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ON INSENSITIVITY OF THE CHI-SQUARE MODEL TEST TO NONLINEAR
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In this paper, we show that for some structural equation models (SEM), the classical chi-square
goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we
consider a regression model with latent variables and interactions terms. Not only the model test has
zero power against that type of misspecifications, but even the theoretical (chi-square) distribution of the
test is not distorted when severe interaction term misspecification is present in the postulated model. We
explain this phenomenon by exploiting results on asymptotic robustness in structural equation models.
The importance of this paper is to warn against the conclusion that if a proposed linear model fits the data
well according to the chi-quare goodness-of-fit test, then the underlying model is linear indeed; it will be
shown that the underlying model may, in fact, be severely nonlinear. In addition, the present paper shows
that such insensitivity to nonlinear terms is only a particular instance of a more general problem, namely,
the incapacity of the classical chi-square goodness-of-fit test to detect deviations from zero correlation
among exogenous regressors (either being them observable, or latent) when the structural part of the
model is just saturated.

Key words: structural equation modeling, testing model fit, nonlinear relations, interaction terms, equiv-
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1. Introduction

In this paper, we deal with nonlinear relationship between the latent variables. Such nonlin-
earity may come from the existence of, for instance, interaction or quadratic factors. It will be
shown that standard chi-square goodness-of-fit tests are not always capable of indicating that the
underlying model is a nonlinear model. An explanation for this phenomenon will be given. The
theory of asymptotic robustness (AR) (as described in Satorra, 2002, and references therein) will
be used to explain this insensitivity of the model test to nonlinear terms misspecification. A key
assumption for applying the theory of AR is that the variance matrix of non-normal constituents
of the model is unrestricted by the analyzed model. Even though this condition does not hold for
the model under investigation, a reparameterization will be given under which conditions for AR
are fulfilled and consequently asymptotic robustness does hold for the considered model.

The structure of the paper is as follows. Next section illustrates the issue to be discussed
using a small Monte Carlo study. A variant of the Kenny–Judd’s (1984) model will be used in the
Monte Carlo set-up. It will be shown that in a factor model in which one of the factors is a product
of two other factors, the normal theory (NT) chi-square goodness-of-fit test is still asymptotically
chi-square distributed despite the interaction term and non-normality of the observed variables.
In Section 3, we recast a general model set-up for which the Kenny–Judd (1984) model is a
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special case, and we develop conditions under which results of AR apply in that general model
set-up. In Section 4, we show that interaction-term misspecification is just a particular instance
of a more general type of misspecification that is undetected by the chi-square model test when
certain conditions of the model apply. Finally, Section 5 concludes extending the issues discussed
to more general model contexts and statistics, comments on alternative approaches that can be
used to take care of nonlinear terms in the model, and proposes a decomposition of the degrees
of freedom of the model test, among other final issues.

2. Monte Carlo Evidence

In this section, a small Monte Carlo study will be used to highlight the issue to be discussed
in the paper.

Consider a population for which the following regression equation holds

η = β̄0 + β̄1ξ1 + β̄2ξ2 + β̄12ξ1ξ2 + ζ, (1)

where η is a latent dependent variable, ξ1 and ξ2 are latent regressors, β̄12ξ1ξ2 is an interaction
term, and ζ is the disturbance term of the regression equation. The β̄’s are parameters with
specific values, and ξ1, ξ2 and ζ have a trivariate joint distribution. Let us assume that ζ is
independent of the ξ ’s.

Consider also observable indicators for the latent dependent variable η and the latent re-
gressors ξ1 and ξ2, with each factor having three indicators; so, in addition to the regression
equation (1), the following measurement equations are specified

yj = ᾱyj + λ̄yj η + εj , j = 1,2,3, (2)

xj = ᾱxj + λ̄xj ξ1 + δj , j = 1,2,3, (3)

xj = ᾱxj + λ̄xj ξ2 + δj , j = 4,5,6, (4)

where εj ’s and δj ’s are measurement errors. Assume the εj ’s and δj ’s are mutually independent,
and independent also of η, ξ1, ξ2 and ζ . The ᾱ’s and λ̄’s are parameters with specific values. For
the moment, no assumption is made about the statistical distribution of the random variables in
the model except for the described independence among sets of variables.

In the last decades, a simple version of model (1) to (4) has been studied extensively, in
particular after the seminal paper by Kenny and Judd (1984), and the seminal discussion of Kenny
and Judd’s model by Jöreskog and Yang (1996). In our paper, we extended their version into a
model with three indicators for either the latent predictors and the latent dependent variable.

In the Monte Carlo study considered here, a model M0 is specified where instead of the
nonlinear equation (1), we specify the linear equation

M0 : η = β0 + β1ξ1 + β2ξ2 + ζ, (5)

with the β’s being now the parameters to be estimated. We also consider (2) to (4) with the ᾱ’s
and λ̄’s substituted by free parameters to be estimated, α’s and λ’s, respectively. For purposes
of model identification, for η and each ξ one of the λ’s is set to 1. Model M0 specifies as
unrestricted parameters the variances and covariances corresponding to random constituents of
the model (i.e., the variances and covariances of the ξ ’s, as well as the variances of ζ and of
the δ’s and ε’s). To make the specification of the model more complete, we assume that M0
specifies normality for the distribution of the vector of observed variables (this to be called the
NT assumption).
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Note that the specification M0 ignores the interaction term β̄12ξ1ξ2, whatever the magnitude
of β̄12, as well as the non-normality of the distribution of y induced by the product term ξ1ξ2 of
the data generating process of (1).

The basic question we investigate in this paper is the following: when analyzing M0 using
data that comes from (1) to (4) with β̄12 �= 0, do we get any indication of misspecification of
the model? Note that such an analysis can be done by the regular NT analysis since normality
of observable variables are assumed in M0. More specifically, we ask ourselves whether the
NT chi-square model test of M0, i.e., the likelihood ratio test (LRT) of M0 against a model
that sets the mean vector and covariance matrix unconstrained, has the capacity to detect the
presence of the interaction term β̄12ξ1ξ2. This is of practical importance because if there is no
such an indication a researcher may tend to adopt the incorrect conclusion that there is just a
linear relationship between the variables, and conclude that M0 is the true model.

To make the investigation more concrete, consider the model equations (1) to (4) with the
structural parameters set to the same values as in Jöreskog and Yang (1996); that is, β̄0 = 1,
β̄1 = 0.2, β̄2 = 0.4, β̄12 = 0.7, φ̄11 = 0.49, φ̄22 = 0.64, φ̄12 = 0.2352 and ψ̄ = 0.2, where we
used the notation ψ̄ = var(ζ ) and φ̄ij = cov(ξi, ξj ) (i, j = 1,2). Note that in the population con-
sidered here the interaction effect is substantial. A measure of the size of this effect is the pro-
portion of variance of the dependent variable, η, that is explained by this interaction. Under the
normality assumption for the factors, this relative interaction effect is β̄2

12(φ̄11φ̄22 + φ̄2
12)/var(η),

where var(η) = β̄2
1 φ̄11 + β̄2

2 φ̄22 + 2β̄1β̄2φ̄12 + β̄2
12(φ̄11φ̄22 + φ̄2

12) + ψ̄ , which equals 0.3345,
while the squared multiple regression coefficient is 0.6299; so more than 33% of the variance
of the dependent factor is explained by the interaction factor. In the well-known study of Marsh,
Wen and Hau (2004) the relative interaction effect is 0.0436 and the squared multiple regression
is 0.4596, that is, an interaction effect much less substantial than in our population. The para-
meters of the measurement part are differently defined for our population as is done in Jöreskog
and Yang (1996). Our model has three indicators for each factor; the α’s are set to zero; the three
factor loadings of the Y variables are set to 0.8, and of the X variables are set to 1, 0.8, and 0.6.
The error variances corresponding to the Y variables are all equal to 0.36; the error variances for
the first three X variables are 0.51, 0.64, and 0.64, and for the other three X variables are 0.36,
0.51, and 0.51.

The Monte Carlo illustration considers replicating 1000 times independent and identically
distributed (iid) sampling from this population, samples of size n = 500.1

For each of the 1000 replications, we computed the corresponding value of the chi-square
model test (the LRT). This produces 1000 replicates of the LRT which distribution can be in-
spected. Simulations are carried out under 5 different data generating processes (DGP) that differ
by the distribution of the ξ ’s: DGP1 to DGP4 set ξ1 and ξ2 to be chi-square distributed with 1,
2, 5, and 10 degrees of freedom, respectively, centered to have zero mean; DGP5 sets the ξ ’s to
be normally distributed. In all the cases, the ζ and the ε’s are iid, sampled from a normal distri-
bution. So DGP1 to DGP4 do have skewed latent variables (DGP1 is the most skewed), while
DGP5 has normally distributed ξ ’s.2

Regarding the skewness and kurtosis of the simulated data, the univariate skewness of the
Y variables for the data generating process DGP5 (the case where ξ1 and ξ2 are normally dis-
tributed) was close to 0.40, a value that deviates significantly from 0, its value under normality
(for a sample size n = 500, the standard error of the estimate of skewness was close to 0.11).

1All computations were carried out by MATLAB, version R2008a. MATLAB is a registered trademark of The
MathWorks, Inc. The functions mvnrnd and chi2rnd were used for generating scores according to a normal and a
chi-square distribution, respectively. The negative of the likelihood function was minimized using the function fminunc
from MATLAB’s ‘Optimization Toolbox’. The ‘qqplot’ was created by using the standard plot function in MATLAB.

2Note that even for DGP5 the distribution of y will deviate from normality due to the interaction term that is present
in (1).
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TABLE 1.
For each of the sampling distributions considered, DGP1 to DGP5, the table reports the mean and variance of the LRT
(df = 32) and the Kolmogorov–Smirnov test (and p-values) for the fit of the LRT to a χ2

32.

DGP
1 2 3 4 5

Mean LRT 32.432 32.403 32.272 31.994 32.386
Variance LRT 68.560 65.890 61.688 62.235 63.253

KS test of fit to a χ2
32

KS test 0.027 0.032 0.037 0.024 0.037
p-value 0.463 0.224 0.130 0.585 0.121

Mardia’s multivariate test for skewness (see Mardia, 1970, 1974) for the 9 variables computed
for each sample gives a mean value over the 1000 replications of 3.28 (the mean of the p-values
is 0.0001, over the 1000 replications). Thus, in the case of DGP5, a normality test based on
skewness would reject the normality assumption. Since DGP5 is the case closest to normality
of the ones considered, we conclude that standard skewness-based test of normality applied to
sample data would clearly reject the normality assumption in all the data generating processes
considered. We should report, however, that a test of normality based on kurtosis would not lead
to rejection of the normality assumption in the case of DGP5, but it would reject the normality
assumption in all other data generating processes, DGP1 to DGP4. For the DGP5, over the 1000
replications, the mean of the univariate kurtosis of the Y variables was 3.8 and of the Mardia’s
multivariate kurtosis was 100.86, with a mean of the p-value of 0.31 (note that the expected value
under normality of Mardia’s multivariate kurtosis is p(p + 2) = 99). Thus, for all the data gen-
erating processes considered (DGP1 to DGP5), standard test of normality applied to sample data
would reject the NT assumption. Samples arising from DGP1 are the most extreme regarding
deviation from normality.3

The fit of the Monte Carlo distribution of LRT to a χ2
32 is assessed by a Kolmogorov–

Smirnov tests and a qq-plot. Table 1 reports the mean and variance of the Monte Carlo distri-
bution of LRT for the different DGPs conditions and the results for the Kolmogorov–Smirnov
test.

From Table 1 we see that, although the model M0 is seriously misspecified (it ignores the
presence of an interaction term of substantial size) and assumes NT when in fact the observable
variables are skewed (a standard normality test would reject the normality assumption), for all
the data conditions, the Monte Carlo distribution of LRT has mean and variance close to what
is expected under a chi-square distribution. For the specified M0, the LRT has 32 degrees of
freedom (df); so, if the distribution of the LRT were chi-square, the mean and variance reported
in Table 1 should be approximately 32 and 64, respectively (i.e., the mean and variance for a χ2

32).
The means and variances reported in the table are very close to those theoretical values. Further,
the qq-plot (see Fig. 1) of the fit of the Monte Carlo distribution of LRT to a χ2

32 in the case
of DGP1 (the case of highest deviation from normality) shows an striking accurate fit to a χ2

32
(points lying close to the diagonal line), that is, misspecification of an interaction term does not
seem to induce any distortion on the distribution of the LRT. From this small Monte Carlo study,
we thus conclude that in all the DGPs conditions considered the LRT has the same distribution
(a χ2

32) as if no misspecification were present in the model and the observable variables were
normally distributed. This is disturbing since we would like the model test to be sensitive to the
severe misspecification of model M0, that ignores an interaction term of substantive size.

3A full table with all univariate and multivariate tests for the skewness and kurtosis of the variables under DGP1 to
DGP5 is available upon request from the first author.
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FIGURE 1.
A qq-plot of the Monte Carlo distribution of LRT versus χ2

32 for DGP1.

This surprising lack of sensitivity of the chi-square model test to a substantial misspecifica-
tion of the model, such as an interaction term of a substantial size, will now be explained using
results of the theory of asymptotic robustness of structural equation models. This will be done in
a general context of structural equation models where the model considered in our Monte Carlo
study is a special case.

3. Models and Assumptions

In this section, we present a general model set-up and analytic conditions under which the
same phenomenon as the one reported in our Monte Carlo study necessarily arises. For that we
will apply results of the theory of asymptotic robustness (AR). For the sake of completeness of
this paper, results of AR to be used in the paper are given in Appendix.

3.1. General Model Set-up

Consider M0 to be the general LISREL model with mean structures (see Jöreskog & Sör-
bom, 1996)

η = α + B0η + Γ ξ + ζ, (6)

y = τy + Λyη + ε, (7)

x = τx + Λxξ + δ, (8)

where α, τy and τx are vectors of constant and intercept terms, and B0, Γ , Λy and Λx are ma-
trices of parameters. In the econometric and SEM terminology, (6) is referred as “simultaneous
equations” or “structural” part of the model, while (7) and (8) are the “measurement” (or factor
analytic) part of the model.
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We assume that B = (Im − B0) is invertible, ε is uncorrelated with η, and δ is uncorrelated
with ξ . Typically, it is assumed that ζ is uncorrelated with ξ , so no new parameter matrix need to
be introduced regarding the covariance matrix Φξζ between ξ and ζ . Unless said otherwise, M0

assumes that Φξζ = 0.4 We also assume that ζ , ε and δ have mean zero. The mean of ξ is a vector
of parameters denoted as κ . The variance matrices of ξ , ζ , ε, and δ are denoted as Φξ , Φζ , Φε ,
and Φδ , respectively. Under a specific model M0, the above vectors and matrices of parameters
are expressed as a function of a vector θ of parameters of the model. Define Π = B−1Γ , which
is the matrix of “reduced form” coefficients of the “simultaneous equation”. For the results to be
developed, we require the model M0 to satisfy the following condition below.

Condition U. The matrices Π , Φξ and B−1Φζ B
−T are unrestricted, except for Φξ and Φζ to

be symmetric and positive definite.

The above model M0 can be rewritten in the following vector equation form

z = A0 +
(

ΛyB
−1Γ

Λx

)
(ξ − κ) +

(
ΛyB

−1

0

)
ζ +

(
ε

δ

)
, (9)

where z is the vector z = (y′, x′)′ of observed variables and

A0 =
(

τy + ΛyB
−1α + ΛyB

−1Γ κ

τx + Λxκ

)
.

Associated to M0 there is a specific structure (i.e., vector- and matrix-valued functions of a
parameter θ ) for A0, κ , B , Γ , and the variance matrices Φξ , Φζ , Φε , and Φδ .

Rewrite (9) as

z = A0 +
(

Λy 0
0 Λx

)(
B−1Γ B−1

I 0

)(
ξ − κ

ζ

)
+

(
ε

δ

)
,

so that

z = A0 + A1

(
Π(ξ − κ) + B−1ζ

ξ − κ

)
+

(
ε

δ

)

with

A1 =
(

Λy 0
0 Λx

)
.

Set ξ∗ = Π(ξ − κ)+B−1ζ (= η −B−1α), and consider the alternative factor-analysis represen-
tation

M∗
0 : z = A0 + A1 υ +

(
ε

δ

)
, (10)

where

υ =
(

ξ∗
ξ − κ

)
.

4Below we see that deviations from this assumption are, in fact, untestable within the classical SEM framework,
unless we introduce sufficient restrictions on Γ .
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Letting

Φυ

(= cov(υ)
) =

(
Φ∗

11 Φ∗
12

Φ∗
21 Φ∗

22

)
,

we obtain

Φυ =
(

Π B−1

I 0

)(
Φξ Φξζ

Φζξ Φζ

)(
Π B−1

I 0

)′

=
(

ΠΦξΠ
′ + B−1Φζ B

−T + ΠΦξζ B
−T + B−1ΦζξΠ

′ ΠΦξ + B−1Φζξ

ΦξΠ
′ + Φξζ B

−T Φξ

)
. (11)

We added the parameter matrix Φξζ = cov(ξ, ζ ) to represent the (possible) covariance among ξ

and ζ in the population.5

In M∗
0 we assume that the vector κ , the matrices A0, A1, and the variance matrices of Φξ ,

Φε and Φδ have the same model structure as under M0. We also let the variance matrix Φξ∗ of
ξ∗, and the (m × n) covariance matrix of ξ∗ and ξ , Φξ∗ξ , to be parameter matrices of the model
M∗

0. In parallel to Condition U above, we define

Condition U*. The matrices Φξ , Φξ� and Φξ∗ξ are unrestricted parameters of the model, except
for Φξ , Φξ� to be symmetric and positive definite.

The following Lemma 1 will be needed.

Lemma 1. Consider the matrix Φυ defined in (11). Assume that Φξ is non-singular, then

(i) Conditional to any arbitrary matrix Φξζ , Φυ is unrestricted iff the matrices Π , Φξ and
B−1Φζ B

−T are unrestricted.
(ii) Conditional to any arbitrary matrix Π , Φυ is unrestricted iff the matrices Φξζ , Φξ and

B−1Φζ B
−T are unrestricted.

Proof: Due to the identity, Φ∗
22 is unrestricted iff Φξ is unrestricted. Now, given the expression

of Φ∗
12 in the last equality of (11), it is clear that given Φξζ (idem, given Π ), Φ∗

21 is unrestricted iff
Π (idem Φ∗

21) is unrestricted. Now, given Φξζ , Π and Φξ , Φ∗
11 is (symmetric) and unrestricted

iff B−1Φζ B
−T is (symmetric) unrestricted. �

Two models are equivalent at the moment structure level if they reproduce the same set of
moments matrices. When two models are equivalent, the chi-square model test coincide. So the
distribution of the model test for one model is the same as the distribution of the chi-square
model test of an equivalent model. For a detailed discussion of equivalent models, see Luijben
(1991). In his paper, a sharper definition of equivalent models than in our paper is given. The
reason of this sharper definition is that Luijben is also dealing with non-identified and locally-
identified models. These points are not an issue of our paper. Lemma 2 follows as an immediate
consequence of Lemma 1(i).

Lemma 2. The model M0 under Condition U, and the model M∗
0 under Condition U* are

equivalent at the mean and covariance structure level.

5Note that M0 assumes Φξζ = 0.
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Even though M0 under Condition U implies M∗
0 under Condition U*, the reverse is not

true. In fact, there is a general class of models that is equivalent to the factor analysis model
M∗

0 under Condition U*. By Lemma 1(ii), we see that restricting Π can be interchanged with
allowing free covariances among ξ and ζ , something which is not contemplated within the frame
of the LISREL model M0 specified above.

The models M0 and M∗
0 are said to be equivalent with respect to their covariance matrix

structure, since they parameterize the same set of covariance matrices for z, and therefore they
have the same value of the chi-square goodness-of-fit test statistic. So the distribution of the
model test for M0 is the same as the distribution of the model test of M∗

0.
We will now see that when, in addition to the equivalence at the moment structure level, the

random components υ and (ε′, δ′)′ are independent, further properties for the chi-square model
test arise.

4. Insensitivity of the Model Test

In this section, we will show that, when Condition U holds, the model test for the LISREL
model posited above has a fundamental insensitivity to severe misspecifications of the model, in
particular to nonlinear terms as the one reported in Section 2.

Let r be the number of degrees of freedom associated to the LISREL model M0 above (i.e.,
that is, r is the number of independent moments minus the number of independent parameters).
The following Corollary applies.

Corollary 1. Consider the LISREL model formulation as above. Let T be any of the NT chi-
square model test mentioned above (for a precise definition, see (A.2) of Appendix). Let the
model be identified with r > 0 degrees of freedom. Assume further that

(i) The random vector (ξ ′, ζ ′)′ is independent of (ε′, δ′)′, not only uncorrelated.
(ii) The vector (ε′, δ′)′ is normally distributed.

(iii) Condition U holds.

Then, T
L→ χ2

r as n → ∞.

Proof: It follows by combining Lemma 2 with Theorem A.1 of Appendix. �

This Theorem explains the Monte Carlo results of Section 2. Indeed, for the DGPs being
considered, the presence of the interaction term β̄12ξ1ξ2 is an omitted variable in the structural
part of the model that induces a non-null correlation of ζ with the ξ ’s. Despite that correlation,
however, the model estimated in each replication of the Monte Carlo study is a model M0 with
the conditions of the Corollary 1 being verified, so the NT chi-square test is indeed asymptotically
chi-square distributed. That is, the model test statistic is not only insensitive to the correlation
among ξ and ζ (i.e., there is zero non-centrality shift of the distribution), but also the chi-square
distribution itself does not get distorted. This explains Table 1 and the qq-plot showing a close
fit of the empirical distribution of the LRT to the χ2

32 despite the gross misspecification in the
model.

We should stress the implication of Corollary 1 when Condition U holds: (a) the asymptotic
distribution will be chi-square; (b) the test will have no power, i.e., the non-centrality parameter
for the power of the test (cf., Satorra & Saris, 1985) will be zero, regardless the size of the
coefficients of the nonlinear terms.

The phenomenon of the model test being insensitive to the interaction term is just one ex-
ample of an omitted correlation among regressors and disturbance terms not being detected by
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the model test. In fact, this insensitivity of the model test to fundamental misspecifications arises
when the model ignores variables that can cause spurious correlation among the disturbance
terms of regression equations and exogenous variables (variables whose distribution is not being
explained by the model). In practice, this is a serious limitation of the chi-square goodness-of-fit
test in SEM, when Condition U holds.

Note that Condition U ensures that the structural part of the model is saturated (i.e., we
have a set of unrestricted regression equations). We see that, under Condition U, the degrees of
freedom (df) of the model test do not assess any restriction on the structural part of the model. In
fact, we could express Condition U saying that the number of degrees of freedom associated to
the structural part of the model is just zero. This is made precise in the following lemma.

Lemma 3. Consider a model specification M0 as in (6) to (8). Assume the model is identified
and there are no cross-restrictions among the sets of parameters B , Γ , Φξ , and Φζ with the
other parameter vectors and matrices. Then, Condition U holds iff the model restricted to (6)
(supposing η and ξ observable) has the number of degrees of freedom (df) equal to zero.

Proof: If there are no cross-restrictions as the one mentioned in the conditions of the theorem,
the model is identified and Condition U holds. The model reduced to (6) has necessarily 0 degrees
of freedom (since it is an identified model, df ≥ 0, but df = 0, otherwise some of the matrices
would have an excess of restrictions, so Condition U would not hold). Conversely, it follows
easily that when the model is identified and df = 0 then Condition U is necessarily satisfied. �

When Condition U holds, we will say that the structural part of the model is saturated. Note
that a particular instance where Condition U holds is when B0 = 0, i.e., B = Im with Φζ unre-
stricted and with Γ also fully unrestricted. There are other models for which Condition U holds,
for example, when B0 is lower triangular, Φζ diagonal, and Γ fully unrestricted. In all the cases,
however, we have the situation where the model at the level of the structural equations is just
saturated. Of course, a trivial model where Condition U holds is the case of a regression model
with all the variables observable. Clearly, another way of reading the consequences of Condition
U is that M∗

0 is a factor model with the variance matrix of the common factors unrestricted.
For the sake of simplicity, Corollary 1 has been formulated for the single-group case only,

and with the restriction of the ε’s and δ’s to be normally distributed (see Corollary 1(ii)). Exactly
the same type of results extend in the case of multiple-group models, and also when the ε’s and
δ’s are possibly non-normal, provided their components are independent (not just uncorrelated)
with unrestricted variances. Note that in a multiple group set-up it is essential not to have re-
strictions that may restrict across groups the matrix of variances and covariances of the vector υ ,
even though in each group such a matrix Φυ is left unrestricted (see Satorra, 2002 for details on
AR for multiple group models).

5. Discussion

It has been shown that when using only means and covariances the standard chi-square
goodness-fit-test of SEM can give a good fit of the model despite substantial misspecification
of nonlinear terms in the model. This was illustrated in a small Monte Carlo study by using an
extended version of the well-know Kenny and Judd (1984). The conclusion of our finding is
that if we are concerned with misspecification on nonlinear relationships, e.g., interaction terms
among latent regressors, it is not sufficient to use a test which is based on means and variances
only, such as the LRT. Therefore, it is recommended to use other tests. Additional tests have been
in development during the last decades to assess nonlinear components of the model. Roughly,
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several approaches can be distinguished. In the first approach, products of observed variables are
used as indicators for the interaction factors. This idea is applied in the method suggested by
Kenny and Judd (1984) and after that by Jöreskog and Yang (1996), and many others. In this
approach, the choice of the product indicators is an important issue. We refer to a discussion of
this approach to Marsh et al. (2004).

Another approach of dealing with nonlinear relationships in SEM is to use the maximum
likelihood (ML) approach under the assumption that the observed predictors are normally dis-
tributed. Defining the joint density of the latent and the observed variables is not very difficult;
however, integrating out the latent variables to get the proper likelihood function results in a
rather unattractive multivariate integral. There are several ways to tackle this problem, see Klein
and Moosbrugger (2000), Lee and Zhu (2002), and Klein (2007), to mention just a few publica-
tions. The SEM software Mplus of Muthén and Muthén (1998–2007) has also an option to deal
with these kinds of interaction models under the normality assumption for the regressors.

An alternative method is to use two-stage instrumental variables, a method borrowed from
econometrics. This method was proposed by Bollen and Paxton (1998a, 1998b). An alternative
to the ML approach is based on Bayesian methods, which have a growing interest these days. See
Chap. 4 of the book of Lee (2007) that is devoted to this problem; see also the paper of Arminger
and Muthén (1998). To mention a few other methods, Wall and Amemiya (2003) propose a
two-stage method in which at the first stage the measurement parameters are estimated and the
estimates are used for estimating the factor scores. On the basis of these factor scores, errors are
estimated and then estimation of model parameters is carried out by using higher-order moments
of these errors. Finally, we mention Bauer (2005) where mixture models are applied to obtain
approximations to nonlinear models.

Note that our results apply both to just covariance structures and to the case of mean and
covariance structures where degrees of freedom are gained also throughout restrictions on the
first-order moments. In fact, when the means are included, Condition U remains the same, as
only the conditions on the covariances of the variables play a role in the results discussed in
our paper. This is a consequence of the fact that the results of AR apply without changing the
conditions to the case where the means are restricted (Satorra, 2002). Note that the Monte Carlo
illustration of Section 2 was, in fact, an example where the analysis included restrictions on the
means.

We concentrated on the behavior of the LRT. The same results hold for the asymptotic
distribution-free approach of Browne (1984) or the scaled or adjusted test statistics of Satorra
and Bentler (1994). This is so since, when the LRT is asymptotically chi-squared, the mentioned
chi-square goodness-of-fit are equivalent test statistics (see Satorra, 1989), so any test (whether
the NT, or the asymptotic distribution-free test, or the scaled test statistic) that is based in the
analysis of the means and covariances would suffer of the same insensitivity.

In this paper, we have just considered conditions of the model that make the test insensitive
to model misspecification, such as not accounting for the interaction terms. The key condition
was the structural part of the model to be saturated, that is, Condition U. When Condition U does
not hold, the model test is likely to loose this insensitivity property. An issue for further research
is to explore how much distortion of the chi-square distribution arises under misspecification of
interaction terms (or other forms of nonlinear misspecification) when Condition U does not hold.
Such additional issues, however, would take us beyond the intended scope of the present paper.

We have also seen that the problem with the nonlinear terms is a specific instance of a
more general problem of the model test in SEM, namely the insensitivity of the model test to
correlation among the disturbance terms in the equation and the regressors when Condition U
holds. If we were dealing with regression with observed variables, the number of degrees of
freedom of the model test would just be zero under a standard (“saturated”) regression model. It
is well known, however, that in that instance moment structure analysis (standard OLS analysis)
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is unable to detect omitted variables that cause spurious correlations of disturbance terms and
regressors. Under Condition U, all the “active” degrees of freedom r of the model test correspond
to restrictions on vector/matrices of parameters such as α, τx , τy , B , the Λ’s, the Φε or Φδ ,
none to restrictions of zero correlation among regressors and the disturbance term. By saturating
the structural part of the model, the model test is unaffected by both the non-normality of the
variables and the misspecification on the covariance among regressors and disturbance term. This
is more general than just misspecification of interaction terms, and may have larger implications
for general SEM analysis.

Condition U ensures zero restrictions on the structural part of the model. Given a SEM
model, a distinction could be drawn between the degrees of freedom of the structural part of
the model, say dfs , and the degrees of freedom of the measurement part, say dfm. In particular,
when Condition U holds, the structural part of the model is saturated, so dfs = 0 and the result
of insensitivity of the model test to nonlinear terms in the model applies. Computation of dfs
could be done by evaluating the rank of the Jacobian of the covariance matrix of (η′, ξ ′)′ with
respect to the free parameters in the matrices B , Γ , Φξ , and Φζ . Although, more experience and
research is needed on this issue of a distinction between structural and measurement degrees of
freedom, SEM software could easily provide the dfm and dfs values associated to the chi-square
goodness-of-fit test of the analyzed model.

Appendix

For the sake of completeness, this appendix gives a summary of the theoretical result on
asymptotic robustness (AR) needed for proving Corollary 1 of Section 3. Only asymptotic ro-
bustness results for the test statistics are reviewed, not including results on AR for NT standard
errors. Basically, conditions are stated under which the NT chi-square goodness-of-fit test statis-
tics retain their asymptotic chi-squaredness even when the observable variables deviate severely
from normality. We adhere to the formulation of Satorra (2002) restricted, though, to the single
group case. For further references on AR, see Satorra (2002) and references therein. For a simple
description of AR in SEM, see Satorra (1990).

Consider the data {zi}, where zi is a p × 1 vector of observable variables, i (= 1, . . . , n)

indexes cases, n is the sample size. The subindex i will be suppressed when it is clear from the
context.

Consider the p × p matrix of (uncentered) sample cross-product moments S = 1
n−1 ×∑n

i=1 zizi
′, and let s = vech(S) be the p� × 1 vector of (non-redundant) sample moments, where

p� = pg(pg + 1)/2. Let Σ and σ be the respective probability limits of S and s as n → ∞.
A structural equation model corresponds to a particular moment structure M0 : σ = σ(ϑ), where
σ(·) is continuously differentiable and ϑ is an unconstrained vector of parameters that vary in an
open and compact set Θ ⊂ Rq , q being the dimension of ϑ .

Consider the NT minimum distance (MD) estimator

ϑ̂ = argmin
ϑ∈Θ

{
s − σ(ϑ)

}′
V

{
s − σ(ϑ)

}
, (A.1)

where

V = 1

2
D′(S−1 ⊗ S−1)D.

(D is the so-called “duplication” matrix for which vecS = Ds, where vec is the vectorization
operator.)
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For this NT–MD analysis, the NT chi-square goodness-of-fit test statistic is

T = n
{
s − σ

(
ϑ̂

)}′
V

{
s − σ

(
ϑ̂

)}
. (A.2)

An alternative approach to NT–MD estimation is pseudo-maximum likelihood (PML) where
the function to be minimized is an affine transformation of the log-likelihood function (under
NT). A likelihood ratio test statistic (LRT) for M0 is defined, and it can be shown that it is
asymptotically equivalent to the test statistic of (A.2).

The following theorem gives the results that ensure the robustness of T and of LRT see
Satorra (2002, pp. 306–307) for a more general version of this theorem.

Theorem A.1. Suppose the model M0 with r degrees of freedom. Suppose estimation is carried
out using NT–MD. Consider T of (A.2), and assume

1. z = μ+∑J
j=1 Ajξj , where the μ are vectors, the Aj are matrices, and the ξj are random

vectors with finite variance matrices, Φj = cov(ξj ).
2. μ = μ(ϑ), Aj = Aj(ϑ), Φj = Φj(ϑ), with μ(·), Aj(·) and Φj(·) continuously differen-

tiable vector- and matrix-valued functions.
3. The ξj ’s have finite fourth-order moment and are independent across j .
4. For any j , either:

(a) ξj is normally distributed, or/and
(b) φj = vechΦj is a sub-vector of the parameter vector ϑ .

Then T
L→ χ2

r as n → ∞.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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