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Instability of falling films of discontinuously
shear-thickening fluid
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Aqueous suspensions of cornstarch abruptly increase their viscosity on raising either
shear rate or stress, and display the formation of large-amplitude waves when flowing
down inclined channels. The two features have been recently connected using constitutive
models designed to describe discontinuous shear thickening. By including time-dependent
relaxation and spatial diffusion of the frictional contact density responsible for shear
thickening, an analysis of steady sheet flow and its linear stability is presented. The
inclusion of such effects is motivated by the need to avoid an ill-posed mathematical
problem in thin-film theory and the resulting failure to select any preferred wavelength
for unstable linear waves. Relaxation, in particular, eliminates an ultraviolet catastrophe
in the spectrum of unstable waves and furnishes a preferred wavelength at which growth
is maximized. The nonlinear dynamics of the unstable waves is briefly explored. It is
found that the linear instability saturates once disturbances reach finite amplitude, creating
steadily propagating nonlinear waves. These waves take the form of a series of steep,
shear-thickened steps that translate relatively slowly in comparison with the mean flow.

Key words: thin films

1. Introduction

In his book on Gravity Currents, Simpson (1999) reported an interesting observation of
the formation of large-amplitude waves on relatively slowly flowing layers of aqueous
suspensions of cornstarch. This observation was subsequently taken up by Balmforth,
Bush & Craster (2005) who conducted more experiments and provided details of
the phenomenology. They concluded that the waves arose from a linear instability at
surprisingly low Reynolds number, unlike in the classical Kapitza problem for roll waves
on flowing films of viscous and other fluids, where critical Reynolds numbers are of order
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unity (e.g. Chang 1994; Ng & Mei 1994; Balmforth & Liu 2004). Unfortunately, Balmforth
et al. were unable to provide a complementary theoretical explanation, primarily because
a detailed constitutive law describing the rheology of cornstach suspensions was not
available at the time. Existing models for viscoelastic liquids or generalized Newtonian
fluids either did not match the known properties of such suspensions or could not explain
instability at such seemingly low Reynolds numbers. Consequently, Balmforth et al. left
the question of the origin of the waves unresolved, failing to decipher how the instability
reflected the material behaviour, or rheology, of cornstarch suspensions.

Much more recently, Darbois Texier et al. have returned to the problem, providing a
comprehensive review and perspective that repositions it into current context (see Darbois
Texier et al. 2020, 2023 and references therein). They advanced the first theoretical
rationalization of the origin of the waves, and compared predictions with further laboratory
experiments. For the task, Darbois Texier et al. built upon a recent phenomenological
model for discontinuously shear-thickening fluids proposed by Wyart & Cates (2014). In
this model, a suspension like cornstarch is able to abruptly increase its viscosity at a critical
stress or shear rate. The microstructural origin of this effect is that short-range repulsive
forces are sufficient to hold apart the particles of the suspension at lower stresses or shear
rates, resulting in a relatively low effective viscosity. But at higher stresses or shear rates,
the short-range repulsion is no longer sufficient, particles abruptly jam together and the
additional friction prompts a dramatic rise in viscosity (see also, for example, Brown &
Jaeger 2014; Mari et al. 2015a,b; Morris 2020).

In the Wyart & Cates model, the discontinuous shear-thickening transition arises
because the associated flow curve (i.e. the graph of stress against shear rate under steady,
uniform shear) does not increase monotonically, but turns back to smaller shear rates at a
critical point. The continuation of the flow curve back to smaller shear rates, but higher
stresses, is unstable because it implies a dynamical runaway (an enhancement in flow
speed being unable to counter any increase in driving force; e.g. Olmsted 2008). As noted
by Darbois Texier et al., the steady flow of a uniform film down an incline corresponds to a
fixed-stress problem, and should those base-flow stresses increase past the turnaround and
continue on to the bent-back branch of the flow curve, the stage is set for flow instability.
Darbois Texier et al. then used a thin-film approximation of the governing fluid equations,
supplemented by a particular version of the Wyart & Cates model, to demonstrate that
unstable waves do indeed appear. Moreover, they showed that instability was possible even
without inertia.

An important result in the analysis presented by Darbois Texier et al. (2020) is that,
if the steady-state Wyart & Cates model is employed to compute the local viscosity,
the rheological instability along the bent-back part of the flow curve translates to an
ill-posed mathematical problem in inertialess, linearized, thin-film theory: an ultraviolet
catastrophe appears in the spectrum of unstable linear waves, and no preferred wavelength
is predicted (despite what look to be well-defined wave spacings in experiments). In fact,
generalizations of models like that of Wyart & Cates model have already been proposed to
incorporate the time-dependent relaxation of the structure responsible for shear thickening
(e.g. Nakanishi & Mitarai 2011; Mari et al. 2015b; Chacko et al. 2018; Richards et al.
2019). Darbois Texier et al. included such a generalization in their analysis of unstable
waves on falling inertial films, to assist with their comparison with experiments. This
raises the question as to whether time-dependent relaxation can regularize the thin-film
instability and furnish preferred wavelengths, much like the effect of thermal relaxation
on the thermo-viscous instabilities of shallow ice flows (Clarke, Nitsan & Paterson 1977;
Hindmarsh 2004).
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↓ ẑ = ĥ(x̂, t̂ )

λ(x̂, ẑ, t̂ )

Figure 1. A sketch of the model geometry. The complex fluid has depth h(x, t) and a frictional contact
density described by a spatially varying order parameter λ(x, z, t) (represented by the colour map).

The purpose of the present article is to continue along the vein of Darbois Texier et al.’s
theoretical approach and provide an asymptotic analysis of the problem, incorporating
the time-dependent relaxation of frictional contacts. We also allow for spatial diffusion
of those contacts with similar considerations of regularization in mind. The analysis
provided by Darbois Texier et al. (2023) actually included inertia in addition to relaxation,
leading them to follow the standard procedure of vertical averaging to derive thin-film
equations. However, the most straightforward of such approximations are not asymptotic
in the fashion in which they deal with inertia. As a consequence (and already noted by
Darbois Texier et al.), such vertically averaged models are known to give inaccurate results
for stability thresholds for roll waves in Newtonian (Chang, Demekhin & Kopelevich 1993;
Ruyer-Quil & Manneville 2000) and non-Newtonian films (Balmforth & Liu 2004). It is
also not clear how accurately vertical averaging treats the time-dependent relaxation and
diffusion of contacts. Consequently, after reformulating the thin-film model in § 2, we
first revisit the stability problem and derive asymptotic stability thresholds without inertia
in § 3. Some special limits of the problem are considered in § 4 and § 5, allowing us to
compare with Darbois Texier et al.’s earlier results and establish the impact on linear
stability of either rapid relaxation or strong diffusion (relative to advection). In § 6, we then
advance beyond linear stability theory and provide an exploration of the nonlinear wave
dynamics in order to uncover the fate of linear instabilities once they reach finite amplitude.
Finally, we conclude in § 7 with a discussion of our results and their implications for
experiments with flowing films of cornstarch suspensions.

2. Shallow flow model

2.1. Dimensional formulation
Consider the flow of a complex fluid over a plane that is inclined at an angle θ . The
geometry is described by a Cartesian coordinate system (x̂, ẑ), orientated such that the
x-axis points downslope; see figure 1. The fluid velocity is û = (û, ŵ). The local fluid
depth is ẑ = ĥ(x̂, t̂). We take the slope angle θ to be small and define

ε = tan θ � 1. (2.1)

The fluid is also shallow, with a mean depth H that is much smaller than the characteristic
length scale for variations over the plane, L. In particular, we choose the length scale L so
that H/L = ε, and then consider waves in spatially periodic domains of length of 2πL/k,
where k is an O(1) dimensionless wavenumber. Given these choices, the dimensional
wavelength is 2πL/k ≡ 2πH/(k tan θ), which is much larger than the mean depth if
2π � εk = k tan θ .
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Assuming that the fluid is incompressible and inertia is negligible, conservation of mass
and momentum demand that

∂ û
∂ x̂

+ ∂ŵ
∂ ẑ

= 0 (2.2)

and
0 = ρg − ∇p̂ + ∇ · τ̂ , (2.3)

where p̂ is the pressure, ρ is the density, and g = (g sin θ, 0,−g cos θ), with constant
gravitational acceleration g (we use the hat notation to denote dimensional variables; this
decoration is removed below using suitable scalings to arrive at our dimensionless model).
We take the deviatoric stress τ̂ = {τ̂ ij} to be related to the rate of strains by the generalized
Newtonian fluid model

τ̂ ij = μ̂(λ) ˆ̇γij, (2.4)

where
ˆ̇γ = { ˆ̇γij} = ∇û + (∇û)T, (2.5)

and the second invariants of the tensors are ˆ̇γ =
√

1
2

ˆ̇γij ˆ̇γij and τ̂ =
√

1
2 τ̂ ijτ̂ ij. The viscosity

μ̂(λ), is controlled by the parameter λ(x̂, ẑ, t̂).
At ẑ = 0 we adopt the no-slip condition. At the top surface ẑ = ĥ(x̂, t̂), we ignore

surface tension (in view of the relatively large scale of the films and waves featuring in
experiments; see § 2.5), and adopt stress-free conditions. Thus

û = 0 at ẑ = 0, (τ̂ ij − p̂δij)nj = 0 at ẑ = ĥ(x̂, t̂), (2.6a,b)

where n is the normal to the surface ẑ = ĥ. The kinematic condition implies

∂ ĥ
∂ t̂

+ û
∂ ĥ
∂ x̂

= ŵ at ẑ = ĥ(x̂, t̂). (2.7)

2.2. Dimensionless leading-order formulation
To remove the dimensions from the equations, we introduce the scalings

t̂ = L
U t, x̂ = Lx, (ẑ, ĥ) = H(z, h), (2.8a–c)

û = Uu, ŵ = εUw, p̂ = ρgHp cos θ, τ̂ ij = μoU
H τij, μ̂ = μoμ, (2.9a–e)

where μo is a characteristic viscosity, and

U = H3ρg
Lμo

cos θ. (2.10)

With these scalings, and to leading order in ε, (2.3) reduces to the lubrication equations

0 = 1 − ∂p
∂x

+ ∂τxz

∂z
, 0 = −1 − ∂p

∂z
. (2.11a,b)

The dominant component of the rate of strain tensor is γ̇xz = ∂u/∂z + O(ε2). Therefore,
to leading order, the stress conditions in (2.5b) become

p = τxz = 0 at z = h(x, t). (2.12)

The kinematic condition (2.7) is unchanged after scaling, but for the removal of the hats.
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Equations (2.11) and (2.12) imply that the pressure is hydrostatic

p = h − z, (2.13)

and the shear stress is given by

τxz = (h − z)
(

1 − ∂h
∂x

)

= μ(λ)
∂u
∂z
. (2.14)

We write the shear stress in terms of its basal value

τxz = (1 − ζ )τb, τb = h
(

1 − ∂h
∂x

)
, ζ = z

h
. (2.15)

In the shallow limit, the tensor invariants become approximated by τ ≈ |τxz| and γ̇ ≈
|γ̇xz| ≈ |∂u/∂z|.

Finally, mass conservation integrated over the fluid layer implies

∂h
∂t

+ ∂

∂x

∫ h

0
u dz = ∂h

∂t
+ ∂

∂x

∫ h

0
(h − z)

∂u
∂z

dz = 0. (2.16)

Given
∂u
∂z

≈ γ̇ = τ

μ
, (2.17)

we may substitute the relevant constitutive law into the final integral in (2.16) to arrive an
evolution equation for the fluid thickness. Unfortunately, this reduction is complicated by
the order parameter λ which, in general, retains an unknown spatial profile and satisfies its
own evolution equation, as discussed below.

2.3. Constitutive model
In Darbois Texier et al.’s formulation of the Wyart & Cates’s model, the order parameter
λ(x, z, t) is identified as the local density of frictional contacts. In steady uniform shear,
this density is dictated by the local shear stress: λ = e−τ∗/τ , where τ∗ represents the
characteristic stress for which short-range repulsion can be breached. Following earlier
work (Chacko et al. 2018; Richards et al. 2019; Darbois Texier et al. 2023), we allow for
both relaxation and diffusion of the frictional contacts by replacing the steady uniform
shear relation by the evolution equation

∂λ

∂ t̂
+ û

∂λ

∂ x̂
+ ŵ

∂λ

∂ ẑ
= βγ̇

[
exp

(
−τ∗
τ̂

)
− λ

]
+ K∇2λ, (2.18)

where the relaxation rate is dictated by a multiple β of the local shear rate, and the
diffusivity is K. The fluid rheology is then set by the viscosity law

τ̂ = μ̂ ˆ̇γ, μ̂ = μoλ
2
o(λO − λ)−2, λ < λO,

ˆ̇γ = 0, λ = λO,

}
(2.19)

where the characteristic viscosity μo is related to the solvent viscosity constant ηs defined
by Darbois Texier et al. by

μo = ηs

(φ0 − φ)2
. (2.20)
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In the model proposed by Wyart & Cates (2014), the jamming fraction λO is determined
with reference to solid fraction φ and two other parameters

λO = φ0 − φ

φ0 − φ1
, (2.21)

where φ0 and φ1 are the jamming fractions for suspensions of frictionless and frictional
particles, respectively. However, for the constitutive relation (2.19), all we require is the
parameter λO , in addition to the characteristic viscosity μo.

Scaling as in § 2, we arrive at the (leading-order) dimensionless constitutive model for
a thin film

T
(
∂λ

∂t
+ u

∂λ

∂x
+ w

∂λ

∂z

)
= γ̇

[
exp

(
−Υ
τ

)
− λ

]
+ κ

∂2λ

∂z2 , (2.22)

and

γ̇ = τ max
(

0, 1 − λ

λO

)2

, (2.23)

where the switch in (2.23) takes care of the yield condition implied by (2.19). Here, in order
to ensure that the model combines time-dependent relaxation and vertical diffusion with
the breaching of short-range repulsion, we have assumed that the following dimensionless
groups are all order one:

T = ε

β
= H

Lβ , Υ = Hτ∗
μoU

= τ∗
ρgH tan θ

, κ = K
βUH . (2.24a–c)

In other words, the model corresponds to a particular distinguished limit of the physical
parameters of the problem, and shares common points with other models used for
thixotropic fluids (e.g. Mewis & Wagner 2009; Hewitt & Balmforth 2013; Larson & Wei
2019). The thin-film theory that combines the constitutive law in (2.22)–(2.23) with (2.16)
is similar to shallow ice models that explore thermo-viscous instabilities in glaciers (e.g.
Clarke et al. 1977; Hindmarsh 2004).

The introduction of the diffusion term demands the addition of further boundary
conditions for λ(x, z, t). We adopt the no-flux conditions

∂λ

∂z
= 0 at z = 0 & z = h, (2.25)

corresponding to the physical statement that frictional contacts between particles are
neither created nor eliminated at the fluid surfaces. One might imagine that interfacial
interactions could adjust contact densities locally, but without any further physical input,
the no-flux condition seems least divisive.

2.4. The flow curve
The flow curve of a model fluid corresponds to the manner in which the shear stress
τ depends on shear rate γ̇ , under conditions of steady uniform shear. For the current
constitutive law, the inverse of the flow curve can be expressed as

γ̇ = τ

[
1 − λO

−1 exp
(

−Υ
τ

)]2

, (2.26)

which is illustrated for a range of values of λO (and Υ = 1
2 ) in figure 2. At lower volume

fractions, or higher values of λO (redder curves), the flow curve is monotonic; the viscosity
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10–2 10–1 100 101

10–1

100

101

λo ↑

τ

γ̇

Figure 2. Flow curves in steady uniform shear for Υ = 1
2 and λO = 0.4, 0.75, 0.95, 1, 1.02, 1.05, 1.15, 1.35

and 2 (increasing from blue to red, or as indicated by the arrow).

increases smoothly with γ̇ , displaying a modest amount of continuous shear thickening. By
contrast, at higher volume fraction, or lower λO (bluer curves), the flow curve bends back
on itself at higher stresses to create distinctive non-monotonic stress–strain-rate curves.
The criterion for the flow curve to fold back on itself is λO < 2e−1/2 ≈ 1.2131. When this
condition is met, the branches of the flow curve with negative slope are interpreted to be
unstable, and any increase in shear rate past the turn back of the curve must prompt sudden,
or discontinuous shear thickening. Such behaviour sets the scene for wave formation on
inertialess films (Darbois Texier et al. 2020, 2023).

When 1 < λO < 2e−1/2, the folded back part of the flow curve eventually reaches a
second fold point and then turns back to return to higher shear rate. The flow curve then
adopts a characteristic S-shape with multiple stable branches over a range of shear rates.
For λO < 1, however, the bent-back flow curve meets the yield point, γ̇ = 0 and τ =
τY = −Υ/ ln λO , without turning at a second fold point; for τ < τY the material does not
deform.

Darbois Texier et al. (2023) fit the flow curve in (2.26) to rheometer measurements of the
suspensions that they use for flowing cornstarch experiments. Those fits work well when
the shear thickening is continuous (λO > 2e−1/2), or up to the first turnaround of the flow
curve when thickening is discontinuous (λO < 2e−1/2). The bent-back portion of the flow
curve is not calibrated in their rheometry, and no upper branch of an S-shaped curve was
reliably found. Indeed, there is some controversy in the recent literature on discontinuous
shear thickening as to whether a fluid-like upper branch even exists (Mari et al. 2015b;
Morris 2020). Caution should therefore be exercised in adopting constitutive models like
(2.22)–(2.23), particularly at higher stress levels. Here, we press on with the model in order
to examine more closely its predictions for the dynamics of inertialess thin films, noting
only that the stress levels attained never reach much beyond the first turnaround of the flow
curve.

Note that the dimensionless model reduces to a Newtonian flow law by taking the limit,
λO → ∞. The flow curve also becomes Newtonian when (Υ/τ) → ∞ or (Υ/τ) → 0,
although the two limits have a different effective viscosity. Nevertheless, unless both
T and κ also vanish, frictional contacts can still evolve in those two limits leading to
time-dependent rheology.
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2.5. Parameter settings
In addition to the dimensionless diffusivity κ , the model in (2.15), (2.16), (2.22) and (2.23)
contains three dimensionless rheological parameters, Υ , T and λO . These parameters
correspond to the stress needed for frictional contact, the relaxation time and the jamming
threshold, respectively. In view of the definitions (2.21) and (2.24), suspensions prepared
with varying solid fraction φ possess different values for λO , but the same Υ and T .

Based on their rheometry, Darbois Texier et al. (2023) quote φ0 = 0.52, φ1 = 0.43, ηs =
9.1 × 10−4 Pa s and τ∗ = 12 Pa, using a range of solid fractions 0.3 ≤ φ ≤ 0.47. Their
film experiments have mean depths of 1 cm or less. Such values imply that the parameter
λO lies over the range 0.56–2.44, andΥ ≈ 1

2 , which guide our parameter choices in figure 2
and hereon. For the relaxation time, Darbois Texier et al. did not measure any particular
value, but quote estimates for frictional spheres from previous work (Chacko et al. 2018;
Richards et al. 2019) of β = 10 − 102, translating to dimensionless relaxation times of
order 10−2 − 10−3. As we shall see below in § 4, small values of T are problematic in
the thin-film model (the distinguished limit taken in that model, in which T is taken to be
order one, is also called into question, although one must simply set T = 0 when β � ε).
In view of this, and the lack of any calibration, we leave open the choice for this parameter,
along with that for κ . This dimensionless diffusivity is introduced chiefly so that vertical
diffusion may assist in curing any mathematical problems in our thin-film theory, not
necessarily as the gauge of a real physical effect. For that reason, we monitor the effect of
varying this parameter, but mostly treat it as small.

3. Equilibria and linear stability

3.1. Base states
Solutions with the form of a steady sheet flow are given by

u = U(z), λ = Λ(z), τ = 1 − z, (3.1a–c)

where the profiles U(z) and Λ(z) follow from

Uz = (1 − z)max
(

0, 1 − Λ

λO

)2

, Λzz = Uz

κ
[e−Υ/(1−z) −Λ], (3.2a,b)

with U(0) = Λz(0) = Λz(1) = 0. Sample solutions to the prescribed-stress problem in
(3.1) are displayed in figure 3. Examples with four values λO are presented, taking Υ = 1

2 ,
and diffusion constants of κ = 3 × 10−4 or κ = 0. Because the stress τ = 1 − z increases
monotonically on descending through the fluid layer, shear thickening occurs primarily
near the underlying plane, and becomes most pronounced for the lowest values of λO
(highest solid fractions).

For λO � 1, the flow profile limits to the Nusselt profile, U = z − 1
2 z2, of a Newtonian

fluid. With κ = 0, on the other hand, we find the explicit solution

U(z) =
∫ z

0
(1 − z̃)

[
max

(
0, 1 − λ−1

O
e−Υ/(1−z)

)]2
dz̃, Λ(z) = min(λO, e−Υ/(1−z)).

(3.3a,b)

The numerically computed solutions for κ = 3 × 10−4 closely track this diffusionless
solution in figure 3, except near the top and lower surfaces, where the no-flux condition
exerts an effect, and for the case with λO = 0.4. For that lowest value of λO , the
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Figure 3. (a) Flow profile, U(z), and (b) order parameter, Λ(z), for steady uniform films with Υ = 1
2 , κ =

3 × 10−4 and λO = 0.4, 0.75, 1 and 1.35 (all solid blue). The (red) dashed lines show the solutions with κ = 0.
The inset replots the solutions on the (γ̇ , τ )-plane and compares them with the steady-shear flow curves. The
square for λO = 0.4 and κ = 0 indicates the yield surface where Λ = λO .
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Figure 4. (a) Flow profile, U(z), (b) Λ(z), and (c) portraits on the (γ̇ , τ )-plane for steady uniform film
solutions with Υ = 1

2 and three values of λO and κ (as indicated, and colour coded by κ). The dashed (green)
lines show the limits for κ � 1.

diffusionless order parameter reaches the limit λO at a point within the fluid layer. This
results in a yield surface below which material jams up and becomes rigid. With diffusion,
however, Λ(z) becomes smoothed and never reaches the yield point. When translated to
loci on the (γ̇ , τ )-plane (as in the inset to figure 3), the diffusionless solutions trace out
part of the flow curve; the paths taken by the solutions with κ = 3 × 10−4 follow a similar
vein.

For higher diffusivities κ , the order parameter becomes more significantly smoothed,
reducing the spatial viscosity variation and lifting the portraits of the solutions on the
(γ̇ , τ )-plane away from the flow curves; see figure 4. Near κ = 0.02, the smoothing
removes any fold back of the stress–strain-rate curves, and for κ > 1, diffusion becomes
sufficient to render Λ almost uniform across the film (given the no-flux boundary
conditions). A Newtonian-like, strong-diffusion solution then emerges with

U ∼
(

z − 1
2

z2
)

max
(

0, 1 − Λ

λO

)2

, Λ ∼ 2
∫ 1

0
(1 − z) e−Υ/(1−z) dz. (3.4a,b)
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Note that (3.1) predicts that the limiting order parameter Λ exceeds λO for λO < 0.44321,
implying that the entire layer plugs up with sufficient diffusion.

3.2. Linear stability analysis
Infinitesimal perturbations to the base states above, with

h = 1 + η̌ eikx+σ t, u = U(z)+ ψz(z) eikx+σ t, λ = Λ(z)+ λ̌(z) eikx+σ t, (3.5a–c)

wavenumber k and (complex) growth rate σ = σr + iσi, satisfy

[σ + ikU(1)]η̌ = −ikψ(1), (3.6)

ψzz =
(

1 − Λ

λO

)2

τ̌ − 2
λO

(1 − z)
(

1 − Λ

λO

)
λ̌, (3.7)

T [(σ + ikU)λ̌− ikΛzψ] = ΥUzτ̌ e−Υ/(1−z)

(1 − z)2
+ [e−Υ/(1−z) −Λ]ψzz − Uzλ̌+ κ λ̌zz.

(3.8)

Here, ψ(z) represents a streamfunction such that (u,w) = (U + ψz eikx+σ t,−ikψ eikx+σ t),
and the shear stress perturbation has amplitude

τ̌ = [1 − ik(1 − z)]η̌. (3.9)

The boundary conditions translate to ψ(0) = ψz(0) = λ̌z(0) = λ̌z(1) = 0.
Numerical results of the linear stability analysis are shown in figure 5, which plots

the growth rate of the most unstable mode against wavenumber k for (κ, T , Υ ) =
(10−3, 10−2, 1

2 ) at several values of λO . With the highest values of λO of 1.2 < 2e−1/2 and
1.35 (the lowest solid fractions; redder curves), all modes are stable, even though the base
state for the first of these values possesses an S-shaped flow curve. The lower values of λO

(higher solid fractions; bluer curves) are unstable for wavenumbers below a critical cutoff
k = kcrit. The growth rate is maximized at the particular wavenumber k = kmax indicated
in the plots. As illustrated in figure 5(a,b) and discussed below in § 4.1, the growth rate
and phase speed for k → 0 can be predicted analytically.

The most unstable modes have eigenfunctions (shown in figure 5c,d) which are
characterized by strong perturbations in λ over the lower part of the fluid layer. These
variations are predominantly opposite to the perturbations in speed ψz and surface slope
ikη̌. Such features imply that a local upturn in surface slope, corresponding to a local
decrease in stress, weakens λ and thence viscosity, to accelerate flow. Conversely, a local
downturn in surface slope leads to an increasing stress, the strengthening of λ and flow
deceleration. In combination, wavey perturbations become amplified. In other words, the
perturbations harness a material response mirroring the fold back of the flow curve for
λO < 2e−1/2, as described previously by Darbois Texier et al. (2020).

Growth rates and phase speeds for varying λO and T are plotted in figure 6. The degree
of instability increases continually as the relaxation time decreases, indicating a singular
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Instability in discontinuously shear-thickening fluid films
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Figure 5. (a) Growth rate, σr, and (b) scaled phase speed, −σi/(kU∗), against wavenumber k for (κ,T , Υ ) =
(10−3, 10−2, 1

2 ) and λO = { 3
4 ,

7
8 , 1, 1.1, 1.2, 1.35} (from blue to red). Scaled phase speeds are shown only

where σr > −2. The dashed line in (b) shows the prediction in (4.5) of § 4.1. The corresponding prediction for
the growth rate is included in the inset of (a), which plots σr/k2 for smaller wavenumber. The stars show the
most unstable modes for λO < 1.2; the corresponding eigenfunctions, ψz(z) and λ̌(z), are shown in (c) and (d),
normalized so that η̌ = 1; the real parts are shown by solid lines and the imaginary parts as dashed lines.

limit for T → 0. Conversely, the instability becomes suppressed for sufficiently large
relaxation time. The onset of instability also occurs for finite wavenumber as λO decreases
below e−1/2, most noticeably for higher T . The phase speeds, −σi/k, plotted in figures 5
and 6 are scaled by the mean speed (flux) of the base solutions

U∗ =
∫ 1

0
U(z) dz. (3.10)

At very low wavenumbers, and for smaller relaxation times, instability first appears for
modes with phase speeds that are roughly twice the mean flow speed. This feature is
discussed further below in § 4, and was exploited by Darbois Texier et al. to rationalize
experimental observations. However, the most unstable modes over all wavenumbers have
rather lower phase speeds, closer to and often less than the mean flow speed.

Growth rates as a function of k and κ at fixed λO = 1 and T = 0.1 are shown in
figure 7. This plot extends from close to the diffusionless limit (κ → 0), to the strongly
diffusive limit (κ � 1). The stability problem simplifies somewhat in the first of these
limits because λ̌ becomes determines algebraically from ψ and τ̌ in (3.8) (bearing in
mind that Λ → e−Υ/(1−z) for κ → 0), and one must solve only (3.7). Further discussion
of the opposite limit of strong diffusion is given below in § 5. Unexpectedly, perhaps,
instability persists in this latter limit, extending to increasingly high wavenumbers as κ
is raised. In other words, the diffusion of frictional contacts does not suppress instability,
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Figure 6. (a) Growth rate, σr, and (b) scaled phase speed, −σi/(kU∗), plotted as densities on the (k, λO )-plane,
with (κ, Υ ) = (10−3, 1

2 ), and T = 10−3, 10−2, 0.1 and 1
2 (from right to left). The thicker red lines indicate the

most unstable wavenumber kmax for each λO . The colour scales saturate at negative growth rates.

even though a sufficient increase in κ eliminates any turn back in the local (γ̇ , τ )-relation
of the base state (see figure 4).

4. Rapid relaxation, T � 1

With a relatively rapid relaxation of the frictional contacts (T → 0), the order parameter
becomes determined by solving

κ̌λζ ζ = (1 − ζ )

(
1 − λ

λO

)2

[λ− e−ϒ̌/(1−ζ )], (4.1)

with

τb = h(1 − hx), ζ = z
h
, ϒ̌ = Υ

τb
, κ̌ = κ

h2τb
, λζ (0) = λζ (1) = 0, (4.2a–e)

on assuming the yield condition is never met. This problem, however, is identical to that
for the base states in § 3.1, but for the replacements κ → κ̌ and Υ → ϒ̌ . Hence, we may
write the solutions to both problems in terms of a single function, as either λ = Λ(ζ ;Υ, κ)
or λ = Λ(ζ ; ϒ̌, κ̌).

Of particular importance is the flux function∫ h

0
u(x, z, t) dz =

∫ 1

0
(h − z)uz dz

= h2τb

∫ 1

0
(1 − ζ )2

(
1 − λ

λO

)2

dζ = h2τbQ(ϒ̌, κ̌). (4.3)

Armed with this flux function, we may now turn to the conservation of mass relation (2.16)
and write the single evolution equation

ht +
[

h3(1 − hx)Q
(

Υ

h(1 − hx)
,

κ

h3(1 − hx)

)]
x
= 0. (4.4)
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Figure 7. Density plots of (a) growth rate, σr, and (b) scaled phase speed, −σi/(kU∗) above the (k, κ)-plane for
unstable modes with (λO ,T , Υ ) = (1, 0.1, 1

2 ). The thicker red line indicates the most unstable wavenumber
kmax for each κ . The colour scales saturate at negative growth rates. Below are plots of (c,e) σr, and (d, f )
−σi/(kU∗) against k for the values of κ indicated. The dashed lines show the limits κ → ∞ (see § 5) and
κ → 0.

Note that the base states of § 3.1 have a flux, or mean velocity, of U∗ = Q(Υ, κ).

4.1. Revisiting linear stability
By introducing h = 1 + η̌ e−ikx+σ t into (4.4) and linearizing, we arrive at

σ = −ik(3U∗ − ΥQ1 − 3κQ2)+ k2(ΥQ1 + κQ2 − U∗), (4.5)

where

Q1 =
[
∂Q
∂ϒ̌

]
h=1

and Q2 =
[
∂Q
∂κ̌

]
h=1

, (4.6a,b)

are the partial derivatives of the flux function evaluated for the base state. As long
as ΥQ1 + κQ2 > U∗, the base state is therefore unstable. The growth rate and phase
speed predicted by (4.5) are included in figure 5. These predictions match up with the
numerical solutions for k � 1 in these figures because relaxation is relatively rapid in the
small-wavenumber limit.

For higher wavenumber, the predictions from (4.5) fail to match the drop off in linear
instability observed for the numerical solutions in figure 5. In fact, (4.5) predicts an
unbounded increase in growth rate with wavenumber, the hallmarks of an ultraviolet
catastrophe. In other words, in the limit of rapid relaxation, the linear thin-film problem
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becomes ill posed with the shortest wavenumbers growing fastest. As illustrated by the
numerical solutions of the linear stability problem in figures 5 and 6, this drawback is
cured by a finite relaxation time. However, the approach to the singular limit T → 0 is
evident in figure 6, where the range of unstable wavenumbers and maximum growth rate
diverge as the relaxation time is decreased.

4.2. No diffusion
With κ = 0, the calculation of the flux function becomes simpler. In this case, Λ =
e−ϒ̌/(1−ζ ) and

G(τb) = τbQ(ϒ̌, κ̌) = τb

∫ 1

0
(1 − ζ )2

(
1 − λ

λO

)2

dζ ≡ 1
τ 2

b

∫ τb

0
τ̃Γ (τ̃ ) dτ̃ , (4.7)

where Γ (τ) = τ(1 − λO
−1 e−Υ/τ )2 is the inverse of the flow curve function (cf. (2.26)),

which can be written in terms of exponential integrals.
The lubrication model now becomes

ht + [h2G(τb)]x = 0, (4.8)

so that the linear growth rate can be read off as

σ = −ik[2G(1)+ G′(1)] − k2G′(1). (4.9)

Linear instability arises for

G′(1) =
∫ 1

0
τ̃ 2Γ ′(τ̃ ) dτ̃ < 0, (4.10)

which is equivalent to the instability condition quoted by Darbois Texier et al. The
condition does not quite match the criterion, Γ ′(1) < 0, which indicates when the fluid
at the bottom of the layer in the base flow lies beyond the first turnaround of the flow curve
(although it is an integral average of Γ ′(τ ) that is weighted to the base of the fluid layer).
Flux functions G(τb) for the same values of λO and Υ as displayed in figure 2 are illustrated
in figure 8; an inset compares the stability indicator G′(1) with Γ ′(1). Note that G′(1) is
numerically small, which is the origin of Darbois Texier et al.’s conclusion that the phase
speeds of unstable waves are close to twice the mean flow speed (here 2G(1) ≡ 2U∗).

To summarize, without a finite relaxation time, the linearized inertialess thin-film model
is ill posed (a feature that likely carries over to the nonlinear versions in (4.4) and
(4.8)). One might imagine that relaxing the thin-film approximation or including inertia
could cure this ultraviolet catastrophe. In fact, as we show in Appendix A, where we
briefly advance beyond the inertialess, thin-film limit (but omit diffusion), neither of these
extensions suffices; a finite relaxation time is still needed. Surface tension, which has been
omitted here, offers another possible physical regularization. The inclusion of that effect
modifies the base shear stress in thin-film theory so that τb = h(1 − hx + Shxxx), where
S is a suitable, dimensionless, Bond number (the hydrostatic pressure being replaced by
p = h − z − Shxx; e.g. Chang 1994; Ruyer-Quil & Manneville 2000). With this inclusion,
a repetition of the analysis above simply replaces the factor k2 in (4.5) or (4.9) with
k2 + Sk4. The divergence of the growth rate with k is therefore exacerbated by surface
tension.
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Figure 8. The flux function G(τb) defined in (4.7) for Υ = 1
2 and the values of λO shown in figure 2. The

inset compares G′(1) with Γ ′(1) as a function of λO .

5. Strong diffusion, κ � 1

As remarked in § 3.1, when diffusion of frictional contacts is relatively strong κ � 1 (and
the boundary conditions on λ are no flux), Λ(z) becomes almost uniform across the film
for the base states of the linear stability analysis. In fact, this feature carries over to the full
thin-film problem, which simplifies further in this limit: integrating (2.22) across the film,
and then introducing the approximation λ ∼ λ(x, t), we find

(hλ)t +
(
λ

∫ h

0
u dz

)
x
= 1

T

(
1 − λ

λO

)2

+

∫ h

0
τ(e−Υ/τ − λ) dz, (5.1)

and

V = 1
h

∫ h

0
u dz = 1

3
hτb

(
1 − λ

λO

)2

+
, (5.2)

where we have employed the short-hand notation, max(0,X) = (X)+. Hence

ht + (hV)x = 0, τb = h(1 − hx),

(hλ)t + (hVλ)x = 3V
2T [E(τb)− λ], E(τb) = 2

τ 2
b

∫ τb

0
τ̃ e−Υ/τ̃ dτ̃ .

⎫⎪⎬
⎪⎭ (5.3)

For a steady, uniform base state, h(x, t) = 1 and λ(x, t) = Λ, we recover the order
parameter in (3.1). The linear stability of these base states follows from setting h =
1 + η̌ eikx+σ t and λ = Λ+ λ̌ eikx+σ t, linearizing in the amplitudes η̌ and λ̌ and then solving
a quadratic equation for the growth rate σ stemming from (5.3). Sample results are
plotted in figure 9 for (T , Υ ) = (0.1, 1

2). As λO is decreases through the critical value
λSD(Υ ) = 4e−Υ − 3Λ < 2e−1/2 (with λSD(

1
2 ) ≈ 1.0965), instability sets in at the largest

wavenumbers. An ultraviolet catastrophe is avoided, however, and

σr → (λSD − λO)(λO −Λ)

2T λO
2 and − σi

kU∗
→ 1 for k � 1. (5.4)

For λO further below λSD , all wavenumbers become unstable, but the shortest waves remain
the fastest growing. The predictions for the strong-diffusion limit were also included
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Figure 9. (a) Growth rates σr and (b) scaled phase speeds, σi/(kU∗) on the (k, λO )-plane in the
strong-diffusion limit, for Υ = 1

2 and T = 0.1.

earlier in figure 7(c,d) and compared with numerical results for the full thin-film model.
Evidently, there is no selection of a preferred wavelength in linear theory and a pronounced
dependence of the nonlinear dynamics on initial condition is suggested. Therefore, in the
full thin-film model, a preferred wavelength arises due to the relaxation, but not diffusion,
of λ.

The simplicity of the strong-diffusion equations (5.3) suggests an avenue to interrogate
the development of instabilities from low-amplitude, approximately linear perturbations
into nonlinear waves. However, a device to limit the range of unstable wavenumbers
is still required and the strong-diffusion limit, in which the frictional contact density
becomes uniform across the depth of the fluid film, is itself probably unphysical. The
exercise can nevertheless prove useful, permitting a certain amount of analytical headway
into deciphering the nonlinear dynamics. In Appendix B, we follow this pathway, adding
artificial diffusion-in-x terms to remove instability at the highest wavenumbers. A notable
feature exposed by this analysis is that the linear instability saturates at finite amplitude to
form shock-like nonlinear waves, travelling at a speed that can be predicted analytically.
The analysis further exposes how linear instability can extend into the limit of strong
diffusion, even though the local stress–strain-rate relation of the base-flow profile is
monotonic (cf. § 3.2).

6. Nonlinear waves

To provide an exploration of the nonlinear dynamics of unstable waves that avoids the
strong-diffusion limit, we return to the full order parameter equation in (2.22) and capture
the complete spatial dependence of λ(x, z, t). In Appendix C, we summarize the strategy
we use to solve this problem numerically for spatially periodic domains of length 2π/k,
with k selected close to the wavenumber that is preferred when the relaxation time T and
diffusivity κ are finite.

Figure 10 displays a sample numerical solution. The initially small perturbation to the
base state again amplifies exponentially according to the predictions of linear stability
analysis (§ 3.2). Growth then saturates in the nonlinear regime, leading to the formation
of a steadily propagating wave. The nonlinear wave travels slightly more slowly than the
linear wave speed, which is in turn slightly slower than the mean flow. This dynamics
matches that found in the strong-diffusion limit (see Appendix B), although the nonlinear
wave profile in figure 10 is relatively smooth and shows no tendency to form a shock.
The fall of the profile beyond the crest does, however, become somewhat steeper than
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Figure 10. Nonlinear solution for (λO ,T , κ, k,A) = (1, 0.1, 10−3, 10, 2 × 10−4). (a) Snapshots of λ(x, z, t)
at five successive times (as indicated by the stars in (c)). The solutions are mapped onto the inclined plane.
(b) The free surface position h(x, t), shown in the frame of the final nonlinear wave, with spatial coordinate
ξ = k(x − cnt), where cn ≈ 0.05 ≈ 0.55U∗. (c) Time series of the mean surface displacement

√
〈(h − 1)2〉

(where 〈· · · 〉 denotes an average in x). The dashed line shows the growth predicted by linear stability analysis.

the preceding rise. Note that computations are continued only up to times just beyond
where linear instability saturates; any subsequent nonlinear dynamics, such as secondary
instabilities, is not captured.

At early times, when the film is similar to the uniform base flow, the order parameter
λ(x, z, t) is enhanced over the lower parts of the film by the elevated shear stress there.
As the nonlinear wave develops, the flattening of the surface over the rise of the wave
reduces the shear stress to lower λ locally. Shear thickening then takes place primarily
underneath the fall of the wave profile, enhancing the viscosity there to create the
distinctive pattern in λ seen in the snapshots in figure 10(a).

Further details of the final, steady nonlinear wave are shown in figure 11. In the first
panel, a density map of λ is compared with contours of constant e−Υ/|τ |. Although the
two are not perfectly aligned, the trends of both are similar, indicating that the local
relation between γ̇ and τ lies near, but does not follow, the steady-state flow curve. Shear
thickening takes place primarily within the region where the stress exceeds the threshold,
|τ | ≈ 0.4, implied by the first turn back of the flow curve (the black contour in figure 11a).
The streamline plot in the second panel of figure 11 illustrates how the shear thickening
and step conspire to create a recirculating cell underneath the crest of the nonlinear wave.

A selection of steady nonlinear wave profiles for varying λO is shown in figure 12(a).
As this parameter decreases and the linear instability becomes stronger, the wave height
(measured in figure 12 as max(h)− min(h)) increases. Tracing the wave profiles back up
to the onset of linear instability at larger λO suggests a supercritical transition (see panel b).
At the smaller values of λO , the nonlinear wave profile develops into relatively steep steps
separated by long, almost linear sections. Below the steps, fluid discontinuously shear
thickens throughout almost its entire depth, whereas the wave profile become almost flat
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Figure 11. The final nonlinear wave from figure 10, showing (a) contours of constant e−Υ/|τ |, superposed on
a density map of λ, and (b) a selection of streamlines, superposed on a density map of u/U∗. Both are shown
in the frame of the wave, with streamwise coordinate ξ = k(x − cnt). The black curve in (a) shows the contour
|τ | ≈ 0.4, the stress above which discontinuous shear thickening is expected (cf. figures 2 and 3).
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Figure 12. (a) Steady nonlinear wave profiles for (T , k, Υ, κ) = (0.1, 10, 1
2 , 10−3) and λO =

{0.9, 1, 1.05, 1.07} (colour coded, from red to blue). The profiles are plotted so that their crests are
aligned, and the triangle shows unit slope (hx = 1). (b) Wave height, max(h)− min(h), against λO , for a wider
set of computations. The stars indicate the values for λO in (a,b), and the vertical dot-dashed line indicates the
linear stability boundary. The inset density plots show λ(x, t) for the values of λO indicated.

between the steps, reflecting a very low shear stress. In other words, fluid gravitationally
pools behind the sharp, shear-thickened steps, which implies that those features present
effective barriers to the film flow.

The reduction of the net flux by the nonlinear waves is illustrated further in figure 13,
which displays time series of the horizontal averages of the surface and depth-averaged
speed u for the solutions also shown in figure 12. In all four examples, the net flow speed
is reduced by the nonlinear wave, although the effect is minor near the linear stability
threshold (for λO = 1.07). The instantaneous wave speed (measured using the position at
the core of the wave where h = 1 and hx < 0) is smaller still. At early times, this wave
speed matches the prediction of linear theory, then falls sharply as the wave saturates,
before converging to the final nonlinear wave speed cn < U∗.

7. Discussion

The non-monotonic flow curves of certain complex fluids in steady, uniform shear
can trigger hydrodynamic instabilities. For suspensions that display discontinuous shear
thickening such as cornstarch, this effect plausibly rationalizes the large-amplitude waves
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Figure 13. (a) Time series of three scaled speeds for (T , k, Υ, κ) = (0.1, 10, 1
2 , 10−3) and λO =

{0.9, 1, 1.05, 1.07} (colour coded, from red to blue). The solid line shows the depth and x-averaged speed,
〈h−1 ∫ h

0 u(x, z, t) dz〉, the dashed line show the x-averaged surface speed, 〈u(x, h, t)〉, and the dotted line show
the instantaneous wave speed (measured using the position where h = 1 and hx < 0). All three are scaled by
U∗. The stars indicate the final nonlinear wave speeds, which are plotted in (b) for a wider suite of computations.
The vertical dot-dashed line again shows the linear stability threshold.

seen on relatively slow, falling films (Darbois Texier et al. 2020, 2023). Here, we have
examined a detailed theoretical model of such films, building on Darbois Texier et al.’s
formulation of the constitutive law for steady, uniform shear proposed by Wyart & Cates
(2014). Employing that law for the local viscosity in an inertialess thin-film model is
problematic: waves of all wavelength are predicted to be unstable, with a growth rate that
diverges at high wavenumbers. We have demonstrated that the inclusion of both relaxation
or diffusion across the film can control this ultraviolet catastrophe. On the other hand,
neither inertia nor the extensional viscous stresses ignored in thin-film theory can cure the
problem (a conclusion following from the extension of the thin-film model explored in
Appendix A).

For the constitutive law that we have employed, relaxation removes unstable waves of
small wavelength, to furnish a preferred wavenumber; diffusion, however, does not. The
onset of linear instability sometimes, but not always, lies close to a long-wave stability
criterion that can be established analytically. That criterion does not precisely coincide
with the condition that the profile of the base flow samples the non-monotonic part of the
flow curve under steady uniform shear, even in the limit that relaxation becomes arbitrarily
fast. In fact, with a sufficiently long relaxation time, linear instability is suppressed
altogether, even when discontinuous shear thickening arises in the base flow.

By solving the thin-film model numerically, we have constructed the steadily
propagating nonlinear waves that result from the saturation of linear instability when
disturbances reach finite amplitude. Changing the parameters of the constitutive law so that
the rheology progresses from continuous to discontinuous shear thickening, we observe the
emergence of low-amplitude waves on passing the linear instability threshold, in the usual
manner of a supercritical transition. As the fluid becomes more shear thickening, the waves
become stronger, taking the form of relatively steep steps, under which fluid is substantially
thickened by elevated stresses. Between the steps, viscosity remains low and the fluid pools
into long, almost flat, sections. Such phenomenology bears some similarities with that of
the waves seen in laboratory experiments (Balmforth et al. 2005; Darbois Texier et al.
2020, 2023). However, Balmforth et al. (2005) report that waves become very steep in
front of their crests, often overturning there. Darbois Texier et al. do not comment on this
aspect of their experiments, although the downward profiles of their ‘Oobleck waves’ also
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look to quickly steepen. Excessive wave steepening and overturning cannot be captured by
the thin-film asymptotics inherent in the model presented here.

Similarly, the linear stability theory predicts that preferred wavelengths are relatively
short, implying further limitations on thin-film theory: in the model, the dimensional
wavelength, 2πk−1L = 2πk−1H cot θ , should greatly the fluid depth H; i.e. the
dimensionless wavenumber k should be much less than 2π cot θ . For the slopes of the
channels used in laboratory experiments (of order 10◦), this translates to the constraint
k � O(30). Consequently, if relaxation times are relatively small, the predicted preferred
wavelengths are too short to be accurately captured in the long-wave model (preferred
wavenumbers are predicted to be O(10) or smaller when T > 0.1).

The theoretically predicted linear wave speeds are also smaller than those observed
experimentally by Balmforth et al. (2005) and Darbois Texier et al. (2020, 2023), who both
noted that waves travelled significantly faster than the mean flow. In the model, the waves
travel closer to the mean flow speed (for finite relaxation time), unless the wavenumber is
arbitrarily decreased below that of the most unstable mode. Moreover, because nonlinear
waves invariably create shear-thickened barriers to flow, those disturbances invariably
decelerate further on reaching finite amplitude in the model. It therefore seems challenging
to explain the relatively fast experimental wave speeds. One immediate explanation for
this discrepancy is that the spatially periodic setting and initialization of the model lead to
differences with the experiments, in which waves develop along the channel from an inlet
with its own dynamics.

In conclusion, thin-film theory incorporating instantaneous shear thickening within the
framework of a generalized Newtonian fluid model predicts linearly unstable waves in the
inertialess limit. However, this theory is not sufficient to explain the detailed properties
(wavelengths and wave speeds) of the waves observed in flowing films of cornstarch
solutions. Here, it has been shown that the addition of time-dependent relaxation of
frictional contacts may partly help to save this situation. Overall, the instabilities observed
on flowing films of discontinuously shear-thickening fluids provide interesting constraints
on the underlying constitutive behaviour, as in some other flows cornstarch suspensions
(e.g. Merkt et al. 2004; von Kann et al. 2011; Brown & Jaeger 2014; Ovarlez et al. 2020;
Bougouin et al. 2024). In more general settings, one wonders whether phenomena of this
kind act as practical rheometers to probe and inform the rheology of complex fluids or
granular media (cf. Edwards & Gray 2015).
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Appendix A. Beyond the inertialess thin-film limit, with κ = 0

Restoring inertia and the higher-order terms in ε, the dimensionless conservation of
momentum equations are

R(ut + uux + wuz) = ε
∂τxx

∂x
+ ∂τxz

∂z
− ∂p
∂x

+ 1, (A1a)

ε2R(wt + uwx + wwz) = ε2 ∂τxz

∂x
+ ε

∂τzz

∂z
− ∂p
∂z

− 1, (A1b)

where the scaled Reynolds number is

R = U2

gH cos θ
= ε

ρUH
μo

. (A2)

The stress-free conditions at the surface can be written in the form

τxz = 2εhxτxx

1 − ε2h2
x

and p + ετxx = 2ε3h2
xτxx

1 − ε2h2
x
. (A3a,b)

The additions above do not modify the base-state solutions, u = U(z) and λ = Λ(z), of
§ 3.1. To reconsider linear stability, we again follow the breakdown in (3.1). On ignoring
the spatial diffusion of λ (so κ = 0 and Λ = e−Υ/(1−z)), it follows that

ψzz =
(

1 − Λ

λO

)2

τ̌ − 2(1 − z)
λO

(
1 − Λ

λO

)
λ̌− ε2k2ψ, (A4)

τ̌ z = ikη̌ +Π + 4ε2k2ψz

(
1 − Λ

λO

)−2

+ R[(σ + ikU)ψz − ikUzψ], (A5)

Πz = −ε2k2τ̌ − ε2k2R(σ + ikU)ψ, (A6)

λ̌ = Υ e−Υ/(1−z)(Uzτ̌ − ikT ψ)
(1 − z)2[T (σ + ikU)+ Uz]

, (A7)

on setting p + ετxx = 1 − z + [η̌ + (ik)−1Π(z)] eikx+σ t. Along with (3.6), the boundary
conditions are

ψ(0) = ψz(0) = 0 and τ̌ (1)− η̌ = Π(1) = 0. (A8a,b)

In addition to the parameters (λO, Υ, T , k), the system (A4)–(A7) also includes the aspect
ratio ε and scaled Reynolds number R. In fact, the former appears only in the combination
εk, which is what is assumed to be small in the main text.

A.1. Zero-wavenumber modes (k = 0)
For zero-wavenumber modes with k = 0 = η̌ = Π = 0, the system simplifies to the
second-order problem

τ̌ zz = Rσ
(

1 − Λ

λO

)[
1 − Λ

λO

− 2ΥΛUz

(1 − z)(T σ + Uz)

]
τ̌ , τ̌ z(0) = τ̌ (1) = 0. (A9a,b)

This problem dictates the eigenvalue Rσ as a function of T /R (given λO and Υ ), and
although it becomes trivial for R = 0, the limit R → 0 is singular.
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Without relaxation (T = 0), the differential equation is simply τ̌ zz = RσΓ ′τ̌ , where
Γ ′ = Γ ′(1 − z) is the slope of the inverse of the flow curve γ̇ = Γ (τ) in (2.26).
Provided the flow curve is monotonic (λO > 2e−1/2), Γ ′(1 − z) > 0 and the problem has
Sturm–Liouville form, implying an infinite set of decaying modes with σ < 0. Once the
flow curve turns back on itself, however, Γ ′(1 − z) is positive only over the upper part
of the fluid layer, and negative underneath. This allows for two infinite families of modes
with real values for σ , one decaying (σ < 0) and the other growing (σ > 0). For both, the
eigenvalues accumulate to |σ | → ∞ as the number of spatial oscillations in z increases.
In other words, even beyond the inertialess, thin-film limit, the spectrum of unstable waves
still suffers an ultraviolet catastrophe, this time for diverging vertical wavenumber.

With the introduction of relaxation, the growth rate of the unstable modes become
limited from above, and mode collisions can occur to generate complex conjugate pairs.
These features are illustrated in figure 14(a), which further demonstrates how an increase in
relaxation time T eventually suppresses all the unstable modes. The growing, real modes
can be found implicitly using the WKB approximation(

n − 3
4

)
π ∼

√
Rσ

∫ z∗

0

(
1 − Λ

λO

)1/2 [
1 − Λ

λO

− 2ΥΛUz

(1 − z)(T σ + Uz)

]1/2

dz, (A10)

where n = 1, 2, . . . and z = z∗ denotes the turning point where the integrand in (A10)
vanishes; cf. figure 14(a). For T /R → 0, the approximation becomes explicit and exposes
the divergence Rσ ∝ n2 for large n.

A.2. Finite wavenumber
The preceding results carry over to modes with finite k, as illustrated in figure 14(b),
where we solve the full system in (A4)–(A7) for R = ε = k = 1, and plot the resulting
eigenvalues σ against T . The trends for finite wavenumber mirror those for k = 0, except
that the modes are now complex for all values of T .

Results that parallel those presented in figures 5 and 6 of the main text, are shown in
figure 15. Here, we plot growth rates and phase speeds as functions of wavenumber for
three values of T and varying ε. The solutions match up with the inertialess, thin-film
results for lower wavenumbers and higher relaxation times (shown by the dashed lines).
For given T and finite ε, the solutions begin to diverge from one another for values of εk
that are order unity or larger. More surprisingly, modes do not become strongly stabilized
for large εk. Instead, at high k, growth rates converge to constant values that depend on
ε and T . For low T , the high−k modes actually remain unstable. This behaviour results
from a switch in mode structure, as illustrated by the insets in figure 15(b), which plotψz(z)
for two of the modes. In the high-wavenumber limit, the modes develop rapid, decaying,
spatial oscillations near the base of the layer, with a scale set by εk.

To capture the boundary-layer structure of the large-wavenumber modes, we set z = εkς
and then take the limit, ς = O(1) and εk � 1, in (A4)–(A7), to arrive at the Stokes-like
problem(

∂2

∂ς2 − 1
)2

ψ +
(
∂2

∂ς2 − 1
)[

2λOΥ (ψςς + ψ)

(λO eΥ − 1)[T (s + iε−1ς)+ 1] − 2λOΥ

]
∼ 0, (A11)

where s = σ(1 − e−Υ /λO)
−2. Equation (A11) can be solved numerically, subject to the

boundary conditionsψ(0) = ψς(0) = 0 and (ψ,ψz) → 0 for ς → ∞, and using an initial
guess for the eigenvalue s based on the solution for σ from (A4)–(A7). This problem
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Figure 14. (a) Numerically computed growth rates obtained from (A8) by tracking the first six
zero-wavenumber modes for varying T /R (solid blue lines). After modes collide and become complex
conjugates, the growth rates Rσr and frequencies Rσi are plotted as (green) dashed lines. The (red) dotted
lines show the WKB predictions from (A10) for n = 1, 2, . . . , 6; the red stars indicate the (explicit) limits for
T /R → 0. (b) Shows an equivalent plot, but displaying results from solving the full system in (A4)–(A7), with
R = ε = k = 1; in this case, modes are always complex and remain distinct.

is independent of k, but not ε, in agreement with the results shown in figure 15. The
boundary-layer structure of ψz is satisfyingly reproduced by the solutions to (A11); the
resulting predictions for the limiting growth rate are included in figure 15(a,c,e).

Evidently, for small but finite relaxation times, shear-thickening streamwise viscous
stresses (which introduce the final term on the left of (A11)) can promote instabilities
at high wavenumber k. For these instabilities, inertia plays no role (the inertial parameter
R does not feature in (A11)). Only when the relaxation time is sufficiently large do modes
with large k become damped. Consequently, a sufficiently large relaxation time is still
required to select a preferred wavelength away the inertialess thin-film limit.

Appendix B. Nonlinear waves in the strong-diffusion limit

By arbitrarily adding small, artificial diffusion terms, χhxx and χ(hλ)xx with diffusivity
χ , to the equations in (5.3), the range of unstable wavenumbers becomes limited and a
preferred wavenumber is selected. The device further enables one to compute nonlinear
solutions to this reduced model. A solution computed in this fashion is displayed in
figure 16, adopting a periodic spatial domain of length 2π/k, and beginning from a
low-amplitude initial condition with [h(x, 0), λ(x, 0)] = [1, 10−4 sin kx]. The solution first
amplifies according to the expected linear growth rate. Growth then saturates, leaving a
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Figure 15. (a,c,e) Growth rates σr and (b,d, f ) corresponding scaled phase speeds −σi/(kU∗) for T = 10−3

(a,b), T = 10−2 (c,d), T = 0.1 (e, f ), all with (λO , Υ, κ,R) = (1, 1
2 , 0, 1). For each case, we show results for

ε = 10−4+j/2, j = 0, 1, . . . , 6 (solid lines, from blue to red). The inertialess thin-film results (ε = R = 0) are
shown by the dashed lines. The horizontal dotted lines in (a,c,e) indicate the limits predicted from solving
(A11). The insets in (b) show the spatial structure of ψz(z) for the two modes indicated by stars (solid lines
displaying real part and dot-dashed showing imaginary part).

steadily translating nonlinear wave that propagates at a wave speed of cn ≈ 0.09. The
nonlinear wave corresponds to a gradual deepening of the fluid layer followed by a sharp
downward step. At the step, the increased stress prompts significant shear thickening,
locally and abruptly raising λ(x, t).

The main solution shown in figure 16 adopts χ = 1.25 × 10−5 for the diffusivity of
the added diffusion terms. Four additional solutions with different values of χ are also
included in panels (d,e). The additional diffusivity exerts a minor effect on the strength of
the nonlinear wave (i.e. the elevation change), but plays a key role in setting the sharpness
of the steep step in the wave profile. Panels ( f ) and (g) replot the solutions in the vicinity
of the step against the spatial variable k(x − cnt)/

√
χ (with a translation to align them

so that h = 1 at the centre of the step). These magnifications illustrate how the width of
this region is controlled by χ , leading one to conclude that the steps must sharpen into
discontinuities as χ → 0.

The onset of instability in the limit κ � 1 arises for relatively short waves (k � 1, but
still with k � ε−1 to maintain the validity of the asymptotic model equations). For such
waves, the wave height h − 1 becomes O(k−1), because the wave slope remains order
one away from the steep steps. Therefore, the first relation in (5.3) implies that V ≈ V(t).
Figure 17 plots V(x, t) for the solution displayed in figure 16, illustrating how this mean
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Figure 16. Nonlinear dynamics in the strong-diffusion limit (κ � 1) for λO = 1, Υ = 1
2 and T = 0.1, in a

domain of length 2π/k = π/5, computed by adding artificial diffusion terms to (5.3) with diffusivity χ =
1
4 × 10−4. Plotted above are (a) time series of wave amplitude (

√
〈(h − 1)2〉) and snapshots of (b) h(x, t) and

(c) λ(x, t). In (a), the dot-dashed line is the expected linear growth rate. In (b,c), the snapshots are plotted
in a frame translating with speed cn = 0.09, with coordinate ξ = k(x − cnt). Below, we plot (d) h(x, 60) and
(e) λ(x, 60) (thicker, blue lines), aligned so that h = 1 at ξ = 0. The thinner (red) lines show additional solutions
with χ = 1

4 × 10−4 × { 1
4 ,

1
2 , 2, 4}. Panels ( f ) and (g) show magnifications of (d,e) near ξ = 0, plotting h and

λ against ξ/
√
χ . The dotted line in (d) shows the prediction from (B4), using the observed value of V ≈ cn;

that in (e) shows λ = E(τb) with τb evaluated using the final snapshot of h for χ = 1
4 × 10−4.

speed does become largely a function of only time, even though the wavenumber k = 10
is not that large.

Continuing with the short-wave reduction of the problem, we may suitably approximate
the implied shear stress τb, using V ≈ V(t) and taking h ≈ 1. Then, the second equation
in (5.3) reduces to

λt + Vλx ≈ 3V
2T

[
E

(
3Vλ2

O

(λO − λ)2
)

− λ
]

+ χλxx (B1)

(assuming that λ remains below λO , which is the case for the numerical solutions). If we
neglect the diffusion term, set V = 1

3 (1 −Λ/λO)
2 ≡ U∗ and then linearize about the

original base state λ = Λ, we recover the prediction for the growth rate and phase speed
in (5.4). In other words, instability in the strong-diffusion limit can be rationalized as the
result of discontinuous shear thickening at constant, depth-averaged shear rate V/h ≈ U∗.
Indeed, as illustrated in figure 18(a), plots of base stress τb against U∗ for decreasing values
of λO display the familiar transition from monotonic to S-shaped curves, and the threshold
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Figure 17. Mean speed V(x, t) for the solution of figure 16 with χ = 1
4 × 10−4. In (a), the speed is plotted as

a density on the (x, t)-plane. In (b), the blue dots plot V over the spatial computational grid.
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Figure 18. (a) Base stress τb against depth-averaged shear rate V/h ≈ U∗ = 1
3 τb[1 − E(τb)/λO ]2+ for the

values of λO indicated (and Υ = 1
2 ). The base flow has τb = 1 (dot-dashed line) and the curve (in red)

with λO ≈ 1.0965 is vertical there. (b) The potential, Φ(λ), defined by Φ ′(λ) = 3cn(E − λ)/(2k2χT ), for
cn = {8.3, 8.6, 8.87, 9.1, 9.4} × 10−2 and (λO , Υ,T , k, χ) = (1, 1

2 , 0.1, 10, 1
4 × 10−4).

for instability corresponds to where these ‘average flow curves’ first bend back at the stress
of the base state (τb = 1).

Equation (B1) further allows us to dissect the anatomy of the final steadily propagating
nonlinear waves. For these states, V = cn and (B1) reduces to the nonlinear oscillator
equation

0 ≈ 3cn

2k2T

[
E

(
3cnλ

2
O

(λO − λ)2
)

− λ
]

+ χλξξ , (B2)

on transforming into the frame of the wave, in which λ = λ(ξ) with ξ = k(x − cnt).
The potential of the oscillator, Φ(λ), with Φ ′(λ) = 3cn(E − λ)/(2k2χT ), is plotted in
figure 18(b) for various choices for cn. The potential has two maxima, with the second
arising at λ = λO . For χ � 1, the diffusion term is relatively small away from the sharp
step. Hence, λ ≈ λ∗, where the fixed point λ∗ corresponds to the maximum of the potential
at smaller λ, which is given implicitly by

λ∗ = E

(
3cnλ

2
O

(λO − λ∗)2
)
. (B3)
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Instability in discontinuously shear-thickening fluid films

The step, however, is controlled diffusively over a distance of order
√
χ , as observed

earlier, and corresponds to a (near-homoclinic) orbit of the oscillator that connects the
fixed point λ = λ∗ to itself. Moreover, λ must reach values close to λO on descending the
step in order to account for the significant shear thickening and wave slope there. But if
cn is too small, the potential maximum at λ = λO = 1 in figure 18(b) is smaller than that
at λ = λ∗, implying the orbit cannot return to λ∗. Conversely, for the larger values of cn in
the figure, the maximum at λ = λO is higher than that λ = λ∗, and the orbits returns to the
lower fixed point before λ reaches values close to λO . In order for the orbit to achieve values
close to λO before becoming reflected back to λ∗, the two maxima of the potential must
therefore have comparable heights, which selects the nonlinear wave speed, cn ≈ 0.089.

For the nonlinear states in figures 16 and 17, the approximation h = 1 in (5.2) is
somewhat limiting. Nevertheless, we see that λ is indeed given by λ = E(τb) outside the
step (see figure 16e). Moreover, if we retain h in the definition in (5.2), the profile there is
dictated by

hx = 1 − τb

h
= 1 − 3Vλ2

O

h2(λO − λ)2 . (B4)

The prediction from (B4) (integrating from the point where h = 1, and using the final
value of V ≈ cn from figure 17) is compared with the computed solution in figure 16(d).

Appendix C. Numerical scheme

To solve the model (2.15), (2.16), (2.22) and (2.23) numerically, we consider periodic-in-x
domains with length � = 2π/k. We first map the fluid domain to a rectangle by
transforming to the new variables (x, ζ ), where again ζ = z/h(x, t)). We then discretize
the new spatial variables and evaluate derivatives using spectral differentiation matrices
(supplementing Chebyshev matrices for ∂/∂ζ with matrices for ∂/∂x based on the fast
Fourier transform; Weideman & Reddy 2000). The discrete spatial grid in (x, ζ ) is
therefore an N × M collection of collocation points, with N in ζ and M in x. Practically,
we use N = 64 and M = 128 or 256. The resulting set of coupled ordinary differential
equations is solved using MATLAB’s ODE15s. As a rough approximation of a base state
perturbed by an unstable mode, we use the initial conditions

h(x, 0) = 1 and λ(x, ζ, 0) = Λ(z)+ A sin kx, (C1a,b)

where A is a parameter (typically chosen to be 2 × 10−4) and Λ(z) is one of the base-flow
solutions of § 3.1. A similar strategy, coupling spectral differentiation matrices in x with
time integration using ODE15s, underscores the computations with the strong-diffusion
equations (5.3) in Appendix B (although the spatial grid there contains 512 points).
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