FREE DISTRIBUTIVE P-ALGEBRAS: A NEW APPROACH!
by TIBOR KATRINAK

(Received 12 December, 1996)

It is well known (Lee [13]) that the class of all distributive p-algebras B = B,, is a variety
and that the class of all subvarieties of B forms a chain

B,,CBcCB Cc...CB,S...C€B,

where B_; is the trivial class, By is the class of Boolean algebras, and B, is the class of Stone
algebras.

Urquhart [14] described the finitely generated free algebras in all classes B, for 1l <n < w
(see Berman and Dwinger {4] or Kohler [12]). The free Stone algebras were studied by Balbes
and Horn [3], Chen [5] and Katrifiak [9],[10]. Davey and Goldberg [7] gave a characterization
of the free algebras FDp,(X) in the classes B,, 1 < n < w, using the topological duality of
Priestley.

In this paper we give an intrinsic algebraic characterization of FDp,(X) foralll <n < w.
We shall use the method of constructing the free extensions of posets in the class of dis-
tributive lattices and preserving some prescribed bounds (Dean [6]). This method has suc-
cessfully been used to determine the free p-algebras Fp,(X) in [11].

1. Preliminaries. A (distributive) p-algebra is an algebra L = (L; Vv, A,*,0, 1), where
(L; v, A, 0, 1) is a bounded (distributive) lattice and the unary operation " is characterized by

a <b*if and onlyifanb=0
In any p-algebra L we can define the set of closed elements
B(L)={xeL:x=x")
It is known that (B(L); +, A,*, 0, 1) is a Boolean algebra, where
a+b=(a"nb")*

As we mentioned above, the class B = B, of all distributive p-algebras is equational (see [2]
or [8]). The subvariety B,, | < n < o, is defined by the following identity

(L6 Ao APV A V5V (5 A A

(cf. [13]). Similarly as in [11], we shall work in the class of distributive lattices with the free
extensions of posets preserving some bounds (see [6]): Consider a poset (T; <) with families £
and U of finite subsets of T such that
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(i) p < gqin Timplies {p, g} € £ and {p, ¢} € U,
(i) S e L(S € U) implies that there exists inf7 S(sup S).

Following [6] a distributive lattice FD(T;, £, Uf) is called a free distributive lattice gener-
ated by T (a free distributive extension of T) and preserving bounds from £ and U, if it
satisfies the following conditions:

Q) TSFD(T;, L, U)yand forag,be T,a<bin Tifand only if a < b in FD(T; L, U);
(ii) For Se L,infrS= A(s: Se S)and for SelU,supr S=\/(s:5€ 8);
(i) [T] = FD(T; £, U), i.e. T generates FD(T; L, U);
(iv) Let M be a distributive lattice and let ¢ : T — M be an isotone mapping with the
properties (suprs) = \/(@(s) : s € S) for every S € U and ¢(infr S) = A(p(s) : s € S). Then
there exists a (lattice) homomorphism n : FD(T; £,U) — M extending ¢, 1.e. n} T = ¢.

2. The poset associated with a set. In order to see how to introduce this concept, we begin
by observation of four facts formulated in Lemmas 1-4.

LEMMA 1. Let L be a distributive p-algebra. Then the following statements are equivalent:

(1) L satisfies the identity (L), 1 < n < w;

(ll) (xl FANAAN x,,+1)*= (XZ AL, /\x,,+1)*v oV (x1 TN /\x,,)*;

i) (V.o V)= Vo V)V V(i VLV xS

(V) aj V... Vap =t=ay+ ...+ any, whenever ay, ..., ayyy € B(L) and a; + a; = t for
any i # j.

Proof. The equivalence of (i), (ii) and (iii) can be found in Wafker [15]. Assume now (iii).
Take t =ay + ...+ apy1 for ai, ..., any € B(L) satisfying a; + a; = t if { # j. We shall prove
(iv.). For n=1 it follows from (iii). Assume n>2. Let x;=a; A... Adi_| A Gy
A...Alpy. Then

ok
a,-=(xlv...Vx,~_1Vx,~+1v...Vx,,+1) =X1+...+ X + Xig1 + .o+ Xpgl

by distributivity and the assumption. Clearly,

(x1 \/___Vxn+])** = (a, V...Van+1)**=[

Therefore,
t=a1V...Vap
by (iii).
Conversely, suppose that (iv) is true. Take xi,..., x,;1 € L and put

aG=(xX;]V...VXi_1 V...V X )™
1t is easy to verify that
(x*;*+...+x;*jl+x;.*;1+...+x;1,)+(x7*+...+x;:l+x;;1+...+x;;_*;l)
=a+a=x"+...+ x5,
=(x1 v...vx,,+,)**=t

for i # j, and this implies (iii).
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LEMMA 2. Let the distributive p-algebra L be generated by a subset X, i.e. [X] = L. Then
the set X** ={ze L:z=x",x¢€ X} generates B(L) in the class of Boolean algebras, i.e.
[X**]Bool= B(L)

LEmMA 3. Let L = FDp,(X) be a free p-algebra freely generated by X in the variety
B,, | <n < w. Then B(L) = FB(X**) (= the free Boolean algebra freely generated by X**).

LEMMA 4. Let L be a distributive p-algebra generated by as subset X. Then X U B(L) gen-
erates L in the class of (distributive) lattices, i.e. L = [X U B)L)];,,-

Lemmas 2-4 are straightforward consequences of [11; Lemmas 2-4]. We recall that a
poset associated with a set X was defined in [11] as follows:

DEFINITION 1. Let X be a set. Take a disjoint copy_X’: {x : x € X} and construct a free
Boolean algebra FB(X). We can assume XNFB(X)=0. Now we define the poset
P(X) = (P(X); <) associated with X as follows:

(i) P(X)is bounded, i.e. 0 <u <1 foreveryue P(X)and 0,1 ¢ FB()_();_
(ii) a < u and 0 # a € FB(X) if and only if ¥ € FB(X) and a < u in FB(X);
(iii)) x < x for every x € JX;

(ivy x<uforxe Xifandonlyif x <uworx=u

Denote by FB(X) the free Boolean algebra (FB(X); +,.,, 0, 1). It remains to be said
which existing glb’s and lub’s in P(X) should be preserved.

DEFINITION 2. Let P(X) be the poset associated with the given set X. Set

(i)£=£,,,=[l|=...=£,,...andAellifandonlyifAisaﬁnitesubsetofFB()-() or
A ={a, b} C P(X)and a < b in P(X);

(i) U = U,, where A € U if and only if 4 = {a, b} € P(X) and a < b in P(X);

(i) AeUy, for l <n<w if and only if AeU or A={a\, ..., anu} such that
a;,...,a,,+,eFB(/\-’) and a) + ... + dy+) = a; + a; for any i # .

Now we shall show that the lattice FD(P(X); L, U,) for 1 < n < w do exist. Note that
anb=a-bforany a, b € FB(X) in FD(P(X); L, Uy).

First we need a new concept from Balbes [1]. Suppose that we have a set I. Let (E)
denote a set of lattice inequalities of the form.

Xp N AX, S YV VY
where {i1,..., iy}, {jl, . ,j,,,} C I A distributive lattice L is called (F)-free if there exists a
subset 4 = {a;};c; of L with I C J such that.
() [4] = L;

(ii) the set {a;};.; satisfies (F) i.e.
agN...NQ, 2a; V...Va,

for every inequality from (E);
(iii) whenever {b;},c; is a subset of a distributive lattice M such that {b;},c, satisfies (E),
then there exists a homomorphism f: L — M such that fla;)) = b; for all i € J.
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THEOREM 1. Let P(X) be the poset associated with a set X. Then FD(P(X); L., U,) exists
foreveryl <n<w.

Proof. First we set I = P(X). Now we define the set (E,) of inequalities in {x;};; as fol-
lows:

(@) x; < xjif and only if i < jin P(X); )

(b) x; A ... AX; < x;if and only if {ii, ..., ik} € FB(X) and j = i\ ... i in FB(X);
(¢) x; <x;,V...Vxj,, if and only if 1=ji+...+jus1 for ji,...,jus1 € FB(X) and
t =j; + jr whenever i # k.

By (1; Theorem 1.9], there exists an (E,)-free distributive lattice H,. The properties of H,
can be summarized in other words as follows [1; Theorem 1.8]:

(i) there exists an order preserving embedding ¢ : P(X) — H;

(i) {e()) : i € P(X)} satisfies (E,);

(ii)) whenever {b;};,c;C M and M is a distributive lattice such that {b;},.,; satisfies (E.,),
then there exists a homomorphism f: A, — M such that f{e(i)) = b;.

Now it is easy to verify that H, = FD(P(X2); L,,U,), and the proof is complete.

REMARK 1. Following [1; Theorem 1.9] the lattice H, from the proof of Theorem 1 can
be constructed as follows: Consider mappings

s P(X) —> 2=({0,1}))
i.e. s € 2°®_ We say that s € 2°™® satisfies the inequality

X

]/\.../\x,-nij,v...vxjm

foriy, ..., 0nj1s. - jm € P(X), if
sip=...=s(ip=1land s(j)) =... =s5(,n) =0.

Let Ig(E,) denote the set of s € 27 which satisfy the inequalities from (E,,).

Now, define 4" = {s € 2°® : 5() = 1 and s € 2" — Ig(E,)}, i € P(X). The sublattice
of 27 generated by the set {AE") i € P(X)} is a bounded distributive lattice. This lattice,
[{A® i e P(X)}), is H,.

Our next task is to establish that FD(P(X); £,, U,) is isomorphic to FDp,(X). For the
sake of clarity we shall adapt [11; Lemmas 5-7] for the distributive case.

LEMMA 5. Let P(X) denote the poset associated with a set X. Then there exists a (unique)
lattice-epimorphism _
n . H, = FD(P(X); L, U,) — FB(X)

for every 1 < n < w such that
(1) n(x) = x for every x € X,
(ii) 7(a) = a for every a € FB(X),

(i1) u < 7(u) for every u € H,,
(iv) u < a and a € FB(X) implies n(u) < a.
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Now, we are in position to formulate the next result.

THEOREM 2. Let P(X) denote the poset associated with a set X. Then the free distributive p-
algebra FDp,(X) in the class B,, 1 < n < w, and the distributive lattice H, = FD(P(X); L,,,U,)
are isomorphic as lattices. More precisely, H, can be considered as a p-algebra such that

() u* = m(u) for every u € H,,

(") H, = [X], _

(iii) B(H,) ~ (FB(X); +,..’,0, 1),

(iv) H, € B,, i.e. H, satisfies the identity (L,).

The proofs of Lemma 5 and Theorem 2 are essentially the same as of [11; Lemmas 5-7]
and of [11; Theorem 1] (see also Lemma 1).

3. Construction of FDp,(X). Theorem 2 lacks a certain simplicity which it ought to have.
Our work in this section will remedy this defect.
The following definition is crucial.

DEFINITION 3. Let P(X) denote the poset associated with a set X. A subset @ # S C P(X)
is said to be an n-order-filter (1 < n < w) if

(1) S is increasing, i.e. S =[S), B

(ii) SN FB(X) is a filter (= dual ideal) of the Boolean algebra FB(X),

(i) tr=a1+...+a,1 €S and t=aq;+a; for any is#; imply a;€S for some
1<i<n+1,whenever ] <n<wanda,...,a, € FB(A_’).

REMARK 2. It is easy to see that a k-order-filter is an n-order-filter, whenever & < n. For
the sake of simplicity we shall often say ‘“‘order-filter” instead of “w-order-filter”. Next we
shall consider mappings s : P(X) — 2. Let Ker(s), for s € 2°®, denote the set {i € P(X):

s(i) = 1}.

LEMMA 6. Let P(X) be the poset associated with a set X. Then s € 27® — Iq(E,)" if and
only if Ker(s) is an n-order-filter (1 < n < w).

Proof. Suppose that s € 2°® — J¢(E,). Consider Ker(s) = S C P(X). Let i </ in P(X)
and i € Ker(s). Since s does not satisfy

X; S Xj

and s()=1, we get s()=1. Thus, je Ker(s) and Ker(s) is increasing. Similarly,
i, i € SNFB(X) and j = i1.i; in FB(X) imply j € S, because s does not satisfy

Xiy A Xi, < Xj.

Assume now that 1 < n<w and t=a,+...+a,y € S such that a;4+a; =t for any
i#janday,...,dau € FB(X). Since s does not satisfy

X Xy V...V Xq,,,

"The symbol — refers to the set-theoretic difference.
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fort=a; +...+ ayy and s(¢) = 1, we get (a;) = 1 for some 1 < i < n+ 1. Thus, Ker(s) is an
n-order-filter of P(X).

The converse statement follows easily from properties of n-order-filters, and the proof is
complete.

We now denote the set of all n-order-filters S containing the given order-filter M C P(X)
by u(M). u™(j) will simply mean u™({i}). Since 4(j) is a family of subsets of P(X), we can
write «®(i) € 2P, Let K,(X) denote the (distributive) sublattice of 2°® generated by
{u™(i) : i € P(X)}, ie. Ku(X) = [{u®() : i € PO}

LEMMA 7. Let P(X) denote the poset associated with a set X. Then there exists a lattice
isomorphism ¢ : FDp,(X) —» K(X),1 < n < w, such that

(i) the restriction ¢} P(X) is an order-isomorphism between P(X) and {u™(i) : i € P(X)};
(i) the restriction @|FB(X) is an order-isomorphism between FB(X) and
{u(}) : i € FB(X)}. Moreover, there exists a lattice epimorphism

11 Ky(X) = {u®() : i € FB(X))
such that

(iii) ("(x)) = u")(%) for every x € X;

(@iv) rﬁu"’)(a)) = u"(a) for every a € FB(X);

(v) v < t(v) for every v € K,(X);

(vi) u"(i) € u"(a) and a € FB(X) imply t(u™(i)) € u")(a) for any i € P(X).
Proof. According to Lemma 6, the mapping

s = Ker(s)

is an order-isomorphism between 27 — I¢(E,) and the set of all n-order-filters of P(X).
Therefore, by Remark 1, H, and K,(X) are isomorphic as lattices. Eventually, by Theorem 2,
there exists a lattice isomorphism

¢ : FDp,(X) = K,(X)

It is easy to verify that this isomorphism satisfies (i) and (i1). The last conditions and
Lemma 5 imply (iii)}-(iv).

The condition (i) of Lemma 7 shows that {u®(i) : i € FB(X)} is a Boolean algebra iso-
morphic to FB(X). In addition, 4™(0) and (1) are the smallest and the greatest elements
of it, respectively, and u®(«) is the complement of u®(a), a € FB(X).
We are now in position to state the main facts about n-order-filters.

THEOREM 3. Let P(X) denote the poset associated with a set X, let 1 <n < w. Then the
Sree distributive p-algebra FDp,(X) in the class B, and the distributive lattice K,(X) are iso-
morphic as lattices. More precisely, K,(X) can be considered as a p-algebra such that

(1) v* = =(v) for every v € K,(X),
(i) {u™() : i € X} freely generates K,(X) as a p-algebra in the class B,,
(iii) B(K,(X)) = {u™(i) : i € FB(X)} ~ FB(X).

The proof follows directly from Lemma 7.
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4. Finite Algebras. It is known (see [4] that a finitely generated distributive p-algebra is
finite. Obviously, every finite distributive p-algebra is determined by its poset of non-zero
join-irreducible elements. Theorem 3 suggests a natural way of describing this set.

LEMMA 8. Let X be a finite set. Assume that iy, ...,ix € P(X) and 1 < n < w. Then there
exists an order-filter M C P(X) such that

dME NN 3) = d (M), (%)

Conversely, for every order-filter M C P(X) there exists iy, . .., ir € P(X) such that (*) is true.
Proof. Let iy, ..., i € P(X) be given. Evidently,

[i) € li, . i ULe(@) .. (i) = M S P(X)

forevery j=1,...,k. M is an order-filter and (*) can be easily verified.

On the other hand, let M C P(X) be an order-filter. Clearly, M N FB(/\—’) = [a) for some
aeFB(X). If MNX =0, then u®(a)=u(M). Let MNX ={i,...,i}. Evidently,
t(ij) > aforeveryj=1,..., k. A simple verification shows that (*) holds true.

Recall that for ¢ € FB(X) € P(X) and finite X, we can define the height function: Let

hs(t) denote the length of a longest maximal chain in [0, /] N FB(X). It is easy to see that h(7)

is the number of ail atoms a € FB(X) such that a < .

LEMMA 9. Let X be a finite set and let M be an order-filter of P(X). Assume that
M N FB(X) = [1). Then M is an n-order-filter for some 1 < n < w if and only if

hg(H) <n

Proof. Suppose that M is an n-order-filter and let 1 < n < w be the smallest integer with
this property. We have to show that Ap(¢) = n. For ¢ = 0 this is true. Assume that ¢ # 0. Let
ay,...,a; be all atoms of FB(X) with property: a; <t Consider elements b =t-a),

.. b = 1+ a, € FB(X). Clearly,

t=>by+...+brand b;+ b; =t forany i # .

Since b; < tforalli=1,...,k, we have

k=hg(t)<n

We now go in the other direction. According to the choice of n there exist distinct
by, ..., b, € FB(X) such that

f=b|+...+b,,,b,'+bj=[

for any i # j and no b; = 1. Set
ay=t-b),...,a,=1-b, € FB(X)
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a,...,a, are distinct and a;-a;=0 in FB(X) whenever i#0. Since a;#0 for all
i=1,...,n, we see that n < k = hg(t). Thus hg(t) = n. _
Conversely, suppose that ap(s) < n. Take by, ..., byy1 € FB(X) such that

t=>by+...+ by and t = b; + b; whenever i # j.

We can also assume that by, ..., b, are distinct. Therefore, the elements

ay=t-b,...,ap1 =t b, € FB(X)

are distinct and a; - a; = 0 in FB(X) whenever i # j. Since hp(f) < n we see that a; =0 for
some | <i<n+ 1. Hence b; =t € M and M is an n-order-filter.
As our final result, we have the following theorem.

THEOREM 4. Let P(X) denote the poset associated with a finite set X. Then
AeK,(X), 1 <n<w, is a join-irreducible element in the lattice K,(X) if and only if
A = u"™ (M) for some n-order-filter M.

Proof. In view of Lemma 8, every element 4 € K,(X) can be written in the form

A=u"(M)U.. UM,

for some order-filters M, ..., M, € P(X). Suppose now that 4 € K,(X) is join-irreducible.
Therefore, A = u™(M) for some order-filter (= w-order-filter) M of P(X), and the assertion
of the theorem is clear for n = w. We therefore assume that 1 < n < w. Our aim is to show
that there exists an n-order filter T C P(X) such that

4 = u"(M) = u"(T).

Let [r) = M N FB(X). We shall proceed by induction on A(z).

(I) Suppose that Ag(¢) < n. It follows by Lemma 9 that M is an n-order-filter. Hence
T=M.

(IT) Assume that hp(r) > n. Moreover, if there exists an order-filter T C P(X) such that
[t)=TnN FB(X), t >t and

A =u"(M) = u"(T),

then T is an n-order-filter of P(X). Without loss of generality we can assume that M is no n-
order-filter of P(X). Then there exist distinct elements b, ..., by € FB(X) satisfying the
following conditions: b; < ¢ foreveryi=1,...,n+ 1 and

t=>by+...+bu1 = bi+ b, whenever i # j

Form the following order-filters:
M =YU[b),...,. Mpyy=YUlbyy)for Y =MnNX.

We claim that
U (M) = (M) U ... Uud™(M,;).
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Obviously, u™(M) 2 u™(M)U...Uu™(M,.1). On the other hand, let S e u™(M).
Since S is an n-order-filter, there is b; € S for some 1 <i <n+ 1. It follows from this that
S D M,. Therefore, S € u”)(M;) and

U(M) = u(M) U ... V(M)

as claimed. The hypothesis that u(M) is join-irreducible implies that 4 = 4 (M;) for some
I <j<n+1. Clearly, (b)) = M;N (FB(X) and ¢ > b;. By induction hypothesis is M; an n-
order-filter of P(X) and we can put T = M;. This shows that for a join-irreducible 4 € K,(X)
there exists an n-order-filter T of P(X) with 4 = u(T).

Conversely, let 4 = u™(M) for some n-order-filter M of P(X). Suppose that 4 = CU D

for some C, D € K,(X). In view of Lemma 9 we can write
A=u"(M)U.. .U (M,)

for some order-filters My,..., M, of P(X). Since M € A, there is 1 <j <r such that
M e u™(M;). It follows that 4 € u”(M;), and consequently, 4 = u(M;). This shows that
A is join-irreducible in K,(X).

REMARK 3. Another characterization of join-irreducibles from FDp,(X) for finite X is
given in Urquhart [14]. A transformation which converts n-order-filters into elements of
FDp,(X) can be easily established: Let M C P(X) be an n-order-filter and let
[©) = M N FB(X). Moreover, let

(p : (FB(X_')v +1 -vl ) 07 1) - (FB(X**)v +» /\v* ] 07 1)
be a Boolean isomorphism given by

@:%— x*forx e X.

Define

p(M) = \(x: x € MNX) A g(d).

Then p(M) is a join-irreducible element in FDp,(X) (in the characterization of [14])
which corresponds to u(M).
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