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Uniqueness of Lp subsolutions to the heat
equation on Finsler measure spaces

Qiaoling Xia

Abstract. Let (M , F , m) be a forward complete Finsler measure space. In this paper, we prove that
any nonnegative global subsolution in Lp(M)(p > 1) to the heat equation on R

+ ×M is uniquely
determined by the initial data. Moreover, we give an Lp(0 < p ≤ 1) Liouville-type theorem for
nonnegative subsolutions u to the heat equation on R ×M by establishing the local Lp mean value
inequality for u on M with RicN ≥ −K(K ≥ 0).

1 Introduction

Finsler geometry is a Riemannian geometry without quadratic restriction. It is a nat-
ural generalization of Riemannian geometry. Studies show that there are similarities
but essential differences between Riemannian and Finsler geometry [OS1, OS2, Sh,
Xia1, Xia4, ZX]. One of the challenges is the nonlinearity of the Laplacian and the
associated heat equation. Some questions related to nonlinear equations would be of
interest in itself from the analytic viewpoint.

A Finsler manifold (M , F) means a smooth manifold M equipped with a Finsler
metric (or Finsler structure) F ∶ TM → [0, +∞) such that Fx = F∣Tx M is a Minkowski
norm on Tx M at each point x ∈ M, that is to say, F is smooth on TM /{0} and
Fx(y) = 0 if and only if y = 0, F satisfies F(x , λy) = λF(x , y) for all λ > 0, and the
matrix (g i j(x , y)) ∶= ( 1

2 (F2)y i y j) is positive definite for any nonzero y ∈ Tx M. Such
a pair (M , F) is called a Finsler manifold. Given a smooth measure m, the triple
(M , F , m) is called a Finsler measure space. In particular, if F is only a function of
x ∈ M independing of y, then it is Riemannian. A Finsler measure space is not a
metric space in usual sense because F may be nonreversible, i.e., F(x , y) ≠ F(x , −y)
may happen. This nonreversibility causes the asymmetry of the associated distance
function. For any Finsler metric F, its dual F∗(x , ξ) = supFx(y)=1 ξ(y) is also a Finsler
metric on M, where ξ ∈ T∗x (M).

In general, the space of functions u ∈ Lp(M) with ∫M[F∗(du)]pdm < ∞ with
respect to the measure m is not a linear space over R because of the nonreversibility
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of F [KR]. We define

W 1, p(M) ∶= {u ∈ Lp(M)∣∫
M
[F∗(du)]pdm + ∫

M
[F∗(−du)]pdm < ∞}

for p ≥ 1. Thus, W 1, p(M) is a Banach space with respect to the norm

∥u∥1, p ∶= ∥u∥L p + ∥F∗(du)∥L p + ∥←�F ∗(du)∥L p .(1.1)

It is a Sobolev space, which is the completion of the space C∞(M) with respect to
the Sobolev norm ∥ ⋅ ∥1, p . Further, we may define W 1, p

0 (M) as the completion of
the space C∞0 (M) with respect to the norm ∥ ⋅ ∥1, p , and hence (W 1, p

0 (M), ∥u∥1, p)
is also a Sobolev space. We denote H1(M) ∶= W 1,2(M) and H1

0(M) ∶= W 1,2
0 (M) for

simplicity. Likewise, H−1(M) means the dual Banach space of H1
0(M).

For any T > 0 (T maybe the infinity), a function u ∈ [0, T] × M is called a
global (super, sub)solution to the heat equation ∂tu = Δu if it satisfies (i) u ∈
L2 ([0, T], H1

0(M)) ∩ H1 ([0, T], H−1(M)) and (ii) for almost every t ∈ (0, T) and
0 ≤ ϕ ∈ C∞0 (M) (or, equivalently, for every ϕ ∈ H1

0(M)), it holds that

∫
M

ϕ∂tudm (≥, ≤) = −∫
M

dϕ(∇u)dm.(1.2)

The existence and regularity of the global solution to the heat equation have been
studied in [OS1] (see Section 2). Moreover, global solutions are constructed as
gradient curves of the energy functional E(u) = ∫M F2(∇u)dm on u ∈ H1

l oc(M) in
the Hilbert space L2(M) [OS1]. Comparing with the Riemannian case [SY], there are
less results on the heat equation in Finsler geometry. An important progress is that
Ohta and Sturm gave Li-Yau’s gradient estimate for the positive solutions to the heat
equation on a closed Finsler manifold with weighted Ricci curvature bounded below
by establishing the Bochner–Weitzenböck formula in [OS2]. Recently, the author
of the present paper gave the local and global Li-Yau’s type gradient estimates on
complete Finsler measure spaces with weighted Ricci curvature bounded below in
[Xia2] and [Xia3] by Moser’s iteration and a linearized heat semigroup approach.
In this paper, we will focus on the uniqueness of nonnegative Lp(p > 0) subsolutions
to the heat equation on forward complete Finsler measure spaces.

For the case when p > 1, the uniqueness of Lp nonnegative subsolutions to the
heat equation is determined by the initial data on a complete Finsler manifold. More
precisely, we have the following theorem.

Theorem 1.1 Let (M , F , m) be a forward or backward complete Finsler measure space.
If u(t, x) is a nonnegative global subsolution to the heat equation on [0, ∞) × M with
u(t, x) ∈ Lp(M) and lim

t→0 ∫M up(t, x)dm = 0 for all t > 0 and p > 1, then u(t, x) ≡ 0
on [0, ∞) × M.

For the case when 0 < p ≤ 1, we have the following theorem.

Theorem 1.2 Let (M , F , m) be an n-dimensional forward or backward complete and
noncompact Finsler measure space with finite reversibility Λ. If RicN ≥ 0 for some N ∈
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[n, ∞), then every nonnegative Lp(R × M)(0 < p ≤ 2) subsolution to the heat equation
on R × M is identically zero.

When (M , F = √g , dVg) is Riemannian and N = n, Theorem 1.1 is reduced to
the result in [Li]. Since the Finsler Laplacian is nonlinear, we use some nonlinear
approaches to prove Theorem 1.2. In fact, we shall establish the local Lp mean value
inequality for the heat equation by means of Moser’s iteration to prove this. In
particular, if the (super, sub)solution u to the heat equation is independent of t, then u
is a Finsler (super, sub)harmonic function. In this case, some Liouville-type theorems
have been established in [Xc, Xia1, Xia4, ZX].

2 Preliminaries

In this section, we briefly review some basic concepts in Finsler geometry. For more
details, we refer to [Sh].

2.1 Finsler metrics and curvatures

Let (M , F) be an n-dimensional Finsler manifold, and let TM be the tangent bundle
of M. We define the reverse metric ←�F of F by

←�F (x , y) ∶= F(x , −y) for all (x , y) ∈ TM.
It is easy to see that

←�F is also a Finsler metric on M. A Finsler metric F on M is said to
be reversible if

←�F (x , y) = F(x , y) for all y ∈ TM. Otherwise, we say F is nonreversible.
In this case, we define the reversibility Λ = Λ(M , F) of F by

Λ ∶= sup
(x , y)∈T M /{0}

F(x , −y)
F(x , y) .

Obviously, Λ ∈ [1, ∞] and F is reversible if and only if Λ = 1.
Given a nonvanishing smooth vector field V, one introduces a weighted Rieman-

nian metric gV on M given by

gV(y, w) = g i j(x , Vx)y iw j , for y, w ∈ Tx M and x ∈ M .(2.1)

Thus, we have F2(V) = gV(V , V).
For x1 , x2 ∈ M, the distance from x1 to x2 is defined by dF(x1 , x2) ∶=

inf γ ∫
1

0 F(γ̇(t))dt, where the infimum is taken over all C1 curves γ ∶ [0, 1] → M such
that γ(0) = x1 and γ(1) = x2. Note that dF(x1 , x2) ≠ dF(x2 , x1) unless F is reversible.
dF(x , ⋅) is differentiable almost everywhere on M and F(∇dF) = 1 at points where dF
is differentiable. If F has finite reversibility Λ, then

Λ−1dF(q, p) ≤ dF(p, q) ≤ ΛdF(q, p).(2.2)

Now we define the forward and backward geodesic balls of radius R with center at
x ∈ M by

B+R(x) ∶= {z ∈ M ∣ dF(x , z) < R}, B−R(x) ∶= {z ∈ M ∣ dF(z, x) < R}.

A C1 curve η ∶ [0, �] → M is called a geodesic if it has constant speed (i.e., F(η, η̇)
is constant) and if it is locally minimizing. Such a geodesic is in fact a C∞ curve.
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A Finsler manifold (M , F) is said to be forward complete (or backward complete) if
each geodesic defined on [0, �) (or (−�, 0]) can be extended to a geodesic defined on
[0, ∞) (or (−∞, 0]). (M , F) is backward complete if and only if (M ,

←�F ) is forward
complete. We say that (M , F) is complete if it is both forward complete and backward
complete [Sh].

Given a smooth measure m, write dm = σ(x)dx. For any v ∈ Tx M /{0}, let
η(t) be a geodesic with η(0) = x and η̇(0) = v. The distortion of F is defined by
τ(x , v) ∶= log{

√
det(g i j(x ,v))

σ(x) } , and the S-curvature S is defined as the rate of change
of the distortion τ along η(t), i.e.,

S(x , v) = d
dt

τ(η(t), η̇(t))∣t=0 .

S-curvature disappears on a Riemannian manifold (M , g).
Next we recall the definition of the weighted Ricci curvature on a Finsler manifold,

which was introduced by S. Ohta.

Definition 2.1 [Oh] Given a unit vector v ∈ Tx M, let η ∶ (−ε, ε) → M be the geodesic
with η(0) = x and η̇(0) = v. We set dm = e−Ψ(η(t))volη̇ along η, where vol η̇ is the
volume form of gη̇ . Define the weighted Ricci curvature involving a parameter N ∈
(n, ∞) by

RicN(v) ∶= Ric(v) + (Ψ ○ η)
′′

(0) − (Ψ ○ η)′(0)2

(N − n) ,

where Ric is the Ricci curvature of F. Also, define Ric∞(v) ∶= Ric(v) + (Ψ ○ η)′′(0)
and

Ricn(v) ∶= lim
N→n

RicN = { Ric(v) + (Ψ ○ η)′′(0), if (Ψ ○ η)′(0) = 0,
−∞, otherwise

as limits. Finally, for any λ ≥ 0 and N ∈ [n, ∞], define RicN(λv) ∶= λ2RicN(v).

We say that RicN ≥ K for some K ∈ R if RicN(v) ≥ KF2(v) for all v ∈ TM. We
remark that (Ψ ○ η)′(0) = S(x , v) and (Ψ ○ η)′′(0) is exactly the change rate of the
S-curvature along the geodesic η(t).

2.2 Gradient and nonlinear Laplacian

LetL ∶ T∗M → TM be the Legendre transform associated with F and its dual norm F∗,
that is, a transformationL from T∗M to TM, defined locally byL(x , ξ) = J i(x , ξ) ∂

∂x i ,
J i(x , ξ) ∶= 1

2 [F∗2(x , ξ)]ξ i (x , ξ), is sending ξ ∈ T∗M to a unique element y ∈ Tx M
such that F(x , y) = F∗(x , ξ) and ξ(y) = F2(y) [Sh]. It is a diffeomorphism from
T∗M /{0} to TM /{0} preserving the norm.

For a smooth function u ∶ M → R, the gradient vector ∇u(x) of u is defined by
∇u ∶= L(du) ∈ Tx M. Obviously, ∇u = 0 if du = 0. In a local coordinate system, we
reexpress ∇u as
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∇u ∶= { g i j(∇u) ∂u
∂x i

∂
∂x j , x ∈ Mu ,

0, x ∈ M /Mu ,

where Mu = {x ∈ M∣du(x) ≠ 0}. In general, ∇u is only continuous on M, but smooth
on Mu .

Recall that dm = σ(x)dx. The Finsler Laplacian Δ of a function u on M is formally
defined by Δu = div(∇u). It should be understood in the sense that

∫
M

φΔudm = −∫
M

dφ(∇u)dm(2.3)

for any u ∈ H1
loc(M) and φ ∈ C∞0 (M) [Sh]. Obviously, Δ is a nonlinear divergence-

type operator. Locally,

Δu = 1
σ

∂
∂x i (σ g i j(∇u) ∂u

∂x j ) on Mu .(2.4)

We say that a function u on [0, T] × M is a global (super, sub)solution to the heat
equation ∂tu = Δu if it satisfies (1.2). When Λ < ∞, the global solutions enjoy the
H2

l oc-regularity in x as well as the C1,α-regularity in both t and x on (0, ∞) × M.
Moreover, ∂tu lies in H1

l oc(M) [OS1]. We also may define the local solutions to the
heat equation as follows.

Given an open subset Ω ⊂ M and an open interval I ⊂ R, we say that a function
u on I × Ω is a local (super, sub)solution to the heat equation ∂tu = Δu on I × Ω if
u ∈ L2

l oc(I × Ω) with F∗(du) ∈ L2
l oc(I × Ω), and for any ϕ ∈ C∞0 (I × Ω) (or, equiva-

lently, for any ϕ ∈ H1
0(I × Ω)),

∫
I
∫

Ω
u∂t ϕdmdt (≤, ≥) = ∫

I
∫

Ω
dϕ(∇u)dmdt.(2.5)

Every continuous local solution to the heat equation ∂tu = Δu on I × Ω is C1,β in t
and x [OS1].

3 Mean value inequality

In this section, we establish the local Lp(p > 0) mean value inequalities for nonnega-
tive subsolutions to the heat equation on Finsler measure spaces (M , F , m). Let us first
recall the local Sobolev inequality, which was due to Xia [Xc]. It is worth mentioning
that it suffices to assume the finite reversibility instead of the uniform convexity and
uniform smoothness for the Finsler metrics from the proof of Theorem 3.3 in [Xc].
For the sake of simplicity, we shall denote by BR ∶= B+R(x0) the forward geodesic ball
of radius R centered at some point x0 ∈ M.

Lemma 3.1 [Xc] Let (M , F , m) be a forward complete Finsler measure space with
finite reversibility Λ satisfying RicN ≥ −K for some K > 0. Then there exist constants
ν = ν(N) > 2 and c0 = c0(N , Λ) depending on N and Λ, such that

(∫
BR

∣u∣ 2ν
ν−2 dm)

ν−2
ν

≤ ec0(1+
√

KR)R2m(BR)−
2
ν ∫

BR
{F∗2(x , du) + R−2u2}dm(3.1)

for any forward geodesic ball BR and u ∈ W 1,2
l oc(M).

https://doi.org/10.4153/S0008439523000450 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000450


Uniqueness of Lp subsolutions to the heat equation on Finsler measure spaces 171

With this, we can prove the local L2 mean value inequality for nonnegative
subsolutions to the heat equation.

Proposition 3.1 Let (M , F , m) be an n-dimensional forward complete Finsler mea-
sure space with finite reversibility Λ. Fix R > 0, and assume that (3.1) holds. If u
is a nonnegative local subsolution of the heat equation in the cylinder Q ∶= (s − r2 ,
s + ε) × B+r (x0) for any s ∈ R and 0 < r < R, where ε is a positive constant, then there
are constants ν > 2, and c = c(N , ν, Λ) > 0 such that for any 0 < δ < δ′ ≤ 1, we have

sup
Qδ

u2 ≤ ec(1+r
√

K)

(δ′ − δ)2+νr2m(B+r (x0)) ∫
Qδ′

u2dmdt,(3.2)

where Qδ ∶= (s − δr2 , s] × B+δr(x0) and Qδ′ ∶= (s − δ′r2 , s] × B+δ′r(x0). In particular,
when RicN ≥ −K for some N ∈ [n, ∞) and K > 0, (3.2) holds.

Proof For the sake of simplicity, we denote B● ∶= B+● (x0) in the following. Since u
is a nonnegative local subsolution to the heat equation in Q, we have

∫
t

s−r2 ∫Br
(ϕ∂tu + dϕ(∇u))dmdt ≤ 0(3.3)

for any t ∈ (s − δr2 , s] and nonnegative function ϕ ∈ W 1,2
0 (Q). Let λ = λ(t) ∈ C∞0 (R)

and φ = φ(x) ∈ C∞0 (Br) be cutoff functions. Replacing ϕ with uφ2 λ2 in (3.3) and
using the Cauchy–Schwarz inequality yield

∫
t

s−r2 ∫Br
λ2φ2F2(∇u)dmdt + ∫

t

s−r2 ∫Br
λ2φ2u∂tudmdt

≤ −2∫
t

s−r2 ∫Br
λ2φudφ(∇u)dmdt ≤ 2∫

t

s−r2 ∫Br
λ2φuF∗(−dφ)F(∇u)dmdt

≤ 1
3 ∫

t

s−r2 ∫Br
λ2φ2F∗2(du)dmdt + 3∫

t

s−r2 ∫Br
λ2u2F∗2(−dφ)dmdt,

where we used F(∇u) = F∗(du). Thus,

∫
t

s−r2 ∫Br
λ2φ2∂t(u2)dmdt + 4

3 ∫
t

s−r2 ∫Br
λ2φ2F∗2(du)dmdt

≤ 6∫
t

s−r2 ∫Br
λ2u2F∗2(−dφ)dmdt.

Note that F∗(d(φu)) ≤ uF∗(dφ) + φF∗(du). Hence,

∫
t

s−r2 ∫Br

∂
∂t

(λφu)2dmdt + ∫
t

s−r2 ∫Br
λ2F∗2(d(φu))dmdt

≤ 2∫
t

s−r2 ∫Br
λλ′φ2u2dmdt + ∫

t

s−r2 ∫Br
λ2φ2∂t(u2)dmdt

+ 4
3 ∫

t

s−r2 ∫Br
λ2φ2F∗2(du)u2dmdt + 4∫

t

s−r2 ∫Br
λ2F∗2(dφ)dmdt

≤ 2∫
t

s−r2 ∫Br
λu2 [λ′φ2 + 5Λ2 λF∗2(dφ)] dmdt.(3.4)

https://doi.org/10.4153/S0008439523000450 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000450


172 Q. Xia

Now we choose λ(t) on R with 0 ≤ λ ≤ 1, λ = 0 in (−∞, s − δ′r2), λ = 1 in (s −
δr2 , +∞) and ∣λ′(t)∣ ≤ 1

[(δ′−δ)r]2 , and φ = φ(x) on Br defined by

φ(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, on Bδr ,
δ′r−dF(x0 ,x)
(δ′−δ)r , on Bδ′r /Bδr ,

0, on Bδ′r .

Then F∗(−dφ) ≤ 1
(δ′−δ)r and F∗(dφ) ≤ ΛF∗(−dφ) ≤ Λ

(δ′−δ)r a.e. on Bδ′r . Denote
Iδ ∶= (s − δr2 , s] and Iδ′ ∶= (s − δ′r2 , s]. Taking the supremum with respect to t on
both sides of (3.5) yields

sup
t∈Iδ

{∫
Br
(φu)2dm} + ∫

Iδ×Br
F∗2(d(φu))dmdt ≤ 12Λ2

(δ′ − δ)2r2 ∫
Qδ′

u2dmdt.(3.5)

On the other hand, by Hölder’s inequality and Soblev’s inequality (3.1), we have

∫
Br
(uφ)2(1+ 2

ν )dm ≤ (∫
Br
(uφ) 2ν

ν−2 dm)
ν−2

ν
⋅ (∫

Br
(uφ)2dm)

2
ν

≤ (A∫
Br
[F∗2(d(uφ)) + r−2(uφ)2]dm) ⋅ (∫

Br
(uφ)2dm)

2
ν

(3.6)

for some ν > 2, where A ∶= ec0(1+r
√

K)r2m(Br)−2/ν , where c0 = c0(N , Λ) is a positive
constant. From (3.5) and (3.6), one obtains

∫
Qδ

u2(1+ 2
ν )dmdt = ∫

Qδ
(uφ)2(1+ 2

ν )dmdt

≤ (A∫
Iδ×Br

[F∗2(d(uφ)) + r−2(uφ)2]dmdt)(sup
t∈Iδ

∫
Br
(uφ)2dm)

2/ν

≤ A( 12Λ2

((δ′ − δ)r)2 ∫
Qδ′

u2dmdt)
1+ 2

ν

.

For any τ ≥ 1, it is easy to see that uτ is also a nonnegative subsolution of the heat
equation. Let χ ∶= 1 + 2

ν . The above inequality implies that

∫
Qδ

u2 χτdmdt ≤ A( 12Λ2

((δ′ − δ)r)2 ∫
Qδ′

u2τdmdt)
χ

.(3.7)

For any 0 < δ < δ′ ≤ 1, let δ0 = δ′ , δ i+1 = δ i − δ′−δ
2 i+1 , and τ = χ i > 1 on Bδ i r for i =

0, 1, . . .. Applying (3.7) for δ′ = δ i , δ = δ i+1, and τ = χ i , we get

∫
Qδi+1

u2 χ i+1
dmdt ≤ A( (12Λ2)4i+1

((δ′ − δ)r)2 ∫
Qδi

u2 χ i
dmdt)

χ

.

By iteration, one obtains that

(∫
Qδi+1

u2 χ i+1
dmdt)

1
χi+1

≤ C∑ j χ1− j
(A)∑ χ− j

[(δ′ − δ)r]−2∑ χ1− j

⋅ ∫
Qδ′

u2dmdt,(3.8)
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in which ∑ denotes the summation on j from 1 to i + 1 and C is a positive constant
depending on Λ. Since ∑∞j=1 χ1− j = 1 + ν

2 , ∑∞j=1 χ− j = ν
2 and ∑∞j=1 jχ1− j converges, (3.8)

implies (3.2) by taking i → ∞. This finishes the proof. ∎

Based on Proposition 3.1, we have the following local Lp(0 < p ≤ 2) mean value
inequality.

Theorem 3.1 Let (M , F , m) be an n-dimensional forward complete Finsler measure
space with finite reversibility Λ. Fix R > 0, and assume that (3.1) holds. If u is a
nonnegative Lp subsolution of the heat equation in the cylinder Q = (s − r2 , s + ε) ×
B+r (x0) for any s ∈ R and 0 < r < R, where ε is a positive constant, then there are
constants ν > 2 and c = c(N , p, ν, Λ) > 0 such that

sup
Qδ

up ≤ ec(1+r
√

K)

(δ′ − δ)2+νr2m(Br) ∫
Qδ′

updmdt(3.9)

for any 0 < p ≤ 2 and 0 < δ < δ′ ≤ 1, where Qδ and Qδ′ are as in Proposition 3.1. In
particular, when RicN ≥ −K(K > 0) for some N ∈ [n, ∞), (3.9) holds.

Proof The case when p = 2 has been proved in Proposition 3.1. It suffices to prove
(3.9) for any 0 < p < 2.

We denote B● ∶= B+● (x0) as in the proof of Proposition 3.1. For any 0 < δ < δ′′ ≤
δ′ ≤ 1, it follows from Proposition 3.1 that there are positive constants ν = ν(N) > 2
and c = c(N , ν, Λ) such that

sup
Qδ

u2 ≤ ec(1+r
√

K)

(δ′′ − δ)2+νr2m(Br) ∫
Qδ′′

u2dmdt.

On the other hand,

∫
Qδ′′

u2dmdt ≤ sup
Qδ′′

u2−p ∫
Qδ′′

updmdt ≤ (sup
Qδ′′

u2)
1−p/2

∫
Qδ′

updmdt

Thus,

sup
Qδ

u2 ≤ ec(1+r
√

K)

(δ′′ − δ)2+νr2m(Br)
(sup

Qδ′′

u2)
1−p/2

∫
Qδ′

updmdt.(3.10)

Let μ = 1 − p/2 > 0 and

M(δ) ∶= sup
Qδ

u2 , R = ec(1+r
√

K)

r2m(Br) ∫
Qδ′

updmdt.

Let δ0 = δ and δ i = δ i−1 + δ′−δ
2 i for i = 1, 2, . . .. Applying (3.10) for δ = δ i−1 and δ′′ = δ i

yields

M(δ i−1) ≤ R2i(2+ν)(δ′ − δ)−2−νM(δ i)μ .
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By iterating, we get

M(δ0) ≤ R∑ μ i−1
2(2+ν)∑ i μ i−1

(δ′ − δ)(−2−ν)∑ μ i−1
M(δ j)μ j

,(3.11)

in which ∑ denotes the summation on i from 1 to j. Obviously, lim
j→∞

δ j = δ′ and

lim
j→∞

μ j = 0. Moreover, ∑∞i=1 μ i−1 = 2/p and ∑∞i=1 iμ i−1 converges. Letting j → ∞ on

both sides of (3.11), there is a positive constant c = c(N , ν, p) such that

sup
Qδ

up ≤ M(δ0)p/2 ≤ ec(1+r
√

K)(δ′ − δ)−2−νr−2m(Br)−1 ∫
Qδ′

updmdt.

The proof is finished. ∎

4 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1 Let BR ∶= B+R(x0), and let ψ(x) be a cutoff function
defined by

ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, on BR ,
2R−dF(x0 ,x)

R , on B2R /BR ,
0, on M /B2R .

Obviously, 0 ≤ ψ ≤ 1 and F∗(−dψ) ≤ 1/R a.e., on B2R . Since lim
t→0 ∫M up(t, x)dm = 0,

we have

0 ≤ lim
t→0 ∫M

ψ2updm ≤ lim
t→0 ∫M

up(t, x)dm = 0,

which means that lim
t→0 ∫M ψ2updm = 0. Choosing ϕ ∶= ψ2up−1 as a test function in (1.2)

yields

−∫
T

0
∫

M
d(ψ2up−1)(∇u)dmdt ≥ ∫

T

0
∫

M
ψ2up−1 ∂u

∂t
dmdt

≥ 1
p ∫

T

0

∂
∂t

(∫
M

ψ2updm) dt

= 1
p ∫

M
ψ2up(T , x)dm

by the assumption. On the other hand, the LHS of the above inequality is equal to

− 2∫
T

0
∫

M
ψup−1dψ(∇u)dmdt − (p − 1)∫

T

0
∫

M
ψ2up−2F2(∇u)dmdt

≤ 2
p − 1 ∫

T

0
∫

M
upF∗2(−dψ)dmdt − 2(p − 1)

p2 ∫
T

0
∫

M
ψ2F2(∇up/2)dmdt,

where we used the inequality −dψ(∇u) ≤ F∗(−dψ)F(∇u). Therefore,

∫
M

ψ2up(T , x)dm + 2(p − 1)
p ∫

T

0
∫

M
ψ2F2(∇up/2)dmdt ≤ 2p

(p − 1)R2 ∫
T

0
∫

M
updmdt.
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Letting R → ∞, one obtains

∫
M

up(T , x)dm = 0, and ∫
T

0
∫

M
F2(∇up/2)dmdt = 0,

which implies that u(T , x) = 0 and ∇up/2 = 0. Hence, u(t, x) ≡ 0. ∎

Proof of Theorem 1.2 By Theorem 3.1 and the assumption, we have

u(t, x0) ≤ sup
Qδ

up ≤ c
(δ′ − δ)2+νr2m(Br) ∫

Qδ′
updmdt

= c
(δ′ − δ)2+νr2m(Br) ∫

R×M
updmdt(4.1)

for any t ∈ (s − δr2 , s] and 0 < δ < δ′ ≤ 1. Since RicN ≥ 0 and Λ < ∞, m(Br) ≥ Cr by
Theorem 5.4 in [Wu], where C is a positive constant depending on N and Λ. Note
that 0 ≤ u(t, x) ∈ Lp(R × M) by the assumption. Letting δ → 0 and then r → ∞ on
both sides of (4.1) yields u(s, x0) ≡ 0. Since s ∈ R and x0 ∈ M are arbitrary, we have
u(t, x) ≡ 0 on R × M. ∎
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