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Introduction
The celebrated theorem of Weierstrass, dating from 1885, states that

continuous functions can be uniformly approximated by polynomials on any
bounded, closed interval. But just how well can we approximate by
polynomials of a certain degree? Let us introduce some notation to facilitate
the discussion. For an interval  (which will usually be  or ),
denote by  the space of continuous functions on , and write  for

 (the notation  is often used). Uniform convergence
of  to  (on ) equates to the statement that  as .
Denote by  the space of polynomials of degree not more than . This is a
linear subspace of  of dimension . We write

I [−1,  1] [0,  1]
C (I) I �f �

sup{|f (x) : x ∈ I|} �f �∞
f n f I �f n − f � → 0 n → ∞

∏n n
C (I) n + 1

dist (f , ∏n) = inf {�f − p� : p ∈ ∏n} .
Since  is finite-dimensional, there is a  for which the infimum is
attained, the ‘best uniform approximation’ to  in  (we will use this fact,
but it is not really essential for our exposition). Our objective is to find
estimations of , given information about .

∏n p
f ∏n

dist (f , ∏n) f
We shall see that particularly pleasant answers are available for

Lipschitz functions. Recall that a function on , or an interval , is
‘Lipschitz’ if there exists  such that  for all

 in : we denote the smallest such  by . Of course, a sufficient
(but not necessary) condition is that  is differentiable, with .

� I
M |f (x2) − f (x1)| ≤ M |x2 − x1|

x1, x2 I M Lip (f )
f �f ′� ≤ M

A neat application of the intermediate value theorem sets a clear limit to
what can be achieved. (There is a slight gain in simplicity by stating it for

 instead of .)n − 1 n

Theorem 1: For each , there is a function  on  such that
 and .

n f n [0,  1]
Lip (f n) = 1 dist (f n, ∏n − 1) = 1

2n

Proof: Define  as follows:f n

f ( r
n) =

(−1)r

2n
for 0 ≤ r ≤ n,

so that  is alternately  at the points . Define  by linear
interpolation between these points. Then  has gradients  on successive
intervals of length , so .

f n (x) ± 1
2n

r
n f n (x)

f n ±1
1
n Lip (f n) = 1

Now suppose that  is a polynomial with . Then  is
strictly positive for  even and strictly negative for  odd. By the

p �f n − p� < 1
2n p ( r

n)
r r
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274 THE MATHEMATICAL GAZETTE

intermediate value theorem,  has a zero in each interval , hence at

least  zeros. So the degree of  is at least . In other words, if ,
then  . Equality occurs with .

p (r − 1
n

,
r
n)

n p n p ∈ ∏n − 1

�f n − p� ≥ 1
2n p = 0

 If  is stretched to the interval [−1, 1], the same applies, but
becomes .

f n Lip (f n)
1
2

A previous article [1] described the rate of approximation achieved by
the Bernstein polynomials  derived from a given function : it was

shown that . However, the correct order of

magnitude of  for Lipschitz functions is actually , as seen in
Theorem 1. This was proved in 1912 by the American mathematician
Dunham Jackson; his article [2] built on a doctoral thesis written in
Göttingen under the guidance of Edmund Landau. Here we will give an
exposition of this result, which surely deserves to be better known. We
present a clever proof devised later by P. Korovkin [3].

Bn (f ) f

�Bn (f ) − f � ≤
Lip (f )
2 n

dist (f , ∏n) O (1
n)

Jackson's theorem actually applies in the first instance to the parallel
problem of approximation to periodic functions by trigonometric
polynomials; of course this is the domain of Fourier analysis. The
connection is easily explained. We denote by  the space of all
continuous, 2-periodic functions on . Of course, to specify such a function
it is enough to give the values on , necessarily with .
Denote by  the set of all trigonometric polynomials of degree , i.e.

functions of the form .

C2π
�

[π, −π] f (−π) = f (π)
Tn n

a0 + ∑
n

k = 1

(ak cos kt + bk sin kt)

Now given , define  by . Note
that , since . Choose
such that . Since  is an even function, we can take

 to be of the form , without the sine terms (replace  by

). For each , there is a polynomial  of degree  such that
 (these are the ‘Chebyshev polynomials’, but we do not

need to know anything about them beyond their existence). Let

: then  and , so ,

hence .

f ∈ C [−1,1] F ∈ C2π F (t) = f (cos t)
Lip (F) ≤ Lip (f ) |cos t2 − cos t1| ≤ |t2 − t1| P ∈ Tn

�F − P� = dist (F, Tn) F

P (t) ∑
n

r = 0
ar cos rt P (t)

1
2P (t) + 1

2P (−t) r qr r
cos rt = qr (cos t)

p(x) = ∑
n

r = 0
arqr (x) p ∈ ∏n p(cost) = P(t) �f − p� = �F − P�

dist (f , ∏n) ≤ dist (F, Tn)

It will help to make sense of the proof of Jackson's theorem if we first outline
the simpler and better known case of modified Fourier series, as given by the
Fejér kernel. The version for Lipschitz functions is both simple and attractive;
surprisingly, it is not mentioned in many books. The method then adapts easily to
continuous functions, using the concept of ‘modulus of continuity’. Similar steps,
but with some extra work, serve to establish Jackson's theorem.
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APPROXIMATING LIPSCHITZ AND CONTINUOUS FUNCTIONS 275

A final twist is that we can apply Jackson's theorem to deduce
estimations of the rate of convergence of actual Fourier series, showing that
for Lipschitz functions it is similar to the rate for the Fejér kernel. This also
would seem to be not very well known.

The modulus of continuity
This notion will enable us to adapt the results for Lipschitz functions to

the class of all continuous functions.
The modulus of continuity of a function  on an interval  is the function

 defined for  by
f I

ωf (δ) δ > 0

ωf (δ) = sup {|f (x2) − f (x1)| : x1, x2 ∈ I and |x2 − x1| ≤ δ} .
Uniform continuity of  on  equates to the statement that  as

. Clearly, if , then . If ,
then . As an example, if , where ,
then one can show that .

f I ωf (δ) → 0
δ → 0+ Lip (f ) = M ωf (δ) ≤ Mδ F (t) = f (cos t)

ωF (δ) ≤ ωf (δ) f (x) = |x|α 0 < α ≤ 1
ωf (δ) = δα

For points further apart, we can estimate  as follows.|f (x2) − f (x1)|

Lemma 1: For all  in , we havex1, x2 I

|f (x2) − f (x1)| ≤ (1
δ

|x2 − x1| + 1) ωf (δ) .

Proof: We may assume that . Let , where  is
an integer and , and let  for each . Then

 for , and .
So . The statement follows.

x2 > x1 x2 − x1 = (k + θ) δ k
0 ≤ θ < 1 yr = x1 + rδ r

|f (yr) − f (yr − 1)| ≤ ωf (δ) 1 ≤ r ≤ k |f (x2) − f (yk)| ≤ ωf (δ)
|f (x2) − f (x1)| ≤ (k + 1) ωf (δ)

The Dirichlet kernel and generalisations
We need some basic notions from Fourier analysis; details can be seen

in many books. For any integrable -periodic function, the Fourier
coefficients are 

2π

an (f ) =
1
π ∫

 π

−π
f (t) cos nt dt,  bn (f ) =

1
π ∫

 π

−π
f (t) sin nt dt.

We define the function  (or ) bySn (f ) Snf

(Snf ) (x) = 1
2a0 (f ) + ∑

n

k = 1

(ak (f ) cos kx + bk (f ) sin kx) . (1)

This is the  partial sum of the Fourier series for . Clearly  is a linear
operator mapping  to , with  for : in other words, it is
a projection onto .

n th f Sn
C2π Tn Sn (f ) = f f ∈ Tn

Tn
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276 THE MATHEMATICAL GAZETTE

Substituting for  and , we see thatan (f ) bn (f )

(Snf )(x) =
1

2π ∫
 π

−π
f (t)dt +

1
π ∑

n

k =1
∫

 π

−π
f (t)(coskx coskt + sinkx sin kt)dt

=
1

2π ∫
 π

−π
f (t)Dn (x − t)dt, (2)

where  is the Dirichlet kernelDn

Dn (t) = 1
2 + ∑

n

k = 1

cos kt. (3)

Note that . From (3) it is clear that . Using
the identity , we find that for

,

Dn (−t) = Dn (t) 1
π ∫

 π
−π Dn (t) = 1

sin (k + 1
2) t − sin (k − 1

2) t = 2 cos kt sin 1
2t

t ≠ 2kπ

Dn =
sin (n + 1

2) t
2 sin 1

2t
. (4)

Identity (2) says that , where the convolution  is
defined for -periodic functions by

Sn (f ) = f ∗ Dn f ∗ g
2π

(f ∗ g) (x) =
1
π ∫

 π

−π
f (t) g (x − t) dt.

By substituting  and equating the integrals on  and
, we see that  for -periodic functions, so we

have equally

x − t = u [−π, x − π]
[π, x + π] f ∗ g = g ∗ f 2π

(Snf ) (x) = (D ∗ f ) (x) =
1
π ∫

 π

−π
f (x − t) Dn (t) dt. (5)

From now on we will use the notation  rather than .Dn ∗ f Sn (f )

We now describe a weighted version of this construction. Given non-
negative numbers , letρk,n

Rn (t) = 1
2 + ∑

n

k = 1

ρk,n cos kt. (6)

In the same way as for , we haveDn

(R ∗ f ) = 1
2a0 (f ) + ∑

n

k = 1

ρk,n (ak (f ) cos kx + bk (f ) sin kx) . (7)

In general, these expressions are no longer partial sums of a series, and
 does not equal  for : for example, if , then

. Because of the constant term , we still have
Rn ∗ f f f ∈ Tn f (x) = cos kx
(Rn ∗ f ) (x) = ρk,n cos kx 1

2

1
π ∫

 π

−π
Rn (t) dt = 1, (8)

and hence for all ,x
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(Rn ∗ f ) (x) − f (x) =
1
π ∫

 π

−π
[f (x − t) − f (x)] Rn (t) dt. (9)

This identity will be the starting point for all our approximation theorems.
Note also that if  for all , then (8) implies that
for all .

Rn (t) ≥ 0 t �Rn ∗ f � ≤ �f �
f ∈ C2π

The Fejér operator
An important special case of the above is the Fejér kernel  defined

for  by
Kn (t)

n ≥ 1

Kn =
1
n

(D0 + D1 +  …  + Dn − 1)
(also ). This equates to taking  in (6). Of course,
this operator actually maps into . Using (4) and the identity 

K0 = D0 = 1
2 ρk,n = 1 − k

n
Tn − 1

sin2 1
2 (k + 1) t − sin2 1

2kt = sin (k + 1
2) t sin 1

2t,
one can show that

Kn (t) =
sin2 1

2nt
2n sin2 1

2t
. (10)

for . Also , so  for all . This positivity
allows some estimations that do not work for . It has been gained at the
cost of not preserving elements of .

t ≠ 2kπ Kn (0) = 1
2n Kn (t) ≥ 0 t

Dn
Tn − 1

We now estimate , first for Lipschitz functions. We apply
formula (9), with . If , then . Since

, we have

�(Kn ∗ f ) − f �
Rn = Kn Lip(f ) = M |f (x − t) − f (x)| ≤ M | t |

Kn (t) ≥ 0

�(Kn ∗ f ) − f � ≤
M
π ∫

 π

−π
|t| Kn (t) dt.

So we need an estimation of this integral. We shall derive one from an
estimate of .∫

π
0 tDn (t) dt

Lemma 2: For each ,n ≥ 1

∫
 π

0
tDn (t) dt ≤

1
n

. (11)

Proof: Integrating by parts, we find

∫
 π

0
t cos kt dt =

⎧

⎩
⎨
⎪
⎪

(12)
− 2

k2 for k odd,

0 for k even.

So, using (3) and picking out the odd terms, we have

∫
 π

0
tD2n − 1 (t) dt = ∫

 π

0
tD2n (t) dt =

π2

4
− ∑

n

k = 1

2
(2k − 1)2

.
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Denote these integrals by . Since Jn ∑
∞

k = 1

2
(2k − 1)2

=
π2

4
,

Jn = ∑
∞

k = n + 1

2
(2k − 1)2

.

It is easily checked that

2
(2k − 1)2

≤
1

2k − 2
−

1
2k

,

so by cancellation . The statement (both for  even and  odd)
follows.

Jn ≤ 1
2n n n

Conversely, it is clear that , so that .

Recall that  has positive and negative values: this is not an estimation

of .

Jn ≥
1

2n + 1 ∫
 π

0
tDn(t)dt ≥

1
n + 2

Dn (t)

∫
 π

0
t |Dn (t)| dt

Write  for the harmonic sum .  Of course, .Hn ∑
n

r =1

1
r

logn < Hn < logn + 1

Lemma 3: For all ,n ≥ 1

∫
 π

−π
|t| Kn (t) dt ≤

2Ln

n
, (13)

where

Ln = Hn − 1 +
π2

4
. (14)

Proof: This follows at once from (11) and .Kn = 1
n (1

2 + D1 +  …  Dn − 1)

So we have completed the proof of the following estimation for Lipschitz
functions:
Theorem 2: If  and , thenf ∈ C2π Lip (f ) = M

�(Kn ∗ f ) − f � < 2M
Ln

nπ
. (15)

Very few books that I have seen include an explicit statement of
Theorem 2. One that does is [4, p. 49], where it is attributed to Bernstein.

The same reasoning serves to show that the estimate (15) is essentially
optimal:
Example 1. Let  on . Then , and by (9) again,f (x) = |x| [π, −π] Lip (f ) = 1

(Kn ∗ f ) (0) − f (0) =
1
π ∫

 π

−π
|t| Kn (t)  dt.
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By the remark following Lemma 2, with the term  separated out,D0 = 1
2

∫
 π

0
tKn (t) >

1
n (π2

4
+

1
3

+  …  +
1

n + 1) >
Hn

n
,

hence .(Kn ∗ f ) (0) − f (0) >
2Hn

nπ
With minimal further work, the notion of modulus of continuity enables

us to adapt the reasoning to continuous functions.

Theorem 3: For all , with  as in (14), we havef ∈ C2π Ln

�(Kn ∗ f ) − f � ≤ 3ωf ( Ln

nπ) . (16)

Proof. Again we apply (9) and (13), using Lemma 1 to estimate
. For any ,|f (x − t) − f (x)| δ > 0

|(Kn ∗ f )(x) − f (x)| ≤
1
π

ωf (δ) ∫
 π

−π ( |t|
δ

+ 1)Kn(t)dt ≤ ωf (δ)( 2Ln

nπδ
+ 1).

Taking , we obtain (16).δ = Ln / (nπ)

This implies uniform convergence of  to , since
as .

Kn ∗ f f ωf (Ln /nπ) → 0
n → ∞

Other choices of  deliver variants of (16). For example, the choice
 gives

δ
δ = 1

n

�(Kn ∗ f ) − f � ≤ ωf (1
n) (2Ln

π
+ 1) .

In some cases this gives a stronger bound than (16). However, it does not
imply uniform convergence, because there are continuous functions for
which  does not tend to 0.Lnωf (1

n)

Note: The more usual proof of uniform convergence for the Fejér operator,
seen in many books, separates the interval  and uses (10). With the
notion of  incorporated, the method leads to an estimate of the
following type, clearly weaker than (16):

[−δ, δ]
ωf (δ)

�(Kn ∗ f ) − f � ≤ ωf ( 1
n1/3) +

8
n1/3 �f � .

Jackson's theorem
We now present Korovkin's method for Jackson's theorem, roughly

following [5, p. 17-24]. Let  be as in (6), with  to be chosen. We
start with some Lemmas.

Rn (t) ρk,n

Lemma 4: We have  for .t2 ≤
π2

2
(1 − cos t) |t| ≤ π
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Proof: It is clearly sufficient to prove this for . By concavity of
the sine function,  for , hence  for

. So

0 ≤ t ≤ π
sin t ≥ 2

πt 0 ≤ t ≤ π
2 t ≤ π sin 1

2t
0 ≤ t ≤ π

t2 ≤ π2 sin2 1
2t = 1

2π2 (1 − cos t) .

Lemma 5: If  for all , thenRn (t) ≥ 0 t
1
π ∫

 π

−π
|t| Rn (t) dt ≤

π
2

1 − ρ1,n.

Proof: By the Cauchy-Schwarz inequality for integrals, with (8), we have

1
π ∫

 π

−π
|t| Rn (t) dt ≤ ( 1

π ∫
 π

−π
t2Rn (t) dt)1/2 ( 1

π ∫
 π

−π
Rn (t) dt)1/2

= ( 1
π ∫

 π

−π
t2Rn (t) dt)1/2

.

Recall that  and  for  and
. By this, (8) and Lemma 4,

∫
 π
−π cos2 t dt = π ∫

 π
−π cos t cos kt dt = 0 k > 1

k = 0

1
π ∫

 π

−π
t2Rn (t) dt ≤

π
2 ∫

 π

−π
(1 − cos t) Rn (t) dt

=
π2

2
−

π
4 ∫

 π

−π
cos t dt −

π
2 ∑

n

k = 1
∫

 π

−π
ρk,n cos t cos ktdt

=
π2

2
(1 − ρ1,n) .

The challenge is to choose the  in a way that makes  non-
negative. One way to ensure this is as follows. For any real  ,

ρk,n Rn (t)
cr (0 ≤ r ≤ n)

(∑n

r = 0

cre
irt) (∑n

r = 0

cre
−irt) ≥ 0.

This equates to , where  and∑
n

k = 0

ρk,n cos kt ρ0,n = ∑
n

r = 0
c2

r

ρk,n = 2 ∑
n − k

r = 0

crcr + k (k ≥ 1) .

We require , hence . We will describe Korovkin's

ingenious choice of .

ρ0,n = 1
2 ∑

n

r = 0
c2

r = 1
2

cr

We note in passing that the choice  for all , with ,

gives , the Fejér kernel .

cr = c r (n + 1)c2 = 1
2

ρk,n = 1 −
k

n + 1
Kn + 1
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Lemma 6: Write . Let  for ,

with  chosen so that . Then .

π
n + 2

= θn cr = c sin (r + 1) θn 0 ≤ r ≤ n

c ∑
n

r = 0
c2

r = 1
2 ρ1,n = cos θn

Proof: Note that . Write  and

, so that  and . Since , we

have also . Also, substituting  for  and adding a zero

term , we have . So

ρ1,n = 2 ∑
n − 1

r = 0
crcr + 1 dr = sin (r + 1) θn

S = ∑
n − 1

r = 0
drdr + 1 cr = cdr ρ1,n = 2c2S dn + 1 = 0

S = ∑
n

r = 0
drdr + 1 s r + 1

d−1d0 S = ∑
n

s = 0
ds − 1ds

2S = ∑
n

r = 0

dr (dr − 1 + dr + 1) .

Since , we havesin (a + b) + sin (a − b) = 2 sin a cos b

dr − 1 + dr + 1 = sin rθn + sin (r + 2) θn = 2dr cos θn,
hence

S = cos θn ∑
n

r = 0

d2
r.

Since , we have .∑
n

r = 0
c2

r = c2 ∑
n

r = 0
d2

r = 1
2 ρ1,n = 2c2S = cos θn

We are now ready to state Jackson's theorem for Lipschitz functions.

Theorem 4: With  defined in this way, if  and , thenRn f ∈ C2π Lip (f ) = M

�(Rn ∗ f ) − f � ≤
Mπ2

2n + 4
. (17)

Proof: By (9),

�(Rn ∗ f ) − f � ≤
M
π ∫

 π

−π
|t| Rn (t) dt.

With  defined as in Lemma 6, we havecr

1 − ρ1,n = 1 − cos
π

n + 2
= 2 sin2 π

2n + 4
≤

2π2

(2n + 4)2
. (18)

The statement follows, by Lemma 5.

We have actually established the bound .Mπ sin ( π
2n + 4)
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The version for continuous functions is as follows.

Theorem 5: For all , we havef ∈ C2π

�(Rn ∗ f ) − f � ≤ Cωf ( 1
n + 2) , (19)

where  (so ).C = 1
2π2 + 1 C < 6

Proof: By (9) and Lemma 1, for any ,δ > 0

�(Rn ∗ f ) − f � ≤
ωf (δ)

π ∫
 π

−π ( |t|
δ

+ 1) Rn (t) dt.

By Lemma 5 and (18), we have

�(Rn ∗ f ) − f � ≤ ωf (δ) ( π2

(2n + 4) δ
+ 1) .

Taking , we obtain (19).δ = 1 / (n + 2)

Of course, . As explained in the
Introduction, the estimations in Theorems 4 and 5 translate without change
to the corresponding problem for ordinary polynomials, thereby achieving
our original objective:

dist (f , Tn) ≤ �(Rn ∗ f ) − f �

Theorem 6: If  is Lipschitz on  with , thenf [−1,1] Lip (f ) = M

dist (f , Πn) ≤
Mπ2

2n + 4
. (20)

If  is continuous on , then, with  as in Theorem 5,f [−1, 1] C

dist (f , Πn) ≤ Cωf ( 1
n + 2) .

While Theorem 6 assures us of the existence of a polynomial
approximating to  as stated, of course it does not deliver anything like an
actual expression for it (in contrast to interpolating and Bernstein
polynomials).

f

Do stronger conditions on  imply closer approximation by
polynomials? We show that this is indeed the case, in two stages, both using
Theorem 6.

f

Theorem 7: If  is differentiable and , thenf n ≥ 2

dist (f , Πn) ≤
π2

2n + 4
dist (f ′, Πn − 1) .

Proof: Let . Take  in  with .
Let  be an indefinite integral of : then  and . Then

dist (f ′, Πn − 1) = ρ pn − 1 Πn − 1 �f ′ − pn − 1� = ρ
pn pn − 1 pn ∈ Πn pn′ = pn − 1

https://doi.org/10.1017/mag.2023.58 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.58


APPROXIMATING LIPSCHITZ AND CONTINUOUS FUNCTIONS 283

. So by (20), there exists  satisfyingLip (f − pn) ≤ �f ′ − p′n� = ρ qn ∈ Πn

�f − pn − qn� ≤
ρπ2

2n + 4
.

This proves the result, since .pn + qn ∈ Πn

Theorem 8: If  is differentiable and  (in particular, if
, then

f Lip (f ′) ≤ M2

�f ″� ≤ M2

dist (f , Πn) ≤
M2π4

4 (n + 1) (n + 2)
.

Proof: By (20) again,

dist (f ′, Πn − 1) ≤
M2π2

2n + 2
.

The statement follows, by Theorem 7.

Of course, the reasoning can be repeated for higher derivatives.

The Dirichlet kernel: convergence of ordinary Fourier series
There is no future in trying to copy Theorem 2 for the Dirichlet kernel

because  does not tend to zero as . But instead, we can

deduce convergence results for  from Theorems 4 and 5, as follows. Write

. Then by (5),  for all  in .

Since , we have , so

∫
 π

−π
|tDn (t)| dt n → ∞

Dn

1
π ∫

 π

−π
|Dn (t)| dt = �n �Dn * f � ≤ � �f � f C2π

Rn ∗ f ∈ Tn Dn ∗ (Rn ∗ f ) = Rn ∗ f

�(Dn * f ) − (Rn ∗ f )� ≤ �Dn ∗ (f − Rn ∗ f )� ≤ � �f − (Rn ∗ f )� ,
hence

�(Dn ∗ f ) − f � ≤ �(Dn ∗ f ) − (R n ∗ f )� + �(R n ∗ f ) − f �

≤ (�n + 1) �(R n ∗ f ) − f � .
The estimation of  is quite well known and can be seen in various

books, e.g. [6, p. 212-213]. So we state a version of it here without proof:
�n

Lemma 7: We have

�n ≤
4
π2

Hn + 3.

So we can deduce at once:

Theorem 9: If  and , thenf ∈ C2π Lip (f ) = M

�(Dn ∗ f ) − f � ≤
2M

n + 2
(Hn + π2) . (22)
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In particular,  uniformly on .Dn ∗ f → f �

For all , with  as in Theorem 5, we havef ∈ C2π C

�(Dn ∗ f ) − f � ≤ 4C (Hn

π2
+ 1) ωf ( 1

n + 2) . (23)

Explicit statements of the estimations in Theorem 9 are not easy to find
in the literature. The traditional proof of uniform convergence for Lipschitz
functions uses some form of the Riemann-Lebesgue lemma applied to (4). A
version can be seen in [7, Theorem 2.5]. Careful scrutiny shows that this

method delivers an estimate of the form .�(Dn ∗ f ) − f � ≤
C

n1/3 Lip (f )

Comparing (22) with (15), we see that for Lipschitz functions, the
Dirichlet kernel delivers a rate of convergence similar to the one for the Fejér
kernel. However, in contrast to the Fejér kernel, uniform convergence does
not follow from (23), because  may fail to converge to 0 (note
the subtle difference between (23) and (16)). Indeed, it has been known for a
long time that there are functions  in  for which  does not even
converge pointwise to : see [7, section 2.5] or [8, p. 161-162].

Hnωf (1/ (n + 2))

f C2π Dn ∗ f
f

Example 2: Recall from Example 1 that for , we have

. We show that, despite what we have just been

saying, this is a case where  converges more rapidly than . By
(12) and the original definition (1), we have

f (x) = |x|
�(Kn ∗ f ) − f � >

Hn

nπ
Dn ∗ f Kn ∗ f

(D2n − 1 ∗ f ) (x) = (D2n ∗ f ) (x) =
π
2

−
4
π ∑

n

k = 1

cos (2k − 1) x
(2k − 1)2

.

Since  converges to , we deduce that(Dn ∗ f ) (x) f (x)

(D2n ∗ f ) (x) − f (x) =
4
π ∑

∞

k = n + 1

cos (2k − 1) x
(2k − 1)2

,

so, estimating as in the proof of Lemma 2, we have for all x

|(D2n ∗ f ) (x) − f (x)| ≤
4
π ∑

∞

k = n + 1

1
(2k − 1)2

≤
2
π

Jn ≤
1

nπ
.

Finally, in defence of , it should be mentioned that there are other
respects in which the operator  is both natural and optimal.
First, it can be shown that among all projections of  onto , it has the
distinction of being the one with least norm. Secondly, consider the Hilbert
space , in which the norm is now defined by

Dn
Sn (f ) = Dn ∗ f

C2π Tn

L2 [−π, π]

�f �2 = ( 1
2π ∫

 π

−π
f (x)2 dx)1/2

.

In this space, the functions  and  form an orthogonal basis of .
By standard Hilbert space theory,  is the orthogonal projection onto ,

cos kt sin kt Tn
Sn Tn
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and  is therefore the best approximation to  in  measured by this
norm.

Sn (f ) f Tn
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Farewell to 259

What a strange heading! Is 259 vanishing? Is 259 in any way special? 
Some brief research tells us that  so it is one of the infinitely
many numbers to carry the label of ‘semiprime’. A little bit more digging
produces  so it is also a bearer of the label ‘repdigit’
(in base 6).

259 = 7 × 37

259 = 60 + 61 + 62 + 63

But 259 has extra significance for the MA, as its address for the last
 years has been 259 London Road, Leicester. However the time has

come to move. From now on, the MA address will be:
49 (= 72)

The Mathematical Association.
Charnwood Building, Holywell Park,

Loughborough University Science and Enterprise Park, 
Leicestershire LE11 3AQ
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