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SHIMURA VARIETIES AND THE SELBERG TRACE 
FORMULA 

R. P. LANGLANDS 

This paper is a report on work in progress rather than a description of 
theorems which have attained their final form. The results I shall describe are 
part of an attempt to continue to higher dimensions the study of the relation 
between the Hasse-Weil zeta-functions of Shimura varieties and the Euler 
products associated to automorphic forms, which was initiated by Eichler, and 
extensively developed by Shimura for the varieties of dimension one bearing 
his name. The method used has its origins in an idea of Sato, which was 
exploited by Ihara for the Shimura varieties associated to GL(2). 

To define a Shimura variety 5 one needs an algebraic group G over Q 
together with certain supplementary data [2] ; the set 5(C) of complex points on 
the variety then appears as a double coset space 

(1) 5(C) = G(Q)\G(A)/KODK. 

Here A = R X A ; is the ring of adèles. Kœ is a subgroup of G(R) for which 
G(R)/Kœ is a bounded symmetric domain and K is a compact open subgroup 
of G(Af) which intervenes in the definition of 5. The suggestion of Sato, as 
modified by Ihara, is simple to describe. The Euler products associated to 
automorphic forms are Dirichlet series defined by group theoretical data, the 
traces of the Hecke operators, and if the Sel berg trace formula is used to obtain 
an explicit formula for the coefficients, this formula will involve only the 
internal structure of the group G. On the other hand the zeta-function is defined 
in terms of the number of points of 5 with coefficients from various fields, 
extensions of the residue field K at a prime p of the field over which 5 is defined; 
so these numbers too must be computed in terms of G if a comparison is to be 
made. To find the number of points Nn in 5(KW)» Kn the extension of K of degree n, 
it is in principle sufficient to describe the set S(k), R the algebraic closure of K, 
together with the action of the Frobenius <J>p over K on it, for Nn would be the 
number of fixed points of $$n. In analogy with 5(C) we might expect to describe 
S(k) in terms of double coset spaces. Once armed with explicit expressions for 
the coefficients of the two Dirichlet series, we could set out to prove they are 
equal. 

If we follow this suggestion, we might divide the problem into three parts. 
(a) If a reductive group H over 0 is given, together with an automorphic 

form 7T on it, or rather what has recently been called an automorphic representa-
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tion, as well as a representation r of the associate group LH, then one may 
introduce an L-function L(s, T, r), which is defined as an Euler product. We 
want to show tha t the Hasse-Weil zeta-function of S is equal to a product 

IlL(s - a,T,r)m. 

I t is first necessary to decide which H, T, and r should intervene in this product, 
and with what exponent m and what translation a each L-function should 
appear. Then it is necessary to derive an explicit expression for its coefficients, 
or ra ther those of its logarithm, by means of the trace formula. 

(b) If E is the field over which S is defined, in those cases in which Shimura 's 
conjecture is verified, and if one is content, as seems appropriate for the 
moment , to verify the equality of the factors appearing in the two Euler 
products for almost all p, then for all primes p of E dividing such a p one must 
describe S(k) together with the action of the Frobenius on it. If 5 is not com­
plete, it is also necessary to analyze its s tructure near infinity, but this is a 
complication which it is best to avoid for now. 

(c) The final step is to compare the results obtained from (a) and (b). Here 
the Har ish-Chandra transform on reductive groups over local fields comes into 
play. Since our knowledge of this transform is pre t ty meagre, a real obstacle has 
presented itself. I t does not seem possible to t reat (c), or (a), with any generality 
until it has been removed. 

In [5] I described in conjectural form a solution of (b), indicating that , by 
applying the techniques of modern algebraic geometry, it was possible to verify 
this conjecture in sufficiently many cases to make it worthwhile to carry out 
(a) and (c), which are a mat te r of harmonic analysis rather than of algebraic 
geometry. In this paper, I want to describe the solution of (a) and (c) when G 
is defined by the multiplicative group of a quaternion algebra over a totally 
real field. Here (a) is easy, as is the harmonic analysis required by (c), bu t the 
comparison is difficult enough to be worth describing. I t may also be worth­
while to see the form taken by the solution of (b) described in [5] for some 
specific groups. However, the methods mentioned there only yield a solution to 
(b), which is real rather than conjectural, when the algebra is totally indefinite; 
so t ha t this is the only case a t present in which the method can yield a full 
solution of the problem. 

I observe tha t there are two oversights in [5]. One is mathematical and will 
be rectified below. The other is more regrettable. I t has been pointed out to me 
tha t I might have said more about the origins of the problems posed and that , in 
particular, I might have drawn at tent ion to § 5 of Ihara 's notes [4]. I t would 
be unfortunate if this omission caused any misunderstanding for I am certainly 
much indebted to Ihara 's ideas, but rather through [3] and indirectly [1], than 
through [4]. 

I begin by recapitulating, in as simple a manner as possible, some formal 
aspects of the associate groups. Suppose G is the group over 0 defined by the 
multiplicative group of a quaternion algebra D over F, a totally real field of 
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finite degree over Q. Then G(Q) = Dx and for almost all primes p, 

(2) G(Qp)~n»lpGL(2,F,). 

If F' C Ô is a Galois extension of 0 containing T7 then © ( F ' / Q ) acts on the 

set / of imbeddings of F into Q C C. Set 

^G° = n i € J G L ( 2 , C ) . 

We let ®(F'/Q) act on LG° by 

O" : ( g i ) - > (gc r - l i ) 

and then form the semi-direct product 

LG = LG° X ® ( F V 0 ) . 
LG will be referred to as the associate group. 

Suppose p is a prime a t which (2) is satisfied and G(ZP) C G(QP) corresponds 

to 

lipIP GL(2, Op). 

Op is the ring of integers in F$. Suppose moreover tha t Fr/Qp is unramified. Fix a 
Frobenius element % in ($(Ff/Q). The associate group has been so defined tha t 
the Hecke algebra of G(QP) with respect to G(ZP) is isomorphic to the algebra 
of functions on LG° X $p obtained by taking linear combinations over C of 
restrictions of the characters of finite dimensional complex analytic representa­
tions of LG° X $pZ. Suppose the function <p corresponds to f<p in the Hecke 
algebra. T o each irreducible admissible representat ion wp of G ( O P ) which 
contains the trivial representation of G(ZP) there corresponds a semi-simple 
element g(irp) in LG° X $p which satisfies 

v(g(jp)) = trace irp(fv). 

The elements of I may also be regarded as imbeddings of F into R. Suppose 
J C / is the set of such imbeddings which split D. If K C G (A/) then the 
canonical model of the Shimura var ie ty S = SK corresponding to K is defined 
over the fixed field E of ($(F''/E), consisting of those elements of ®(F'/Q) 
which leave the set / invariant . Suppose r t is the representat ion of LG° obtained 
by projection on the ith factor. We extend the representat ion ® l € J r t to 
LG° X ®(F'/E) by letting a G ®(F'/E) send the vector ®vt to ®îi f f - i , We 
then induce to LG to obtain the representat ion r which will play a role in this 
paper. I t is one of the simplifying features of the groups G we are considering 
tha t the zeta-functions of its Shimura varieties can be expressed entirely in 
terms of L-functions a t tached to automorphic forms on G itself; no auxiliary 
groups H need be introduced. T h e simplification is to some extent spurious. 
I t would not occur if we a t t empted to s tudy the zeta-function of the connected 
components , or even of the par ts irreducible over E. 

T h e zeta-f unction Z(s, SK) is an Euler product 

UpZp(s, SK). 
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with 

ZP{s, SK) = llpip Z$(s, SK), 

where p denotes a prime of E. U w = Tœ ® wf = irœ ® T2 ® irz . . . is an auto-
morphic representation almost all factors of the Euler product L(s, T, r) are 
defined by 

1 
Lp(s, 7T, r) = 

d e t ( i -^ i?H) 
p 

Suppose Z0 is an open subgroup of the centre Z(A) of G (A) containing Z ( R ) 
and with Zo H G (A,) Q K. The representation of G (A) on L 2 (Z 0 G(Q) \G(A) ) 
is a direct sum of irreducible representations. Let II be the set of representations 
occurring. If T 6 II then wœ is a representation of 

G(R) ~ ( I I c € , G L ( 2 , R ) ) X ( ] I ^ G ' ( R ) ) 

where G ' (R) is the multiplicative group of the Hamilton quaternion algebra. 
We may therefore write irœ = ® 7rt. If 1 d J we set m{j,) equal to 1 or 0 
according as 7rt is or is not trivial; if 1 £ J then m(wL) is to be — 1 if 7r* is trivial, 
1 if it is the first member of the discrete series, and 0 otherwise. Observe tha t if 
TTI is trivial for one i (z J then it is trivial for all i. Let 

w ( 0 = n t ç 7 m ( 7 r t ) . 

Finally m(ir, K) is the product of m(Trœ) with m(irf, K), the multiplicity with 
which the trivial representation of K occurs in 717; it is 0 for all but finitely 
many w. We shall show tha t if the solution of (b) is granted, then 

(3) Zp(s, SK) = I I *-en Lpys - - , T,rj 

for almost all p. Here q is the number of elements in the set / . 
Let A / be the ring of adèles which are 0 a t infinity and at p. For almost all p, 

K = KVKV with Kp Q G ( A / ) and with Kp equal to G(ZP). We calculate the 
logarithm of the right side of (3) for such p. We write 717 = T/ ® 717 and let 
m{irf

v, Kv) be the multiplicity with which the trivial representation of Kp 

occurs in irf
p. The integer m(j, K) is 0 unless irp contains the trivial representa­

tion of Kp, when it equals m(7T00)w(7r/, Kp). There is a smooth function fœ, 
with support Avhich is compact modulo Z ( R ) , so tha t if irœ is trivial on Z ( R ) 
and 

7Tco(/oo) = I f00(g) 0̂0 (g)dg 
J Z(K) \G(R) 

then 
m(7rœ) = trace T T ^ / J . 

Otherwise m(irœ) is 0. If fp is the characteristic function of Kp divided by its 
measure then 
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nt(w/,Kp) = trace T T / ( / P ) . 

If TP contains the trivial representation of Kp then 

l o g i J s - f , 7T, r ) = X ~~^spnQ/2 trace r(g(7rp))re. 

According to our introductory remarks there is for each n an element j v
{ n ) of the 

Hecke algebra such tha t 

pnq/2 trace r(g(*„))» = trace *,(/,<*>)• 

If 7TP does not contain the trivial representation of Kp the right hand side is 0. 

T h u s the coefficient of l/npns in 

X) 7T W(7r, X ) 10g L J 5 - - , 7T, r I 

is 

(4) E .en trace *(/<">) 

if 

i (w) te) = /<"> teoo, £p, &) = fm(gjf* (gp)fpw (&) 
f o r g Ç G(A). 

T h e Sel berg trace formula immediately yields a formula for (4). Exploiting 
our knowledge of the harmonic analysis on G(R) we obtain the sum over 
conjugacy classes {7} in G(Q) P> Z 0 \ G ( Q ) which are elliptic a t infinity of the 
product of 

(z\ (meas Z (R) \Zo ) (meas Z 0GT (Q)\G 7 (A)) 
( j m e a s Z ( R ) \ G T

/ ( R ) 

and 

(6) if fig-'ygw} Ly) f fP
M(g-\g)dg\ 

Gy is the centralizer of 7 and Gy
f is the twisted form of G7 over R for which 

Z ( R ) \ G 7
/ ( R ) is compact . €(7) is 1 if 7 is not central, otherwise it is ( — l)q if q 

is the number of elements in / . T h e impor tan t term in (5) and (6) is the orbital 
integral of fp

(n), which defines its Har ish-Chandra transform. 
The restriction of the representation r to LG° X $r

z decomposes into a direct 
sum indexed by the double cosets 

®(F'/E)\®(F'/Q)/*P
Z. 

The function fv
(n) is then also a sum over these double cosets, which may be 

identified with the primes p of E dividing p; so we write 
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Moreover 

log Zp(s,SK) = T,*\plogZt(s,SK) 

if Zp(s, SK) is the zeta-function of SK over the residue field K of E a t p. Wha t we 
want to show is tha t the result of substituting j ^ n ) for fp

(fi) in the expression 
obtained for (3) is equal to log Z$(s, SK). 

According to the conjectural solution of (b) described in [5] the set SK(k) can 
be decomposed into a disjoint union of sets, each of which can be represented 
in the form 

YK = H(Q)\G(A/) X X/K". 

The groups 77 appearing here are not those mentioned earlier. The parameter 
set for these double cosets is a little difficult to describe, as is the s tructure of X. 
However, Kp acts on G ( A / ) and hence on G ( A / ) X X to the right. Moreover 77 
is a group over Q; H (A/) comes provided with an injection into G ( A / ) ; and 
H(QP) acts on X . This yields an action of 77(0) on G ( A / ) X X. Each YK is 
left invariant by the Frobenius, whose action is obtained from a map $ : X —•> X 
which commutes with the action of H(QP). 

The coefficient of \/npns in log Z$(s, SK) is the number of fixed points of <V 
on SK(K), which we can represent as the sum over F of the number Nn(YK) of 
fixed points in YK. I t is convenient to express the formula for Nn(YK) in terms 
of a group G(QP), containing H(QP), which also acts on X. 

If n > 0 and x Ç X set 

Tx
n H ^ G(Qp)\*

nx = gx} 

and let bx
n be the characteristic function of Tx

n. If {xL) is a set of representatives 
for the orbits of G(QP) in X set 

<pM(y) = Z - m - ^ / x- &*r(h-\h)dh. 
measGc J Gy(QP)\G(QP) 

Here G, is the stabilizer of xL in G(QP). I hasten to reassure the reader tha t the 
s t ructure of X is such tha t the right hand side makes sense. A formal set-
theoretic argument yields Nn(YK) as a sum over conjugacy classes in 
77(0) H Zo\77(0) , for 77 will contain Z, of 

(7) ( m ( Z 0 n c 7 ( A / ) ) ) ( m Z o 7 7 7 ( 0 ) \ 7 7 7 ( A / ) ) ^ ) ( 7 ) f fv(g~\g)dg. 

Moreover every conjugacy class {7} in 77(0) will determine a conjugacy class 
{7r} in G ( 0 ) . In G ( A / ) , 7 and 7 ' will be conjugate, 7 ' = ^ - 1 7 ^ Gv ( A / ) will be 
h~1Hy(Af

p)h, and the group 77T will be a twisted form of Gy> over 0 - Comparing 
(7) with (5) and (6), we see that , if the properties of Tamagawa numbers are 
taken into account, the problem is reduced to a comparison of the functions 
<p(n) (7) with the orbital integrals. 
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The orbital integrals can without much difficulty be computed explicitly for 
the groups under consideration; so the burden of the problem is to compute the 
lunctions <£(W)(Y)- The sets YK are indexed by equivalence classes of pairs of 
Frobenius type [5]. To define these one fixes an imbedding of 0 m Op which 
defines the prime p. The orbits of $p in / correspond to primes q of F dividing p. 
let bq be the number of points in the orbit q which lie in / . Working out the 
definition of [5] one finds that there is one YK corresponding to each triple 
consisting of a totally imaginary quadratic extension F' of F\ a non-empty 
subset S of the primes dividing p at which F' splits, which is such that bq is even 
if Ff splits at q and q is not in S; and, for each q £ S, a pair of non-negative 
integers feq, kq with kq ^ kq, kq + kq = bq. There is also one additional YK. 
To be more precise, kq, kq are associated to the two primes of F' dividing q, and 
two triples which can be obtained from each other by an automorphism over F 
are not to be distinguished. For the YK defined by a triple H is the group 
associated to the multiplicative group of Fr ; for the remaining YK it is the 
group associated to the multiplicative group of a quaternion algebra over F, 
ramified everywhere at infinity, at the primes at which D ramifies, and at the 
primes for which bq is odd, but nowhere else. 

The space X is a product 

X = I\Xq 

and so is the auxiliary group G(QP) 

G(QP) = IlGq(Qp). 

Fix a point i in the orbit q; then Xq consists of sequences {Lt\i £ Z} of lattices 
in the two dimensional space over the maximal unramified extension Qp

nn of OP 
with the following properties: 

(i) L,_! = Lt if &-h (Z J 

(ii) Lt^L^^pLt if «^-'t G / 

(iii) If m = mq is the number of elements in the orbit and a is the Frobenius 
on 0pun then dLj+m = a~mLj. Here d is a two-by-two matrix. For a YK 

parametrized by a triple, 

if q G 5 and 

__ [ > / • o 1 
rf"L o p^\ 

if q (? S but F' splits at q. In the first case C7q(Qp) is the group of diagonal 
matrices over Fq. In the second it is GL(2, Fq).U F' does not split at q or if we 
are dealing with the extra YK then d is some fixed element of GL(2, Fq) whose 
order is bq. The group Gq(Qp) is GL(2, Fq) or the multiplicative group of a 
quaternion algebra over Fq according as bq is even or odd. There is one 
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condition omit ted from the description of X in [5]. If x in X corresponds to 

g G G(î) then it must also be demanded tha t 

| X ( ^ ) | = |£<x̂ > ||x(g)| 

if X is a rational character of G over f. I also observe tha t all references to 
projective limits over K should be expunged from [5]. 

Each point of Xq defines an infinite path in the tree associated by Bruhat-
Ti t s to the group GL(2f Qp

un) and the computat ion of the functions <p{n) (y) 
becomes thereby a combinatorial exercise, not however a completely trivial 
one. 

| M y first a t t empts to master the techniques described above were presented 
in a report in the Antwerp Summer School on Modular Functions (Springer 
Lecture Notes 349). T h a t report is complicated, part ly because I was dealing 
with unfamiliar material, and part ly because a great deal of extra discussion is 
required in order to deal with the cusps or with the ramified primes. A case, 
perhaps the only one, which is t ransparent in its representation-theoretic or 
combinatorial aspects is tha t of the present paper when F — Q. I t is to be 
hoped tha t a suitable occasion will be found to discuss it. My ambition now is 
to publish in this Journal , the Editors willing, a detailed t rea tment of the 
results for an arbi t rary totally real field. Several papers will be required. The 
central one, On the zeta-functions of some simple Shimura varieties, will t reat the 
combinatorics and representation theory carefully. However, since I want to 
show a t the same time how it happens tha t L-functions associated to groups 
other than G itself must be used to obtain the zeta-function of SK, this paper 
has to be preceded by another, written jointly with J . -P. Labesse and entit led 
L-indistinguishability for SL(2). If we are ever to be able to treat zeta-functions 
for general Shimura varieties, the notion of L-indistinguishability will have to 
be defined for all reductive groups. Some simple definitions and lemmas to this 
purpose, employed even in the s tudy of SL(2), will be collected in Stable 
Conjugacy: Definitions and Lemmas. Finally one paper will have to be devoted 
to a detailed s ta tement of the conjectures of [5], and perhaps another to 
establishing them in the cases accessible to present techniques. 
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