

Equal-Sum-Product problem II

Maciej Zakarczemny

Abstract. In this paper, we present the results related to a problem posed by Andrzej Schinzel. Does the number $N_1(n)$ of integer solutions of the equation

$$x_1 + x_2 + \cdots + x_n = x_1 x_2 \cdot \ldots \cdot x_n, \ x_1 \ge x_2 \ge \cdots \ge x_n \ge 1$$

tend to infinity with n? Let a be a positive integer. We give a lower bound on the number of integer solutions, $N_a(n)$, to the equation

$$x_1 + x_2 + \cdots + x_n = ax_1x_2 \cdot \ldots \cdot x_n, \ x_1 \ge x_2 \ge \cdots \ge x_n \ge 1.$$

We show that if $N_2(n) = 1$, then the number 2n - 3 is prime. The average behavior of $N_2(n)$ is studied. We prove that the set $\{n : N_2(n) \le k, n \ge 2\}$ has zero natural density.

1 Introduction

Let $\mathbb{N} = \{1, 2, 3, ...\}$ denote the set of all natural numbers (i.e., positive integers). Equal-Sum-Product Problem is relatively easy to formulate but still unresolved (see [4]). Some early research focused on estimating the number of solutions, $N_1(n)$, to the equation

$$(1.1) x_1 + x_2 + \dots + x_n = x_1 x_2 \cdot \dots \cdot x_n, \ x_1 \ge x_2 \ge \dots \ge x_n \ge 1,$$

which can be found in [3, 8]. Schinzel asked in papers [10, 11] if the number $N_1(n)$ tends toward infinity with n. This conjecture is yet to be proven. In [15], it was shown that the set $\{n: N_1(n) \le k, n \in \mathbb{Z}, n \ge 2\}$ has zero natural density for all natural k. It is worth noting that the classical Diophantine equation $x_1^2 + x_2^2 + x_3^2 = 3x_1x_2x_3$ was investigated by Markoff (1879), as mentioned in [1, 7]. Additionally, Hurwitz (see [5]) examined the family of equations $x_1^2 + x_2^2 + \cdots + x_n^2 = ax_1x_2 \cdot \ldots \cdot x_n$, where $a, n \in \mathbb{N}, n \ge 3$. Let us now assume that $a, n \in \mathbb{N}, n \ge 2$. In this paper, we provide a lower bound for the number $N_a(n)$ of integer solutions (x_1, x_2, \ldots, x_n) of the equation

$$(1.2) x_1 + x_2 + \cdots + x_n = ax_1x_2 \cdot \ldots \cdot x_n$$

such that $x_1 \ge x_2 \ge \cdots \ge x_n \ge 1$. Some of the results presented can be generalized to the case of the equation

$$(1.3) b(x_1 + x_2 + \dots + x_n) = ax_1x_2 \cdot \dots \cdot x_n,$$

Received by the editors June 9, 2023; revised November 26, 2023; accepted November 29, 2023. Published online on Cambridge Core September 13, 2023.

AMS subject classification: 11D72, 11D45.

Keywords: Equal-sum-product, exceptional set, natural density.

where a, b are positive integers. In the case a = 1, b = n, the equation

$$n(x_1 + \cdots + x_n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$$

is called Erdós last equation (see [4, 12, 13]). Equation (1.3) is related to the problem of finding numbers divisible by the sum and product of their digits. It is worth noting that if equation (1.2) has solutions, then $a \le n$.

2 Basic results

In this section, we discuss the necessary basic results. First, we will show that the number of solutions $N_a(n)$ is finite for any fixed a and n.

Lemma 2.1 Let n be a natural number. If $x_1, x_2, ..., x_n$ are any real numbers, then the following formula holds:

(2.1)
$$\left(a \prod_{i=1}^{n-1} x_i - 1\right) (ax_n - 1) + a \sum_{s=1}^{n-2} \left(\left(\prod_{i=1}^s x_i - 1\right) (x_{s+1} - 1) \right) = a^2 \prod_{i=1}^n x_i - a \sum_{i=1}^n x_i + a(n-2) + 1.$$

Proof Let us denote equation (2.1) as T(n). We want to show by induction that T(n) holds for every natural number n. The cases n = 1 and n = 2 are trivial: $(a-1)(ax_1-1) = a^2x_1 - ax_1 - a + 1$, $(ax_1-1)(ax_2-1) = a^2x_1x_2 - a(x_1+x_2) + 1$. In both cases, equality is true. Therefore, the base step of the induction is satisfied, as T(1) and T(2) hold. Let us assume now that $n \ge 3$ and T(n-1) holds, i.e., the following equality is true:

(2.2)
$$\left(a \prod_{i=1}^{n-2} x_i - 1 \right) (ax_{n-1} - 1) + a \sum_{s=1}^{n-3} \left(\left(\prod_{i=1}^{s} x_i - 1 \right) (x_{s+1} - 1) \right) = a^2 \prod_{i=1}^{n-1} x_i - a \sum_{i=1}^{n-1} x_i + a(n-3) + 1.$$

In the inductive step, we will be using the equivalent form of equation (2.2):

(2.3)
$$a \sum_{s=1}^{n-3} \left(\left(\prod_{i=1}^{s} x_i - 1 \right) (x_{s+1} - 1) \right) =$$

$$- \left(a \prod_{i=1}^{n-2} x_i - 1 \right) (ax_{n-1} - 1) + a^2 \prod_{i=1}^{n-1} x_i - a \sum_{i=1}^{n-1} x_i + a(n-3) + 1.$$

To prove the inductive step, i.e., to show that T(n-1) implies T(n) for $n \ge 3$, we will use the following algebraic identities that can be verified directly:

(2.4)
$$\left(a\prod_{i=1}^{n-1}x_i-1\right)(ax_n-1)=a^2\prod_{i=1}^nx_i-ax_n+1-a\prod_{i=1}^{n-1}x_i,$$

(2.5)
$$a \sum_{s=1}^{n-2} \left(\left(\prod_{i=1}^{s} x_i - 1 \right) (x_{s+1} - 1) \right) = a \sum_{s=1}^{n-2} \left(\left(\prod_{i=1}^{s} x_i - 1 \right) (x_{s+1} - 1) \right).$$

Let us proceed to the proof of the inductive step. We want to show T(n) assuming T(n-1). Let us start by transforming the left side of T(n) using equations (2.4) and (2.5)

$$\left(a\prod_{i=1}^{n-1}x_{i}-1\right)\left(ax_{n}-1\right)+a\sum_{s=1}^{n-2}\left(\left(\prod_{i=1}^{s}x_{i}-1\right)\left(x_{s+1}-1\right)\right)=$$

$$a^{2}\prod_{i=1}^{n}x_{i}-ax_{n}+1-a\prod_{i=1}^{n-1}x_{i}+$$

$$+a\left(\prod_{i=1}^{n-2}x_{i}-1\right)\left(x_{n-1}-1\right)+a\sum_{s=1}^{n-3}\left(\left(\prod_{i=1}^{s}x_{i}-1\right)\left(x_{s+1}-1\right)\right).$$

$$(2.6)$$

Calculating directly, we notice that the following equality holds true

$$-a\prod_{i=1}^{n-1}x_{i} + a\left(\prod_{i=1}^{n-2}x_{i} - 1\right)\left(x_{n-1} - 1\right) =$$

$$-a\prod_{i=1}^{n-1}x_{i} + a\prod_{i=1}^{n-1}x_{i} - ax_{n-1} - a\prod_{i=1}^{n-2}x_{i} + a = a - ax_{n-1} - a\prod_{i=1}^{n-2}x_{i}.$$
(2.7)

From equations (2.6) and (2.7), and then using the inductive assumption (2.3), we obtain

$$\left(a\prod_{i=1}^{n-1}x_{i}-1\right)(ax_{n}-1)+a\sum_{s=1}^{n-2}\left(\left(\prod_{i=1}^{s}x_{i}-1\right)(x_{s+1}-1)\right)$$

$$=a^{2}\prod_{i=1}^{n}x_{i}-ax_{n}+1+a-ax_{n-1}-a\prod_{i=1}^{n-2}x_{i}+a\sum_{s=1}^{n-3}\left(\left(\prod_{i=1}^{s}x_{i}-1\right)(x_{s+1}-1)\right)_{=}^{(2.3)}$$

$$a^{2}\prod_{i=1}^{n}x_{i}-ax_{n}+1+a-ax_{n-1}-a\prod_{i=1}^{n-2}x_{i}-\left(a\prod_{i=1}^{n-2}x_{i}-1\right)(ax_{n-1}-1)+$$

$$+a^{2}\prod_{i=1}^{n-1}x_{i}-a\sum_{i=1}^{n-1}x_{i}+a(n-3)+1=a^{2}\prod_{i=1}^{n}x_{i}-a\sum_{i=1}^{n}x_{i}+a(n-2)+1.$$

Thus, assuming T(n-1), we have shown that T(n) holds, completing the inductive step and concluding the proof of the lemma.

Theorem 2.2 Let $a, k \in \mathbb{N}$, $b \in \mathbb{N} \cup \{0\}$. For any integer $n \ge 2$, the system of Diophantine equations

$$(2.8) \begin{cases} x_{1,1} + x_{1,2} + \dots + x_{1,n} &= ax_{2,1} \cdot x_{2,2} \cdot \dots \cdot x_{2,n} + b, \\ x_{2,1} + x_{2,2} + \dots + x_{2,n} &= ax_{3,1} \cdot x_{3,2} \cdot \dots \cdot x_{3,n} + b, \\ & \dots \\ x_{k-1,1} + x_{k-1,2} + \dots + x_{k-1,n} &= ax_{k,1} \cdot x_{k,2} \cdot \dots \cdot x_{k,n} + b, \\ x_{k,1} + x_{k,2} + \dots + x_{k,n} &= ax_{1,1} \cdot x_{1,2} \cdot \dots \cdot x_{1,n} + b \end{cases}$$

has only finite number of solutions $x_{i,j}$ which are natural numbers.

Proof By adding sides of equations of the system of equations (2.8), we obtain

$$\sum_{i=1}^{k} \sum_{j=1}^{n} x_{i,j} = \sum_{i=1}^{k} a \prod_{j=1}^{n} x_{i,j} + kb.$$

Hence,

$$\sum_{i=1}^{k} \left(a^2 \prod_{j=1}^{n} x_{i,j} - a \sum_{j=1}^{n} x_{i,j} + a(n-2) + 1 \right) = k(a(n-2) + 1) - kab.$$

By (2.1), we have

$$\sum_{i=1}^{k} \left(\left(a \prod_{j=1}^{n-1} x_{i,j} - 1 \right) (ax_{i,n} - 1) + a \sum_{s=1}^{n-2} \left(\prod_{j=1}^{s} x_{i,j} - 1 \right) (x_{i,s+1} - 1) \right) =$$

$$(2.9)$$

$$k(a(n-2) + 1) - kab.$$

For given a, k, b, n, the number of solutions of equation (2.9) in positive integers is bounded above. Hence, the system of equations (2.8) has only a finite number of solutions in positive integers $x_{i,j}$.

Taking k = 1, an immediate consequence of Theorem 2.2 is the following result.

Corollary 2.3 For given $a \in \mathbb{N}$, $b \in \mathbb{N} \cup \{0\}$ and any integer $n \ge 2$, the number of solutions of the equation

$$(2.10) x_1 + x_2 + \dots + x_n = ax_1 \cdot x_2 \cdot \dots \cdot x_n + b$$

in positive integers $x_1 \ge x_2 \ge \cdots \ge x_n \ge 1$ is finite. In particular, in the case b = 0, the number of solutions $N_a(n)$ is finite.

Remark 2.4 Theorem 2.2 is true for all $a, b \in \mathbb{Q}$, $a \ge 1$.

Remark 2.5 In the case of b=0, we can provide a different proof of Corollary 2.3. Let $z_i=x_1x_2\cdot\ldots\cdot x_{i-1}x_{i+1}\cdot\ldots\cdot x_n=\frac{1}{x_i}\prod_{j=1}^n x_j\in\mathbb{N}$ for $i\in\{1,2,\ldots,n\}$. Notice that from the inequality $x_1\geq x_2\geq\cdots\geq x_n\geq 1$, we get the inequality $1\leq z_1\leq z_2\leq\cdots\leq z_n$. Then, equation (2.10) takes the form

(2.11)
$$\frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} = a \ge 1.$$

Equation (2.11) has finitely many solutions in positive integers, as we can find upper bounds on z_i . The bounds we will find are not optimal, but they are sufficient for our purposes. If $n \ge 2$, then $ax_1x_2 \cdot \ldots \cdot x_n = x_1 + x_2 + \cdots + x_n \ge x_1 + x_2 \ge x_1 + 1 > x_1$, and hence $ax_2 \cdot \ldots \cdot x_n \ge 2$. From here, we can deduce

$$(n-1)x_2 \ge x_2 + \cdots + x_n = x_1(ax_2 \cdot \ldots \cdot x_n - 1) \ge x_1.$$

Therefore, $nx_2 > x_1$ and $nz_1 > z_2$. We also have for $k \in \{2, 3, ..., n-1\}$, that

586

$$nz_1z_2\cdot\ldots\cdot z_k\geq z_1z_2\geq \prod_{i=1}^n x_i\geq z_{k+1}.$$

Thus, for all $k \in \{1, 2, ..., n-1\}$, we have $z_{k+1} \le nz_1 \cdot z_2 \cdot ... \cdot z_k$. Now we can proceed with the inductive proof of the upper bound: $z_i \le a^{-1}n^{2^{i-1}}$, where $i \in \{1, 2, ..., n\}$. Base step, as the z_i are increasing, we can use equation (2.11) to obtain an inequality:

$$\frac{n}{z_1} \ge \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} = a \ge 1$$
, hence $z_1 \le a^{-1}n$.

If we now make the assumption that $z_i \le a^{-1}n^{2^{i-1}}$ for all $i \in \{1, 2, ..., k\}$, where k < n, then $z_{k+1} \le nz_1z_2 \cdot ... \cdot z_k \le n\frac{n^{2^0+2^1+2^2+...+2^{k-1}}}{a} = \frac{n^{2^k}}{a}$; this establishes the inductive step.

The proof of Theorem 2.2 can be modified in the specific case of a, n to create an efficient algorithm for finding solutions to equation (2.10).

Kurlandchik and Nowicki [6, Theorem 3] had earlier shown that $N_1(n)$ is finite for any $n \ge 2$.

Schinzel's question can be generalized. For given $a \in \mathbb{N}$, does the number $N_a(n)$ tend to infinity with n? We can show with the elementary method the following theorems.

Theorem 2.6 If $a, n \in \mathbb{N}$, then $\limsup_{n \to \infty} N_a(n) = \infty$.

Proof We shall consider two cases. Let $a \in \{1, 2\}$. If $t \in \{0, 1, ..., \lfloor \frac{s}{2} \rfloor \}$, where *s* is a nonnegative integer, then

$$\frac{1}{a}((a+1)^{s-t}+1) + \frac{1}{a}((a+1)^t+1) + \underbrace{1+1+\dots+1}_{a((a+1)^s-1) \text{ times}} = a \cdot \frac{1}{a}((a+1)^{s-t}+1) \cdot \frac{1}{a}((a+1)^t+1) \cdot \underbrace{1\cdot 1\cdot \dots \cdot 1}_{a((a+1)^s-1) \text{ times}}.$$

We have $s - t \ge t$ and $\frac{1}{a}((a+1)^i + 1) \in \mathbb{N}$, where i is a nonnegative integer. Hence, $N(\frac{1}{a}((a+1)^s + 2a - 1)) \ge \lfloor \frac{s}{2} \rfloor + 1$. Therefore, $\limsup N_a(n) = \infty$.

Let
$$a \ge 3$$
. If $t \in \{1, \dots, \left\lfloor \frac{s+1}{2} \right\rfloor \}$, where $s \in \mathbb{N}$, then
$$\frac{1}{a} ((a-1)^{2s-2t+1} + 1) + \frac{1}{a} ((a-1)^{2t-1} + 1) + \underbrace{1+1+\dots+1}_{a ((a-1)^{2s}-1) \text{ times}} = a \cdot \frac{1}{a} ((a-1)^{2s-2t+1} + 1) \cdot \frac{1}{a} ((a-1)^{2t-1} + 1) \cdot \underbrace{1 \cdot 1 \cdot \dots \cdot 1}_{\frac{1}{a} ((a-1)^{2s}-1) \text{ times}}.$$

We have $2s - 2t + 1 \ge 2t - 1$ and $\frac{1}{a}((a-1)^{2i-1} + 1), \frac{1}{a}((a-1)^{2i} - 1) \in \mathbb{N}$, where $i \in \mathbb{N}$. Hence, $N(\frac{1}{a}((a-1)^{2s}+2a-1)) \ge \lfloor \frac{s+1}{2} \rfloor$. Therefore, $\limsup_{n \to \infty} N_a(n) = \infty$.

Let $a \ge 3$. Depending on the choice of $a \le n$, equation (1.2) may not have solutions. The simplest example is a = 3 and n = 4. In this case, equation (1.2) is equivalent to

$$(3x_1x_2x_3-1)(3x_4-1)+3(x_1x_2-1)(x_3-1)+3(x_1-1)(x_2-1)=7$$

but the corresponding equation has no integer solutions $x_1 \ge x_2 \ge x_3 \ge x_4 \ge 1$. This gives $N_3(4) = 0$.

Remark 2.8 Due to the solutions (2, 2, ..., 1), (m, 1, ..., 1), where $m \in \mathbb{N}$ and (m, 1, ..., 1) where $m \in \mathbb{N}$ and

certain technical computations based on the method from Remark 2.5, we can prove that:

- (1) $N_a(a) = N_a(2a-1) = N_a(3a-2) = N_a(4a-3) = 1$, where $a \ge 2$,
- (2) $N_2(6) = 2$, $N_a(4a 2) = 1$, where $a \ge 3$,
- (3) $N_a(n) = 0 \text{ if } n \in ((a, 2a 1) \cup (2a 1, 3a 2) \cup (3a 2, 4a 3)) \cap \mathbb{N},$
- (4) $N_a(ma-m+1) \ge 1$, where $m \in \mathbb{N}$.

Points (1)–(3) partially explain the basic structure of the right side of Table 1.

It has been proven in [15] that in the case of a = 1, the following theorem holds.

Theorem 2.9 If $n \in \mathbb{N}$, $n \ge 2$, then

$$(2.12) N_1(n) \ge \left| \frac{d(n-1)+1}{2} \right| + \left| \frac{d(2n-1)+1}{2} \right| - 1,$$

where d(j) is the number of positive divisors of j. Moreover,

$$N_{1}(n) \geq \left\lfloor \frac{d(n-1)+1}{2} \right\rfloor + \left\lfloor \frac{d(2n-1)+1}{2} \right\rfloor - 1$$

$$(2.13) \qquad + \left\lfloor \frac{d_{2}(3n+1)+1}{2} \right\rfloor + \left\lfloor \frac{d_{3}(4n+1)+1}{2} \right\rfloor + \left\lfloor \frac{d_{3}(4n+5)+1}{2} \right\rfloor - \delta(2|n+1) - \delta(3|n+1) - \delta(3|n+2)$$

$$-\delta(5|n+2, n \geq 8) - \delta(7|n+3, n \geq 11) - \delta(11|n+4, n \geq 29),$$

where $d_i(m)$ is the number of positive divisors of m which lie in the arithmetic progression $i \pmod{i+1}$. The function δ is the Dirac delta function.

$n \geq 4a$	1 ≥ 4 <i>a</i> - 1.															
$n \setminus a$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	1														
3	1	1	1													
4	1	1	0	1												
5	3	1	1	0	1											
6	1	2	0	0	0	1										
7	2	1	1	1	0	0	1									
8	2	1	0	0	0	0	0	1								
9	2	2	1	0	1	0	0	0	1							
10	2	1	1	1	0	0	0	0	0	1						
11	3	1	1	0	0	1	0	0	0	0	1					
12	2	2	0	0	0	0	0	0	0	0	0	1				
13	4	2	1	1	1	0	1	0	0	0	0	0	1			
14	2	2	0	1	0	0	0	0	0	0	0	0	0	1		
15	2	2	2	0	0	0	0	1	0	0	0	0	0	0	1	
16	2	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1

Table 1: The table shows values of $N_a(n)$ for small natural numbers $a \le n \le 10$. The bold numbers are $N_a(n)$, such that $n \ge 4a - 1$.

Remark 2.10 In the case a = 2, equation (1.2) has at least one *typical* solution in the form $(n-1,1,1,\ldots,1)$. Therefore, $N_2(n) \ge 1$ for all integers $n \ge 2$.

3 Main results

We give a lower bound on the number of solutions $N_a(n)$ of equation (1.2).

Theorem 3.1 If $a, n \in \mathbb{N}$, $n \ge 2$, then

$$(3.1) N_a(n) \ge \left\lfloor \frac{d_{a-1}(a(n-2)+1)+1}{2} \right\rfloor + \left\lfloor \frac{d_{2a-1}(2a(n-1)+1)+1}{2} \right\rfloor - \delta(2a-1|n),$$

where $d_i(m)$ is the number of positive divisors of m which lie in the arithmetic progression $i \pmod{i+1}$. The function δ is the Dirac delta function.

Proof In the set \mathbb{N}^n , we have the following pairwise disjoint families of pairwise different (x_1, x_2, \dots, x_n) solutions of equation (1.2). Note that in each case x_i is an integer and $x_1 \ge x_2 \ge \cdots \ge x_n \ge 1$. We define

$$A_1(n) = \{ \left(\frac{n-2+\frac{d+1}{a}}{d}, \frac{d+1}{a}, \underbrace{1, 1, \dots, 1}_{n-2 \text{ times}} \right) :$$

$$a(n-2) + 1 \equiv 0 \pmod{d}, d \equiv -1 \pmod{a},$$

$$1 \le d \le \sqrt{a(n-2) + 1}, d \in \mathbb{N} \}.$$

We also define

$$A_{2}(n) = \{ \left(\frac{n-1+\frac{d+1}{2a}}{d}, \frac{d+1}{2a}, 2, \underbrace{1, 1, \dots, 1}_{n-3 \text{ times}} \right) : \\ 2a(n-1) + 1 \equiv 0 \pmod{d}, d \equiv -1 \pmod{2a}, \\ 4a - 1 \le d \le \sqrt{2a(n-1) + 1}, d \in \mathbb{N} \}, \text{ when } n \ge 3.$$

We have $A_2(2) = \emptyset$. Moreover,

$$|A_1(n)| = |\{d: \ a(n-2)+1 \equiv 0 \pmod{d}, \ d \equiv -1 \pmod{a},$$
$$1 \le d \le \sqrt{a(n-2)+1}, \ d \in \mathbb{N}\}| = \left\lfloor \frac{d_{a-1}(a(n-2)+1)+1}{2} \right\rfloor.$$

In the case of the set $A_2(n)$, we have $d \neq 2a - 1$; thus,

$$|A_{2}(n)| = |\{d: 2a(n-1) + 1 \equiv 0 \pmod{d}, d \equiv -1 \pmod{2a},$$

$$4a - 1 \le d \le \sqrt{2a(n-1) + 1}, d \in \mathbb{N}\}| =$$

$$= |\{d: 2a(n-1) + 1 \equiv 0 \pmod{d}, d \equiv -1 \pmod{2a},$$

$$1 \le d \le \sqrt{2a(n-1) + 1}, d \in \mathbb{N}\}|$$

$$-|\{d: 2a(n-1) + 1 \equiv 0 \pmod{d}, d = 2a - 1\}| =$$

$$\left\lfloor \frac{d_{2a-1}(2a(n-1) + 1) + 1}{2} \right\rfloor - \delta(2a - 1|n).$$

The sets $A_1(n)$, $A_2(n)$ are disjoint. Hence, $N_a(n) \ge |A_1(n)| + |A_2(n)|$. Thus, we get immediately (3.1).

Corollary 3.2 If $n \in \mathbb{N}$, $n \ge 2$, then

(3.2)
$$N_2(n) \ge \left| \frac{d(2n-3)+1}{2} \right| + \left| \frac{d_3(4n-3)+1}{2} \right| - \delta(3|n).$$

The following corollary is almost immediate.

Corollary 3.3 If $n \in \mathbb{N}$, $n \ge 2$, then

$$(3.3) N_2(n) \ge \frac{1}{2}d(2n-3).$$

Proof Formula (3.3) follows at once from Corollary 3.2 and inequalities

$$\left\lfloor \frac{d_3(4n-3)+1}{2} \right\rfloor \ge \delta(3|n), \left\lfloor \frac{x+1}{2} \right\rfloor \ge \frac{1}{2}x$$
, where $x \in \mathbb{Z}$.

For the convenience of the reader, values of $N_2(n)$ for small values of n are presented in Table 2.

Table 2: The table lists the numbers $N_2(n)$ for $2 \le n \le 51$.

n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$	n	$N_2(n)$
2	1	7	1	12	2	17	1	22	1	27	3	32	1	37	1	42	4	47	2
3	1	8	1	13	2	18	2	23	1	28	2	33	3	38	1	43	2	48	4
4	1	9	2	14	2	19	2	24	3	29	2	34	3	39	3	44	2	49	2
5	1	10	1	15	2	20	2	25	1	30	2	35	3	40	2	45	2	50	1
6	2	11	1	16	1	21	2	26	2	31	2	36	2	41	2	46	1	51	3

Corollary 3.4 Let $n \in \mathbb{N}$, $n \ge 3$. If the equation

$$(3.4) x_1 + x_2 + \dots + x_n = 2x_1 \cdot x_2 \cdot \dots \cdot x_n$$

has exactly one solution $(n-1,\underbrace{1,1,\ldots,1}_{n-1 \text{ times}})$ in the natural numbers $x_1 \geq x_2 \geq \cdots \geq x_n \geq 1$,

then 2n - 3 is a prime number.

Proof If $N_2(n) = 1$, then by Corollary 3.3 we get $2 \ge d(2n - 3)$. Since $2n - 3 \ge 3$, it follows that 2n - 3 is a prime number.

Remark 3.5 If $N_1(n) = 1$, then n - 1 must be a Sophie Germain prime number (see [8]).

4 The set of exceptional values

Let $E_{\leq k}^2 = \{n : N_2(n) \leq k, n \geq 2\}$, where $k \in \mathbb{N}$. In particular, $E_{\leq 1}^2 = \{n : N_2(n) = 1, n \geq 2\}$.

Theorem 4.1 The set $E_{\leq k}^2$ has natural density 0, i.e., the ratio

$$\frac{1}{x}|E_{\leq k}^2\cap[1,x]|$$

tends to 0 as $x \to \infty$.

Proof Let $\Omega(m)$ count the total number of prime factors of m. We have $\Omega(m) \le d(m) - 1$ for every natural m. Let $\pi_i(x) = |\{m : \Omega(m) = i, 1 \le m \le x\}|$, i.e., the number of $1 \le m \le x$ with i prime factors (not necessarily distinct). By Corollary 3.3, we have $N_2(n) \ge \frac{1}{2}d(2n-3)$. Thus, if $n \in E_{\le k}^2$, then $d(2n-3) \le 2k$ and consequently $\Omega(2n-3) \le 2k-1$. Therefore,

$$|E_{\leq k}^2 \cap [1,x]| \leq \sum_{i=0}^{2k-1} \pi_i (2x-3),$$

where $x \ge 2$. Using the sieve of Eratosthenes, one can show that (see [2, p. 75])

$$\pi_i(x) \le \frac{1}{i!} x \frac{(A \log \log x + B)^i}{\log x}$$

for some constants A, B > 0. There follows that

$$0 \leq \tfrac{1}{x} \big| E_{\leq k}^2 \cap \big[1, x \big] \big| \leq \tfrac{2x - 3}{x} \sum_{i = 0}^{2k - 1} \tfrac{1}{i!} \tfrac{\left(A \log \log \left(2x - 3 \right) + B \right)^i}{\log \left(2x - 3 \right)}.$$

For a fixed k, the right-hand side tends to 0, as $x \to \infty$. Thus,

$$\lim_{x\to\infty} \frac{1}{x} |E_{\leq k}^2 \cap [1,x]| = 0.$$

This completes the proof.

The above theorem implies that the set $E_k^2 = \{n : N_2(n) = k, n \ge 2\}$ has zero natural density for any fixed $k \ge 1$. This observation might suggest that the set $E_k^2 = \{n : N_2(n) = k, n \ge 2\}$ is finite for any fixed $k \ge 1$ and that the number $N_2(n) \to \infty$ as $n \to \infty$. In the next theorem, we study the average behavior of $N_2(n)$.

Theorem 4.2 If $\varepsilon > 0$, then for sufficiently large x, we have

$$\sum_{1 \le n \le x} N_2(n) \ge \frac{1-\varepsilon}{8} x \log x.$$

Proof By [9, 14], there exists constant c > 0 such that

$$\left| \sum_{\substack{1 \le n \le x, \\ n \equiv 1 \pmod{2}}} d(n) - \frac{x}{4} \log x \right| \le cx,$$

for sufficiently large $x > x_0$. It follows that

$$\sum_{\substack{1 \le n \le x, \\ n \equiv 1 \pmod{2}}} d(n) \ge \frac{x}{4} \log(x) - cx$$

for $x > x_0$. By Corollary 3.3, for $n \ge 2$, we have $N_2(n) \ge \frac{1}{2}d(2n-3)$. Therefore,

$$\frac{1}{x} \sum_{1 < n \le x} N_2(n) \ge \frac{1}{x} \sum_{1 < n \le x} \frac{1}{2} d(2n - 3) = \frac{1}{2x} \sum_{\substack{1 \le m \le 2x - 3 \\ m \equiv 1 \pmod{2}}} d(m)$$

$$\ge \frac{1}{8} \log(2x - 3) - c \frac{2x - 3}{2x}$$

for $2x - 3 > x_0$. Let $\varepsilon > 0$, then for sufficiently large x, we have

$$\frac{1}{x} \sum_{1 \le n \le x} N_2(n) \ge (1 - \varepsilon) \frac{1}{8} \log x.$$

References

- [1] J. W. S. Cassels, *An introduction to Diophantine approximation, Chap. II*, Cambridge University Press, Cambridge, 1957.
- [2] A. C. Cojocaru and M. R. Murty, An introduction to sieve methods and their applications, Cambridge University Press, Cambridge, 2005.
- [3] M. W. Ecker, When does a sum of positive integers equal their product? Math. Mag. 75(2002), no. 1, 41–47.
- [4] R. K. Guy, Unsolved problems in number theory (Section D24), Springer, New York-Heidelberg-Berlin, 2004.
- [5] A. Hurwitz, Über eine Aufgabe der unbestimmten analysis. Arch. Math. Phys. 3(1907), 185-196.
- [6] L. Kurlandchik and A. Nowicki, When the sum equals the product. Math. Gaz. 84(2000), no. 499, 91–94.
- [7] A. A. Markoff, Sur les formes binaires indéfinies. Math. Ann. 17(1880), 379-399.

592 M. Zakarczemny

[8] M. A. Nyblom, Sophie Germain primes and the exceptional values of the equal-sum-and-product problem. Fibonacci Quart. 50(2012), no. 1, 58–61.

- [9] J. Sándor, D. S. Mitrinović, and B. Crstici, Handbook of number theory I, Springer, Dordrecht, 2006.
- [10] A. Schinzel, Sur une propriété du nombre de diviseurs. Publ. Math. Debrecen 3(1954), 261-262.
- [11] A. Schinzel, Selecta. *Unsolved problems and unproved conjectures*, Vol. 2, American Mathematical Society, Providence, RI, 2007, 1367.
- [12] P. Shiu, On Erdös's last equation. Amer. Math. Mon. 126(2019), no. 9, 802-808.
- [13] W. Takeda, On solutions to Erdős' last equation. Integers 21(2021), A117.
- [14] D. I. Tolev, On the division problem in arithmetic progressions. C. R. Acad. Bulg. Sci. 41(1988), 33–36.
- [15] M. Zakarczemny, On the equal sum and product problem. Acta Math. Univ. Comenian. 90(2021), no. 4, 387–402.

Department of Applied Mathematics, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

e-mail: mzakarczemny@pk.edu.pl