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This paper focuses on a 2D magnetohydrodynamic system with only horizontal
dissipation in the domain 2 = T x R with T = [0, 1] being a periodic box. The goal
here is to understand the stability problem on perturbations near the background
magnetic field (1, 0). Due to the lack of vertical dissipation, this stability problem is
difficult. This paper solves the desired stability problem by simultaneously exploiting
two smoothing and stabilizing mechanisms: the enhanced dissipation due to the
coupling between the velocity and the magnetic fields, and the strong Poincaré type
inequalities for the oscillation part of the solution, namely the difference between the
solution and its horizontal average. In addition, the oscillation part of the solution is
shown to converge exponentially to zero in H' as t — co. As a consequence, the
solution converges to its horizontal average asymptotically.
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1. Introduction

Let @ =T x R with T = [0, 1] being a one-dimensional (1D) periodic domain and R
being the real line. Consider the 2D incompressible magnetohydrodynamic (MHD)
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equations with horizontal dissipation

ou+u-Vu=—-VP+voju+B-VB, xz€Q, t>0,
OB+u-VB+nB=DB-Vu,

V-u=0, V-B=0,

u(x,0) = ug(x), B(z,0) = By(x),

(1.1)

where u denotes the velocity field, B the magnetic field and P the pressure, and
v > 0 and 7 are the viscosity and the damping coefficients, respectively. Here the
velocity u obeys a degenerate Navier—Stokes equation with only horizontal dissi-
pation vdi1u and with a Lorentz forcing term. The magnetic field B satisfies the
induction equation with a damping term. The goal of this paper is to understand the
stability and the large-time behaviour of perturbations near a background magnetic
field.

This study is partially motivated by the stabilizing phenomenon of a background
magnetic field on electrically conducting fluids that has been observed in physical
experiments and numerical simulations (see, e.g., [1, 2, 6, 12-14, 24, 25]). Since
the dynamics of electrically conducting fluids is governed by the MHD equations
(see, e.g., [4, 39]), the aim here is to establish this remarkable observation as a
mathematically rigorous fact on the MHD equations.

We take the background magnetic field to be the unit vector in the x;-direction,
B©) = (1, 0). The corresponding steady-state solution of (1.1) is given by

¥ = (0,0), B® =(1,0).

We write (u, b) with b= B — B for the perturbation near (u(?), B()). Our
attention will be focussed on the following new system

du+u-Vu+VP =vdju+b-Vb+ b, x€Q, t>0
Ob+u-Vb+nb=0>-Vu—+ Oqu,

V-u=V-b=0,

u(z,0) = ug(x), b(x,0) = bo(x).

In comparison with the original system in (1.1), there are two extra terms 01
and dyu in (1.2). We aim to achieve a complete understanding on the stability of
solutions to (1.2) in the Sobolev setting. In addition, we also attempt to obtain the
precise large-time behaviour of (u, b) and establish the eventual dynamics of (1.2).

Due to the lack of vertical dissipation in (1.2), the resolution of the stability
problem is not direct. If we follow the standard energy method approach, the dif-
ficulty is immediate. The divergence-free conditions V-u =V -b =0 allow us to
obtain a suitable upper bound on the H'-norm of (u, b), but it does not appear to
be possible to control the H2-norm directly. Even if we completely ignore the terms
related to the magnetic field and simply consider the 2D anisotropic Navier—Stokes

https://doi.org/10.1017/prm.2022.23 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.23

Magnetohydrodynamic equations 855
equations
owu+u-Vu+ VP = voju,

direct energy estimates fail to generate a suitable H?-bound. In fact, when we resort
to the corresponding vorticity formulation

Oyw +u - Vw = vojw,

the one-directional dissipation is insufficient to bound the nonlinearity directly. In
the estimate of Vw,

1d

§@HVW”%2 + v[|or Vw72 = */Vw -Vu-Vwdz,

the right-hand side does not admit a suitable upper bound. In fact,

/Vw -Vu-Vwdr = /81u1(81w)2 dx + /ﬁhugalwagw dx

+/62u161w62wd33—|—/82u2(82w)2 dx (13)

and the two terms in (1.3) can not be controlled suitably.

One novel idea to overcome this difficulty is to explore the stabilizing effect
of the magnetic field on the fluids as hinted by the aforementioned experimental
results. Mathematically we make full use of the coupling and interaction in the MHD
system in (1.2) to unearth the hidden smoothing and stabilizing properties. To do
so, we first apply the Leray projection P =1 — VA~!V- to the velocity equation
to eliminate the pressure,

8tu = 1/(911u + 81b + ]P(b -Vb—u- VU)

By differentiating the linearized system in time

{(%U = 1/811U+81b, (14)

8tb = —nb + alu

and making several substitutions, we can convert (1.4) into a system of wave
equations

(1.5)

Opu~+ (n+ vd1)0wu — (1 4+ vn)d11u =0,
Optb + (77 + V@ll)é)tb — (]. + 1/7])5111) =0.

(1.5) allows us to decouple u and b and exhibits more smoothing and stabilizing
properties than (1.4). In particular, both u and b gain weak horizontal dissipation as
can be seen from the pieces (1 4 vn)0d11w and (1 4 vn)011b. Unfortunately, this extra
regularization does not appear to help with the deficiency of vertical dissipation in
the velocity equation. As a consequence, this approach fails.

We remark that a previous work of Feng, Hafeez and Wu [23] explored the
extra stabilizing and smoothing of the wave structure, and successfully resolved the
stability problem on the same MHD system near the background magnetic field
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B = (0, 1). When the background magnetic field is (0, 1), the extra regularity
is in the vertical direction and complements with the horizontal dissipation in the
velocity equation. Therefore, the direction of the background magnetic field plays
a crucial role in the stabilizing phenomenon on electrically conduction fluids.

This paper seeks a different approach to resolve the stability problem concerned
here. The spatial domain here is {2 = T x R and we take full advantage of the geom-
etry of this domain. The horizontal direction is periodic and we can separate the
zeroth Fourier mode from the non-zero ones. The zeroth Fourier mode corresponds
to the horizontal average. This hints the decomposition of the physical quantities
into the horizontal averages and the corresponding oscillation parts. More precisely,
for a function f that is integrable in x € T, we define

Flas) = /Tfm,m)dxh f=FiT

This decomposition is orthogonal in the Sobolev space H*(Q) for any integer k& > 0

(see lemma 2.2 in § 2). More crucially, the oscillation part f obeys a strong version
of the Poincaré type inequality

1Fllz2(@) < Cll0LfllL2(e)-

This inequality allows us to control some of the nonlinear parts in terms of the
horizontal dissipation. By invoking the decompositions

u=1u+1u b=b+b

and applying the aforementioned Poincaré inequality together with various
anisotropic inequalities, we are able to successfully bound the nonlinearity and
establish the following stability result.

THEOREM 1.1. Let n > 0 and v > 0. Consider (1.2) with the initial data (ug, by) €
H3(Q), and V -ug = V - bg = 0. Then there exists a constant € = (v, n) > 0 such
that, if

luoll s + [[boll s < &,

then (1.2) has a unique global classical solution (u, b) satisfying, for anyt > 0,
t
o) s+ 10+ | (Jonalfn + Bls) dr < O,

where C' > 0 is independent of € and t.

Theorem 1.1 successfully resolves the stability problem on a partially dissipated
MHD system near a background magnetic field even when the smoothing effect of
the magnetic field is not sufficient to deal with the dissipation deficiency.

Efforts are also devoted to understanding the precise large-time behaviour of the
perturbation. We expect the horizontal average (@, B) to behave differently from
the oscillation part (, ~). Intuitively (%, b) corresponds to the zeroth horizontal
Fourier mode and the associated dissipation term vanishes. Thus (@, b) may not
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decay in time. In contrast, (u, b) consists of non-zero horizontal Fourier modes and
the horizontal dissipation effectively plays the role of damping. As a consequence,
(u, b) could decay exponentially in time. Our second theorem rigorously confirms
this intuition.

THEOREM 1.2. Let ug, by € H3(Q) with V -ug =0 and V -by = 0. Assume that
lluoll s + |bollgs < e for sufficiently small € > 0. Let (u, b) be the correspond-

ing solution of (1.2). Then the H' norm of the oscillation part (u, b) decays
exponentially in time,

@@l as + 1611 < (Juollas + [lbol[a1)e ™, (1.6)
for some constant C; > 0 and for all t > 0.

We explain the main lines in the proof of theorem 1.1. The local well-posedness
of (1.2) in the Sobolev space H?(Q) can be shown via standard procedures such as
the approach in the book of Majda and Bertozzi [37]. Our attention is focussed on
the global bound of (u, b) in H3(£2). One of the most suitable tools for this purpose
is the bootstrapping argument [45]. To set up the argument, we first construct
the energy functional. For the MHD system in (1.2), the energy functional E(t)
is naturally given by the H3-norm of (u, b) together with the time integrals from
dissipative and damping terms, namely

t t
B(t) = sup {u(r)2 + [5(r) |2} + 20 / 10rul% dr + 20 / 1Bl dr.

ST

The main effort is then devoted to proving the energy inequality
E(t) < E(0)+ CEZ(t). (1.7)

Once (1.7) is at our disposal, the bootstrapping argument then implies that, if
E(0) := [|(uo, bo)||%s is sufficiently small, say

(w0, bo) [l s < &
for some suitable £ > 0, then F(t) remains uniformly bounded for any ¢ > 0,
E(t) < Cé€,

which gives us the desired global bound on |[(u(t), b(¢))||gs. To prove (1.7), we
invoke the orthogonal decompositions u = @ + @ and b = b + g, apply the Poincaré
type inequalities and anisotropic upper bounds for triple products. More technical
details are provided in § 3.

https://doi.org/10.1017/prm.2022.23 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.23

858 W. Feng, F. Hafeez, J. Wu and D. Regmi

To prove theorem 1.2, we first take the horizontal average of (1.2) to obtain the
equations of (u, b),

i+ u-Vu+ 07 =b- Vb,
02p
Ob+u-Vb+nb="b-Va.

(1.8)

We then write the equations of (u, b) by taking the difference of (1.2) and (1.8),

—~

Ot +u - VU + usOott + VP — V@%TL—Z%VZ—Z)QGQB— 81?;: 0, (1 9)

b+ 1w Vb4 usdob+nb — b - Vi — bydoti — 017 = 0.

The proof of (1.6) is divided into the estimates of ||(u, b)|/z2 and ||(Va, Vb)| 2.
The efforts are devoted to bounding the nonlinearity in terms of the horizontal
derivatives of u. Poincaré’s inequality and anisotropic upper bounds for the triple
products are used extensively. After a tedious process of evaluating many terms,
we obtain

d . . ~ .
Uz + [Bl30) + 2 = C(w. b)l| =) l|oral| 7
+ (20 = C)|(u, )| =) bl e <0,

which yields the decay rate in (1.6). A detailed proof is provided in § 4.

Finally we briefly summarize some of related results to provide a broader view on
the studies of the MHD equations. Fundamental issues on the MHD equations such
as well-posedness and stability problems have attracted a lot of attention. Substan-
tial progress has recently been made on the well-posedness problem concerning the
MHD equations with various partial or fractional dissipation (see, e.g., [8-10, 16,
17, 19-22, 30, 32, 35, 42, 43, 46, 49, 53, 55-61]). Since the pioneering work
of Alfvén [2], the stability problem on various MHD systems has recently gained
renewed interests and there are substantial developments. By taking advantage of
the Elsésser variables, several papers have successfully solved the stability problem
on the ideal MHD equations or the fully dissipated MHD equations with identical
(or almost identical) viscosity and magnetic diffusivity (see [3, 7, 26, 47]). The
stability problem on the MHD equations with only kinematic dissipation in R? or
R3 have been solved via different approaches [15, 27, 28, 33, 34, 40, 41, 44, 50,
51, 62, 63]. The same problem in the periodic setting T? has been investigated by
[38]. The MHD equations with only magnetic diffusivity have recently been studied
for the small data global well-posedness near the trivial solution or a background
magnetic field [11, 29, 48, 54, 64|, although a complete solution on the stability
problem near a background magnetic field is currently lacking. When the velocity
equation involves only horizontal or vertical dissipation, the velocity equation itself
alone may not be stable and the stability problem relies on the enhanced dissipation
resulting from the coupling and interaction. Several such MHD systems with degen-
erate velocity dissipation have been shown to be stable near suitable background
magnetic fields [5, 23, 31, 36, 52].
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The rest of this paper is divided into three sections. Section 2 states several
properties on the aforementioned decomposition and provides several anisotropic
inequalities. Section 3 proves theorem 1.1 while § 4 presents the proof of theorem
1.2.

2. Preliminaries

This section states several properties on the decomposition defined in the intro-
duction and provides several anisotropic inequalities to be used in the proofs of
theorems 1.1 and 1.2. Some of the materials presented here can be found in [9, 18].

We start by recalling the definition of the horizontal average and the oscillation
part. Let Q = T x R and let f = f(x1, x2) with (21, 22) € Q be sufficiently smooth,
say integrable in z; € T. The horizontal average f is given by

flaz) = /Tf(l’l,@) dxy. (2.1)

We decompose f into f and the oscillation portion f,
f=F+7. (2.2)
The following lemma is a direct consequence of (2.1) and (2.2).

LEMMA 2.1. The average operator and the oscillation operator commute with the
partial derivatives, for i =1, 2,

of =07, of=0f, onf=0, [=0,
As a special consequence, if V - f =0, then

V.- f=0, V-f=0.

The second lemma states that the decomposition in (2.2) is orthogonal in any
Sobolev space H*((2).

LEMMA 2.2. Let Q@ =T X R. Let k > 0 be an integer. Let f € H*(Q). Then f and
f are orthogonal in H* (Q), namely

(?a f)Hk = /Q-Dk? ) Dkf dr = 0. Hf”?{k(g) = H?H?{k(g) + ”fH}QLIk(Q)

In particular, ||f|l e < |l and |l < [1f] -
The oscillation part obeys the following Poincaré type inequalities.

LemMmA 2.3, If |\81ﬂ|L2(Q) < 00, then

Hﬂ|L2(Q) < CH51J?||L2(Q)-

In addition, if ||81f||H1(Q) < 00, then

”f”LOC(Q) < C”alﬂlHl(Q)-
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Proof of lemma 2.3. Since the horizontal average of fis zero, for any fixed x5 € R,
there is @ € T such that

fla,z2) = 0.
Then, for any (z1, x2) € Q,

f(ml,ﬂﬂz) = / 1 3zf(Z,$2)dZ < /T |5zJ?(Zal’2)\ dz < ||8r1f”L2(T)- (2-3)

Squaring each side of (2.3) and integrating over €2 yields the first inequality. The
second inequality is obtained by taking the L°°(2) in (2.3) and using the simple
fact that || f||e®) < C||f| z1(») for any 1D function f € H'(R). O

Next we present several anisotropic inequalities. Anisotropic upper bounds for
triple products are frequently used to bound the nonlinear terms when only partial
dissipation is present. In the case when the spatial domain is the whole space R2,
Cao and Wu [9] showed and applied the following inequality

1 1 1 1
] I fgh} < C Nl qan 1017 ey N9 g 1020 gy Il 2y (20)
(2.4) is a consequence of the elementary 1D inequality
1 1
||f||L°°(R) < \/§||f||22(R) Hf/”zmg)- (2.5)
Another consequence of (2.5) is the following inequality
1 1 1 1
||fHL°°(]R2) < OHf”fz(Rz) ||alf||£2(ug2)||32f||22(R2) ||315'2f||£2(R2).
When the 1D spatial domain is a bounded domain, say T,
1 1
Ao cry < C ANz ey (I lezery + 1 Nezery) ® -
Since the oscillation part fhas mean zero, for fe HY(T),
~ ~1 ~ 1
17l < O oy 1 -
As a consequence of these elementary inequalities, the following two lemmas hold.

LEMMA 2.4. Let Q=T x R. For any f, g, h € L*(Q) with 0, f € L*(Q) and d2g €
L?(Q), then

/Q [fghl do < ClIfIZ=(1fllz2 + 101 fllL2)> gl 7210290 72 2l 2
For any f € H?(Q), we have

11l () < Ol 2 (120 + 1011l z2@) 102 £ 112
X ([102£ 122 () + 10102f || 22(0)) 3.
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After replacing f by the oscillation part, we have the following inequalities.

LEMMA 2.5. Let Q =T x R. For any f, g, h € L?(Q) with 0, f € L*(Q) and 29 €
L2(2), then

- ~ 1 ~ 1 1 1
/Q\fghl dr < CllflIZ2001f 1172119172 [10291 72 1]l L2
For any f € H?(), we have
~ 1 ~ 1 ~ 1 ~ 1
1Pl < CIT Eag 101 Pl 192 F1 s g 10102

3. Stability

This section is devoted to the proof of theorem 1.1 on the stability of (1.2).

Proof of theorem 1.1. The local well-posedness of (1.2) in the Sobolev space H3(Q)
can be shown via standard procedures such as the approach in the book of Majda
and Bertozzi [37]. Our attention is focussed on the global bound of (u, b) in H3((2).

The framework of the proof is the bootstrapping argument. To proceed, we define
the energy functional as

t t
B(®) = sup {[u(r) s + M) e} + 20 [ 0vulfy dr 20 [ (bl dr. (3.1)
0 0

0<r<
Our main efforts are devoted to proving the following energy inequality
E(t) < E(0) + CE2(t). (3.2)

As we explain later, a direct application of the bootstrapping argument to (3.2)
implies the desired global uniform bound on ||(u, b)]|| gs.

Attention is first focussed on proving (3.1). Due to the equivalence of the inho-
mogeneous norm ||(u, b)||zs with the sum of the L?-norm and the homogeneous
norm ||(u, b)|| 4, it suffices to bound the homogeneous norm ||(u, b)||45. The uni-
form L2-bound is an easy consequence of the system in (1.2) itself. Taking the
inner product of (1.2) with (u, b), we obtain, after integrating by parts and using
V-u=V-b=0,

t t
lu(t)l[Z2 + b(t) 172 +2V/0 101ul|Z2 dT+277/0 [BlI72 dr = [luollZ> + Ilbol|7--

(3.3)
To estimate the homogeneous norm ||(u, b)|| 73, we apply 87 (i = 1, 2) to (1.2) and
then dot with (9?u, 97b) to obtain

2 2 2
1d
57 207 ullZe +11078]172) + > vl oruliz + > nllojo7: 5
i=1 =1 i=1 .
=J+K+L+M+N,
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where

2
JZZ/ D301b - OPu + 0201w - 03D du,
; Q
2
—Z/a?(u-Vu)~8§u dz,
i=1 Q
L= Z/ (07(b- Vo) —b-VOP) - fu dx,
M:—Z/af(u-vz;).afbdx,
Q
2
N:Z/(a?(b~vu)—b~va§u) - 0%b da.
Q

By integration by parts, J = 0. The estimate of K is long and tedious, and is
provided in the later part of the proof. To bound L, we decompose it into two

parts,
(/ 2 (b-Vb) - dlu dx—/b Vb - Oiu dm)
Q

> ck | ofb- 02 Vb 0fu da
Q

Mm

i=1

I
\-M“

=1 k=1
3

:ch/a{“b.af—kvz;.audHch/32 b- 037 Vb - O3u da
k=1 Q2 k=1

:L1+L27

where Ck = ﬁl,ﬁ), is the binomial coefficient. By lemma 2.1 and lemma 2.5,

3
Ly = Zc;j/ - 03 Vb - 03 da
— Q

2

. ~ ~ 1 ~ 1 JURE S SO

S 0TV 2 |05b] 2. 10005 b 2. |07 2. 1| 02071 2.
k=1

- ~ 1 ~ L L 3L
+ 1070l 2 [V 22101 V0 72 1076l 72 (| 0207 1l 2
< bl l101ul g
We further decompose Lo into three terms,

L2:3/62b~822Vb-6§’ud:c+3/6§b~€)2Vb-€)§’udx+/8§’b-Vb-8§udm
Q Q Q

=La1+ Lao+ Logs.
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By Holder’s inequality and lemma 2.4,
Lo < 11020l o< (|05 Vb 12 |03 ul 12
S (102513 (1921 22 + 1012811 22)* 930 3.
x (03012 + 0103b22) |95 V0 2 05 2
< Nl 0] 3.
Similarly,
Los S Vbl L= [|050] 2|05l 2
< (1985 V012 + 19:9b] 2)* 2V
X (102Vb]| 2 + (10105 Vb]|2) 5| 03b]] 2 | O3 2
S Nl s 1] s

By lemma 2.1, d2by = —01b; = 0 and lemma 2.5,

Loo = 3/ 02b - 9o Vb - O3u dx
Q

=3 ( / 9301051 b - Du d + / 930101 b - B d + / D2b202b - 3u d;v)
Q Q Q

< 11030l 12| 021b]| 2. 1019216 221|051 || 22| 0203 b1 | 2.
3 ~ 1 ~ 1 97 L ot
+ [|03ul| L2 [|0210]| 72 [|01021 6| £ 2| 0361 ||} 2 [| 0205 b1 | 7 -
3 27713 277115 192713 2,113
+ [|0zull 2 [|0202 || 72 1010562 ]| £ 2 [| 0501 £ 2 [| 02050] | 7 »
< lull s 116l s
Combining the estimates of L; and L, we obtain
L S |10vull s 101 + llull zs]16]1 s - (3.5)

Now we estimate M,
2
M = _Z/ A2 (u - VD) - &b d,
=179

:—/af(u-vz))-afb dx—/ag(u-w)-ag’b dz,
Q Q
= M, + M.

By lemma 2.1,

3
M1:*Zcéf/afﬂ.af—kvg.afgdx—/g.afvg,aifbvdx
k=1 Q Q

=M1+ M.
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By lemma 2.5, Holder’s inequality, and lemma 2.3,

3

~ 1 JUN L~ L L~ L

My <) 1076 2 |05 2210005 ) 22105 VD] 2. [|0:05 Vb |2,
k=2

+ 1|01 oo |92V 2| O3] 2
S 0141101 s + (03] g (1)1 %5

< 1Bl 19 s

By integration by parts and V -4 = 0,
0~ ~ 1 ~
Mo = f/ u-03Vbh- 03 dr = ﬂ/ u-V(93b)* dx = 0.
Q 2 Ja
To estimate Mo, we split it into four terms,
My = f/ 93 (u - Vb) - 03b du,
Q

3
= —Zc;f/ Obu - 937*Vb - 93b d:c—/u.agw-ag’b dx
k=1 2 a2

= M1 + My + My g+ Mo 4.

Ms 4 = 0 due to V - u = 0. By Holder’s inequality and lemma 2.4,

Mg,l =-3 82u . 822Vb . 83() dx
Q

S 102ull L= |03 VD]| 12 [|93b] | 2
1 1 1 1
S N02ull f2 (102l 2 + [|012u]| 2) T |05 ull f2 (103wl £z + 1|0195u ][ 12) ®

< lull s [1B1[75-

Similarly,

M273:— 8§qu8§b dx
Q

< (V0| o |03 12 | O30 2
1 1
SV (19D 12 + |81 V0] £2) (|82 V) 2, (/|82 V0| 2
+ (10102 Vb]| 12) % (|03l 12| 950 2

< llull 210117
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By lemma 2.1, Oz = —01u7 and lemma 2.5,

My = —3/ d3u - Vb - 03b dx
Q

=-3 (/ O3ut021b - B3b dx +/ 101 - O3 dx +/ D3uz03b - B3b dm)
Q Q Q

S Nl s 1] s
Combining the estimates for M; and Ms, we obtain
M S [|0vul s 1blIgs + [l 22 ][] s (3.6)

Now we estimate the term N,

|
M

N ( 3} (b-Vu) - 97 dw—/b~Vaf’u~af’b dx)
i=1 \/Q Q

=

vl

3
Zc};/ kb - 937 *Vu - 33b dx
1 k=1 2

(]

~.
Il

/611) PV - albdx+ZC3/82b ISV - 93b dx
k= k=1

= N; + Ns.

By lemma 2.1, lemma 2.5, Holder’s inequality, and lemma 2.3,

3
Ny = ch/ﬂaﬁ.af—’fva- &b da

2

~ R | P RN R | s

S Y0Pl 2107Vl 7 10107 V| 7, 01 bl1 72 1007 7
k=1

+ {1Vl 2 |76 ., [ 07b]| 2
S Ibllzs 0vull s + 101Vl [BlIgs < 11811775 [ Oru] .
To bound N, we further decompose it into three terms as

N2:3/82b~8§Vu-8§’bdx+3/8§b-82Vu-8§’bdx+/ag’b-Vu-agbdx
Q Q Q

= Na1+ Nao+ Nojs.
By Holder’s inequality and lemma 2.4,
Nat < [1020]| £ [|03 Vul| 2| 95D 2
S 19 £ (192] 12 + 19126l 12) T 1030111
x (030l 2 + |01 03b]| =) 1|03 Vul| 2| O3B 2

< llull s 1b]1 75
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Similarly,

Nog S [Vl e 1835 121030 1
S IVl (V2 + 10 Vall2) |02 V£,
% (102 Vul| 2 + 18182Vl 12) 7 [ 0302
< lull s 5]

By lemma 2.1, by = —01b; = 0 and lemma 2.5,

Npop = 3/ 92b - 9V - 93b dx
Q

=3 (/ 93b100171 - B3b dx +/ 93b10171 - B3b da: +/ 930,03
Q Q Q
< Nl s 1] s
Combining estimates of N; and Ns, we have
N < [10vull mallbllzs + Nl s 16l 77s-
We now turn to the term K. We split K into two terms,
K = —/ 9} (u-Vu) - u dsc—/ 93(u - Vu) - Osu d,
Q Q
= K; + Ks.

By integration by parts, lemma 2.1, lemma 2.5 and lemma 2.3,

Ky = —/ 97 (u-Vu) - Ou dr
Q

= / 97 (u - Vu) - 0tu dx
Q

2
= ZC@/ O - 27 V- Otu dx
Q

k=0

2
= Zc;/ M- 9> Fvau - ol da
k=0 Q

2

1 L _ . L _ ~n i

< D llotal e |0yl F oot al £ 107 Val £ 11007 Vil 7.
k=1

e 1 U SN gt
+ 10y ull 2 [l 22 | 0vull 12 105 Vall 1210205 Vil 72

1 SO _ L _ SO
SN0t e 0¥l 2. 0107 2. 107 Vil 2. 1007V 2,

k=1

O471) 21|0y T 2. | 00T 2, |02 V| 2.2 0202 Vit 2
+ [[0vull L2]|0val| 72 [|01ull 7 107Vl 72 (0201 V| 7.
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re,

Ky < l|ovall3s [l . (3-8)

To bound Ks, we further decompose it into four terms,

Ky = —/ 3 (u - Vu) - O3u du,
Q

3
= — ZC;?/ Obu - 037 *Vu - 3u du
Q

k=0
=Ko1+ Koo+ Koz + Ko 4. (3.9)

By integration by parts and V - u = 0,

Kg}lz—/u-OSVu~8§udx:O.
Q

Next we bound K3 5. By lemma 2.1 and V- u =0,

Ks

= —3/ Do - 03V - Osu dx
Q

-3 (/ 82u16§61u . Bgu dx —|—/ 821123%8211 . 8§u dx)
Q Q

-3 / DouT0201 1 - O dx — 3 / DoUT02017 - Dt d
Q Q

—3 [ %u 020,10 - 03T dr — 3 | Dou 02017 - D3 dx
Q Q
Q Q

Q Q

=Koo1+Kooo+Koosg+Koos+ Koos+ Koog+ Koor+ Kooag.

By integration by parts and lemma 2.1,

K2)271 = —3/ 8211716228117 . 8Sﬂ dx
Q

=3 ( 0100105 - O dw + | Dourd - 01051 da:) =0.
Q Q
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Similarly, K525 = 0. By lemma 2.5 and lemma 2.3,

Kano=—3 [ 0.u1030:u - O5u dx
Q

< |00 2 || 83T 2. |02 83T 2, | 0201 11| 2, || 020201 71| 2
S 102wt 21030 22 (101030 22 05014l 72 [ 9202 01 £ »

g1 U S | on ok
< (102t | 221|010 12 (|01 05| £ » | 0501 T 7 | 0205 01 7 »
< llovullps||ul as-

K524 and K5 g can be bounded similarly as K5 2 2. By lemma 2.5 and lemma 2.3,
K2)273 = —3/ 82@{8%81& . 8Sﬂ dx
Q

B L L SO U
S 05| 2 102ux || 22 (|01 02t || 3. |05 011 22 [|0205 011 2.
1 1 1 1
S 05| 2 10102 | 72 1| 010217 || 1|05 01 | 72 (| 0205 01| 3.
S N0vull s llul as.-
By lemma 2.5 and lemma 2.3,

Ks o6 = 3/ 1102047 - Ot dx
Q

1 1 1 1
< 110302 1210501 2 181050 7. |01 ur || 72 (| G201 || .
1 1 1 1
< 110302l 12101050 7. | 0105017 (| Oy uin || 72| 0201 ux | £
S [10vullFrs lull -

K2,2,7 - 3/ 31171838217 . 65’17 dx
Q

< 11020y 211037 2. 1|0y 05| 2. | 0111 2 | 02 0n i | 2
< 110205 12101 03] 2, 101 050 2. | 0y | 2. | Do n iy | 2
S N9yl s lullrs.
Therefore,
Koo < 10vullpalullus.

Now we bound K3 3. By lemma 2.1 and the divergence-free condition,

Ky 3 = —3/ 8§u-82Vu-8§’u dx
Q

-3 ( / D2u10501u - Oau dx + / D3u20209u - D dw)
Q Q

=-3 / 020,001 - 03T dx — 3 / 020,01 - 03T du
Q Q
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-3 / 03U 0,00 - 037 dx — 3 / 02010201 - O3t dx
Q Q

+ 3/ 6281’7[{8282@' 8§ﬂ dr + 3 62811’[1/8282ﬂ' 83& dx
Q Q

+ 3/ 0201u102091 - 83@ dx + 3/ 0201u102091 - 83& dzx
Q Q

=Ko31+Kozo+ Kozz+Kosza+ Kozs+ Kozg+ Kogr+ Kosg.

Clearly K231 =0 and K235 = 0. To bound the remaining terms of K>3 we use
lemma 2.5 and lemma 2.3,

Ko 30 = —3/ 031020171 - Ot d
Q

< 102 2 | 03T 2, || 00031 2, | 92001 | 2. | 0261 | 2
S 102\ 2 (|05 al| 72 [|0105u]| £ | 0201wl 2 | 0501 ] £ -
2 313 33 ~N5 1929, 7| B
S 11030t | 2 |01 03] £ [|0105 0l 72 (| 02011 £ (103014 7 2
S 10wl Fs [l ars-
K334 and K337 can be bounded similarly,

K273,3 = —3/ (9%1718281& c’)g’ﬂ dx
Q

o gy 1 ooy k JO U |
S 1051l 2|03 ur || 72110105 ull 72 (| 0201 | . |05 01w 7.

3 ol oy} JU SN |
S 1021l 21010z un || 7210105l £2 (| 0201 0| 72 (| 0501wl .-
< l10vullys |l e

K2,3,6 = 3/ 82811718282@ . 63& dx
Q

< o2 83~%883~%88N%828N%
S 03] 2|05 | 72 [|0105u]| 22| 0201w || 21|03 01 x| 2
2 3~11% 3~11% ik 1a24 ~—k
S 11020 L2 (01050 22 (01050 22 (| 0201 un || £ | 0301w || 7 -
S 10vull s lull s
K5 3.5 can also be bounded similarly. Hence,
Koz S [|01ul Fs |l s

Now we bound the last term K5 4 in (3.9). By lemma 2.1 and V - u = 0,

K24:—/6§’u-Vu-8§’udx
Q

— </ D3u Ovu - Ou da +/ D3usOou - Oyu dw)
Q Q

_ / OFTTONT - BT d — / OFTTON - B da
Q Q
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- / O3u10vu - O3 dx — / O3u101u - O3t dx
Q Q
Q Q

+ / 02011001 - D3 da + / 030111091 - D3t d:
Q Q
=Koy +Koyo+Kouz+ Koga+ Koss+ Koge+ Koar+ Kogg.

Again K541 =0 and K345 =0. To bound the remaining terms of K»4 we use
lemma 2.5 and lemma 2.3,

K27472 = — 35’7181ﬂ . agﬁ dx
Q

< (|03 | L2 10371 2. 110, 03] 2. 101 l| 2. | 0201711 2
S N05ut | 2 (|05l 72 (01050l 7. [|Ov ] 72 [|0201u] 7.

3 gyt gyt 1 SN
S 1050 | L2(|0105ul| 2 (0105 l| 72 [|0vul| £ (| 0201 | 7 -
S llovul s |ull s

K544 and Ky 47 can be bounded similarly.

K2,473 = — 85’1'71816 . 8:23ﬂ dx
Q

<83— 83~%883~%8~%88~%

S 1027 2 (|05 ur (|72 1|01 05| 2 | Ov ] £ 2 [| 0201wl 7.
5 53— 1 3t S B

S 05| 2 10105 un || 72 10105 ]| 72 | Ov ]| 2 | 0201 2| £

< lovullzys lull s

Koue = / 02017047 - Ot dx
Q

1 1 1 .1

< 11021l 21103l| 72 |01 05|72 | 050w |1 7. 1105 01 | 7.
1 1 1 1
< 11021ll 21101 031ll 72110103 ll 72 | 030 un | 2|05 01 | 7.

S 10vull s lull s
K5 4.8 can be bounded similarly. Hence,
Ko S ||0vul3s lul ms.
Putting together the upper bounds for K5, through K» 4, we find
Ky < [[0vul| s lull o (3.10)
Collecting the upper bounds in (3.8) and (3.10) yields

K < ||0vullZys [l s (3.11)

https://doi.org/10.1017/prm.2022.23 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.23

Magnetohydrodynamic equations 871

Integrating (3.4) in time and then adding to (3.3), we have, after recalling the
definition of F in (3.1),

E(t)<E(O)+/t(J+K+L+M+N)dT.
0

Collecting the upper bounds in (3.5), (3.6), (3.7)and (3.11) leads to the desired
inequality in (3.2),

t
E(t) < E(0) +/0 (lovullzs lull s + 0vull o 16 Frs + lull o111 Fys) dr

< E(0)+CE3 (). (3.12)

We apply the bootstrapping argument to (3.12). The initial data is taken to be
sufficiently small, say

(| (w0, bo) ||l s < e

with € satisfying

We make the ansatz that, for 0 <t < T
E(t) < do.
Then (3.12) implies
E(t) <2+ CE3(t) E(t)
1
<e2+C—E(t
e’ 4 50 (t)
or
1 9 9 1
iE(t) <e® or E(t) <2 = 550.

The bootstrapping argument then implies that 7= o0 and E(t) < dp. As a
consequence, for any 0 < t < oo,

1(u(t), b)) 35 < E(t) < bo.

This completes the proof for theorem 1.1. O

4. Proof of theorem 1.2

This section proves theorem 1.2, which assesses that the oscillation part (u, Z)
decays exponentially to zero in the H L_norm as t — oco. We consider the equations
of (u, b) and apply the properties of the orthogonal decomposition and several
anisotropic inequalities.
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Proof of theorem 1.2. We first write the equation of (@, b). By taking the average
of (1.2), we have

o+ u-Vu+ 07 =b- Vb,
dop (4.1)

Ob+u-Vb+nb=0b-Va.

Taking the difference of (1.2) and (4.1), we obtain

A+ u - Vi + ugdai + VP — v92U — b - Vb — bydab — 010 = 0,
8{5+u~ Vg+ UQ625+7]F57m7b282ﬁ7 6‘1ﬂ: 0.

(4.2)

Taking the inner product of (4.2) with (u, b), after integration by parts and
divergence-free conditions, we find
1d
2dt
7/U'Va‘ﬂdl’f/Ugagﬂ‘ﬂdl'*/”u,'v’l;'gdl’

+/b-v'5.'ad:c+/b2826.adx—/uZaJ).de (4.3)

(fllzz + [1Bllz2) + vlloralZz +nllblZ:

+/b~va.’5dm+/b232a.'5dx
= Ay + A + Az + Ay + As + Ag + A7 + As.
By lemma 2.1,
Ay :—/u~Vﬂ-ﬂdx+/m-ﬂdx:0.
Similarly, A3 = 0. By lemma 2.5, lemma 2.3 and the divergence-free conditions,
AQZ—/UNQagﬁ'ﬂdl'

1 SR | 1
S 02| 2 [|luz | 2 [|02uzl| £2 |l 72 (| 01wl 2

1 . L SO ~n i
S 102l 2 [|01uz | L: | Ovun || L= [| 01wl L2 [| 01wl £

< llullz |01 Z-.

By lemma 2.1 and the divergence-free conditions,

A4+A7:/b-v8-adm+ b-Vi-bdx

:/b-vE-adx+/b-va-5d:c—/b-v5-ﬂdx
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- /b-va.’é dz
=0.
By lemma 2.5 and lemma 2.3,
A5 :/bgagi)ﬂd.’lﬁ:/géazgﬂdl‘
S 11B2l 22 (1926112 102051 2. |12l 7.2 |01 ] 7.
< blzz2 |0 22 1917 2
S bl (blIZ2 + 10121 72)-
Similarly, by lemma 2.5, lemma 2.3 and the divergence-free conditions,
Ag = —/@aQB.de
S 1Bl 22 1192011 1192021 2. 1131 2. 101732 .
S 1Bl 22 161 2 101722 .2
S ol (lolZ2 + 0121 22).
By lemma 2.4 and Hélder’s inequality,
Ag = /b;aza b da < (90 B2
1 1
< N102ll 2 (/|00 12 + 1|0102l| 12 ) T (| 0200 1 (4.4)
% (19202 2 + 0103al| =) *[B] 7
S [l s ][6]]7-
Collecting the estimates for A; through Ag in (4.3), we obtain
d - ~ _
Zr(TlZ2 + 16l172) + (20 = Cll(w, )]s |On |7
+ (20 = Cl|(u, )| 0) [B]] 22 < 0.

According to theorem 1.1, if € > 0 is sufficiently small and |luo||gs + ||bollms < €,
then ||ul|gs + ||b]|gs < Ce and

QV_CH(Uﬂb)HH?’ 2 v, 277_C||(u7b)”H3 >77
By lemma 2.3,
()] 2 + 1Bt 2 < (lwollz2 + [Iboll£2)e™ Y, (4.5)

where Cy = C4(v, ) > 0.
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Next we consider the exponential decay for |(Vi(t), Vb(t))| 2. Taking the
gradient of (4.2) yields

BV + V(1w - ViI) + V(updait) + VVF — vd2Va

—V(b-Vb) — V(bydob) — 01 Vb =0, (4.6)
9,Vb+ V(u-Vb) + V(uzsb) + nVb — V(b- Vi)

—V(bgagﬂ) — 01Vu = 0.

Dotting (4.6) with (Vu, Vb), we have

1d ~ ~ ~ ~
5 g IVallzz +1Volr2) + v[o1Valz. +nllVolz,

- —/V(m)-va da?—/V(ugagﬂ)-Vﬂ dx—/V(u-vB)-vEd:c

+/V(b V) - Vi d+/V(b282l3) Vi do — /V(uQaQB) Vbde 4D
+/V(bf-7&) Vb da:—i—/V(bg@ga) Vb da
= B1 + By + B3 + B4 + Bs + Bs + B7 + Bs.
By lemma 2.1, B; can be written as
B :—/V(u-Vﬂ)-VﬂdaH—/V(m)-Vﬂdx
= —/81u1815 -O1u dx — /61U2(9217 -O1u dx

— /6211;181”(1 . 82ﬂ dr — /82’11,23217 . 82ﬂ dx
=DBi1+ Bio+ B3+ Bia.
By lemma 2.5 and lemma 2.3, B; ; can be bounded by
3 ~3 ~3 ~13
Bia S 10vus |2 (|00t 22 (|07l 7. 1011 7. 1020, 2| 7.

1 1 1 1
< N10vual| 211070 72 (|07 2. 110101 22 1|0201 ] 2.

S llullasl|00Val 7.
B 5 and By 3 can be bounded similarly and

Biys, Bis S |lull sl 01Vl 7.
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For B 4, using the divergence-free condition of v and by lemma 2.5, lemma 2.1 and
lemma 2.3, we obtain

Bl,4 = /61U18217 . 626 dr = /8117182ﬂ . 82ﬂ dx

< 107 22 10y | 2. 10200 | 2. 102 2. |01 07
< 100 2 |31 | 22 | 9an | 10102 £ 01070
< lull s 10, VT 32
Hence, B is bounded by
By < [lull o101 V|22

Similarly, we can bound Bs by lemma 2.4 and Holder’s inequality,

Bgz—/V(u-vE)-v'de

- f/V(u~V~)~V5dm+/V(u~V~)~Vde
_ _/w Vb Vb dz < ull s | VD

In order to bound By, we rewrite it as

By = —/V(uzagﬂ) -Vu dx
= *\/VUQ@QEL -Vu dx — /uQV(?Qa -Vu dx
= —/81u23211 -Ohu dx — /ugalﬁzﬂ -Ohu dx
+ /81u182a - Ot dxx — /ugagﬁgﬂ - Oott dx

=By + Bys+ By 3+ Ba 4.

According to the definition of «,

BQ’Q =0.

Using lemma 2.3, Holder’s inequality and proceeding as in (4.4) for ||O2@|| e, we
find

3271 = —/61’(,,6\2/621] -Ou dx

< l1aall o< 0rall7e < llullas |01 Vall7.
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Similarly, Bs 3 has the same bound as By ;. By lemma 2.5 and lemma 2.3,
By = —/{582(92@ - Oout dx

< 1920 213 ) 22 | Biza . |02 22 0402
< 1102l 2 0101312, 101 D23 | 2. 191 D] £ 01 02 2
< Ml s 101 V] 2.
Hence, the bound for Bs is
By S |[ull s 10 V] 2.

Similarly,

= —/611)2825 . Oﬂ dr — /bg@lazi) . 811] dx

+ /81b1825 . 625 dx — /bgagagi) . 82?1? dx

= B51+ Bs2 + Bs 3 + Bs 4.

By the definition of b, Bs > =0. By lemma 2.1, lemma 2.4, lemma 2.3, Holder’s
inequality and Young’s inequality,

Bs, = f/aleaQB.ala dz
<1020 oo [| 912 2|01 ]| 2
< 1102b]| 22 (102611 2 + 1|01 02D £2) 9202 ;.
% ([|0285b| 2 + [|0103b]| £2) T [|91ba | 12|01 01 71| .2

S Blls VO] 2 0 Vll 2 S Ilbllers (IVBI1Z 2 + |01 V] 72)-

Similarly, Bs3 obeys the same bound. By lemma 2.5, lemma 2.3 and Young’s
inequality,

B5)4 = —/5582826 . 82& dx

< 119202D| 212 ]| 22 19262 2. | 0271]| 22|91 D] 2.
- ~ 1 ~ 1 _
S 1102020 L2 [| 016212 [| 0262172 [| 0192 1.2
S 16l s VO 21101Vl 2 < [16]las (10172 + 1101 Va]|72).
Collecting the bounds for Bs 1, Bs2, Bs3 and Bs 4,

Bs S |Ibll s (VB2 + 01 V] 72)- (4.8)
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Similarly, Bg and Bg are bounded by
Bs, Bs 5 ([bllas + [lullas) x (IVB]72 + 00 Vi]72). (4.9)

By lemma 2.1 and the divergence-free condition V - b = 0,

—~

B4+B7:/V(b-Vb)-Vﬂda:+ V(b- Vi) - Vb da

:/V(b-vZ)-vada:+/V(b-va).v?idx—/wb-vz)-vadx
—/V(m)vgdm

:/Vb-v’z}.vadx+/vz)~va.v'5dx+/b~vv5-vadx
+/b.vva-v'5dx

:/Vb~VF5'Vﬂdx+/Vb«Vﬂ~Vfbvda:
= By1+ Bap.
We can rewrite By as

B4’1 = /81()1615- 616 dx + /81[)2825' (91’(7 dx

- / DobyO1b - Dol da + / Dobadab - Dol da
:=DBs11+By12+ By13+ By
By lemma 2.4, lemma 2.3, Holder’s inequality and Young’s inequality,
Buna S [100ba Lo~ [|016]] 21|01 2
1 1
S101b1 ]l 22 (101b1 ] 22 + 1010101l 12) % (1020101 | £
X (]|0201b1 || L2 + H818281b1\|L2)i||81ﬂ||L2
S 110]l 51018l 2 0101 2 S (1Bl (VBN 2 + [0 Vatl[3).
By 1,2, Ba,1,3 and By 1,4 can be bounded similarly as By 1,1 and
Biji2, Bangs, Baia S ||b‘|H3(||VE||2L2 + |01 Val|32).
Therefore, By ; is bounded by
Buy S bl (VD)3 + 101V 2).
Similarly, By > obeys the same bound as By,;. Hence,

By + Br 5 |bllas (| VB]172 + 01 VallZs).
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Inserting the estimates for By through Bs in (4.7),
d ~ ~ ~
S (IValZz + [IVBIIZ:) + (27 = Cl(u, ) | 19101 V] 7
+ (20 = C)l(u,b) | ) [ VB 2 < 0.

Choosing e > 0 sufficiently small and by theorem 1.1, if |Jugl| gz + ||bo|| > < €, then
lw|l g5 + 1]0]| s < Ce and

2 — Cll(w,0) s > v, 20— Cll(u, )5 > 1.

By lemma 2.3, we obtain the exponential decay result for ||(Vu(t), VE(t))HLz7

IVE®) 22 + VB 22 < (I Vuollzz + | Vbollz2)e ™, (4.10)
where Cy = C1(v, n) > 0. Combining the estimates in (4.5) and (4.10), we obtain
the desired decay result in theorem 1.2. O
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