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Algorithms yield upper bounds in
differential algebra
Wei Li, Alexey Ovchinnikov, Gleb Pogudin, and Thomas Scanlon
Abstract. Consider an algorithm computing in a differential field with several commuting deriva-
tions such that the only operations it performs with the elements of the field are arithmetic
operations, differentiation, and zero testing. We show that, if the algorithm is guaranteed to
terminate on every input, then there is a computable upper bound for the size of the output of
the algorithm in terms of the size of the input. We also generalize this to algorithms working with
models of good enough theories (including, for example, difference fields).

We then apply this to differential algebraic geometry to show that there exists a computable
uniform upper bound for the number of components of any variety defined by a system of
polynomial PDEs. We then use this bound to show the existence of a computable uniform upper
bound for the elimination problem in systems of polynomial PDEs with delays.

1 Introduction

Finding uniform bounds for problems and quantities (e.g., consistency testing or
counting of solutions) is one of the central questions in differential algebra. In [27],
it was demonstrated that, in commutative algebra, one can show the existence of
such bounds as a consequence of theorems about nonstandard extensions of standard
algebraic objects. This approach was successfully applied in the differential algebra
context in [11] and [8, Section 6] for establishing, for example, the existence of a
uniform bound in the differential Nullstellensatz. Furthermore, in [26], the authors
used methods of proof theory to extract explicit bounds based on nonstandard
existence proofs.

The present paper can be viewed as an alternative approach, in which we derive
the existence of a computable uniform bound for an object from the existence of an
algorithm for computing the object. More precisely, let T be a complete decidable
theory. The most relevant examples for us would be the theory of differentially
closed fields in zero characteristic with m commuting derivations and the theory of
existentially closed difference fields, others include algebraically closed and real closed
fields. Consider an algorithm A performing computations in a model of T that is
restricted to using only definable functions when working with elements of the model
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(for formal definition, we refer to Section 4.1) and required to terminate for every
input.

We show that there is a computable upper bound for the size of the output of A in
terms of the input size of A. We apply this to the Rosenfeld–Gröbner algorithm [3]
that decomposes a solution set of a system of polynomial PDEs into components and
is such an algorithm. This allows us to show that there is a uniform upper bound for
the number of components of any differential-algebraic variety defined by a system of
polynomial PDEs. We also show how this bound for the number of components leads
to a uniform upper bound for the elimination problem in systems of polynomial PDEs
with delays.

A bound for the number of components of varieties defined by polynomial ODEs
appeared in [18], as did a bound for the elimination problem for polynomial ODEs
with delays. These bounds are based on the application of the Rosenfeld–Gröbner
algorithm, which, if applied in this situation to ODEs, outputs equations whose order
does not exceed the order of the input. This allowed to restrict to a finitely generated
subring of the ring of differential polynomials and use tools from algebraic geometry.
It is nontrivial to generalize this to polynomial PDEs, because the orders in the output
of the Rosenfeld–Gröbner can be greater than the orders of the input. Another key
ingredient in the ODE case to obtain the bound in [18] was an analysis of differential
dimension polynomials. A significant difference of our present PDE context with the
ordinary case is that these polynomials behave less predictably under projections of
varieties (compare [18, Lemma 6.16] and Lemma 6.6). To overcome this difficulty, we
use again our bound for the Rosenfeld–Gröbner algorithm.

We believe that our method can also be applied to obtain bounds for other
algorithms in differential algebra, such as [1, Algorithm 3.6], and for algorithms from
other theories, e.g., [7, Algorithm 3] for systems of difference equations. Because the
reducibility of a polynomial can be expressed as a first-order existential formula, it
seems plausible that the same methods could be applied to other algorithms dealing
with difference [5] and differential-difference [6] equations that use factorization,
because the corresponding theories satisfy the requirements of our approach [14, 16,
23]. However, we leave these for future research.

The paper is organized as follows. Section 2 contains definitions and notation used
in Section 3 to state the main results. Bounds for an algorithm working with a model of
a theory T are established in Section 4. These results are applied to differential algebra
in Section 5. Further applications to delay PDEs are given in Section 6.

2 Basic notions and notation

Definition 2.1 (Differential-difference rings)
• A Δ-σ-ring (R, Δ, σ) is a commutative ring R endowed with a finite set Δ =
{∂1 , . . . , ∂m} of commuting derivations of R and an endomorphism σ of R such
that, for all i, ∂ i σ = σ∂ i .

• When R is additionally a field, it is called a Δ-σ-field.
• If σ is an automorphism of R, R is called a Δ-σ∗-ring.
• If σ = id, R is called a Δ-ring or differential ring.
• For a commutative ring R, ⟨F⟩ denotes the ideal generated by F ⊂ R in R.
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• For Δ = {∂1 , . . . , ∂m}, let ΘΔ = {∂ i1
1 ⋅ ⋯ ⋅ ∂ im

m ∣ i j ⩾ 0, 1 ⩽ j ⩽ m}.
• For θ = ∂ i1

1 ⋅ ⋯ ⋅ ∂ im
m ∈ ΘΔ , we let ord θ = i1 +⋯+ im . For a nonnegative integer B,

we denote ΘΔ(B) ∶= {θ ∈ ΘΔ ∣ ord θ ⩽ B}.
• For a Δ-ring R, the differential ideal generated by F ⊂ R in R is denoted by ⟨F⟩(∞);

for a nonnegative integer B, we introduce the following ideal of R:

⟨F⟩(B) ∶= ⟨θ(F) ∣ θ ∈ ΘΔ(B)⟩.

Definition 2.2 (Differential polynomials) Let R be a Δ-ring. The differential polyno-
mial ring over R in y = y1 , . . . , yn is defined as

R{y}Δ ∶= R[θ ys ∣ θ ∈ ΘΔ ; 1 ⩽ s ⩽ n].

The structure of a Δ-ring is defined by ∂ i(θ ys) ∶= (∂ i θ)ys for every θ ∈ ΘΔ .

Definition 2.3 (Differential-difference polynomials) Let R be a Δ-σ-ring. The
differential-difference polynomial ring over R in y = y1 , . . . , yn is defined as

R[y∞] ∶= R[θσ i ys ∣ θ ∈ ΘΔ ; i ⩾ 0; 1 ⩽ s ⩽ n].

The structure of Δ-σ ring is defined by σ(θσ j ys) ∶= θσ j+1 ys and ∂ i(θσ j ys) ∶=
(∂ i θ)σ j ys for every θ ∈ ΘΔ and j ⩾ 0.

A Δ-σ-polynomial is an element of R[y∞]. Given B ∈ N, let R[yB] denote the
polynomial ring

R[θσ j ys ∣ θ ∈ ΘΔ(B); 0 ⩽ j ⩽ B; 1 ⩽ s ⩽ n].

The notions from logic that we use are described in detail in [19]. In particular,
we will use the notions of a first-order language [19, Definition 1.1.1], structure [19,
Definition 1.1.2], formula [19, Definition 1.1.5], theory [19, Section 1.2, p. 14], model
[19, Section 1.2, p. 14], compactness [19, Section 2.1], complete theory [19, Definition
2.2.1], decidable theory [19, Definition 2.2.7], quantifier elimination [19, Definition
3.1.1], and ℵ0-saturation [19, Definition 4.3.1].

3 Main results

For clarity, we gather our main results in one section.

Theorem 3.1 (Upper bound for irreducible components for PDEs) There exists a
computable function Components(m, n) such that, for every differential field k of zero
characteristic with a set of m commuting derivations Δ and finite F ⊂ k{y1 , . . . , yn}Δ
with max{ord F , deg F} ⩽ s, the number of components in the variety defined by F = 0
does not exceed Components(m, max{n, s}).

Additional details and proof are given in Theorem 5.13.

Theorem 3.2 (Upper bound for elimination in delay PDEs) For all nonnegative
integers r, m, and s, there exists a computable B = B(r, m, s) such that, for all:
• nonnegative integers q and t,
• Δ-σ-fields k with char k = 0 and ∣Δ∣ = m, and
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• sets of Δ-σ-polynomials F ⊂ k[x t , ys], where x = x1 , . . . , xq , y = y1 , . . . , yr , and
degy F ⩽ s,

we have

⟨σ i(F) ∣ i ∈ Z⩾0⟩
(∞) ∩ k[x∞] ≠ {0}

⇐⇒ ⟨σ i(F) ∣ i ∈ [0, B]⟩(B) ∩ k[xB+t] ≠ {0}.

Corollary 3.3 (Effective Nullstellensatz for delay PDEs) For all nonnegative integers
r, m, and s, there exists a computable B = B(r, m, s) such that, for all:
• Δ-σ-fields k with char k = 0 and ∣Δ∣ = m, and
• sets of Δ-σ-polynomials F ⊂ k[ys], where y = y1 , . . . , yr , and deg F ⩽ s,
the following statements are equivalent:
(1) There exists a Δ-σ∗ field L extending k such that F = 0 has a sequence solution in L.
(2) 1 ∉ ⟨σ i(F) ∣ i ∈ [0, B]⟩(B).
(3) There exists a field extension L of k such that the polynomial system {σ i(F)( j) = 0 ∣

i , j ∈ [0, B]} in the finitely many unknowns yB+s has a solution in L.

The two preceding theorems are proved using our main technical result about algo-
rithms performing computations in complete decidable theories. Stating it precisely
requires defining admissible algorithms carefully, so we postpone it until Section 4
and give here a simplified and informal version of the statement.

Theorem 3.4 (Algorithm yields a bound, stated precisely as Theorem 4.5) There exists
a computable function with input:
• a complete decidable theory T,
• an algorithm A performing computations in a model of T restricted to using only

definable functions when working with elements of the model, and
• positive integer �
that computes a number N such that for every model M of T and every a ∈ M�, the size
of the output of A with input a does not exceed N.

For the application of this to the Rosenfeld–Gröbner algorithm, see Theorem 5.10.

4 Bounds for the output size of algorithms over complete theories

In this section, we will use the formalism of oracle Turing machines [24, Section 14.3].
Roughly speaking, an oracle Turing machine is a Turing machine with an extra tape
for performing queries to an external oracle. An oracle is not considered to be a part
of the machine.

4.1 Setup

To consider an algorithm dealing with elements of a (not necessarily computable)
model of a theory T, we will “encapsulate” the elements of the model given to the
algorithm into an oracle that allows to perform only first-order operations with them
as defined below. Alternatively, one could adapt other approaches used to formalize
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computations in real numbers [2, Section 3] or in arbitrary structures (see [9, Section 1]
and [4, Section 2.2]).

Definition 4.1 (T-oracle) Let L be a language and T be a theory in L. For elements
a1 , . . . , a� of a model M of T, any oracle that supports the following queries: given a
formula φ(x1 , . . . , x�), the oracle returns the value φ(a1 , . . . , a�) in M (can be true or
false), will be denoted by OM(a1 , . . . , a�) and called an evaluation oracle.

Definition 4.2 (Total algorithm over T) An oracle Turing machine A will be called
a total algorithm over T if, for all positive integers �, every model M of T, and every
a1 , . . . , a� ∈ M, the machine with every input and oracleOM(a1 , . . . , a�) is guaranteed
to terminate.

4.2 Auxiliary bound and result

Lemma 4.3 There is an algorithm that takes as input:
• language L;
• a complete decidable theory T given by a Turing machine checking correctness of

sentences in the theory;
• a total algorithm A over T;
• positive integers � and N; and
• a string S in the input alphabet of A;
and computes
• a first-order formula φ = φT ,A(�, S, N) in L in � variables; and
• a number N ∶= NT ,A(�, S, N)
such that, for any model M of T and tuple a ∈ M�, the following are equivalent:
(1) the sentence φ(a) is true in M; and
(2) algorithm A with input S and oracle OM(a) terminates after performing at most N

queries to the oracle;
and if these statements are true, then the number of steps performed by A with input S
and oracle OM(a) does not exceed N.

Proof We describe an algorithm for computing φT ,A(�, S, N) and NT ,A(�, S, N).
Fix some L, T ,A, �, and S.

We will describe an algorithm that, for a given positive integer s, computes first-
order formulas ψs and qs in L in the variables x = (x1 , . . . , x�) and a positive integer
Ns such that, for every model M of T and every a ∈ T�,
• ψs(a) is true in M iff algorithm A with input S and oracle OM(a) will perform at

least s queries;
• if ψs(a) is true in M, then the result of the sth query will be qs(a); and
• if algorithm A with input S and oracle OM(a) performs at most s queries, then the

number of steps performed does not exceed Ns .
Fix some s ⩾ 1 and assume that the algorithm have computed ψ1 , . . . , ψs−1,

q1 , . . . , qs−1, and N0 , . . . ,Ns−2. Assume that A with input S has performed s − 1
queries. Then, whether or not an sth query will be performed is determined by the
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results of the first s − 1 queries. Fix some r ∈ {True, False}s−1. It will represent possible
results of the first s − 1 queries. Consider the following formula in L:

ψr(x) ∶= ψs−1(x) ∧
s−1
⋀
i=1
(q i(x) ⇐⇒ r i) ,

where we assume ψ0 = True. The algorithm uses the algorithm for checking correct-
ness of sentences in T to check whether the sentence ∃x ψr(x) is false in T. If it is, then
there is no oracle of the form OM(a) such that A will perform at least s − 1 queries on
it with the results being r1 , . . . , rs−1.

In the case of ∃x ψr(x) is true in T, the algorithm will run A with input S and an
oracleOr that works as follows. For the first s − 1 queries,Or will return r1 , . . . , rs−1. For
all subsequent queries, it always returns True. The algorithm will stop the execution
of A if A makes an sth query to the oracle, and denote the formula in the query
by qr.

Because ∃x ψr(x) is true in T, Or gives the same responses to the first s − 1 queries
as some oracle of the form OM(a). Because A must terminate in finite time for every
such oracle, one of the following must happen:

(1) A will perform an sth query.
(2) A will terminate after performing only s − 1 queries.

In the former case, as described above, the algorithm will define a formula qr to be
the sth query. In the latter case, the algorithm will define Nr to be the number of steps
performed by A. Then, the algorithm computes

ψs(x) ∶= ⋁
qr is defined

ψr(x), qs(x) ∶= ⋀
qr is defined

(ψr(x) �⇒ qr(x)),

Ns−1 ∶=max
⎛
⎝
Ns−2 , ∑

Nr is defined
Nr
⎞
⎠

,

where we assume N−1 = −∞. If the set {r ∣ qr is defined} is empty, the algorithm
sets ψs(x) = False and qs(x) = True. Finally, the algorithm returns φT ,A(�, S, N) ∶=
¬ψN+1 and NT ,A(�, S, N) ∶= NN . ∎

Lemma 4.4 Let T be a theory and M an ℵ0-saturated model. Let U1 ⊃ U2 ⊃ U3 ⊃ ⋯
be a sequence of definable sets in Mn such that

∞

⋂
i=1

U i = ∅. Then, there exists N such that
UN = ∅.

Proof Assume the contrary, that is, that U i ≠ ∅ for every i ⩾ 1. We will show that
∞

⋂
i=1

U i ≠ ∅.

We show that a collection of formulas {x ∈ U i}∞i=1 is finitely satisfiable. Indeed,
let S ⊂ Z>0 be a finite set and N =max S. Then, ⋂i∈S U i = UN ≠ ∅. Due to compact-
ness, the countable collection {x ∈ U i}∞i=1 is satisfiable in some elementary exten-
sion of M. Because M is ℵ0-saturated, this collection is satisfiable in M. Therefore,
∞

⋂
i=1

U i ≠ ∅. ∎
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4.3 Main result

Theorem 4.5 There exists a computable function StepsT ,A(�, r) with input:

• a complete decidable theory T (given by an algorithm for checking correctness of
sentences);

• a total algorithm A over T; and
• positive integers � and r

that computes a number N such that for every model M of T, every a ∈ M�, and every
string S in the alphabet of A of size at most r, the number of steps performed by A with
input S and oracle OM(a) does not exceed N.

Remark 4.6 Let the intermediate result at step n for a total algorithm A with given
input and oracle be the content of all the cells of the tape that have been read by the
Turing machine. Because a Turing machine can read at most one cell at each step,
the number of these cells cannot exceed n. Therefore, the intermediate result at step
n can be encoded using n log � bits, where � is the cardinality of the alphabet of A.
In particular, if a binary alphabet is used, the bit size of the intermediate result never
exceeds the total number of steps in the algorithm.

Proof We will describe an algorithm for computing StepsT ,A(�, r). We fix T, A, �,
and r. We will consider S of length at most r and describe how to compute a bound
for the number of steps given that the input is S. Taking the maximum over all S of
length at most r (there are finitely many of them), we obtain StepsA,T(�, r).

The algorithm will compute φ i ∶= φT ,A(�, S, i) for i = 1, 2, . . . using the algorithm
from Lemma 4.3. For each φ i , the algorithm will check whether the formula is
equivalent to True in T using the decidability of T.

If this is true, the algorithm stops and returns NT ,A(�, S, i) (see Lemma 4.3). It
remains to show that the described procedure terminates in finitely many steps. Let
M be an ℵ0-saturated model of T (it exists, for example, due to [19, Theorem 4.3.12]).
For every i = 1, 2, . . ., we introduce a definable set

U i ∶= {a ∈ M� ∣ φ i(a) = False}.

Notice that U i = ∅ if and only if (φ i ⇐⇒ True) in T. Then, the definition of φ i ’s
implies that U1 ⊃ U2 ⊃ ⋯. Assume that⋂∞i=1 U i is not empty and choose an element a
in it. Then, A will not terminate in finitely many steps with input S and oracle OM(a).
Thus,⋂∞i=1 U i = ∅. Lemma 4.4 implies that there exists N such that UN = ∅. Then, our
algorithm will terminate after checking whether φN is equivalent to True. ∎

5 Applications to differential algebra

In this section, we will apply the results of Section 4 to the theory of differentially
closed fields with several commuting derivations.
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5.1 Preparation

Notation 5.1 Let m be a positive integer.
• The language of partial differential rings with m commuting derivation is denoted by
Lm ∶= {+,−, ⋅, 0, 1, ∂1 , . . . , ∂m}. We add a separate functional symbol for subtraction
for convenience.

• The theory of partial differentially closed fields with m commuting derivations of
characteristic zero is denoted by DCFm . Recall that DCFm is complete [21, Corollary
3.1.9] and, with this, is decidable by [19, Lemma 2.2.8] and [21, Lemma 3.1.2, p. 890].

Notation 5.2 Let m, n, and h be positive integers and k a differential field with a set of
m commuting derivations Δ = {∂1 , . . . , ∂m}.
• Polk(m, n, h) denotes the space of all differential polynomials over k in n variables of

order at most h and degree at most h.
• The dimension of Polk(m, n, h) (which does not depend on k) will be denoted by

PolDim(m, n, h).
Notation 5.3 Let m, �, and n be positive integers.
• Let Lm(x1 , . . . , x�){y1 , . . . , yn}Δ denote the ring of differential polynomials in dif-

ferential variables y1 , . . . , yn with respect to m derivations with the coefficients being
terms in the language Lm in x1 , . . . , x� (that is, elements of Z{x1 , . . . , x�}Δ).

This is a computable differential ring with m commuting derivations. In what
follows, we will assume that the algorithms use dense representation to store these
polynomials (that is, store all the coefficients up to certain order and certain degree).

• Let k be a differential field with m derivations and a ∈ k�. Then, for T ∈
Lm(x1 , . . . , x�){y1 , . . . , yn}Δ , we define T(a) ∈ k{y1 , . . . , yn}Δ to be the result of
evaluating the coefficients of T at a.

Definition 5.4 A differential ranking for k{z1 , . . . , zn}Δ is a total order > on Z ∶=
{θz i ∣ θ ∈ ΘΔ , 1 ⩽ i ⩽ n} satisfying, for all i, 1 ⩽ i ⩽ m:
• for all x ∈ Z, ∂ i(x) > x, and
• for all x , y ∈ Z, if x > y, then ∂ i(x) > ∂ i(y).
Notation 5.5 For a Δ-field k and f ∈ k{z1 , . . . , zn}Δ/k and differential ranking >,
• lead( f ) is the element of Z of the highest rank appearing in f.
• The leading coefficient of f considered as a polynomial in lead( f ) is denoted by in( f )

and called the initial of f.
• The separant of f is ∂ f

∂ lead( f ) .
• The rank of f is rank( f ) = lead( f )deglead( f ) f . The ranks are compared first with respect

to lead, and in the case of equality with respect to deg.
• For S ⊂ k{z1 , . . . , zn}Δ/k, the set of initials and separants of S is denoted by HS .

Remark 5.6 (Defining a ranking) In general, there are uncountable many differential
rankings already for m = 2 and n = 1. However, [25, Theorem 29] implies that any
differential ranking can be defined by m(m + 1)n real numbers together with n2

integers not exceeding m and one permutation on n elements. We define a function
RKm ,n(α, S) taking as input a tuple α of m(m + 1)n real numbers and a binary string
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S (of length at most (n2 + n) log2(max(n, m))) encoding the integers and the permu-
tation and returning the corresponding binary predicate on the derivatives as in [25,
Definition 28]. The relevant properties of this encoding for us will be that, for fixed S:
(1) the statement that RKm ,n(α, S) defines a ranking is a first-order formula in α in

the language of ordered fields; and
(2) for every two derivatives θ1z i and θ2z j , the fact that θ1z i < θ2z j with respect to

RKm ,n(α, S) is also a first-order formula in α in the language of ordered fields.

Definition 5.7 (Characteristic sets)
• For f , g ∈ k{z1 , . . . , zn}Δ/k, f is said to be reduced w.r.t. g if no proper derivative of

lead(g) appears in f and deglead(g) f < deglead(g) g.
• A subset A ⊂ k{z1 , . . . , zn}Δ/k is called autoreduced if, for all p ∈ A, p is reduced

w.r.t. every element of A/{p}. One can show that every autoreduced set is finite [13,
Section I.9].

• Let A = A1 < ⋯ < Ar and B = B1 < ⋯ < Bs be autoreduced sets ordered by their
ranks (see Notation 5.5). We say that A < B if
– r > s and rank(A i) = rank(B i), 1 ⩽ i ⩽ s, or
– there exists q such that rank(Aq) < rank(Bq) and, for all i, 1 ⩽ i < q, rank(A i) =

rank(B i).
• An autoreduced subset of the smallest rank of a differential ideal I ⊂ k{z1 , . . . , zn}Δ

is called a characteristic set of I. One can show that every nonzero differential ideal
in k{z1 , . . . , zn}Δ has a characteristic set.

• A radical differential ideal I of k{z1 , . . . , zn}Δ is said to be characterizable if I has a
characteristic set C such that I = ⟨C⟩(∞) ∶ H∞C .

The Rosenfeld–Gröbner algorithm [3, Theorem 9] takes as input a finite set F
of differential polynomials and a differential ranking and outputs autoreduced sets
C1 , . . . ,CN such that

√
⟨F⟩(∞) =

N
⋂
i=1
⟨Ci⟩(∞) ∶ H∞Ci

,(5.1)

and that, for each i, 1 ⩽ i ⩽ N , Ci is a characteristic set of ⟨Ci⟩(∞) ∶ H∞Ci
. The represen-

tation (5.1) can be used, for example, for membership testing, estimating the number
of irreducible components (used in Theorem 5.13) or the Kolchin polynomial (used in
Section 6) of a differential-algebraic variety.

With the next Proposition 5.9, we express how we will call the Rosenfeld–Gröbner
algorithm. This algorithm depends on the choice of a differential ranking. The reader
may wish to make one such choice once and for all, thereby ignoring the potential
ambiguity. However, because such a choice may affect the size of the output and the
efficiency of any given implementation of the algorithm, one may prefer to allow for
these other orderings.

We will express this dependence by seeing the algorithm as a total algorithm
relative to the two-sorted theory DCFm ⊕RCF which is a disjoint union of DCFm and
the complete decidable theory with quantifier elimination of real closed fields RCF
[19, Theorem 3.3.15 and Corollary 3.3.16]. Then, we will use the characterization of
differential rankings via real numbers from Remark 5.6.

https://doi.org/10.4153/S0008414X21000560 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000560


38 W. Li, A. Ovchinnikov, G. Pogudin, and T. Scanlon

Lemma 5.8 Theory DCFm ⊕RCF is decidable and complete.

Proof In order to prove the completeness and decidability, we will prove that there is
an algorithm for quantifier elimination in DCFm ⊕RCF based on the existence of such
algorithms for DCFm (follows from decidability; see Notation 5.1 and quantifier elim-
ination [21, Theorem 3.1.7]) and RCF. It is sufficient to perform quantifier elimination
for a formula of the form

∃x ∈ S∶ L1 ∧⋯∧ LN ,

where S is one of the sorts (corresponding to DCFm or RCF) and L1 , . . . , LN are
literals. (See [19, Lemma 3.1.5].) By reordering L1 , . . . , LN if necessary, we will further
assume that there exists N0 such that L1 , . . . , LN0 are in the signature of the sort S and
LN0+1 , . . . , LN are in the signature of the other sort. Then,

(∃x ∈ S∶ L1 ∧⋯∧ LN) ⇐⇒ (∃x ∈ S∶ L1 ∧⋯∧ LN0) ∧ (LN0+1 ∧⋯∧ LN) ,

and, for ∃x ∈ S∶ L1 ∧⋯∧ LN0 , the algorithm for the corresponding sort S can compute
an equivalent quantifier-free formula.

The resulting theory is decidable, because the correctness of each sentence can be
checked by performing quantifier elimination after which the formula will become
just true/false. ∎

Proposition 5.9 There is a computable function that, for a given positive integer m,
computes a total algorithm RGm , over DCFm ⊕RCF such that, for every differential
field k with m derivations and a ∈ k� and any b ∈ Rs , the input–output specification of
RGm with oracle Ok⊕R(a, b) is the following:

Input: finite subsets A and S of Lm(x1 , . . . , x�){y1 , . . . , yn}Δ and a binary string S;
Output: if RKm ,n(b, S) (see Remark 5.6) defines a differential ranking, return a list of

tuples C1 , . . . , CN from Lm(x1 , . . . , x�){y1 , . . . , yn}Δ such that

C1(a), . . . , CN(a)

is the output of the Rosenfeld–Gröbner algorithm [3, Theorem 9] with input
(A(a), S(a)) with respect to the ranking RKm ,n(b, S). Otherwise, return ∅.

Proof [3, Theorem 9] states that the only operations performed by the Rosenfeld–
Gröbner algorithm with the elements of the ground differential field are arithmetic
operations, differentiation, and zero testing. Algorithm RGm is constructed to work
exactly in the same way as the Rosenfeld–Gröbner algorithm with the only difference
that the elements of the ground differential field will be represented as L(a), where
L ∈ Lm(x1 , . . . , x�){y1 , . . . , yn}Δ . The arithmetic operations and differentiations can
be performed with L, zero testing can be performed using the k-component of the
oracle, and the queries to the ranking can be performed using the R-component of
the oracle, so RG will be able to perform the same computations as the Rosenfeld–
Gröbner algorithm.

Due to [3, Theorem 5], the Rosenfeld–Gröbner algorithm is guaranteed to termi-
nate on every input. Hence, the same is true for RGm . ∎
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5.2 Bounds

Theorem 5.10 (Upper bound for Rosenfeld–Gröbner algorithm) There exists a com-
putable function RG(m, n, �) such that, for every differential field k with m deriva-
tions and subsets A, S ⊂ Polk(m, n, n) with ∣A∣, ∣S∣ ⩽ �, and every differential ranking,
the Rosenfeld–Gröbner algorithm [3, Theorem 9] on A and S will produce at most
RG(m, n, �) components with all the orders and degrees of the differential polynomials
occurring in the algorithm not exceeding RG(m, n, �).
Proof We fix integers m, n, and � and compute the total algorithm RGm over
DCFm ⊕RCF from Proposition 5.9. Let a be the set of all the coefficients of A and S.
Then, ∣a∣ ⩽ N ∶= 2�PolDim(m, n, n). The sets A and S can be presented as evaluations
of subsets Ã, S̃ ⊂ Lm(x1 , . . . , xN){y1 , . . . , yn}Δ at a such that the orders and degrees
of Ã, S̃ in y1 , . . . , yn do not exceed n and every coefficient is a single variable x i . Let the
ranking be defined as RK(b, S) (see Remark 5.6), where b is a tuple of m(m + 1)n real
numbers and S is a binary string of length at most (n2 + n) log2 max(n, m). Then,
the tuple (Ã, S̃ , S) can be encoded as a binary string of the length bounded by a
computable function S(m, n, N).

We run RGm with the input I = (Ã, S̃ , S) and oracle O(a, b). Theorem 4.5 implies
that the number of steps and, consequently, the bit size of all the intermediate results
(see Remark 4.6) will not exceed StepsRGm ,DCFm ⊕RCF(N , S(m, n, N)).

Because each component takes at least one bit, a polynomial of degree d or order
d has at least d coefficients (due to the dense representation of the polynomials; see
Notation 5.2) requiring at least one bit each, the number of components, the degrees,
and orders do not exceed the bit size of the intermediate results. Therefore, we can set
RG(m, n, �) = StepsRGm ,DCFm ⊕RCF(N , S(m, n, N)). ∎
Corollary 5.11 There exists a computable function CharSet(m, n, �) such that, for
every computable differential field k with m derivations and subsets A, S ⊂ Polk(m, n, n)
with ∣A∣, ∣S∣ ⩽ �, and every differential ranking, the ideal

√
⟨A⟩(∞)∶ S∞ can be written

as an intersection of at most CharSet(m, n, �) characterizable differential ideals defined
by their characteristic sets with respect to the ranking of order and degree not exceeding
CharSet(m, n, �).
Proof Theorem 5.10 implies that there exists a representation

√
⟨A⟩(∞)∶ S∞ = (⟨C1⟩(∞)∶HC1) ∩⋯ ∩ (⟨CN⟩(∞)∶HCN ),

where HC i is the product of the initials and separants of C i , and C i is the characteristic
presentation [3, Definition 8] of ⟨C i⟩(∞)∶H∞C i

for every 1 ⩽ i ⩽ N . As noted in [3,
p. 108] a characteristic set of ⟨C i⟩(∞)∶H∞C i

can be obtained from C i by performing
reductions until it will become autoreduced. Because differential reduction is a part
of the Rosenfeld–Gröbner algorithm, it can also be performed by a total algorithm
over DCFm ⊕RCF. Therefore, as in the proof of Theorem 5.10, Lemma 4.5 implies that
⟨C i⟩(∞)∶H∞C i

has a characteristic set with degrees and order bounded by a computable
function of the degrees and orders of C i . The latter are bounded by a computable
function RG due to Theorem 5.10. Composing these two bounds, we obtain a desired
function CharSet(m, n, �). ∎

https://doi.org/10.4153/S0008414X21000560 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000560


40 W. Li, A. Ovchinnikov, G. Pogudin, and T. Scanlon

Lemma 5.12 There exists a computable function PrimeComp(m, n) such that, for
every partial differential field k with m derivations, every ranking, and every character-
izable differential ideal I defined by a characteristic set C ⊂ Polk(m, n, n) with respect
to this ranking, we have
(1) the number of prime components of I does not exceed PrimeComp(m, n); and
(2) every prime component of I has a characteristic set with respect to the ranking with

orders and degrees bounded by PrimeComp(m, n).

Proof Let H be the product of the initials and separants of C. Theorem 4 of [3]
implies that the number of prime components of ⟨C⟩(∞)∶H∞ is equal to the number
of prime components of the algebraic ideal (⟨C⟩(∞)∶H∞) ∩ Rn , where Rn is the ring
of differential polynomials of order at most n. Because the degrees of elements of C are
bounded by n, the Bézout inequality implies that there is a computable bound D for
the degree of the radical ideal I ∩ Rn (defined, e.g., as the degree of the corresponding
affine variety [12, p. 246]) in terms of m and n, so this gives a bound for the number
of components.

Let P1 , . . . , P� be the prime components of I. For every 1 ⩽ i ⩽ �, Pi ∩ Rn is a
prime algebraic ideal, and its zero set can be defined by equations of degree at most
deg(Pi ∩ Rn) due to [12, Proposition 3]. Therefore, for each 2 ⩽ i ⩽ �, we can choose
a polynomial in (P1/Pi) ∩ Rn of degree at most deg(Pi ∩ Rn). Their product Q has
degree at most deg(I ∩ Rn) ⩽ D. Observe that

P1 = P1∶Q∞ ⊂ I∶Q∞ = (P1∶Q∞) ∩⋯ ∩ (P�∶Q∞) = P1 .

Thus, applying Corollary 5.11 to a pair (C , HQ) and using that ∣C∣ ⩽ PolDim(m, n),
we show that P1 has a characteristic set with orders and degrees bounded by
CharSet(m, D + n, PolDim(m, n)). ∎

Theorem 5.13 (Upper bound for the components of a differential variety and their
number) There exists a computable function Components(m, n) such that, for all
nonnegative integers m, n, and h and a partial differential field k with m derivations
and finite set F ⊂ Polk(m, n, h):
(1) the number of components in the variety defined by F = 0 does not exceed

Components(m, max{n, h}); and
(2) for every differential ranking and every component X of the variety F = 0, X has a

characteristic set with respect to the ranking with orders and degrees bounded by
Components(m, max{n, h}).

Proof Consider any differential ranking. By replacing F with the basis of its linear
span, we will further assume that ∣F∣ ⩽ PolDim(m, n, h) (see Notation 5.2). Corollary
5.11 implies that

√
⟨F⟩(∞) can be represented as an intersection of at most N char-

acterizable ideals with characteristic sets C1 , . . . , CN of order and degree at most N,
where

N ∶= CharSet(m, max{n, h}, PolDim(m, n, h)).

Lemma 5.12 applied to each of C1 , . . . , CN implies that the number of compo-
nents of the variety defined by F = 0 does not exceed N ⋅ PrimeComp(m, N),
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and each of them has a characteristic set with orders and degrees not exceeding
PrimeComp(m, N). ∎

Remark 5.14 It was shown in [11, Theorem 6.1] that there exists a (not necessarily
computable) bound for the degrees and orders of a characteristic set of a prime
differential ideal. The second part of Theorem 5.13 implies that there is a computable
bound.

6 Application to delay PDEs

In this section, we will show how Theorem 5.13 applies to the problem of elimination
of unknowns in delay PDEs.

The proof of the main result of this section, Theorem 6.23 (Effective elimination
theorem for delay PDEs) inherited from [18], had only two missing ingredients closely
related to each other: the bound on the number of components of the variety defined
by a system of differential algebraic PDEs and bounds on the coefficients of Kolchin
polynomials under projection in the PDE case. Now that we have obtained the former
in Theorem 5.13 together with a bound for characteristic sets, it is possible to obtain
the latter in Lemma 6.6 and finish the proof. Therefore, Section 6 can be thought of as
a motivation for the rest of the paper and is an interesting example of a problem from
differential-difference algebra that motivated a purely differential algebraic result.

6.1 Bounds for Kolchin polynomials for algebraic PDEs

Definition 6.1 Let K be a differentially closed Δ-field containing a Δ-field k. We say
that X ⊂ Kn is a Δ -variety over k if there exists F ⊂ k{y1 , . . . , yn}Δ such that

X = {a ∈ Kn ∣ ∀ f ∈ F f (a) = 0}.

We write X = V(F). The Δ-variety Kn is denoted by A
n . A Δ-variety V(F) is called

irreducible if the differential ideal
√
⟨F⟩(∞) is prime.

For a subset Y ⊂ Kn , the smallest Δ-variety X ⊂ Kn containing Y is called the
Kolchin closure of Y and denoted by Y Kol.

Definition 6.2 We will say that a Δ-variety X ⊂ An is bounded by N if N ⩾max(n, m)
(m = ∣Δ∣) and X can be defined by equations of order and degree at most N.

Notation 6.3 For a numeric polynomial ω(t) =
m
∑
i=0

a i(t+i
i ), we set

∣ω∣ ∶=
m
∑
i=0
∣a i ∣.

Definition 6.4 The generic point (a1 , . . . , an) of an irreducible Δ-variety X =
V(F), where F ⊂ k{y}Δ , is the image of y under the homomorphism K{y}Δ →
K{y}Δ/

√
⟨F⟩(∞).

Definition 6.5 The Kolchin polynomial of an irreducible Δ-variety V = V(F), where
F ⊂ k{y}Δ , is the unique numerical polynomial ωV(t) such that there exists t0 ⩾ 0
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such that, for all t ⩾ t0 and the generic point a of V, ωV(t) = trdeg k(at)/k, where
at = (θ(a) ∶ θ ∈ ΘΔ(t)). For the proof of the existence, see [22, Theorem 5.4.1].

Lemma 6.6 There exists a computable function KolchinProj(N) such that, for every:
• differential variety X ⊂ An bounded by N,
• irreducible component X0 ⊂ X, and
• linear projection π∶An → A

�,

we have ∣ωY ∣ ⩽ KolchinProj(N), where Y ∶= π(X0)
Kol

.

Proof By performing a linear change of variables, we reduce the problem to the case
in which π is the projection to the first � coordinates. Consider a ranking such that:
• y�+i is greater than every derivative of y j for every i > 0 and 1 ⩽ j ⩽ �; and
• the restriction of the ranking on y1 , . . . , y� is an orderly ranking (that is, a ranking

such that ord θ1 > ord θ2 implies, for all i and j, θ1 y i > θ2 y j).
Theorem 5.13 implies that X0 has a characteristic set C with respect to this ranking
with the order bounded by a computable function of N. Because a characteristic set
of Y can be obtained from C by selecting the polynomials only in the first � variables,
there is a characteristic set of Y with respect to the orderly ranking with the order
bounded by a computable function of N. Then, [15, Proposition 3.1] and [15, Fact 2.1]
imply that ∣ωY ∣ is bounded by a computable function of N. ∎

Proposition 6.7 There exists an algorithm that, for every computable function
g(n)∶Z⩾0 → Z⩾0, produces a number Leng such that, for every sequence of Kolchin
polynomials

ω0 > ω1 > ⋯ > ω�

such that ∣ω i ∣ < g(i) for every 0 ⩽ i ⩽ �, we have � < Leng .

Proof By replacing g(n) with n + max
0⩽s⩽n

g(s), we can further assume that g(n) is
increasing and g(n) ⩾ n. Definition 2.4.9 and Lemma 2.4.12 of [22] define a com-
putable order-preserving map c from the set of all Kolchin polynomials K to Z

m+1
⩾0

(considered with respect to the lexicographic ordering). For v = (v0 , . . . , vm) ∈ Zm+1
⩾0 ,

we define ∣v∣ = v0 +⋯+ vm . For every function g∶Z⩾0 → Z⩾0, we define

g̃(n) ∶= max
ω∈K, ∣ω∣⩽g(n)

∣c(ω)∣.

Note that if g(n) was computable, then g̃(n) is also computable.
The sequence ω0 > ω1 > ⋯ gives rise to a sequence c(ω0) >lex c(ω1) >lex ⋯ inZ

m+1
⩾0

with ∣c(ω i)∣ ⩽ g̃(i) for every i. Main Lemma of [20] implies that there is an algorithm
to compute the maximal length of such a sequence, so there is an algorithm to compute
a bound on � from g. ∎

6.2 Trains of varieties, partial solutions, and their upper bounds

Lemma 6.8 For every Δ- σ-field k of characteristic zero, there exists an extension k ⊂ K
of Δ-σ-fields, where K is a differentially closed Δ-σ∗-field.
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Proof The proof follows [18, Lemma 6.1] mutatis mutandis as follows. We will show
that there exists a Δ-σ∗-field K0 containing k. The proof of [17, Proposition 2.1.7]
implies that one can build an ascending chain of σ-fields

k0 ⊂ k1 ⊂ k2 ⊂ ⋯(6.2)

such that, for every i ∈ N, there exists an isomorphism φ i ∶ k → k i of σ-fields, σ(k i+1) =
k i , and φ i = σ ○ φ i+1, for every i ∈ N. We transfer the Δ-σ-structure from k to k i ’s via
φ i ’s. Then, φ i = σ ○ φ i+1 implies that the restriction of Δ on k i+1 to k i coincides with
the action of Δ on k i . We set K0 ∶= ⋃

i∈N
k i . Because the action of Δ and σ is consistent

with the ascending chain (6.2), K0 is a Δ-σ-extension of k0 ≅ k. It is shown in [17,
Proposition 2.1.7] that the action of σ on K0 is surjective. Corollary 2.4 of [14] implies
that K0 can be embedded in a differentially closed Δ-σ∗-field K. ∎

Notation 6.9 Within Sections 6.2 and 6.3, we fix a ground Δ- σ field k and a
differentially closed Δ- σ∗-field K given by Lemma 6.8 applied to k. All varieties in
Sections 6.2 and 6.3 are considered over K.

Definition 6.10 (Partial solutions)

• For Δ-σ-rings R1 and R2, a homomorphism ϕ ∶ R1 8→ R2 is called a Δ- σ-
homomorphism if, for all i, ϕ∂ i = ∂ i ϕ and ϕσ = σϕ.

• LetR be a Δ-σ-ring containing a Δ-σ-field k. Let k[y∞] be the Δ-σ-polynomial ring
over k in y = y1 , . . . , yr . Given a point a = (a1 , . . . , ar) ∈ Rr , there exists a unique
Δ-σ-homomorphism over k,

ϕa ∶ k[y∞] 8→ R with ϕa(y i) = a i and ϕa ∣k = id .

Given f ∈ k[y∞], a is called a solution of f in R if f ∈ Ker(ϕa).
• For a Δ-σ-k-algebra R and I = N or Z, the sequence ring RI has the following

structure of a Δ-σ-ring (Δ-σ∗-ring for I = Z) with σ and Δ defined by

σ((x i)i∈I) ∶= (x i+1)i∈I and ∂ j((x i)i∈I) ∶= (∂ j(x i))i∈I .

For a k-Δ-σ-algebra R, RI can be considered a k-Δ-σ-algebra by embedding k into
RI in the following way:

a ↦ (σ i(a))i∈I , a ∈ k.

For f ∈ k[y∞], a solution of f with components in RI is called a sequence solution
of f in R.

• Given f ∈ R[y∞], the order of f is defined to be the maximal ord θ + j such that
θσ j ys effectively appears in f for some s, denoted by ord( f ).

• The relative order of f with respect to Δ (resp. σ), denoted by ordΔ( f ) (resp.
ordσ( f )), is defined as the maximal ord θ (resp. j) such that θσ j ys effectively
appears in f for some s.

• Let F = { f1 , . . . , fN} ⊂ k[y∞], where y = y1 , . . . , yr , be a set of Δ-σ-
polynomials. Suppose h =max{ordσ( f ) ∣ f ∈ F}. A sequence of tuples
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(a1 , . . . , ar) ∈ K�+h ×⋯× K�+h is called a partial solution of F of length � if
(a1 , . . . , ar) is a Δ-solution of the system in y∞,�+h−1:

{σ i(F) = 0 ∣ 0 ⩽ i ⩽ � − 1},

where y∞,�+h−1 = {θσ i ys ∣ θ ∈ ΘΔ ; 0 ⩽ i ⩽ � + h − 1; 1 ⩽ s ⩽ r}.
We associate the following geometric data with the above set F of Δ-σ-

polynomials:
• the Δ-variety X ⊂ AH defined by f1 = 0, . . . , fN = 0 regarded as Δ-equations in

k[y∞,h] with H = r(h + 1), and
• two projections π1 , π2 ∶ AH 8→ A

H−r defined by

π1(a1 , . . . , σ h(a1); . . . ;ar , . . . , σ h(ar))
∶= (a1 , σ(a1), . . . , σ h−1(a1); . . . ; ar , . . . , σ h−1(ar)),

π2(a1 , . . . , σ h(a1); . . . ;ar , . . . , σ h(ar))
∶= (σ(a1), . . . , σ h(a1); . . . ; σ(ar), . . . , σ h(ar)).

Let σ(X) denote the Δ-variety in A
H defined by f σ

1 , . . . , f σ
N , where f σ

i is the result
by applying σ to the coefficients of f i .

Definition 6.11 A sequence p1 , . . . , p� ∈ AH is a partial solution of the triple
(X , π1 , π2) if:
(1) for all i, 1 ⩽ i ⩽ �, we have p i ∈ σ i−1(X), and
(2) for all i, 1 ⩽ i < �, we have π1(p i+1) = π2(p i).
A two-sided infinite sequence with such a property is called a solution of the triple
(X , π1 , π2).
Lemma 6.12 For every positive integer �, F has a partial solution of length � if and only
if the triple (X , π1 , π2) has a partial solution of length �. The system F has a sequence
solution in KZ if and only if the triple (X , π1 , π2) has a solution.
Proof As in [18, Lemma 6.5]. ∎
Definition 6.13 For � ∈ N or +∞, a sequence of irreducible Δ-subvarieties
(Y1 , . . . , Y�) in A

H is said to be a train of length � in X if:
(1) for all i, 1 ⩽ i ⩽ �, we have Yi ⊆ σ i−1(X), and
(2) for all i, 1 ⩽ i < �, we have π1(Yi+1)

Kol
= π2(Yi)

Kol
.

Lemma 6.14 For every train (Y1 , . . . , Y�) in X, there exists a partial solution p1 , . . . , p�

of (X , π1 , π2) such that, for all i, we have p i ∈ Yi . In particular, if there is an infinite train
in X, then there is a solution of the triple (X , π1 , π2).
Proof We prove it as in [18, Lemma 6.7], as follows. To prove the existence of a partial
solution of (X , π1 , π2) with the desired property, it suffices to prove the following
claim.

Claim There exists a nonempty open (in the sense of the Kolchin topology) subset U ⊆
Y� such that, for each p� ∈ U, p� can be extended to a partial solution p1 , . . . , p� of
(X , π1 , π2) with p i ∈ Yi , for every 1 ⩽ i ⩽ �.
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We will prove the claim by induction on �. For � = 1, take U = Y1. Because each
point in Y1 is a partial solution of (X , π1 , π2) of length 1, the claim holds for � = 1. Now,
suppose we have proved the claim for � − 1. So, there exists a nonempty open subset
U0 ⊆ Y�−1 satisfying the desired property. Because Y�−1 is irreducible, U0 is dense in
Y�−1 . So, π2(U0) is dense in π2(Y�−1)

Kol
= π1(Y�)

Kol
. Because U0 is Δ-constructible

(that is, solution set of a quantifier-free formula with parameters in K or, equivalently,
a finite union of Δ-closed and Δ-open sets), π2(U0) is Δ-constructible too. So, π2(U0)
contains a nonempty open subset of π1(Y�)

Kol
.

Because π1(Y�) is Δ-constructible and dense in π1(Y�)
Kol

, π2(U0) ∩ π1(Y�) ≠ ∅
is Δ-constructible and dense in π1(Y�)

Kol
. Let U1 be a nonempty open subset of

π1(Y�)
Kol

contained in π2(U0) ∩ π1(Y�) and

U2 = π−1
1 (U1) ∩ Y� .

Then, U2 is a nonempty open subset of Y�. We will show that, for each p� ∈ U2, there
exists p i ∈ Yi , for i = 1, . . . , � − 1, such that p1 , . . . , p� is a partial solution of (X , π1 , π2).

Because π1(p�) ∈ U1 ⊂ π2(U0), there exists p�−1 ∈ U0 such that π1(p�) = π2(p�−1).
Because p�−1 ∈ U0, by the inductive hypothesis, there exists p i ∈ Yi , for i = 1, . . . , � − 1,
such that p1 , . . . , p�−1 is a partial solution of (X , π1 , π2) of length � − 1. So, p1 , . . . , p�

is a partial solution of (X , π1 , π2) of length �. ∎

For two trains Y = (Y1 , . . . , Y�) and Y ′ = (Y ′1 , . . . , Y ′�), denote Y ⊆ Y ′ if Yi ⊆ Y ′i for
each i. Given an increasing chain of trains Yi = (Yi ,1 , . . . , Yi ,�),

(∪i Yi ,1
Kol , . . . ,∪i Yi ,�

Kol)

is a train in X that is an upper bound for this chain. (For each j, ∪i Yi , j
Kol is an

irreducible Δ-variety in σ j−1(X).) So, by Zorn’s lemma, maximal trains of length �
always exist in X.

For � ∈ N, consider the product

X� ∶= X × σ(X) ×⋯ × σ�−1(X)

and denote the projection of X� onto σ i−1(X) by φ�, i . Let

W�(X , π1 , π2) ∶= {p ∈ X� ∶ π2(φ�, i(p)) = π1(φ�, i+1(p)), i = 1, . . . , � − 1}.

Lemma 6.15 For every irreducible Δ-subvariety W ⊂W�,

(φ�,1(W)
Kol

, . . . , φ�,�(W)
Kol
)

is a train in X of length �. Conversely, for each train (Y1 , . . . , Y�) in X, there exists an
irreducible Δ-subvariety W ⊆W� such that Yi = φ�, i(W)

Kol
for each i = 1, . . . , �.

Proof The proof follows [18, Lemma 6.8]. The first assertion is straightforward. We
will prove the second assertion by induction on �. For � = 1, W1 = X, and we can set
W = Y1.
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Let � > 1. Apply the inductive hypothesis to the train (Y1 , . . . , Y�−1) and obtain an
irreducible subvariety Y ′ ⊂W�−1 ⊂ X�−1. Then, there is a natural embedding of Y ′ × Y�

into X�. Denote (Y ′ × Y�) ∩W� by Ỹ . Because Y ′ ⊂W�−1,

Ỹ = {p ∈ Y ′ × Y� ∣ π2 (φ�,�−1(p)) = π1 (φ�,�(p))}.

Let

Z ∶= π2 (φ�−1,�−1(Y ′)) = π1(Y�).(6.3)

Then, we have a (k, Δ)-isomorphism

RY ′ ⊗RZ RY�
→ RỸ

under the (k, Δ)-algebra homomorphisms i1 ∶ RZ → RY ′ and i2 ∶ RZ → RY�
induced

by π2 ○ φ�−1,�−1 and π1, respectively. Equality (6.3) implies that i1 and i2 are injective.
Denote the fields of fractions of RY ′ , RY�

, and RZ by E, F, and L, respectively. Let p be
any prime differential ideal in E ⊗L F,

R ∶= (E ⊗L F)/p,

and π∶E ⊗L F → R be the canonical homomorphism. Consider the natural homomor-
phism i∶RY ′ ⊗RZ RY�

→ E ⊗L F. Because 1 ∈ i(RY ′ ⊗RZ RY�
), the composition π ○ i is

a nonzero homomorphism. Because i1 and i2 are injective, the natural homomor-
phisms iY ′ ∶RY ′ → RY ′ ⊗RZ RY�

and iY�
∶RY�

→ RY ′ ⊗RZ RY�
are injective as well. We

will show that the compositions

π ○ i ○ iY ′ ∶RY ′ → R and π ○ i ○ iY�
∶RY�

→ R

are injective. Introducing the natural embeddings iE ∶E → E ⊗L F and jY ′ ∶RY ′ → E,
we can rewrite

π ○ i ○ iY ′ = π ○ iE ○ jY ′ .

The homomorphisms iE and jY ′ are injective. The restriction of π to iE(E) is also
injective, because E is a field. Hence, the whole composition π ○ iE ○ jY ′ is injective.
The argument for π ○ i ○ iY�

is analogous. Let

S ∶= (RY ′ ⊗RZ RY�
)/(p ∩ (RY ′ ⊗RZ RY�

)),

which is a domain, and the homomorphisms π ○ i ○ iY ′ ∶ RY ′ → S and π ○ i ○ iY�
∶

RY�
→ S are injective. Let F ⊂ k{W�} be such that S = k{W�}/

√
⟨F⟩
(∞)

. We now let
W be the Δ-subvariety of W� defined by F = 0. For every i, 1 ⩽ i < �, the homomor-
phism

φ♯�, i = (π ○ i ○ iY ′) ○ φ♯�−1, i ∶ RYi → RY ′ → S

is injective as a composition of two injective homomorphisms. Hence, the restriction
φ�, i ∶W → Yi is dominant. ∎

Lemma 6.16 Let (X , π1 , π2) be a triple with X bounded by n. Then, for every �, the
number of maximal trains of length � in X does not exceed Components(m, �n).
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Proof By Lemma 6.15, the number of maximal trains of length � in X is equal to
the number of irreducible components of W�. By Theorem 5.13, this number does not
exceed Components(m, �n). ∎

Definition 6.17 Let (X , π1 , π2) be a triple and ω(t) be a numeric polynomial. We
define B(X , ω) ∈ Z ∪ {∞} as the smallest value that is greater than the length of any
train in X with Kolchin polynomials at least ω.

Lemma 6.18 Let X be a differential variety bounded by n such that B(X , 0) < ∞. Then,
B(X , ωX) does not exceed the number of components of X plus one.

Proof Denote the number of components in X by N, and assume that there
is a train (Y1 , . . . , YN+1) with the Kolchin polynomial at least ωX . Then, each
of Y1 , σ−1(Y2), . . . , σ−N(YN+1) must be a component of X, so there exist
1 ⩽ i < j ⩽ N + 1 such that Yj = σ j−i Yi . Thus, there exists an infinite train
(Y1 , . . . , Yi , Yi+1 , . . . , Yj−1 , σ j−i(Yi), σ j−i(Yi+1), . . .) in X. This contradicts to
B(X , 0) < ∞. ∎

Lemma 6.19 There exists a computable function Iter(n, D) such that, for every triple
(X , π1 , π2) such that
• B(X , 0) < ∞, and
• X is bounded by n,
and every numeric polynomial ω1(t) > 0, there exists a numeric polynomial ω2(t) ⩾ 0
such that
• ω2(t) < ω1(t);
• ∣ω2∣ ⩽ Iter(n, B(X , ω1)); and
• B(X , ω2) ⩽ Iter(n, B(X , ω1)).

Proof The proof follows [18, Lemma 6.20]. Let B1 ∶= B(X , ω1), and let T be the num-
ber of maximal trains of length B1 in X. We set B2 ∶= B1 + T . Lemma 6.16 implies that
T is bounded by Components(m, nB1). Consider the fibered product WB1(X , π1 , π2),
and, for each irreducible component W in it, denote the corresponding train by YW .
We set (assuming max∅ = 0)

ω2 ∶=max{ωYW ∣ ωYW < ω1 , W is a component of WB1}.

We will show that B(X , ω2) ⩽ B1 + T . Assume that there is a maximal train
(Y1 , . . . , YB2) in X with the Kolchin polynomial at least ω2. Introduce T + 1 trains
Z(1) , . . . , Z(T+1) of length B1 in X , σ(X), . . . , σ T(X), respectively, such that, for
each j,

Z( j) = (Z( j)
1 , . . . , Z( j)

T ) ∶= (Yj , . . . , Yj+B1−1).

Then, for each j, consider a maximal train Z̃( j) of length B1 containing Z( j). So,
σ− j+1(Z̃( j)) is a maximal train of length B1 in X. There are two cases to consider:

{ωYW (t) ∣ ωYW (t) < ω1(t), W is a component of WB1} = ∅.(Case 1)
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In this case, Z̃(1) is a train in X with Kolchin polynomial at least ω1. This contradicts
the definition of B(X , ω1).

{ωYW (t) ∣ ωYW (t) < ω1(t), W is a component of WB1} ≠ ∅.(Case 2)

By the definition of B(X , ω1), for every j, ωσ− j+1(Z̃( j))(t) < ω1(t). This implies that, for
each j,

ωσ− j+1(Z̃( j))(t) = ω2(t).
Because there are only T maximal trains in X of length B1, there exist a < b such that

σ−a+1(Z̃(a)) = σ−b+1(Z̃(b)) =∶ Z .

Because ωZ = ω2, there exists � such that ωZ�
= ω2. Because

ωσ−a+1(Z(a)
�
)
= ω2 and σ−a+1(Z(a)� ) ⊆ Z� ,

we have σ−a+1(Z(a)� ) = Z�. Similarly, we can show σ−b+1(Z(b)� ) = Z�. Hence,

σ−a+1(Ya+�−1) = σ−a+1(Z(a)� ) = σ−b+1(Z(b)� ) = σ−b+1(Yb+�−1).

Thus, we have Yb+�−1 = σ b−a(Ya+�−1). This contradicts the fact that B(X , 0) < ∞.
It remains to show that ∣ω2∣ is bounded by a computable function of n and B1. Let W

be a component of WB1 such that ωYW = ω2. Let YW = (YW ,1 , . . . , YW ,B1). There exists
1 ⩽ i ⩽ B1 such that ωYi = ω2. Because Yi is the Kolchin closure of a linear projection
of a component of WB1 and WB1 is bounded by B1n, Lemma 6.6 implies that ∣ω2∣ is
bounded by a computable function of n and B1.

Taking Iter(n, D) to be the maximum of the computable bounds for B(X , ω2) and
∣ω2∣, we conclude the proof. ∎
Definition 6.20 Let n be a positive integer and ω(t) be a numeric polynomial such
that ω > 0. We define B(n, ω) ∈ Z ∪ {∞} as the smallest value such that, for every
affine differential variety X bounded by n, if there exists a train in X with Kolchin
polynomial at least ω of length at least B(n, ω), then there exists an infinite train in X.

Proposition 6.21 B(n, 0) is bounded by a computable function A(n).
Proof We recursively define the following function G(n) on nonnegative integers:

G(0) ∶=max(Components(n, n) + 1, KolchinProj(n)),
G( j + 1) ∶= Iter(n, G( j)), j ⩾ 0.

Consider a variety X bounded by n such that there is no infinite train in X, that is,
B(X , 0) < ∞. Lemma 6.18 implies that B(X , ωX) − 1 does not exceed the number of
components of X. Hence, Theorem 5.13 implies that B(X , ωX) ⩽ Components(n, n) +
1. Lemma 6.6 implies that ∣ωX ∣ ⩽ KolchinProj(n). Repeatedly applying Lemma 6.19,
we obtain a sequence of numeric polynomials

ω0 ∶= ωX > ω1 > ω2 > ⋯
such that, for every 1 ⩽ i ⩽ L, we have B(X , ω i) ⩽ G(i) and ∣ω i ∣ ⩽ G(i). Because the
Kolchin polynomials are well ordered, there exists L such that ωL = 0. Proposition
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6.7 implies that L ⩽ LenG . Hence, B(X , 0) ⩽ G(LenG), where the right-hand side is a
computable function of n. Set A(n) ∶= G(LenG), then B(n, 0) ⩽ A(n). ∎

Corollary 6.22 For all r, m, and s ∈ Z⩾0, and a set of Δ-σ polynomials F ⊂ k[ys] with
∣Δ∣ = m, deg F ⩽ s, and ∣y∣ = r, F = 0 has a sequence solution in KZ if and only if F = 0
has a partial solution of computable length A(max{r, m, s}).

Proof The proof is as in [18, Corollary 6.21], as follows. Let X ⊂ AH be the Δ-variety
defined by F = 0 regarded as a system of Δ-equations in y, σ(y), . . . , σ h(y), where
H = n(h + 1). By Lemmas 6.12 and 6.14, F = 0 has a partial solution of length D (resp.
F = 0 has a solution in KZ) if and only if there exists a train of length D in X (resp.
there exists an infinite train in X). By Proposition 6.21, if there exists a train of length
D ∶= A(max{r, m, s}) in X, then there exists a infinite train in X. So, the assertion
holds. ∎

6.3 Upper bound for delay PDEs

We now state and prove the main result of this section which generalizes [18, Theorem
3.1] to delay PDEs.

Theorem 6.23 (Effective elimination for delay PDEs) For all nonnegative integers r,
m, and s, there exists a computable B = B(r, m, s) such that, for all:

• nonnegative integers q and t,
• Δ-σ-fields k with char k = 0 and ∣Δ∣ = m, and
• sets of Δ-σ-polynomials F ⊂ k[x t , ys], where x = x1 , . . . , xq , y = y1 , . . . , yr , and

degy F ⩽ s,

we have

⟨σ i(F) ∣ i ∈ Z⩾0⟩
(∞) ∩ k[x∞] ≠ {0} ⇐⇒ ⟨σ i(F) ∣ i ∈ [0, B]⟩(B) ∩ k[xB+t] ≠ {0}.

Proof The proof closely follows [18, Theorem 6.22]. The “⇐� ” implication
is straightforward. We will prove the “�⇒ ” implication. For this, let A ∶=
A(max{r, m, s}) from Corollary 6.22, and let B be a computable bound obtained from
[10, Theorem 3.4] with

m ← m, n ← r(A+ s + 1), h ← s, and D ← s.

By assumption,

1 ∈ ⟨σ i(F) ∣ i ∈ Z⩾0⟩
(∞) ⋅ k(x∞)[y∞].(6.4)

Suppose that

⟨σ i(F) ∣ i ∈ [0, A]⟩(B) ∩ k[xB+t] = {0}.(6.5)

If

1 ∈ ⟨σ i(F) ∣ i ∈ [0, A]⟩(B) ⋅ k(xB+t)[y∞,A+s],
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then there would exist c i , j ∈ k(xB+t)[y∞,A+s] such that

1 = ∑
θ∈ΘΔ(B)

A
∑
j=0
∑
f ∈F

c i , jθ(σ j( f )).(6.6)

Multiplying equation (6.6) by the common denominator in the variables xB+t , we
obtain a contradiction with (6.5). Hence, by [10, Theorem 3.4],

1 ∉ ⟨σ i(F) ∣ i ∈ [0, A]⟩(∞) ⋅ k(xB+t)[y∞,A+s].

By Lemma 6.8, there exists a differentially closed Δ-σ∗-field extension L ⊃ k(x∞) ⊃
k(xB+t). Then, differential Nullstellensatz implies that the system of differential
equations

{σ i(F) = 0 ∣ i ∈ [0, A]}

in the unknowns y∞,A+s has a solution in L. Then, the system F = 0 has a partial
solution of length A+ 1 in L. Now, from (6.4), we see that the system F = 0 has no
solutions in LZ. Together with the existence of a partial solution of length A+ 1, this
contradicts to Corollary 6.22. ∎
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