and multivari-
ate growth part (left) of alternative autoregressive latent trajectory model specifications for illegal drug
use (drug), depressive symptoms (depr), and general health status (health). The top panel is based on
the standard (theta) parameterization of the auxiliary model linking observed variables to the underlying
continuous ones, as adopted by Mplus 8.6 and lavaan 0.6-16. Dashed lines indicate statistically signifi-
cant effects (p − value < 0.05) only under this specification. The middle panel showcases an alternative
parameterization proposed by Muthén and Asparouhov (2002). Paths in dark gray signify significance
under the alternative parameterizations but not under the standard one. The bottom panel employs the
parameterization introduced by Joreskog (2001). Light gray paths indicate a significant pattern under this
specification but not in the others.

The upper panel in Figure 1 adopts the standard (theta) parameterization of Mplus

8.6 and lavaan 0.6-16. In this configuration, all the error variances are set to one, all the
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thresholds in the model linking observed variables to the underlying continuous ones are

freely estimated, and the mean of the underlying variables is fixed to zero.

Regarding autoregressive and cross-lagged relationships, prior illegal drug use, depres-

sive symptoms, and previous health status perception consistently impact general health

status on each occasion. However, only depressive symptoms and health status on the

preceding occasion influence the propensity to experience depression on each occasion.

Concerning illegal drug use, no significant cross-lagged effects are observed; instead,

there is a direct effect of the illegal drug use propensity on the preceding occasion on

subsequent illegal drug use propensity in the initial three waves (4, 6, and 8 - corresponding

to the years 2000, 2002, and 2004), associated to late adolescence/early adulthood. This

contrasts with the middle panel in Figure 1, where a significant influence of general health

status at waves 8 and 10 on illegal drug use propensities in waves 10 and 12 (associated

with the years 2006 and 2008), respectively, is observed. This ALT specification uses an

alternative parameterization proposed by Muthén and Asparouhov (2002) for categorical

longitudinal data. In this approach, instead of fixing the error variances to one on all

occasions, they are freely estimated on all occasions but one, with thresholds assumed to

be time-invariant.

Conversely, in the lower panel of Figure 1, the propensities for illegal drug use during

waves associated with late adolescence (6 and 8) are significantly influenced by depressive

symptoms in the preceding occasion. This influence is specific to the late adolescence/early

adulthood phase and not applicable during adulthood. The model parameterization in this

lower panel aligns with the alternative approach proposed by Joreskog (2001). It involves

freely estimating the error variances and the means of the underlying variables on each

occasion while fixing the first two thresholds to zero and one on all occasions.

The impact of alternative parameterizations of the ALT model is also noticeable in

the estimated multivariate growth component. In the standard parameterization (top left

panel), a correlation is observed between the intercept for the illegal drug use variable and

the slope of general health status. Conversely, under the alternative parameterizations

(middle and bottom panels), a correlation is estimated between the slope of illegal drug

use propensity and the intercept of the growth component for health status perception.
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Notably, in the bottom panel, there is no significant covariance between the intercept and

slope growth factors for general health status, distinguishing it from other specifications.

These findings highlight the critical importance of carefully selecting the most suitable

parameterization for models involving categorical longitudinal data. The following sections

offer a theoretical interpretation and practical application of these results.

3 The auxiliary measurement model linking Yit and Y ∗
it

Let Yit be the ordered categorical measure for the ith person on the tth occasion, with

i = 1, 2, . . . , n; t = 1, 2, . . . , T . The values of Yit range from 0 to C − 1, where C is the

number of response categories across all occasions.

In SEMs, a common approach is to consider the observed values of Yit as discretized

manifestations of an underlying continuous variable, denoted as Y ∗
it . Depending on the mea-

sure, this underlying variable represents the level of understanding, attitude, or propensity

to respond in a particular category. In our application on the NLSY data, it reflects the

propensity to respond for all three variables under investigation. The observed category is

then determined through

Yit = c if τc,t ≤ Y ∗
it < τc+1,t, c = 0, 1, . . . , C − 1. (1)

Here, {τ0,t, τ1,t, . . . , τC,t} are threshold parameters for Y ∗
it , t = 1, . . . , T , where two of them

are predefined, τ0,t = −∞ and τC,t = ∞, whereas the remaining (C − 1) may vary across

occasions. Let Y′
i = (Yi1, Yi2, . . . , YiT )

′ be a T -dimensional vector representing the observed

scores for the ith person on the T occasions, and let Y∗′

i = (Y ∗
i1, Y

∗
i2, . . . , Y

∗
iT )

′ be the

corresponding vector for the underlying variables. The latter is typically assumed to follow

a multivariate normal distribution with mean vector µY∗ and covariance matrix ΣY∗Y∗ of

size T × T , such that the probabilities associated with the observed values of Yi can be

determined by the probability distribution of Y∗
i .

The auxiliary model establishes the connection between the observed ordinal response

Yit and the corresponding unobserved or latent continuous variable Y ∗
it at each time point.

This linkage is achieved through unknown cut-points or thresholds. Although Y ∗
it is assumed
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to follow a normal distribution, its mean and variance remain unidentified due to the limited

availability of ordinal information.

For an ordinal variable Yit with C categories measured at T fixed occasions, there are CT

possible observed response patterns, not all of which may be observed in a given dataset.

In this case, the sample data consists of the number of individuals with each of these

response patterns. Any hypothesized model must explain (1) the univariate or marginal

proportions, that is, the proportion of individuals in each of the C response categories for

each of the T variables, and (b) the bivariate or joint proportions, that is, the proportions of

individuals with each of the CT possible response pattern. The T (C−1) observed marginal

proportions are insufficient for estimating the thresholds τct, c = 1, . . . , C − 1, t = 1, . . . , T ,

or the parameters of the underlying variables, namely µY∗ and diag(ΣY∗Y∗), without

imposing certain restrictions.

3.1 Identification issues

Constraints must be applied to achieve model identification, and this is where different pa-

rameterizations of the auxiliary model come into play. Various sets of conditions exist that

are sufficient to ensure identification, and they vary based on assumptions made about

the thresholds (whether they are time-varying, time-invariant, or fixed) and the means

and variances of the underlying variables (whether they are fixed on all occasions, all free

but one, or freely estimated on all time points). Different software may adopt distinct

identification conditions, leading to variations in parameter estimates and model fit across

programs. Table 2 details the main parameterizations in the literature that we discuss.

Standard parameterization. The first row of Table 2 refers to the set of constraints

commonly adopted in single-population or cross-sectional applications. It consists

of fixing the expected value and standard deviation of Y ∗
it equal to zero and one,

respectively, on each occasion. When this standard parameterization is adopted, the

thresholds are freely estimated and assumed to be time-varying. These T (C − 1) pa-

rameters are determined as percentiles of the standard normal distribution, whereas

the T (T − 1)/2 off-diagonal elements of ΣY∗Y∗ are estimated as polychoric corre-
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Parameterization Mean St.Dev Thresholds # of parameters

Standard 0 1 τstd
1t τstd

2t τstd
3t . . . τstd

C−1,t T (C − 1) + T (T − 1)/2

Alternative 1 µalt1
Y ∗

1
= 0 σ2

Y ∗

1

alt1
= 1 τalt1

1 τalt1
2 τalt1

31 . . . τalt1
C−1,1 T (C − 1) + T (T − 1)/2

µalt1
Y ∗

t
σ2
Y ∗

t

alt1
τalt1
1 τalt1

2 τalt1
3t . . . τalt1

C−1,t

Alternative 1 - with thresholds invariance µalt1
Y ∗

1
= 0 σ2

Y ∗

1

alt1
= 1 τalt1

1 τalt1
2 τalt1

3 . . . τalt1
C−1 (C − 3) + T (T + 3)/2

µalt1
Y ∗

t
σ2
Y ∗

t

alt1

Alternative 2 µalt2
Y ∗

t
σ2
Y ∗

t

alt2
0 1 τalt2

3t . . . τalt2
C−1,t T (C − 1) + T (T − 1)/2

Alternative 2 - with thresholds invariance µalt2
Y ∗

t
σ2
Y ∗

t

alt2
0 1 τalt2

3 . . . τalt2
C−1 (C − 3) + T (T + 3)/2

Table 2: Alternative sets of identification constraints for the auxiliary model in presence of ordinal data.

lations. This is the default parametrization applied in Mplus and lavaan, known

as standard delta parameterization. Joreskog (2001) also refers to it as standard pa-

rameterization, whereas Kamata and Bauer (2008) term it marginal parameterization

since the marginal distribution of the continuous underlying variables is standardized.

One weakness of standard parameterization is that all underlying variables are standardized

to have zero means and unit standard deviations. However, in the context of longitudinal

data, where the response alternatives are the same across multiple time points, differences

in the distribution of these variables can reflect differences in the means and/or variances

of the underlying latent variables.

Researchers have proposed alternative identification constraints for categorical repeated

measures, recognizing the limitations of the standard parameterization. These alternative

parameterizations, which allow the means and variances of the underlying variables to vary

freely, are a significant step towards a more accurate representation of the underlying data

structure. Additional constraints are imposed, mainly on the thresholds of these variables,

to ensure that the latent propensities are identified and comparable across time points. By

imposing these constraints, analysts can establish a fixed reference point for the scale of

the underlying response variables. This ensures that observed changes in the distributions

reflect differences in the underlying variables, not inconsistencies in measurement.

Alternative parameterization 1. The first alternative freely estimates the underlying

variable’s means and variances on all occasions except on the first one (Muthén and
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Asparouhov, 2002; Millsap and Tein, 2004). That is, the underlying variable mean and

variance at the first occasion, µalt1
Y ∗
1

and σ2alt1
Y ∗
1

, are fixed to zero and one, respectively,

while µalt1
Y ∗
t

and σ2alt1
Y ∗
t

are estimated for t > 1 3. These assumptions are sufficient

to identify all the thresholds on the first occasion. On subsequent occasions, two

thresholds are assumed to be time-invariant, e.g. τalt11t = τalt11 and τalt12t = τalt12 for

all t. A notable feature is that complete invariance of all threshold parameters is not

required. As discussed before, to estimate differences in the means and variances of

latent variables over time - as done with latent growth models - one must ascertain

that the underlying variables are on the same scale on different occasions. This is

achieved by defining a common across-time metric in terms of the standard deviation

on the first occasion.

As shown in the second row of Table 2, the number of parameters to be estimated

is the same as in the standard parameterization, with T (C − 3) thresholds, 2(T − 1)

means and variances of the underlying variables, and T (T − 1)/2 polychoric covari-

ances, for a total of T (C−1)+T (T −1)/2 parameters. A one-to-one correspondence

exists between the parameters in this alternative parameterization and those from

the standard one. That is, on the first occasion,

τalt11 = τ std11 , τalt12 = τ std21 , τalt1c1 = τ stdc1 , c = 3, . . . C, (2)

whereas, on subsequent occasions,

σalt1
Y ∗
t

=
τstd21 −τstd11

τstd2t −τstd1t
, µalt1

Y ∗
t

=
τstd11 τstd2t −τstd1t τstd21

τstd2t −τstd1t
, τalt1ct =

τstd11 (τstd2t −τstdct )−τstd21 (τstd1t −τstdct )

τstd2t −τstd1t
,

c = 3, . . . C.

(3)

Some authors claim that analysts should also estimate the thresholds but constrain

the same threshold to be equal over time (Muthén and Muthén, 1998-2017, exam-

3When specifying models in Mplus 8.6, it is important to recognize that intercepts and/or underlying
variable means need to be specified differently compared to lavaan 0.6-16. In Mplus 8.6, a perfectly
measured factor may be introduced behind each Y ∗

it variable to estimate intercepts or underlying variable
means. This factor represents the intercept parameters as structural intercepts. In contrast, lavaan 0.6-16
allows for a more straightforward specification of intercepts or means, simplifying the model specification
process.
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ple 6.5). That is, τalt1ct = τalt1c for c = 1, . . . , C − 1, and t = 1, . . . , T , and this

parameterization is detailed in the third row of Table 24.

If the assumption of threshold invariance holds, then the alternative thresholds τalt1c

for each category, c = 1, . . . , C − 1, should be equal to the corresponding threshold

estimated on the first occasion under the standard parameterization (τ stdc1 ), since the

mean µalt1
Y ∗
1

and standard deviation σalt1
Y ∗
1

on the first occasion are set equal to zero and

one, respectively. Based on this relationship,

τ stdct =
τ stdc1 − µalt1

Y ∗
t

σalt1
Y ∗
t

,

or, equivalently,

σalt1
Y ∗
t
τ stdct = τ stdc1 − µalt1

Y ∗
t
. (4)

Based on eq. (4), if thresholds are assumed to be equal over time, the ratio of

the standard deviation of the underlying variable on two different occasions must

be equal to the ratio of the differences between any two thresholds in the standard

parameterization on these two occasions:

σalt1
Y ∗
t

σalt1
Y ∗
t′

=
τ stdc′t′ − τ stdct′

τ stdc′t − τ stdct

, c < c′, t 6= t′.

In other words, if thresholds under the alternative 1 parameterization are truly invari-

ant at times t and t′, the ratio of differences between any two standardized thresholds

at the two time points should be equal. If any one of the thresholds for a time point is

not invariant, then the equality mentioned above should not hold for the thresholds in

the standard parameterization for that point. For the alternative 1 parameterization,

for any pairs (c′, c) and (c′′, c′), with c < c′ < c′′, we also obtain

σalt1
Y ∗
t

σalt1
Y ∗
1

= σalt1
Y ∗
t

=
τ stdc′1 − τ stdc1

τ stdc′t − τ stdct

=
τ stdc′′1 − τ stdc′1

τ stdc′′t − τ stdc′t

, t = 1, . . . , T. (5)

4An argument could be made that some of the thresholds of an ordinal repeated measure need not be
equal over time due to a shift in the meaning of one or more thresholds. However, for our purposes, we
maintain the assumption of equal threshold invariance to simplify the discussion.
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Therefore, this equation can be considered as a test of the assumption regarding the

lack of invariance of at least one of the thresholds for a given time point.

Alternative parameterization 2. Joreskog (2001) proposed an alternative specification

for longitudinal data. It is based on defining the origin and unit of measurement ofY∗
i

in terms of thresholds (Mehta et al., 2004; Bollen and Curran, 2006; Fisher and Bollen,

2020). The common practice is to fix the distance between the first two thresholds as

one unit on the new scale, that is τalt22t − τalt21t = 1, for all t = 1, . . . , T . Equivalently,

the first threshold could be fixed to zero and the second at one on each occasion,

indicating that Y ∗
it on this new scale must be greater than zero for an individual to be

in an ordinal category greater than one. This allows us to recover, on each occasion,

both the mean and variance of Y ∗
it as well as the other (C − 3) thresholds in this new

measurement scale. Given a number of ordinal categories equal to or greater than

three, these conditions are necessary and sufficient to ensure the identification of the

model linking Yi to Y∗
i . This set of constraints also represents an alternative but

equivalent parameterization of the standard one. Indeed, it can be easily shown that

σalt2
Y ∗
t

= 1
τstd2t −τstd1t

, µalt2
Y ∗
t

= −
τstd1t

τstd2t −τstd1t
, τalt2ct =

τstdct −τstd1t

τstd2t −τstd1t
, c = 3, . . . , C. (6)

A one-to-one relationship also stands between the two alternative parameterizations,

as illustrated in Appendix A. In applying this parameterization in conjunction with

a linear growth model for categorical data, Mehta et al. (2004) additionally imposed

the assumption of threshold invariance over time. That is, τct = τc, for c = 3, . . . , C,

and all t. As discussed by Joreskog (2001) and Mehta et al. (2004), this assumption

implies that

τalt2c = µalt2
Y ∗
t

+ σalt2
Y ∗
t
τ stdct , c = 3, . . . , C − 1; t = 1, . . . T, (7)

where τ stdct is the unconstrained threshold for the cth category at the t time point

estimated under the standard parameterization. Eq. (7) sets constraints on µalt2
Y ∗
t

and

σalt2
Y ∗
t

because the right-hand side varies with t, whereas the left-hand side does not. If

C ≥ 3, the common thresholds, µalt2
Y ∗
t

and σalt2
Y ∗
t

can be estimated from the univariate

14

https://doi.org/10.1017/psy.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.23


marginal data of those variables whose thresholds are supposed to be equal. Eq. (7)

can be rewritten for any two thresholds c and c′ for any Y ∗
t as τ stdct = (τalt2c −µalt2

Y ∗
t
)/σalt2

Y ∗
t
,

and τ stdc′t = (τalt2c′ − µalt2
Y ∗
t
)/σalt2

Y ∗
t
, such that

σalt2
Y ∗
t

=
τalt2c′ − τalt2c

τ stdc′t − τ stdct

, c < c′.

It follows that the ratio of standard deviations on two different occasions is equal to

the reciprocal of the ratio of the differences between any two standardized thresholds

at those time points. For example, there are two independent equations with three

thresholds at each time point. That is, for the pairs (2,1) and (3,2), we get

σalt2
Y ∗
t

σalt2
Y ∗
t′

=
τ std2t′ − τ std1t′

τ std2t − τ std1t

=
τ std3t′ − τ std2t′

τ std3t − τ std2t

. (8)

If any one threshold for a time point under the alternative 2 parameterization is not

invariant, eq. (8) fails to be true for that time point. Hence, this equation evaluates

the lack of invariance of at least one of the thresholds at a given time point.

3.2 Binary case

Binary variables (C = 2) are special cases that require further comments. Indeed, with

dichotomous variables, there are T available proportions, π1t = P (Yit = 1), t = 1, . . . , T , to

estimate the only threshold τ1t, the mean and variance of the underlying variables at each

occasion.

When the standard parameterization is adopted, the only available threshold is freely

estimated on each occasion, whereas the means and variances of the underlying variables

are always set to zero and one, respectively. Hence, no different constraints are placed with

respect to the categorical case (see the first row of Table 3).

On the other hand, additional restrictions have to be placed for the alternative parame-

terizations. Millsap and Tein (2004) suggest freely estimating the means of the underlying

variables on each occasion except on the first one, setting the variances of the underlying

variables to one on each occasion and estimating the only available threshold under the

assumption of time-invariance. These constraints are detailed in the second row of Table
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3. Differently, Muthén and Muthén (1998-2017) suggest freely estimating the underlying

variable variances on all the occasions except on the first one, where σ2
Y ∗
i1
is fixed to one.

They also suggest keeping the only available threshold invariant on each occasion. In this

regard, the means of the underlying variables Y ∗
it have to be fixed to zero for the auxiliary

model to be identified (see the third row in Table 3).

Parameterization Mean St.Dev Thresholds # of parameters

Standard 0 1 τstd
1t T + T (T − 1)/2

Alternative 1 - Millsap and Tein (2004) µalt1
Y ∗

1
= 0 1 τalt1

1 T + T (T − 1)/2

µalt1
Y ∗

t

Alternative 1 - Muthén and Muthén (1998-2017) 0 σ2
Y ∗

1

alt1
= 1 τalt1

1 T + T (T − 1)/2

σ2
Y ∗

t

alt1

Alternative 2 µalt2
Y ∗

t
1 0 T + T (T − 1)/2

Table 3: Alternative sets of identification constraints for the auxiliary model in presence of binary data.

In the presence of binary data, it is impossible to implement the threshold constraints

proposed by Joreskog (2001), being only one threshold available per occasion. Even when

holding thresholds invariant over time, this does not identify both means and variances on

all occasions. Joreskog (2001) proposes to fix the thresholds equal to zero and the variances

σ2
Y ∗
t
to one on all occasions, only allowing the means µY ∗

t
to vary over time. This is detailed

in the last row in Table 3.

3.3 Estimation

SEMs for continuous endogenous variables analyze the mean vector µY and covariance

matrix ΣYY of the observed indicators. However, when one or more of the endogenous

observed variables are categorical, the analysis shifts to the mean vector µY∗ and covari-

ance matrix ΣY∗Y∗ corresponding to Y∗
i . If consistent estimators for µY∗ and ΣY∗Y∗ are

available, researchers can analyze them similarly to continuous indicators. Consequently,

the estimation procedure comprises two distinct steps. The first step obtains consistent

estimates of the means µY∗ and covariance matrix ΣY∗Y∗ for Y∗
i . To perform significance
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testing, analysts also need the asymptotic covariance matrix of the elements in µ̂Y∗ and

Σ̂Y∗Y∗ . Once the means, variances, and covariances of Y∗
i are in hand, researchers can

estimate the parameters of any longitudinal model they apply to Y∗
i .

Here we focus on the first step needed to estimate µY∗ and the unconstrained covariance

matrixΣY∗Y∗ . As we discussed in Section 3.1, distributional assumptions and identification

constraints are necessary for estimation. Assuming a bivariate standard normal distribution

for each pair of variables in Y∗
i facilitates the estimation of thresholds and polychoric

correlations/covariances for noncontinuous variables. Univariate standard normality for

each underlying variable Y ∗
it enables threshold estimation as percentiles of the standard

normal distribution:

τ stdct = Φ−1

(

c
∑

r=1

nrt

n

)

,

where Φ−1 is the quantile function of the standard normal distribution, nrt is the number of

cases in the rth category at time t, and n is the sample size. While univariate margins are

valuable for estimating the thresholds in the standard parameterization, bivariate tables

are essential for estimating the correlation between Y ∗
it and Y ∗

it′ . Following Olsson (1979),

the log-likelihood for the polychoric correlation is given by

lnL = A +

C
∑

l=1

C
∑

r=1

nlr ln(πlr),

where C is the number of categories for both Y ∗
it and Y ∗

it′, nlr is the number of cases in the

lrth cell of the bivariate table, and A is an irrelevant constant that does not influence the

values that maximize the likelihood. Hold the thresholds fixed at the estimates from the

univariate margins,

πlr = Φ2(τ̂lt, τ̂rt′)− Φ2(τ̂l−1,t − τ̂rt′)− Φ2(τ̂lt, τ̂r−1,t′) + Φ2(τ̂l−1,t − τ̂r−1,t′),

where Φ2(·) is the bivariate normal distribution function with correlation ρY ∗
itY

∗
it′
. As a

result of this conditional estimation procedure, ρ̂Y ∗
itY

∗
it′
, for t 6= t′, is a pseudo-maximum

likelihood estimate.

When the means and variances of each Y ∗
it are of interest, it is possible to estimate
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these quantities rather than constraining them to 0 and 1, respectively. The alternative

parameterizations of the auxiliary model allow this option. In the standard parameteriza-

tion, assuming Y ∗
it ∼ N(0, 1) at each occasion allows for estimation for the mean (keeping

the variance σ2
Y ∗
t

fixed to one) by shifting the distribution of Y ∗
it by a constant µY ∗

it

alt.

This results in the transformed distribution as Y ∗
it ∼ N(µY ∗

it

alt, 1). If, in addition to the

mean, the variance of Y ∗
it is estimated, the distribution of Y ∗

it is shifted and scaled, such

that Y ∗
it ∼ N(µY ∗

it

alt, σ∗
Yit

alt). Hence, in the alternative parameterization of the auxiliary

model, the corresponding thresholds, means, and variances of the underlying variables are

based on their relationships with the thresholds of the standard parameterization. These

relationships are given in Section 3.1 and detailed in eqs. (2) and (3) for the alternative

parameterization proposed by Millsap and Tein (2004), and in eq. (6) for the parameter-

ization proposed by Joreskog (2001). If thresholds are assumed to be invariant over time,

additional constraints are placed on the means and variances of the underlying variables

under the alternative parameterizations, as discussed in Section 3.1.

The polychoric covariance matrix of the underlying variables under the alternative pa-

rameterization is then determined by scaling the polychoric correlation matrix R̂Y∗Y∗ es-

timated for the standard parameterization as follows

Σ̂Y∗Y∗ = D−1R̂Y∗Y∗D−1,

where D is a T × T diagonal matrix with generic element 1/σY ∗
t

alt, t = 1, . . . , T .

3.4 Illustrative example: auxiliary model for NLSY97 data

Returning to our motivating NLSY97 example, we estimate the auxiliary measurement

model connecting the binary and ordinal variables to their underlying continuous variables.

The underlying variables Y∗
i represent propensities such as the inclination to use illegal

drugs, experience depression, or perceive good/excellent health status. In the case of the

illegal drug use variable, the threshold is the point that separates use from nonuse of illegal

drugs. An individual whose propensity exceeds the threshold uses illegal drugs, whereas

those who fall below it do not. Similarly, for the other two categorical variables, when the
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latent propensity or perception falls between thresholds τct and τc+1,t on a given occasion,

the observed ordinal response corresponds to category c.

As discussed in Section 3.1, various parameterizations of the auxiliary model are avail-

able. Both the standard auxiliary model and alternative parameterizations, where no

threshold invariance constraints are imposed, result in just identified models (with zero

degrees of freedom) that perfectly fit the data. When researchers fit these to the data,

they obtain estimates of unknown thresholds, means of underlying variables, their vari-

ances, and polychoric correlations/covariances. For illustrative purposes, we report - in the

Supplementary Material, due to space constraints - the estimated means and polychoric

correlations/covariances for the auxiliary model that jointly considers all three observed

variables based on the standard and alternative parameterizations. For the latter, we

consider the models with and without threshold invariance.

The assumption of threshold invariance is tested by estimating the auxiliary model in

which the same threshold at all time points is restricted to be equal. It is worth noting

that both alternative (1 or 2) parameterizations of the auxiliary model are equivalent in

their chi-square and degrees of freedom. Table 4 provides fit statistics for each categorical

variable’s auxiliary model based on the alternative (1 or 2) parameterization with thresh-

old invariance. For the binary variable, threshold invariance is mandatory for the auxiliary

model to be just identified and is not testable. Under the assumption of threshold invari-

ance, we have also estimated the multivariate auxiliary model for the three variables, which

includes the estimation of thresholds, means, and variances for each variable, along with

the polychoric covariances among all the underlying variables. Note that the threshold

invariance hypothesis is not rejected for depressive symptoms at any conventional level and

that for general health status is marginally significant. With over 5000 cases, statistical

power should be high. We also checked the fit indexes and found that the CFI, TLI, and

RMSEA all suggest excellent fit. The negative value of the BIC (= χ2 − ln(n)df) also

support the invariant threshold models (Raftery, 1995).

These results suggest that the auxiliary model under alternative 1 or 2 with invariant

thresholds is the most promising structure to use for these data when moving to the lon-

gitudinal model. However, these results are only with regard to the auxiliary model. In

19

https://doi.org/10.1017/psy.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.23


the following Sections, we consider the possible identification constraints of the different

longitudinal models, and we turn to this topic next.

Fit statistics Depressive symptoms General health status Joint auxiliary model

χ2 6.213 19.450 25.849

df 5 10 15

p-value 0.286 0.035 0.040

CFI-TLI 1.000-0.997 1.000-0.999 1.000-0.997

RMSEA 0.007 0.013 0.012

BIC -36.673 -66.322 -102.808

Table 4: Fit statistics for the alternative(1 and 2) auxiliary models based on threshold invariance estimated
for depressive symptoms, general health status, and for all the three variables jointly considered.

4 A general longitudinal model for categorical repeated

measures

Given the latent response variates Y∗
i , we can apply the ALT model (Bollen and Curran,

2004). It encompasses the classical autoregressive and latent growth models as special

cases. Following the general representation provided by the authors, the unconditional

model is specified through two equations

ηi = µη +Bηi + ς i, (9)

Y∗
i = Pηi. (10)

In eq. (9), ηi is a vector that includes both the underlying variables Y∗
i and the random

growth components α′
i = (αi0, αi1). µ′

η = (ν ′
Y∗ ,µ′

α) represents a vector of intercepts and

means, and the (T + 2) × (T + 2) matrix B specifies the coefficients for the relationships

between the elements of ηi. It is divided into sub-matrices as follows
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B =





BY∗Y∗ BY∗α

O O



 ,

where BY∗Y∗ contains the autoregressive effects among the underlying variables Y∗, that

is

BY∗Y∗ =





















0 0 · · · 0 0

φ21 0 · · · 0 0

0 φ32 · · · 0 0
...

... · · ·
...

...

0 0 · · · φT (T−1) 0





















,

and BY∗α relates the underlying variables Y∗
i to the random growth components.

The autoregressive relations in the ALT model give rise to an initial condition problem

since the variable at the start of the observation period, Y ∗
i1, should be affected by the

random intercept and slope as well as unavailable pre-sample latent responses, say Y ∗
i0. To

handle this problem, we can assume Y ∗
i1 to be predetermined, correlated with the growth

components, or treated as endogenous. We consider Y ∗
i1 predetermined, knowing that, using

rules from Lee and Hershberger (1990) and Hershberger (2006), the unconditional autore-

gressive latent trajectory model with Y ∗
i1 predetermined or Y ∗

i1 endogenous are (globally and

covariance) equivalent (Bianconcini and Bollen, 2018). Hence, considering a linear growth

curve, B′
Y∗α =





0 1 . . . 1

0 1 . . . T − 1



.

The disturbance vector for ηi is ς i, that is ς
′
i = [ε′i ς ′α]. It is assumed to have a zero

mean vector, and its covariances depend on the model. Under the assumption that Y ∗
i1 is

predetermined, Σςς is a block-diagonal matrix of the form





Θε ΣY∗α

Σ′
Y∗α Σαα



, where Θε is

a diagonal matrix with error variances that can differ over time, such that V (εit) = σ2
εt ,

for t = 1, · · · , T , ΣY∗α contains the covariances between the predetermined Y ∗
i1 and the

random components αi, such that Σ′
Y∗α =





σY ∗
1 α0 0 . . . 0

σY ∗
1 α1 0 . . . 0



, and Σαα is the full and

symmetric covariance matrix of the growth components.
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Equation (10) links the underlying response variates Y∗
i to the latent variables in ηi

through the matrix P = [IT O], where IT is an identity matrix with dimensions that

depend on the number of repeated measures and O is a zero matrix of dimensions T × 2.

These assumptions lead to the following implied moments for the underlying variables in

the autoregressive latent trajectory model of Y∗
i

µY∗ = (IT −BY∗Y∗)−1νY∗ + (IT −BY∗Y∗)−1BY∗αµα, (11)

ΣY∗Y∗ = (IT −BY∗Y∗)−1Θε(IT −BY∗Y∗)−1′ + (IT −BY∗Y∗)−1BY∗αΣ
′
Y∗α(IT −BY∗Y∗)−1′

+(IT −BY∗Y∗)−1ΣY∗αB
′
Y∗α(IT −BY∗Y∗)−1′ + (IT −BY∗Y∗)−1BY∗αΣααB

′
Y∗α(IT −BY∗Y∗)−1′.

(12)

The first term on the right-hand side of eqs. (11) and (12) are the moments implied by the

autoregressive of order one component of the model, whereas the other terms account for

the interaction between the autoregressive and growth components. The implied moments

help determine the identification of the model parameters, test the model fit, and prove if

the choice of different parameterizations is arbitrary or not.

Multivariate autoregressive latent trajectory model. If two or more binary or ordinal re-

peated measures are observed, the ALT model has to be generalized to deal with multiple

series. To illustrate and clarify this model specification, consider that we have two series

of repeated ordinal variables and that their underlying variables have autoregressive and

cross-lagged relations with each other. Say that Y∗
a,i contains the series of longitudinal un-

derlying variables for the first series and Y∗
b,i contains the longitudinal underlying variables

for the second one. Based on our empirical application, we can consider Y∗
a,i to be the

underlying variables associated with the observed depressive symptoms, while Y∗
b,i relates

to the observed general health status variables. Let αi0 and αi1 be vectors of the growth

components for the two series. In this situation, we write ηT
i =

[

Y∗
a,i Y

∗
b,i αi0 αi1

]

, and the

vector µT =
[

µY∗
a
µY∗

b
µα0

µα1

]

, where the µ’s are intercepts of endogenous variables or

means of latent variables, and the subscript signifies which variable. Next is the B matrix,
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B =















BY∗
aY

∗
a

BY∗
aY

∗
b

BY∗
aα0 BY∗

aα1

BY∗
bY

∗
a

BY∗
bY

∗
b

BY∗
bα0 BY∗

bα1

Bα0Y∗
a

Bα0Y∗
b

Bα0α0 Bα0α1

Bα1Y∗
a

Bα1Y∗
b

Bα1α0 Bα1α1















,

which is partitioned. As before, the first subscript of the coefficients shows the variables

receiving effects, while the second subscript is the variables emitting effects. For instance,

BY∗
aY

∗
b
gives the coefficients of the direct effects of the second series of repeated variables

on the first series, this would include any cross-lagged effects from Y∗
b,i to Y∗

a,i. Similarly,

BY∗
bY

∗
a
gives the direct effects of the first series on the second and BY∗

bαi1
contains the

coefficients of the direct effects of the random slopes of both series on the repeated measures

of the second series. Knowing that none of the repeated measures has direct effects on the

random intercepts or random slopes, and no direct effects are estimated for the random

components, all coefficients that correspond to such effects are set to zero; that is,

B =















BY∗
aY

∗
a

BY∗
aY

∗
b

BY∗
aα0 BY∗

aα1

BY∗
bY

∗
a

BY∗
bY

∗
b

BY∗
bα0 BY∗

bα1

0 0 0 0

0 0 0 0















.

The vector ζTi is now given by
[

εYa,i
εYb,i

ςαi0
ςαi1

]

. The first two elements, εYa,i
and εYb,i

,

are disturbances or errors of the two repeated measures series. These errors are correlated

when referring to the same occasion (concomitant effects). The last two vectors, ςαi0
and

ςαi1
, are the disturbances or errors from the equations for αi0 and αi1, assumed to be all

correlated. In brief, the preceding equations enable the analysis of two repeated measures

with binary or ordinal variables. Generalizing the model to analyze three or more series of

repeated measures is straightforward.

4.1 Identification issues

The ALT model for continuous measures requires constraints to ensure its identification,

particularly with fewer than five waves of data (Bollen and Curran, 2004). Extending
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this model - and its special cases - to ordered categorical measures presents additional

challenges. We can approach the identification problem by dividing the constraints needed

into two parts. The first part contains constraints to identify (µY∗ ,ΣY∗Y∗). The second

part contains conditions to identify the autoregressive latent trajectory model parameters.

For the latter, we will also discuss the identification issues for the linear latent growth and

autoregressive of order one models.

Once the auxiliary model is accurately identified and estimated, we treat the means

and covariances between the underlying variables Y∗
i as known and use them to identify

the longitudinal model for Y∗
i .

This section outlines identification conditions for the linear latent growth, the first-order

autoregressive, and ALT models. We explore alternative parameterizations for these models

based on the previously discussed auxiliary model specifications. Our assessment focuses

on whether distinct specifications lead to equivalent models. In SEMs, equivalent models

generate identical model-implied moment matrices and equally fit the data, with equal test

statistics, fit indexes, and degrees of freedom (Stelzl, 1986; Lee and Hershberger, 1990).

Equivalent models impose the same constraints on the population covariance matrix, known

asΣ constraints (Steiger, 2002). Models with the sameΣ constraints areΣ-equivalent since

they cannot be empirically distinguished.

A formal definition of model equivalence has been provided by Raykov and Penev (1999),

who established a necessary and sufficient condition based on the existence of a parameter

transformation that preserves the implied covariance matrix and covers the entire parameter

space of the other model. This implies that equivalent models remain invariant under this

transformation. Validating this condition involves deriving implied covariance matrices,

equating corresponding elements, and solving for parameters to confirm the Σ-equivalence.

If there is no mapping, the two models are not equivalent. An extension of the rule by

Raykov and Penev (1999) for identifying equivalent models with a mean structure has

been discussed by Levy and Hancock (2007) and Losardo (2009) with a specific focus on

the equivalence of latent curve model specifications. We follow the approach of Losardo

(2009), accommodating the presence of categorical repeated measures.

24

https://doi.org/10.1017/psy.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.23


4.1.1 Linear growth model

We begin by considering the linear latent growth model for Y∗
i . Three different specifica-

tions correspond to the standard and alternative parameterizations of the auxiliary model.

Despite the time-specific scale of thresholds in the standard parameterization, we consider

it being the default option in Mplus 8.6 and lavaan 0.6-16.

To derive identification constraints for each alternative specification, as detailed in Table

5, we need the mean and covariance matrix implied by the linear growth model. These are

given by

µY∗ = BY∗αµα, (13)

ΣY∗Y∗ = BY∗αΣααB
′
Y∗α +Θε. (14)

For a deeper understanding of the relationship between these specifications, Table 5 also

reports the corresponding degrees of freedom.

Constraints

Auxiliary model
Standard Alternative 1 Alternative 2

(threshold invariance) (threshold invariance)

Stage 1 µY∗ = 0 µY ∗

1
= 0 τ1t = 0, τ2t = 1

diag(ΣY∗Y∗ ) = I σ2
Y ∗

1
= 1 τct = τc, c ≥ 3

τct = τc, c > 1

Stage 2 µ
α

= 0 µα0 = 0

# of parameters T(C-1)+3 C+T+2 C+T+2

Degrees of freedom [T(T-1)/2]-3 C(T − 1) +
T (T−5)

2
− 2 C(T − 1) +

T(T−5)
2

− 2

Table 5: Identification constraints and degrees of freedom for the linear growth model for categorical
repeated measures.

The WLSMV estimator only uses information coming from the first- and second-order

sample statistics corresponding to the T (C−1) univariate proportions and the T (T −1)/2

polychoric correlations. The degrees of freedom of a given specification are the difference

in the number of available information, T (C − 1)+ T (T − 1)/2, and the number of param-

eters in the considered model. It is important to note that not all three specifications have

the same degrees of freedom. Hence, the standard parameterization would not provide an
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equivalent specification to the alternative ones. The assumptions made for the identifica-

tion of the auxiliary model impact the specification and interpretation of the linear latent

growth model defined for Y∗
i . The two alternative parameterizations provide equivalent

specifications to each other since a one-to-one relationship between their parameters exists,

as detailed in Table 6.

When adopting the standard parametrization (second column of Table 5), Stage 1 con-

straints are sufficient to identify the auxiliary model. Setting (µY∗ , diag(ΣY∗Y∗)) to (0, I)

identifies the thresholds τct, c = 1, . . . , C − 1, on all occasions. Stage 2 constraints involve

fixing µα to 0 to satisfy the implied mean condition in eq. (13). Appendix B shows that

these conditions are sufficient to identify the linear latent growth model.

Model A in terms of Model B Model B in terms of Model A

σ2A
α0

= σ2B
α0

/σY ∗

1

B σ2B
α0

= σ2A
α0

/(τA
2 − τA

1 )2

σ2A
α1

= σ2B
α1

/σY ∗

1

B σ2B
α1

= σ2A
α1

/(τA
2 − τA

1 )2

σA
α0,α1

= σB
α0,α1

/σY ∗

1

B σB
α0,α1

= σA
α0,α1

/(τA
2 − τA

1 )2

σ2A
Y ∗

t
= (σY ∗

t

B)(σY ∗

1

B) t = 1, . . . T σB
Y ∗

t
=

σA
Y ∗

t

(τA
2 −τA

1 )
t = 1, . . . T

τA
c = (τB

c − µα0
B)/σY ∗

1

B c = 1, . . . , C − 1 τB
c = (τA

c − τA
1 )/(τA

2 − τA
1 ) c = 3, . . . , C − 1

µα1
A = µα1

B/σY ∗

1

B µα0
B = −τA

1 /(τA
2 − τA

1 )

µα1
B = µα1

A/(τA
2 − τA

1 )

Table 6: Parameter transformations for the linear growth models based on the parameterization proposed
by Muthén and Muthén (1998-2017) (Model A) and the one illustrated by Mehta et al. (2004) (Model B).

A key distinction between SEMs for continuous outcomes and models for categori-

cal data lies in the identification of the error εi variances, Θε. The variances of the er-

rors cannot be independently identified from the variances of the underlying variables,

diag(ΣY∗Y∗), as Y∗
i is a latent vector without an inherent scale. If diag(ΣY∗Y∗) = I, the

variance-covariance matrix of the growth components Σαα is correctly identified, while the

error variances Θε are determined as a remainder based on eq. (14).

An alternative set of identification constraints replaces diag(ΣY∗Y∗) = I with Θε =

I. It is denoted as (standard) theta parameterization in Mplus 8.6 and lavaan 0.6-16

and termed conditional parameterization by Kamata and Bauer (2008). This approach

assumes standardized conditional distributions of Y∗
i given ηi, with marginal variances of

26

https://doi.org/10.1017/psy.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.23


Y∗
i obtained as the remainder based on eq. (14). In longitudinal data, this assumption

could be more suitable in that the variances of Y∗
i are permitted to vary over time while

the error variances are not, and this latter assumption might be more plausible. Of course,

if there are reasons to think that these error variances differ over time, this assumption is

also not desirable.

To address the conflicting conclusions drawn by Grimm and Liu (2016); Lee et al.

(2018) and Newsom and Smith (2020) regarding the relationship between these standard

parameterizations of the linear growth model, we provide a theoretical illustration. We

limit our analyses to models with four time points to avoid complex and unproductive

mathematical details. We compare the two linear growth model parameterizations (based

on diag(ΣY∗Y∗) = I or Θε = I) in terms of Σ and µ constraints. Following Steiger (2002),

the covariance matrix and the mean vector implied by each standard (delta and theta)

model specification are first derived and reported in the Supplementary Material. Both

model specifications have no µ constraints and T (T +1)/2−3 (seven) Σ constraints corre-

sponding to the degrees of freedom on the covariance structure of the model, as illustrated

in Table 7.

Variances diag(ΣY∗Y∗) = I Θε = I

Σ constraints
1 ρ4,1 = 2ρ4,2 − ρ4,3 σ4,1 = 2σ4,2 − σ4,3

2 2ρ3,1 = 3ρ3,2 − ρ4,3 2σ3,1 = 3σ3,2 − σ4,3

3 ρ2,1 = 3ρ3,2 − 2ρ4,2 σ2,1 = 3σ3,2 − 2σ4,2

4 σ2
Y ∗
1
= 1 σ2

Y ∗
1
= 1 + 9

2
σ3,1 − 4σ4,2 +

σ4,3

2

5 σ2
Y ∗
2
= 1 σ2

Y ∗
2
= 1 + 2σ3,2 − σ4,2

6 σ2
Y ∗
3
= 1 σ2

Y ∗
3
= 1 + σ3,2/2 + σ4,3/2

7 σ2
Y ∗
4
= 1 σ2

Y ∗
4
= 1− σ4,2 + 2σ4,3

Table 7: Σ constraints for the linear growth model based on the (standard) delta parameterization
(diag(ΣY∗Y∗) = I) and the (standard) theta parameterization (Θε = I).

It is evident that these two standard specifications of the linear growth model are not

empirically equivalent, as the constraints on the underlying variable variances are different,

and the Σ constraints derived when all the underlying variable variances are fixed to one

are defined in terms of polychoric correlations ρt,t′ .
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When adopting the alternative parameterization proposed by Muthén and Asparouhov

(2002) and by Millsap and Tein (2004) for the auxiliary model, which fixes the mean of

the underlying variable to zero only on the first occasion, the implied mean condition in

eq. (13) necessitates constraining only the mean of the intercept component, µα0, to zero

(refer to the third column of Table 5). The variance of the underlying variable on the first

occasion is set to one, while the other (T − 1) variances are freely estimated. Due to the

interdependence of σ2
Y ∗
t
and σ2

εt , an alternative specification is obtained by placing these

variance restrictions on the errors rather than on the underlying variable. In Appendix B,

we prove that these conditions are sufficient for the model identification.

In contrast to the standard parameterization, it can be demonstrated that placing re-

strictions on diag(ΣY∗Y∗) or Θε defines two specifications of the linear growth model that

are equivalent. Table 8 presents the parameter transformations for the model where all

underlying variable variances but one are freely estimated (Model C) and the model where

all error variances are free parameters except on the first occasion (Model D).

Model C in terms of Model D Model D in terms of Model C

σ2C
α0

= σ2D
α0

/(1 + σ2D
α0

) σ2D
α0

= σ2C
α0

/(1 − σ2C
α0

)

σ2C
α1

= σ2D
α1

/(1 + σ2D
α1

) σ2D
α1

= σ2C
α1

/(1 − σ2C
α1

)

σC
α0,α1

= σD
α0,α1

/(1 + σ2D
α0

) σD
α0,α1

= σC
α0,α1

/(1 − σ2C
α0

)

σ2C
Y ∗

t
=

σ2D
α0

+2(t−1)σD
α0 ,α1

+(t−1)2σ2D
α1

+σ2D
εt

1+σ2D
α0

t = 1, . . . T σ2D
εt

=
σ2C
Y ∗

t
−σ2C

α0
−2(t−1)σC

α0 ,α1
−(t−1)2σ2C

α1

(1−σ2C
α0

)
t = 1, . . . T

τC
c = τD

c /(1 + σ2D
α0

) c = 1, . . . , C − 1 τD
c = τC

c /(1 − σ2D
α0

) c = 1, . . . , C − 1

µα1
C = µα1

D/(1 + σ2D
α0

) µα1
D = µα1

C/(1 − σ2C
α0

)

Table 8: Parameter transformations for the linear growth models where all underlying variable variances
are free except on the first occasion (Model C) and when all error variances are free except at the first time
point (Model D).

While these transformations are not identity functions, it is evident that parameters in

Model C are functions of the corresponding parameters in Model D divided by the under-

lying variable variance on the first occasion under that specification, that is, σ2D
Y ∗
1
= 1+σ2D

α0
.

Conversely, parameters in the theta specification are functions of the corresponding param-

eters in the Model C parameterization divided by 1−σ2C
α0
, where σ2C

α0
represents the intercept

variance in the model where all underlying variable variances are freely estimated except

on the first occasion.
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Finally, following the alternative 2 parameterization suggested by Joreskog (2001),

where all means and variances of the underlying variables are freely estimated, no restric-

tions are needed for the identification of the growth parameters, as detailed in the fourth

column on Table 5 and proven in Appendix B. For this specification, focusing on either

the Y∗
i or error variances yields the same Σ and µ constraints, as illustrated in Table 9.

Hence, these two alternative linear growth model specifications are empirically equivalent,

with parameters of the two specifications related via identity transformations.

Variances diag(ΣY∗Y∗) free Θε free
Σ constraints
1 σ4,1 = 2σ4,2 − σ4,3 σ4,1 = 2σ4,2 − σ4,3

2 2σ3,1 = 3σ3,2 − σ4,3 2σ3,1 = 3σ3,2 − σ4,3

3 σ2,1 = 3σ3,2 − 2σ4,2 σ2,1 = 3σ3,2 − 2σ4,2

µ constraints
1 µY ∗

1
= 2µY ∗

3
− µY ∗

4
µY ∗

1
= 2µY ∗

3
− µY ∗

4

2 µY ∗
2
= 3µY ∗

3
− 2µY ∗

4
µY ∗

2
= 3µY ∗

3
− 2µY ∗

4

Table 9: Σ and µ constraints for the linear growth model based on the alternative 2 delta parameterization
(diag(ΣY∗Y∗) freely estimated) and the alternative 2 theta parameterization (Θε freely estimated).

Binary data. A special case that requires further comments arises when the measured

variables are dichotomous (C = 2). Four different specifications of the linear latent growth

model can be derived based on the various parameterizations of the auxiliary model detailed

in Table 3. Identification constraints for these specifications are provided in Table 10, along

with the corresponding degrees of freedom. The degrees of freedom are computed as the

difference between the number of available information, equal to T + T (T − 1)/2, and the

number of parameters in each model.

All the constraints in Table 10 are sufficient for identifying the corresponding linear

latent growth model. The proof follows the same line as detailed in Appendix B in the pres-

ence of categorical data. Attention should be paid to the alternative specification suggested

by Muthén and Muthén (1998-2017), whose constraints are reported in the fourth column

in Table 10. Due to the dependence of the underlying variable moments (µY∗ ,ΣY∗Y∗)

on the parameters of the growth model (µα,Σαα), based on eqs. (13) and (14), we can
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Constraints

Auxiliary model
Standard Alternative 1 Alternative 1 Alternative 2

Millsap and Tein (2004) Muthén and Muthén (1998-2017)

Stage 1 µY∗ = 0 µY ∗

1
= 0 µY ∗

1
= 0

diag(ΣY∗Y∗ ) = I diag(ΣY∗Y∗ ) = I σY ∗

1
= 1 diag(ΣY∗Y∗ ) = I

τ1t = τ1 τ1t = τ1 τ1t = 0

Stage 2 µ
α

= 0 µα0 = 0 µα0 = 0

# of parameters T+3 5 T+4 5

Degrees of freedom [T(T-1)/2]-3 [T(T+1)/2]-5 [T(T-1)/2]-4 [T(T+1)/2]-5

Table 10: Identification constraints and degrees of freedom for the linear growth model for binary data.

employ fewer Stage 1 constraints than those outlined in Table 10 by taking advantage of

the model structure. In this case, the identification problem is treated simultaneously for

the thresholds, (µY∗ ,ΣY∗Y∗), and for the latent growth parameters (µα,Σαα). A formal

proof is provided in Appendix B.

It is important to note that only the alternative parameterization proposed by Millsap

and Tein (2004) and the one suggested by Joreskog (2001) share the same number of degrees

of freedom. Furthermore, they are equivalent specifications of the linear growth model, since

a surjective transformation exists that expresses the parameters of one specification as a

function of those of the other and vice versa. All the parameters (σ2
α0
, σα0α1 , σ

2
α1
, µα1) are

related by identity functions except for the threshold τ1 in the alternative parameterization

by Millsap and Tein (2004) that is equal to minus the intercept mean µα0 in the Joreskog

(2001) parameterization and vice versa.

For each parameterization, an alternative set of sufficient conditions can be derived

by replacing the constraints on diag(ΣY∗Y∗) with corresponding constraints on the error

variances Θε. The results derived for categorical data directly apply when the models are

fitted to binary observations: anytime the underlying variable or error variances are all fixed

to one, the two alternative parameterizations of the linear growth model are not empirically

equivalent. This occurs when the standard parameterization, the alternative one proposed

by Millsap and Tein (2004), and that suggested by Joreskog (2001) are considered. On the

other hand, for the parameterization suggested by Muthén and Muthén (1998-2017), the

two parameterizations based on freely estimating all but the first underlying variable or
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error variances are empirically equivalent. The parameters of the two specifications can be

expressed as one function of the other, as detailed in Table 8.

4.1.2 First-order autoregressive model

We now consider alternative parameterizations for the first-order autoregressive model. In

situations where the dependent variable is influenced by or influences other dependent vari-

ables, assumptions need to be placed on the error variances due to the improper parameter

constraints that come into play when focusing on the variances of underlying variables

(Muthén and Muthén, 1998-2017, pp. 485-486). Specifically, when autoregressive compo-

nents are present, Mplus exclusively supports theta parameterizations.

The mean and covariance matrix implied by the first-order autoregressive model can be

expressed as follows

µY∗ = (IT −BY∗Y∗)−1νY∗ , (15)

ΣY∗Y∗ = (IT −BY∗Y∗)−1Θε(IT −BY∗Y∗)−1′. (16)

Here, BY∗Y∗ contains all autoregressive effects among underlying variables, such that

(I−BY∗Y∗)−1 has the following specific structure

(I−BY∗Y∗)−1 =





















1 0 · · · 0 0

φ21 1 · · · 0 0

φ32φ21 φ32 · · · 0 0
...

... · · ·
...

...

φT (T−1) . . . φ21 φT (T−1) . . . φ32 · · · φT (T−1) 1





















.

Identification conditions for different autoregressive model specifications, along with

corresponding degrees of freedom, are presented in Table 11. Appendix B proves the

sufficiency of these constraints for model identification. Degrees of freedom are computed

based on the difference between information from the first- and second-order statistics,

equal to T (C − 1) + T (T − 1)/2, and the number of parameters in each specification.

Coherently with the analysis performed for the linear latent growth model, we still

consider alternative parameterizations based on the assumption of threshold invariance.
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Constraints

Auxiliary model
Standard Alternative 1 Alternative 2

(threshold invariance) (threshold invariance)

Stage 1 µY∗ = 0 µY ∗

1
= 0 τ1t = 0, τ2t = 1

τct = τc, c ≥ 1 τct = τc, c ≥ 3

Stage 2 Θε = I σ2
ε∗1

= 1

νY∗ = 0 νY ∗

1
= 0

# of parameters T(C-1)+(T-1) C+3T-4 C+3T-4

Degrees of freedom (T-2)(T-1)/2 (C − 4)(T − 1) +
T (T−1)

2
(C − 4)(T − 1) +

T (T−1)
2

Table 11: Identification constraints and degrees of freedom for the autoregressive model for categorical
repeated measures.

Understanding how constraints on the auxiliary model imply different or equivalent au-

toregressive model specifications is crucial. Alternative parameterizations endow the model

with (C − 4)(T − 1) + T (T − 1)/2 degrees of freedom, while the standard (theta) pa-

rameterization, which involves fixing the error means and variances on all occasions, has

(T − 2)(T − 1)/2 degrees of freedom.

When the assumption of threshold invariance is relaxed, a notable distinction is observed

between the linear latent growth and autoregressive models. The standard and alternative

autoregressive specifications are equivalent, characterized by (T − 2)(T − 1)/2 degrees of

freedom. This is unique to the autoregressive model, as the standard specification of the

linear growth model for categorical data still differs from the alternative ones.

In the Supplementary Material, we illustrate the model-implied mean and covariance

structures for each autoregressive model, focusing on a simplified scenario with four ob-

served time points. Based on these implied moments, we show that the alternative 1 (Model

E) and 2 (Model F) parameterizations, both based on threshold invariance, share the same

Σ constraints, represented by σ3,2σ4,1 = σ4,2σ3,1, σ3,2σ2,1 = σ3,1σ
2
Y ∗
2
, and σ4,3σ3,1 = σ4,1σ

2
Y ∗
3
.

Table 12 outlines the relationships between parameters of these equivalent autoregressive

model specifications.

It is evident that Model F parameters are functions of the estimated error variance on

the first occasion in Model E, while Model E parameters depend on the distance between

the two first thresholds in Model F.
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Model E in terms of Model F Model F in terms of Model E

τEc = (τFc − τF1 )/(τF2 − τF1 ) c ≥ 3 τF1 = −νE1 /σE
ε1

τF2 = (1 − νE1 )/σE
ε1

τFc = (τEc − νE1 )/σE
ε1

c ≥ 3

µE
Y ∗

t
= (µY ∗

t

F − τF1 )/(τF2 − τF1 ) t ≥ 1 µF
Y ∗

t
= (µY ∗

t

E − µE
Y ∗

1
)/σE

ε1
t ≥ 2

φE
t,t−1 = φF

t,t−1 φF
t,t−1 = φE

t,t−1

σ2E
εt = σ2F

εt /(τF2 − τF1 ) σ2F
εt = σ2E

εt /σ2E
ε1

Table 12: Parameter transformations for the autoregressive models based on the parameterization proposed
by Muthén and Muthén (1998-2017) (Model E) and the one illustrated by Mehta et al. (2004) (Model F).

Binary data. The distinct characteristics of various parameterizations of the autoregressive

model of order one become more apparent when applied to binary data. In this context,

all considered specifications yield the same degrees of freedom, as presented in Table 13. It

is straightforward to demonstrate that the parameters of each model can be expressed as

functions of the others. To simplify the presentation, Table 14 just illustrates how param-

eters in the standard parameterization (Model G) relate to those in each of the alternative

parameterizations.

Constraints

Auxiliary model
Standard Alternative 1 Alternative 1 Alternative 2

Millsap and Tein (2004) Muthén and Muthén (1998-2017)

Stage 1 µY∗ = 0 µY ∗

1
= 0µY∗ = 0 µY ∗

1
= 0 τ1t = 0

τ1t = τ1 τ1t = τ1

Stage 2 Θε = I Θε = I σ2
ε1

= 1 Θε = I

νY∗ = 0 νY ∗

1
= 0 νY∗ = 0

# of parameters 2T-1 2T-1 2T-1 2T-1

Degrees of freedom [T(T-3)/2]-1 [T(T-3)/2]-1 [T(T-3)/2]-1 [T(T-3)/2]-1

Table 13: Identification constraints and degrees of freedom for the autoregressive model for binary data.
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4.1.3 Autoregressive latent trajectory model

The ALT model integrates components from the previously discussed models, the linear

latent growth and the first-order autoregressive model. Including autoregressive effects

requires constraints to be specifically placed on the error variances rather than on the

underlying variable variances, as discussed earlier.

In eq. (11) and (12), the mean vector and covariance matrix implied by the ALT model

are directly influenced by the autoregressive component. This influence is evident through

terms such as (IT − BY∗Y∗)−1νY∗ and (IT − BY∗Y∗)−1Θε(IT − BY∗Y∗)−1′ , respectively.

Model G in terms of Model H Model H in terms of Model G

τG
11

= τH
1

τH
1

= τG
11

τG
1t = τH

1
− µH

Y ∗

t
t > 1 µH

Y ∗

t
= τG

11
− τG

1t t = 2, . . . , T

φG
t,t−1

= φH
t,t−1

t = 1, . . . , T φH
t,t−1

= φG
t,t−1

t = 1, . . . , T

Model G in terms of Model I Model I in terms of Model G

τG
0t =

τI
0

σI
εt

t = 1, . . . , T τI
0
= τG

01
t = 1, . . . , T

φG
t,t−1

= φI
t,t−1

σI
εt−1

/σI
εt

t = 1, . . . , T φI
t,t−1

= φG
t,t−1

τG
0t−1

τG
0t

t = 1, . . . , T

σI
εt

=
τG
01

2

τG
0t

2 t = 1, . . . , T

Model G in terms of Model L Model L in terms of Model G

τG
1t = −µL

Y ∗

t
t = 1, . . . , T µL

Y ∗

t
= −τG

1t t = 1, . . . , T

φG
t,t−1

= φL
t,t−1

t = 1, . . . , T φL
t,t−1

= φG
t,t−1

t = 1, . . . , T

Table 14: Parameter transformations for the autoregressive model of order one for binary data based on
the standard parameterization of the auxiliary model (Model G), following the alternative parameterization
proposed by Millsap and Tein (2004) (Model H), that proposed by Muthén and Muthén (1998-2017) (Model
I), and the one proposed by Joreskog (2001) (Model L).

Additionally, both moments depend on the interaction between the autoregressive and
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growth components. The Supplementary Material provides a detailed presentation of these

moments for various ALT model specifications under the simplified scenario of a stationary

autoregressive process with four observed occasions.

Table 15 presents identification conditions for different ALT parameterizations. These

conditions are sufficient for identification. They can be easily proven in a manner similar

to that for the linear latent growth and autoregressive model in Appendix B. The degrees

of freedom for each specification are also reported. Consistent with the previous analysis,

we consider alternative parameterizations based on the assumption of threshold invariance.

As observed for the linear growth model, both alternative parameterizations share the

same degrees of freedom, equal to C(T−1)+ T (T−7)
2

−4, while the standard parameterization

has T (T − 3)/2− 4 degrees of freedom. The model requires five occasions for identification

without imposing additional parameter constraints beyond those outlined in Table 15.

Constraints

Auxiliary model
Standard Alternative 1 Alternative 2

(threshold invariance) (threshold invariance)

Stage 1 µY∗ = 0 µY ∗

2
= 0 τ1t = 0, τ2t = 1

τct = τc, c ≥ 1 τct = τc, c ≥ 3

Stage 2 Θε = I σ2
ε∗
2

= 1

µ
α

= 0 µα0 = 0

νY∗ = 0 νY ∗

t
= 0, t ≥ 2 νY ∗

t
= 0, t ≥ 2

# of parameters TC+4 C+2T+4 C+2T+4

Degrees of freedom [T(T-3)/2]-4 C(T − 1) +
T(T−7)

2
− 4 C(T − 1) +

T (T−7)
2

− 4

Table 15: Identification constraints and degrees of freedom for the autoregressive latent trajectory model
for categorical repeated measures.

A notable difference from both the linear latent growth and autoregressive model is

that the two alternative parameterizations of the ALT model are not empirically equiva-

lent. They exhibit distinct µ and Σ constraints. To illustrate this point clearly, we consider

the simplified case of a stationary first-order autoregressive model with five observed occa-

sions. The µ constraints for the different autoregressive latent trajectory specifications, as

detailed in Table 2, are illustrated in the following Table 16.
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Parameterization Standard Alternative 1 Alternative 2
µ constraints

1 µY ∗

1
= 0 µY ∗

1
=

3µ2
Y ∗

3
−2µY ∗

3
µY ∗

4
+µ2

Y ∗

4
−µY ∗

3
µY ∗

5

µY ∗

3
−2µY ∗

4
+µY ∗

5

µY ∗

1
=

µ2
Y ∗

2
−2µY ∗

2
µY ∗

3
+3µ2

Y ∗

3
−2µY ∗

2
µY ∗

4
−3µY ∗

4
µY ∗

3
+µ2

Y ∗

4
µY ∗

3
−2µY ∗

4
+µY ∗

5

+
2µY ∗

2
µY ∗

5
−µY ∗

3
µY ∗

5
µY ∗

3
−2µY ∗

4
+µY ∗

5

2 µY ∗

2
= 0 µY ∗

2
= 0

3 µY ∗

3
= 0

4 µY ∗

4
= 0

Table 16: µ constraints for the different autoregressive latent trajectory model specifications.

The three ALT specifications also exhibit different Σ constraints, which are detailed

in the Supplementary Material due to space constraints. Attempting to establish a corre-

spondence between the parameters of the two alternative parameterizations, as requested

by Raykov and Penev (1999), proves unsuccessful when equating corresponding elements

in the implied covariances matrices. Consequently, the assumptions made for the identifi-

cation of the auxiliary model strongly influence the specification and interpretation of the

ALT model for Y∗
i .

Binary data. Moving on to the analysis of binary data, the ALT model inherits the discrep-

ancies observed in the alternative specifications for categorical data. In this context, none

of the proposed parameterizations of the auxiliary model leads to equivalent specifications

of the ALT model. Despite the fact that the alternative specifications proposed by Millsap

and Tein (2004) and Joreskog (2001) yield the same degrees of freedom, as presented in

Table 17, the parameters of each model cannot be expressed as functions of the others, as

required by Raykov and Penev (1999).

Table 17 provides sufficient identification conditions for each model, along with corre-

sponding degrees of freedom. Five waves of data are necessary - under each parameteriza-

tion - to identify the model without placing additional constraints on the model parameters.

This is coherent with what was observed in the presence of continuous observations (Bollen

and Curran, 2004). Based on these findings, researchers should carefully consider the impli-

cations of selecting specific parameterizations of the autoregressive latent trajectory model,

as evidenced by the NLSY97 data analysis, where different choices significantly influenced

the interpretation of the results.
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Constraints

Auxiliary model
Standard Alternative 1 Alternative 1 Alternative 2

Millsap and Tein (2004) Muthén and Muthén (1998-2017)

Stage 1 µY∗ = 0 µY ∗

2
= 0 µY∗ = 0

τ1t = τ1 τ1t = τ1 τ1t = 0

Stage 2 Θε = I Θε = I σ2
ε2

= 1 Θε = I

νY∗ = 0 νY ∗

t
= 0, t ≥ 2 νY∗ = 0 νY ∗

t
= 0, t ≥ 2

µ
α

= 0 µα0 = 0 µ
α

= 0

# of parameters 2T+4 T+7 2T+4 T+7

Degrees of freedom [T(T-3)/2]-4 [T(T-1)/2]-7 [T(T-3)/2]-4 [T(T-1)/2]-7

Table 17: Identification constraints and degrees of freedom for the autoregressive latent trajectory model
for binary data.

4.2 Estimation

The correlation matrix (standard parameterization) or the mean vector and unconstrained

covariance matrix (alternative parameterizations) estimated based on the auxiliary model

specification - as described in Section 3.3 - are utilized to derive point estimates for the

parameters of the dynamic model specified for Y∗
i . Various estimators apply to estimate

the structural parameters in a SEM. We specifically focus on the Diagonally Weighted

Least Squares (DWLS) estimator, which is the default choice in Mplus 8.6 and lavaan

0.6-16. Once R̂Y∗Y∗ or (µ̂Y∗ , Σ̂Y∗Y∗) are available, all parameters of SEM are estimated

simultaneously.

To begin, we organize the estimated means µ̂Y∗ and all the diagonal and below diagonal

elements in Σ̂Y∗Y∗ (or R̂Y∗Y∗) into a vector ρ̂. Similarly, we place the implied moments

µY ∗ and ΣY∗Y∗ in a vector ρ(θ), where θ contains the SEM parameters. The DWLS

estimator is then determined by minimizing

FDWLS = [ρ̂− ρ(θ)]′diag(Σρ̂ρ̂)
−1[ρ̂− ρ(θ)],

where Σρ̂ρ̂ is the asymptotic covariance matrix of ρ̂ whose derivation has been widely

detailed in Muthén (1984), Joreskog (1994), and Muthén and Satorra (1995).

The parameters θ are chosen to minimize the weighted sum of squared deviations of

[ρ̂ − ρ(θ)]. The FDWLS is consistent, asymptotically unbiased, and normally distributed
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(Browne, 1984). However, it lacks asymptotic efficiency. Default standard errors are no

longer accurate, and goodness of fit tests no longer follow a χ2 distribution. To address this,

robust standard errors are obtained by considering the following sandwich-type asymptotic

covariance matrix of the parameter estimates θ̂ (Muthén et al., 1997)

Σθ̂θ̂ = n−1

[(

∂ρ(θ)

∂θ

)′

diag(Σρ̂ρ̂)
−1

(

∂ρ(θ)

∂θ

)]−1(
∂ρ(θ)

∂θ

)′

diag(Σρ̂ρ̂)
−1Σ−1

ρ̂ρ̂

× diag(Σρ̂ρ̂)
−1

(

∂ρ(θ)

∂θ

)[(

∂ρ(θ)

∂θ

)′

diag(Σρ̂ρ̂)
−1

(

∂ρ(θ)

∂θ

)]−1

.

The square root of the main diagonal at the estimated parameters represents the robust

standard errors of the parameter estimates. Mean and variance-adjusted chi-square statis-

tics have been proposed to approximate the shape of the test statistics to the reference

chi-square distribution with the associated degrees of freedom. The WLSMV estimator,

which is the default estimator in Mplus 8.6 and lavaan 0.6-16 for models with endogenous

categorical variables, relies on the Satterthwaite (1941) type correction. We refer the reader

to Satorra and Bentler (1994) and Muthén et al. (1997) for its detailed description.

5 Illustrative example: longitudinal model parame-

terizations

To substantiate the theoretical insights presented in the paper, we applied the multivariate

ALT models using both the standard and alternative (1 and 2) parameterizations, where

threshold invariance is assumed. The results for illegal drug use (drug), depressive symp-

toms (depr), and general health status (health) are presented in Table 18. The different fit

statistics for these models highlight their distinct specifications.

Significant estimates are selectively displayed in the table for clarity, and parameters are

grouped based on their relevance to either the cross-lagged/autoregressive component of

ALT or the multivariate latent growth part. Thresholds and error variances are not reported

here due to space constraints but are all found to be significantly different from zero. All

models demonstrate a comparable fit to the data, with a slightly superior performance

observed for the ALT based on the alternative 2 parameterization.
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Standard Alternative 1 Alternative 2 Standard Alternative 1 Alternative 2

Parameters threshold invariance threshold invariance Parameters threshold invariance threshold invariance

cross-lagged and autoregressive effects concomitant effects

φdrug6,drug4 0.467 (***) 0.326 (***) 0.356 (***) σdrug4,depr4 0.111 (***) 0.185 (***) 0.123 (***)
φdrug8,drug6 0.444 (***) 0.357 (***) 0.338 (***) σdrug4,health4 -0.198 (***) -0.411 (***) -0.268 (***)
φdrug8,depr6 0.103 0.091 0.155 (*) σdepr4,health4 -0.209 (***) -0.369 (***) -0.186 (***)
φdrug10,drug8 0.382 (***) 0.279 (***) 0.438 (***) σdrug6,depr6 0.238 (**) 0.209 (**) 0.172 (***)
φdrug10,depr8 0.106 0.085 0.149 (*) σdrug6,health6 -0.360 (***) -0.325 (***) -0.234 (***)

φdrug10,health8 -0.192 (***) -0.135 (***) -0.241 (***) σdepr6,health6 -0.323 (***) -0.309 (***) -0.165 (***)
φdrug12,health10 -0.094 -0.072 (*) -0.095 σdepr8,health8 -0.225 (***) -0.206 (***) -0.099 (***)

φdepr6,depr4 0.048 0.081 (*) 0.077 (*) σdepr10,health10 -0.153 (***) -0.135 (***) -0.065 (***)
φdepr6,health4 -0.213 (***) -0.133 (***) -0.123 (***) σdepr12,health12 -0.336 (***) -0.288 (***) -0.134 (***)
φdepr8,depr6 0.115 (**) 0.122 (***) 0.131 (***) σdrug14,health14 -0.181 (*) -0.096 -0.068

φdepr8,health6 -0.170 (***) -0.153 (***) -0.174 (***) σdepr14,health14 -0.515 (***) -0.484 (***) -0.246 (***)
φdepr10,drug8 0.087 (*) 0.089 (*) 0.066 (*)
φdepr10,depr8 0.163 (***) 0.133 (***) 0.161 (***)

φdepr10,health8 -0.238 (***) -0.215 (***) -0.220 (***) Multivariate linear latent growth component
φdepr12,depr10 0.166 (***) 0.182 (***) 0.154 (***)
φdepr12,health8 -0.216 (***) -0.210 (***) -0.225 (***)
φdepr14,depr12 0.132 (**) 0.164 (***) 0.180 (***) µαdepr,1 0 -0.089 (***) 0.041 (**)

φdepr14,health12 -0.334 (**) -0.314 (***) -0.292 (***) µαhealth,0 0 0 2.399 (***)
φhealth6,drug4 -0.132 (**) –0.093 (**) –0.067 (**) µαhealth,1 0 -0.091 (***) -0.183 (***)
φhealth6,depr4 -0.261 (**) -0.218 (**) -0.205 (**)

φhealth6,health4 0.090 (**) 0.063 (**) 0.075 (**)
φhealth8,drug6 -0.160 (***) -0.145 (***) -0.102 (***) σ2

αdepr,0
0.571 (***) 0.452 (***) 0.210 (***)

φhealth8,depr6 -0.243 (***) -0.240 (***) -0.249 (***) σ2
αhealth,0

0.939 (***) 0.890 (***) 0.380 (***)

φhealth8,health6 0.099 (***) 0.099 (***) 0.124 (***)
φhealth10,drug8 -0.111 (***) -0.125 (***) -0.098 (***)
φhealth10,depr8 -0.241 (***) -0.262 (***) -0.246 (***) σαdrug,0αhealth,0 0.323 (**) 0.264 (**) 0.197 (***)

φhealth10,health8 0.177 (***) 0.166 (***) 0.176 (***) σαdrug,0αhealth,1 -0.060 (*) -0.038 -0.027
φhealth12,drug10 -0.069 (*) -0.100 (*) -0.059 (*) σαdrug,1αhealth,0 -0.062 -0.053 (*) -0.042 (**)
φhealth12,depr10 -0.266 (***) -0.297 (***) -0.288 (***) σαdrug,1αhealth,1 0.026 (*) 0.015 (*) 0.012 (*)

φhealth12,health10 0.177 (***) 0.183 (***) 0.185 (***) σαdepr,0αhealth,0 0.388 (***) 0.356 (***) 0.190 (***)
φhealth14,drug12 -0.105 (**) -0.169 (**) -0.112 (**) σαdepr,0αhealth,1 -0.105 (***) -0.096 (***) -0,050 (***)
φhealth14,depr12 -0.334 (***) -0.357 (***) -0.362 (***) σαdepr,1αhealth,0 -0.102 (***) -0.092 (***) -0.049 (***)

φhealth14,health12 0.211 (***) 0.275 (***) 0.242 (***) σαdepr,1αhealth,1 0.049 (***) 0.044 (***) 0.022 (***)
σαhealth,0αhealth,1 -0.067 (*) -0.059 (*) -0.019

χ2 253.187 300.692 266.853
df 63 84 84

p-value 0.000 0.000 0.000
CFI (TLI) 0.994 (0.986) 0.994 (0.988) 0.995 (0.990)
RMSEA 0.024 0.022 0.020
BIC -287.174 -419.789 -453.629

Table 18: (Significant) parameter estimates for different parameterizations of the ALT model. [(∗): significant at 5% level. (∗∗): significant at 1%
level. (∗∗∗): significant at 0.1% level.]
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Examining the cross-lagged relationships among the underlying variables, we consis-

tently find that the perception of health status at each wave is influenced by both the prior

perception and the propensities of using illegal drugs and being depressed in the preced-

ing period. The propensity for being depressed on a given occasion is influenced by the

propensity at the previous occasion and the prior perception of health status. Notably, the

standard parameterization indicates a non-significant autoregressive effect in wave 6.

Divergent conclusions emerge regarding the cross-lagged and autoregressive relationship

for the drug variable in different parameterizations. While all models detect a significant

influence of prior drug use propensity on the current level during the late adolescence period

(waves 4, 6, and 8), additional influences of the prior depressive symptoms propensity are

found only in the model based on the alternative 2 parameterization proposed by Mehta

et al. (2004).

In the adulthood period (waves 10-12-14), the two alternative parameterizations esti-

mate a significant impact of the previous general health status on the propensity of using

drugs, aligning with the findings by Silver et al. (2023).

Consistent conclusions are drawn across all parameterizations in terms of concomitant

effects. Regarding the associative multivariate growth component of ALT models, both

the growth components (intercept and slope) associated with the underlying variables of

depressive symptoms and general health status are correlated.

On the other hand, the intercept and slope associated with the propensity to use drugs

correlate with the intercept and slope of the health status variable, respectively. None of

the growth components specific to each variable correlate with each other, except for the

perception of the health status, but not in the alternative 2 parameterization.

In the standard parameterization, the intercept associated with the drug’s underlying

variable correlates with the slope of the general health variable; conversely, in the alternative

parameterizations, the slope of the drug variable correlates with the intercept of the health

status variable.

Hence, these empirical results underscore the critical impact of alternative parameter-

izations in autoregressive latent trajectory models on the conclusions that researchers can

draw when applying these models to real data.
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6 Conclusions

In this paper, we have undertaken a thorough examination of how various scaling con-

straints, implemented to ensure model identification, influence the specification of struc-

tural equation models used in the analysis of longitudinal categorical data. Our study

combines theoretical considerations with empirical validations, providing essential insights

into the potential consequences of different parameterization choices.

We focused our attention on ALT models and their special cases: the linear latent

growth and first-order autoregressive model. Theoretical investigations have revealed that

different parameterizations of the auxiliary model can yield different specifications of the

linear latent growth model and of the autoregressive model that, in some cases, are equiva-

lent. Equivalence between alternative specifications has been proven following the approach

proposed by Raykov and Penev (1999), such that one-to-one relationships between the pa-

rameters of these equivalent specifications have been derived. However, we have shown that

when the latent growth model and first-order autoregressive component are jointly consid-

ered in the ALT model, different specifications of the auxiliary models imply nonequivalent

ALT specifications that are characterized by different constraints on µ and Σ.

The implications of the different nonequivalent parameterizations of the ALT model

have been evaluated empirically using data from the National Longitudinal Survey of Youth

1997 (NLSY97) cohort in examining the relationship between illegal drug use, depressive

symptoms, and general health status. By fitting different specifications of the autoregressive

latent trajectory model to these data, temporal influences on health perception emerge as a

consistent pattern, revealing significant associations between prior perceptions, propensities

for drug use, depressive symptoms, and perceived health status.

The examination of the causes affecting the propensity to use illegal drugs reveals sensi-

tivity to parameterization choices since different specifications can provide us with different

answers. Using alternative parametrizations showed us that there are extra factors influ-

encing the propensity of using drugs beyond what the standard model suggests. This

emphasizes how researchers need to be careful when picking and imposing different iden-

tification constraints. We suggest that the alternative parameterization of the auxiliary

model proposed by Joreskog (2001) be more widely adopted, as it closely aligns with the
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case of observed continuous variables and provides a more coherent approach than what is

often used in practice.

Drawing strength from the comprehensive exploration of both theoretical considerations

and empirical validations, our study leverages data from the National Longitudinal Survey

of Youth 1997 (NLSY97) cohort. This dataset provides a robust empirical foundation,

aligning seamlessly with the theoretical framework and enhancing the credibility of our

findings. Future research could extend these insights by exploring diverse datasets to

validate observed patterns across different populations. Additionally, while our focus on

specific models provides depth in understanding these structures, further research is needed

to explore the applicability of our findings to other SEM configurations.

In conclusion, this paper contributes valuable insights into the complexities of parame-

terization choices in SEMs for longitudinal categorical data.
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Appendix A. One-to-one relationship between alterna-

tive parameterizations of the auxiliary model

A one-to-one correspondence between the parameters of the two alternative parameteriza-

tions of the auxiliary model can be derived. On the first occasion,

τalt11 = −
µalt2
Y ∗
1

σY ∗
1

alt2 , τalt12 =
1−µalt2

Y ∗
1

σY ∗
1

alt2 , τalt1c1 =
τalt2c1 −µalt2

Y ∗
1

σY ∗
1

alt2 , c = 3, . . . C.

On subsequent occasions,

σalt1
Y ∗
t

=
σalt2
Y ∗
t

σalt2
Y ∗
1

, µalt1
Y ∗
t

=
µalt2
Y ∗
t

−µalt2
Y ∗
1

σalt2
Y ∗
1

, τalt1ct =
τalt2ct −µY ∗

1

alt2

σalt2
Y ∗
1

, c = 3, . . . C, t = 2, . . . , T.

Conversely, the parameters of the alternative 2 parameterization are functions of those

under the alternative 1 specification as follows

σalt2
Y ∗
t

=
σalt1
Y ∗
t

τalt12 −τalt11
, µalt2

Y ∗
t

=
µalt1
Y ∗
t

−τalt11

τalt12 −τalt11
, τalt2ct =

τalt1ct −τalt11

τalt12 −τalt11
, c = 3, . . . C, t = 1, . . . , T.

Appendix B. Model identification

B1. Linear latent growth models for categorical repeated measures

Sufficient conditions for the identification of the linear latent growth model for categorical

data are discussed here. We consider the three different parameterizations proposed in

Section 4.1.1, based on the standard and alternative specifications of the auxiliary model.

We also disentangle between the cases in which variance constraints are placed on the

underlying variable or on error variances.

Standard linear latent growth model parameterizations

Sufficient conditions for the identification of the linear latent growth model based on the

standard parameterization of the auxiliary model are
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Stage 1. µY∗ = 0 and diag(ΣY∗Y∗) = I.

Stage 2. µα = 0.

In this parameterization, the T (C−1)+3 parameters to be identified are the time-dependent

thresholds, τ stdct , c = 1, . . . , C − 1, t = 1, . . . , T , and the variance-covariance matrix of the

growth components Σαα.

Stage 1 conditions imply the identification of the thresholds on all occasions. The un-

derlying variables are standard normal on each occasion, and estimation for all thresholds

are formed as percentiles from the standard normal distribution based on observed frequen-

cies for Yi, the measured variables. Stage 2 constraints are sufficient for the identification

of all the parameters of the growth model (µα,Σαα). Based on the Stage 1 constraints, the

implied mean condition in eq. (13) is satisfied if µα = 0, being BY∗α a matrix of constant

quantities.

The implied polychoric correlations ρY ∗
t Y ∗

t′
depend on the growth parameters as follows

ρY ∗
t Y ∗

t′
= σ2

α0
+ (t + t′ − 2)σα0α1 + (t− 1)(t′ − 1)σ2

α1
.

The T (T − 1)/2 polychoric correlations are directly estimable, and these known quantities

can be used to identify Σαα. As in the presence of continuous data, at least three waves

of data (T ≥ 3) are needed for Σαα to be identified without further restrictions. Indeed,

the first three correlations are given by

ρY ∗
1 Y ∗

2
= σ2

α0
+ σα0α1

ρY ∗
1 Y ∗

3
= σ2

α0
+ 2σα0α1

ρY ∗
2 Y ∗

3
= σ2

α0
+ 3σα0α1 + 2σ2

α1

These equations lead to an expression of the growth parameters, σ2
α0
, σα0α1 and σ2

α1
, in

terms of identified quantities. That is, σ2
α0

= 2ρY ∗
1 Y ∗

2
− ρY ∗

1 Y ∗
3
, σα0α1 = ρY ∗

1 Y ∗
3
− ρY ∗

1 Y ∗
2

and σ2
α1

= ρY ∗
2 Y ∗

3
− ρY ∗

1 Y ∗
3
+ ρY ∗

1 Y ∗
2
. This ensures the identification of Σαα. The error

variances Θε are not parameters but are determined as remainder in eq. (14). That is,

Θε = I−BY∗αΣααB
′
Y∗α.
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When the theta parameterization is adopted, in the Stage 1 conditions diag(ΣY∗Y∗) = I

is replaced by Θε = I, whereas all other constraints remain the same. The proof of

identification of this alternative specification begins by considering the expression for the

cth standardized threshold of Y ∗
i1 at the first occasion, that is,

τ stdc1 =
τc1

√

σ2
α0

+ 1
,

where σ2
α0

is the variance of the random intercept. On subsequent occasions,

τ stdct =
τct

√

σ2
α0

+ 2(t− 1)σα0α1 + (t− 1)2σ2
α1

+ 1
.

For the thresholds to be identified, we need to prove the identification of the covariance

matrix of the growth components Σαα. We recall that the correlation matrix of the latent

response variates can be written as

RY∗Y∗ = ∆(BY∗αΣααBY∗α + I)∆ = ∆BY∗αΣααBY∗α∆+∆2,

with ∆ being the diagonal “scaling” matrix in Mplus 8.6, with diagonal elements equal to

1/σY ∗
t
, t = 1, . . . , T . RY∗Y∗ for the two growth factors can be factorized as

RY∗Y∗ = PΣααP+Ψ,

withΨ a T×T diagonal matrix, Σαα the 2×2 factor covariance matrix, and P a T×2 load-

ing matrix. This factoring is unique given that (P,Σαα) ensure a rotational uniqueness. It

follows that Ψ, and consequently ∆, is identified. This identifies diag(ΣY∗Y∗), and we can

identify the full matrix ΣY∗Y∗ through rescaling of RY∗Y∗ . This ensures the identification

of Σαα as detailed before. As a consequence, all the thresholds τct, c = 1, . . . , C − 1, t =

1, . . . , T , are identified based on the equations given above.

Alternative 1 parameterization of the linear growth model

Under the alternative parameterization proposed by Muthén and Asparouhov (2002), suf-

ficient conditions for the identification of the linear growth model are:
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Stage 1. 1. µalt1
Y ∗
1

= 0 and σalt1
Y ∗
1

= 1.

2. At all occasions, τalt1ct = τalt1c , c = 1, . . . , C − 1.

Stage 2. 3. µα0 = 0.

We have (C + 3) parameters to identify, that is (C − 1) time-invariant thresholds, the

mean of the slope factor, and the three variances and covariance of the growth factors.

First, we note that condition 1 ensures the identification of all the thresholds on the first

occasion, and their estimates are formed as standard normal percentiles based on the ob-

served frequencies of Yi1. A second consequence of condition 1 is that all the thresholds

that are constrained to invariance based on condition 2 are identified by the values on the

first occasion. Based on conditions 1 and 2, the means and variances of the underlying

variables on subsequent occasions are also identified. To see this, consider the two stan-

dardized thresholds that are directly estimable using the observed frequencies of Yit. They

are given by

τ std1t =
τalt11 − µalt1

Y ∗
t

σalt1
Y ∗
t

, τ std2t =
τalt12 − µalt1

Y ∗
t

σalt1
Y ∗
t

,

These are two equations in two unknowns: µalt1
Y ∗
t

and σalt1
Y ∗
t
. We can solve for them, proving

their identification. The solutions for µalt1
Y ∗
t

on each occasion immediately lead to a solution

for µα based on constraint 3 and on the implied mean condition in eq. (13).

Next, the identification of the growth factor covariance matrix Σαα derives directly

from the identification of the variances of the underlying variables diag(ΣY∗Y∗) and their

polychoric correlations RY∗Y∗ . In particular, based on the implied covariance matrix (14)

under this parameterization, it can be easily shown that

σalt1
Y ∗
2
rY ∗

1 Y ∗
2

= σ2
α0

+ σα0α1

σalt1
Y ∗
3
rY ∗

1 Y ∗
3

= σ2
α0

+ 2σα0α1

σalt1
Y ∗
2
σalt1
Y ∗
3
rY ∗

2 Y ∗
3

= σ2
α0

+ 3σα0α1 + 2σ2
α1

All the quantities on the left-hand side of each equation are known to be identified. We

have three equations in three unknowns, σ2
α0
, σα0α1 and σ2

α1
. We can solve for them, which

are then identified. As in the previous case, at least three waves of data (T ≥ 3) are needed
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for Σαα to be identified without further restrictions.

An alternative set of constraints is obtained by replacing σ2alt1
Y ∗
1

= 1 with σ2
ε1

= 1 in

condition 1, and allowing the error variances on subsequent occasions to be free parameters.

That is,

Stage 1. 1. µalt1
Y ∗
1

= 0 .

2. At all occasions, τalt1ct = τalt1c , c = 1, . . . , C − 1.

Stage 2. 3. σ2
ε1
= 1.

4. µα0 = 0.

Conditions 1-4 are also sufficient for identification. To understand this part, we recall

the Raykov and Penev (1999) relationship that exists between the thresholds and growth

parameters under this theta specification and the corresponding parameters under the al-

ternative (delta) parameterization, as detailed in Table 8. Hence, identifying the thresholds

and growth parameters based on the theta parameterization follows from identifying the

parameters under their delta counterparts.

Alternative 2 parametrization of the linear growth model

Under the alternative parameterization proposed by Mehta et al. (2004), the only sufficient

condition for the identification of the linear growth model is:

Stage 1. 1. At all occasions, τalt21t = 0, τalt22t = 1, and τalt2ct = τalt2c , c = 3, . . . , C − 1.

This linear growth model specification depends on (C−3) thresholds, two means of the

growth factors, and their three variances and covariances for a total of (C+2) parameters.

Condition 1 ensures the identification of the means and variances of Y ∗
it on each occasion.

Indeed, the first two standardized thresholds on a given occasion are given by

τ std1t =
−µalt2

Y ∗
t

σalt2
Y ∗
t

, τ std2t =
1− µalt2

Y ∗
t

σalt2
Y ∗
t

.

These are two equations in two unknowns: µalt2
Y ∗
t

and σalt2
Y ∗
t
, that are given by
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σalt2
Y ∗
t

= 1
τstd2t −τstd1t

, µalt2
Y ∗
t

= −
τstd1t

τstd2t −τstd1t
.

Similarly, it can be easily shown that also all the thresholds are identified as

τalt2ct =
τstdct −τstd1t

τstd2t −τstd1t
, c = 3, . . . , C. The solution for µY∗ immediately leads to a solution for

µα, due to the implied mean condition µY∗ = BY∗αµα, where BY∗α is a constant matrix.

Finally, the identification of the growth factor covariance matrix Σαα derives directly

from the identification of the underlying variable variances diag(ΣY∗Y∗) and their poly-

choric correlations. Based on the implied covariance matrix (14) under this parameteriza-

tion, it can be easily shown that

σY ∗
2
rY ∗

1 Y ∗
2

= σ2
α0

+ σα0α1

σY ∗
3
rY ∗

1 Y ∗
3

= σ2
α0

+ 2σα0α1

σY ∗
2
σY ∗

3
rY ∗

2 Y ∗
3

= σ2
α0

+ 3σα0α1 + 2σ2
α1

All the quantities on the left-hand side of each equation are known to be identified. We

have three equations in three unknowns, σ2
α0
, σα0α1 and σ2

α1
. We can solve for them, and this

ensures their identification. As in the previous case, at least three waves of data (T ≥ 3)

are needed to identify the latter without further restrictions.

When the theta parameterization is adopted, condition 1 on the thresholds is still

sufficient for the model identification, which proceeds in a similar manner to that detailed

above.

B2. Linear latent growth models for binary repeated measures

The identification of the linear latent growth models for binary data, as reported in Table

10, closely follows the same line outline earlier for categorical data. It is important to take

note of the alternative specification suggested by Muthén and Muthén (1998-2017).
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Alternative 1 parametrization by Muthén and Muthén (1998-2017) of the

linear growth model

Under the alternative parameterization proposed by Muthén and Asparouhov (2002), the

identification of the linear growth model relies on the following sufficient conditions:

Stage 1. 1. µalt1
Y ∗
t

= 0, t = 1, . . . , T , and σalt1
Y ∗
1

= 1.

2. At all occasions, τalt11t = τalt11 .

Stage 2. 3. µα0 = 0.

Due to the interdependence of the underlying variable moments (µY∗ ,ΣY∗Y∗) on growth

parameters (µα,Σαα), as detailed in eqs. (13) and (14), we can apply fewer constraints

than those specified in Stage 1. This is achieved by simultaneously addressing the identi-

fication problem for both the thresholds, (µY∗ ,ΣY∗Y∗) and the latent growth parameters

(µα,Σαα).

Assuming a standard normal distribution for the underlying variable at the first occasion

facilitates the identification of the threshold τ11. In conjunction with condition 2, all

thresholds are identified. For subsequent occasions, considering µalt1
Y ∗
t

= µα1(t − 1), fixing

another variance, e.g. σ2alt1
Y ∗
2

= 1, is sufficient to identify all the means and variances of the

underlying variables. Specifically, with the standardized threshold τ std12 = τalt11 − µα1 , the

slope mean µα1 is identified. Consequently, based on τ std1t =
τalt11 −µα1 (t−1)

σalt1
Y ∗
t

, all the variances

of the underlying variables are identified.

The proof of identification for Σαα follows a similar approach to the categorical case.

B3. Autoregressive of order one models for categorical repeated

measures

Sufficient conditions for the identification of the autoregressive model for categorical data

are discussed here. We consider the three different parameterizations proposed in Section

4.1.2 based on the standard and alternative specifications of the auxiliary model. The

latter are based on the assumption of threshold invariance. However, if this assumption is

relaxed, proofs follow in the same fashion as detailed here.
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Standard (theta) autoregressive model parameterization

Sufficient conditions for the identification of the autoregressive of order one model based

on the standard parameterization of the auxiliary model are

Stage 1. 1. µY∗ = 0

Stage 2. 2. Θε = I

3. νY∗ = 0.

In this parameterization, the parameters to be identified are the T (C − 1) time-dependent

thresholds, τ stdct , c = 1, . . . , C − 1, t = 1, . . . , T , and the (T − 1) autoregressive coefficients

φt,t−1, t = 2, . . . , T .

On the first occasion, conditions 1 and 2 ensure the identification of all the thresholds

τ stdc1 , c = 1, . . . , C − 1, determined as percentiles of the standard normal based on the

observed frequencies of Yi1. On the subsequent occasions, we consider the standardized

thresholds, known to be directly estimable, that can be expressed as

τ stdct =
τct

√

1 +
∑t−1

s=1

∏t−1
u=sφ

2
u+1,u

where φu+1,u is the autoregressive coefficient of the relationship of Y ∗
iu+1 on Y ∗

iu.

The T (T − 1)/2 polychoric correlations are directly estimable, and these known quan-

tities can be used to identify φt,t−1, t = 2, . . . , T . Based on this model specification,

ρY ∗
2 Y ∗

1
= φ21/

√

1 + φ2
21

such that φ21 results identified. Iterating the procedure, it can be proved that also

φ32 =
σ∗
Y2

ρY ∗
4 Y ∗

2

ρY ∗
4

Y ∗
1

is identified. In general, all the autoregressive coefficients can be expressed

as

φt,t−1 =
σ∗
Yt−1

ρY ∗
t+1Y

∗
t−1

ρY ∗
t+1Y

∗
1

.

From the identification of the autoregressive coefficients, the identification of the thresholds

follows. Hence, the model is identified.
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Alternative 1 parametrization of the autoregressive model

Under the alternative parameterization proposed by Muthén and Asparouhov (2002), suf-

ficient conditions for the identification of the autoregressive model are:

Stage 1. 1. µalt1
Y ∗
1

= 0.

2. At all occasions, τalt1ct = τalt1c , c = 1, . . . , C − 1.

Stage 2. 3. σ2
ε1

= 1.

4. νY ∗
1
= 0.

We have (C + 3T − 4) parameters to identify, that is, (C − 1) time-invariant thresholds,

(T − 1) intercepts, (T − 1) autoregressive coefficients, and (T − 1) error variances. First,

we note that condition 1 and 3 ensures the identification of all the thresholds on the

first occasion, and their estimates are formed as standard normal percentiles based on the

observed frequencies of Yi1. A second consequence of condition 1 is that all the thresholds,

constrained to invariance based on condition 2, are identified by the values on the first

occasion. Based on conditions 1-3, the means and variances of the underlying variables

on subsequent occasions are also identified. To see this, consider the two standardized

thresholds that are directly estimable using the observed frequencies of Yit. They are given

by

τ std1t =
τalt11 − µalt1

Y ∗
t

σalt1
Y ∗
t

τ std2t =
τalt12 − µalt1

Y ∗
t

σalt1
Y ∗
t

These are two equations in two unknowns: µalt1
Y ∗
t

and σalt1
Y ∗
t
. We can solve for them, proving

their identification. These known identified variances can be used for identification of the

autoregressive coefficients φt,t−1, t = 2, . . . , T . Indeed, the polychoric correlations implied

by this model specification are such that

σalt1
Y ∗
2
rY ∗

2 Y ∗
1
= φ21

That is, φ21 is identified. Furthermore, being σalt1
Y ∗
3
rY ∗

3 Y ∗
1
= φ32φ21, also φ32 is identified. In

general, it follows that

φt,t−1 =
ρY ∗

t Y ∗
1
σalt1
Y ∗
t

ρY ∗
t−1Y

∗
1
σY ∗

t−1

.
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Hence, all autoregressive coefficients are identified. The solution for µY∗ and BY∗Y∗ im-

mediately lead to a solution for νY∗ based on the implied mean condition given in eq. (15).

Furthermore, based on the implied covariance matrix (16), the identification of BY∗Y∗ and

diag(ΣY∗Y∗) lead to the identification of Θε.

Alternative 2 parametrization of the autoregressive of order one model

Under the alternative parameterization proposed by Mehta et al. (2004), the only sufficient

condition for the identification of the autoregressive model is

Stage 1. 1. At all occasions, τalt21t = 0, τalt22t = 1, and τalt2ct = τalt2c , c = 3, . . . , C − 1.

The parameters to be estimated in this autoregressive model specification are (C − 3)

thresholds, T intercepts, T −1 autoregressive coefficients, and T error variances. Condition

1 ensures the identification of the means and variances of Y ∗
it on each occasion. Indeed, the

first two standardized thresholds on a given occasion are

τ std1t =
−µalt2

Y ∗
t

σalt2
Y ∗
t

, τ std2t =
1− µalt2

Y ∗
t

σalt2
Y ∗
t

.

These are two equations in two unknowns: µ∗
Yt

and σY ∗
t
, that are given by

σalt2
Y ∗
t

= 1
τstd2t −τstd1t

, µalt2
Y ∗
t

= −
τstd1t

τstd2t −τstd1t
.

Similarly, it can be easily shown that also all the thresholds are identified as

τalt2ct =
τstdct −τstd1t

τstd2t −τstd1t
, c = 3, . . . , C. Hence, the identification of νY∗ ,Θε, and BY∗Y∗ proceeds

in the same way as detailed for the alternative 1 parameterization.
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