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Abstract

Ticks are widespread arthropods that transmit microorganisms of veterinary and medical sig-
nificance to vertebrates, including humans. Rhipicephalus simus, an ixodid tick frequently
infesting and feeding on humans, may play a crucial role in transmitting infectious agents
across species. Despite the known association of many Rhipicephalus ticks with phleboviruses,
information on R. simus is lacking. During a study in a riverine area in Lusaka Zambia, ten R.
simus ticks were incidentally collected from the grass and bushes and subjected to metage-
nomic next generation sequencing (mNGS) in 2 pools of 5. Analysis detected a diverse micro-
bial profile, including bacteria 82% (32/39), fungi 15.4% (6/39), and viruses 2.6% (1/39).
Notably, viral sequence LSK-ZM-102022 exhibited similarity to tick phleboviruses, sharing
74.92% nucleotide identity in the RdRp gene and 72% in the NP gene with tick-borne phle-
bovirus (TBPV) from Greece and Romania, respectively. Its RNA-dependent RNA polymerase
(RdRp) encoding region carried conserved RdRp and endonuclease domains characteristic of
phenuiviridae viruses. Phylogenetic analysis positioned LSK-ZM-102022 in a distinct but lone
lineage within tick phleboviruses basal to known species like brown dog tick phlebovirus and
phlebovirus Antigone. Pair-wise genetic distance analysis revealed similar findings. This study
emphasizes the urgency of further research on the ecology, transmission dynamics, and patho-
genic potential of LSK-ZM-102022 and related TBPVs, crucial for local and global prepared-
ness against emerging tick-borne diseases.

Introduction

Ticks are widespread blood feeding arthropod ectoparasites of mammals, reptiles and other
vertebrate animals (Bonnet et al., 2017). Among these, Rhipicephalus simus, classified within
the genus Rhipicephalus and the family Ixodidae, stands out as a highly capable vector of
pathogens that hold critical importance in both medical and veterinary fields (Xu et al.,
2016; Shekede et al., 2021; Phiri et al., 2023). This hard tick species not only thrives in diverse
habitats but also exhibits a remarkable ability to infest and feed on humans, thus potentially
facilitating the transmission of a wide range of infectious agents (Horak et al., 2002). Adult R.
simus ticks largely prefer monogastric animals, equids and suids as their hosts (Horak et al.,
2002). Distinctive odours associated with monogastric diets and digestive processes are specu-
lated to play a pivotal role in attracting R. simus ticks to humans and other monogastric ani-
mals (Horak et al., 2002). The tick under consideration a known vector for the zoonotic
pathogen, Rickettsia conorii (Beati et al., 1995). Other pathogens detected in R. simus so far
include Ehrlichia minasensis, Theiliera sp., Babesia caballi, Hepatozoon sp., Anaplasama sp.,
Rickettsia massiliae, and Candidatus Rickettsia barbariae (Parola, 2006; Ledger et al., 2021).
Viruses have scarcely been reported in R. simus ticks despite increasing reports of tick-borne
viruses globally (Haig et al., 1965; Burt et al., 1996; Bartíková et al., 2017).

Phleboviruses belonging to the genus Phlebovirus and family Phenuiviridae, frequently
identified in ticks of the genus Rhipicephalus worldwide (Li et al., 2016; Pereira et al., 2017;
López et al., 2020; Simulundu et al., 2021), have not been reported in R. simus. Actually, in
sub-Saharan Africa, there are limited reports of phleboviruses in tick species except those
involving Rhipicephalus appendiculatus, Amblyomma sp., and Hyalomma sp (Kobayashi
et al., 2017; Simulundu et al., 2021; Amoa-Bosompem et al., 2022; Ogola et al., 2023).
Tick-borne phleboviruses (TBPVs) were largely neglected until recently when severe fever
with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV) were con-
firmed as causative agents of severe disease in humans (Li et al., 2016; McMullan Laura
et al., 2012). The genus Phlebovirus has about 82 officially classified viruses whose genomes
are negative sense single-stranded RNAs divided into three segments (L, M and S)
(Abudurexiti et al., 2019; ICTV, 2024). Segment L encodes the RNA-dependent RNA poly-
merase (RdRp), segment M encodes the viral glycoproteins (GP), while S segment encodes
the nucleocapsid protein (NP) (Abudurexiti et al., 2019; ICTV, 2024).

Given the substantial emerging risk posed by TBPVs, a metagenomic next-generation
sequencing (mNGS) study was conducted to determine the viral diversity within tick
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populations from a dormant commercial farm in a riverine area in
Lusaka, Zambia. The findings mark the first identification of a
phlebovirus in R. simus ticks anywhere in the world. The report
underscores the critical need for intensified surveillance and com-
prehensive research on tick-borne viruses in Zambia and the
broader sub-region.

Materials and methods

Study area

The study was an incidental offshoot of a larger study focused on
mammarenaviruses in rodents conducted partly in a riverine area
on the outskirts of Lusaka city, the capital of Zambia (Munjita
et al., 2022). Therefore the study area, as previously reported
(Munjita et al., 2022), was a dormant commercial farm (S15°
26′16.511′′, E 28°26′22.174′′) bordered by two seasonal streams.
Ecologically, the study site was partially disturbed with on and
off farming activities. The area had a dense cover of grass
(Cenchrus purpureus and Cynodon nlemfuensis). Acacia trees
were the common tree types.

Tick collection

In March 2022, 10 ticks were incidentally collected from the grass
and bushes on a commercial farm in Lusaka, Zambia. Ticks col-
lected from the grasses were separated from those from the
bushes. The month of March falls in the midst of the rainy season
in Zambia, a period characterised by increased vegetation growth
and heightened activity of various arthropods, including ticks
(World Bank, 2021). The collected ticks were stored in 1.8 mL
flat-bottomed, screw-capped tubes, each containing a green leaf
to maintain moisture levels. This precautionary measure ensured
the ticks remained viable until laboratory processing. The samples
were transported to the laboratory in a portable cool box packed
with ice packs to maintain a low temperature and preserve the
integrity of the specimens. Upon arrival at the laboratory, the
ticks underwent microscopical morphological identification to
determine their species. Thereafter, the 10 ticks were pooled
into 2 groups of 5 ticks each based on the location from which
they were found (bushes – pool 1 or grass – pool 2). Following
identification and pooling, the samples were stored at −30°C for
24 hours to ensure they remained viable for subsequent analyses.
The next day, nucleic acid (RNA) extraction was performed on
the preserved pooled tick samples.

Identification of ticks

The ticks were identified morphologically under a light microscope
Leica S9E (Leica Microsystems, Heerbrugg, Switzerland) with the
help of a reference book (Walker et al., 2000; Walker and
Bouattour, 2003). The identity of the ticks was confirmed using
available mNGS generated host small subunit ribosomal RNA
(ssrRNA) and internal transcribed spacer (ITS) region assembled
nucleotide sequences. Two sets of genetic sequences, each spanning
252 bp ssrRNA and 653 bp ITS, were employed to verify the species
of ticks present in the first pool, while 2 additional ssrRNA
sequences, totalling 1595 bp and 309 bp, were utilized to confirm
the species of ticks in the subsequent pool. The use of rRNA and
ITS to identify ticks has been reported before (Barker, 1998;
Fukunaga et al., 2000; Intirach et al., 2023; Kim et al., 2024).

RNA extraction

The 2 pools of ticks were homogenized in Phosphate-buffered
saline (PBS) in separate 1.8 mL flat bottomed screw capped

tubes. Total RNA was extracted from the supernatant of the
homogenized ticks using the QIAamp Viral RNA Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Extracted total RNA was mixed with equal volumes
of RNA later (ThermoFisher Scientific, Waltham, MA, USA) and
stored at −80°C for 5 days until samples were transported to the
USA for mNGS.

Library construction and sequencing

RNA samples from the ticks were subjected to mNGS at the
Chan-Zuckerberg (CZ) Biohub, San Francisco, United States of
America (USA). The library preparation protocol was adapted
from the NEBNext Ultra II RNA protocol (New England Biolabs,
Ipswich, MA, USA) with minor modifications as previously
reported (Munjita et al., 2022). Briefly, RNA was fragmented and
spiked with External RNA Controls 103 Consortium collection
(ERCC) (ThermoFisher, Waltham, MA, USA). The spiked RNA
was converted into complementary DNA (cDNA) followed by liga-
tion with adaptors and then digestion of adapters, barcoding, and
final clean-up on a magnetic rack. The 4150 Tapestation system
(Agilent, MA, USA) was used to determine the size and concentra-
tion of the library. The flow cell containing the library was washed
to remove salts followed by denaturing of the library with sodium
hydroxide (NaOH) (0.2 N). PhiX was added as a calibration control
for the Illumina sequencing platform. Thereafter, the sample librar-
ies were loaded onto the Illumina Novaseq 6000 (Illumina, 97 San
Diego, CA, USA) sequencer.

Analysis of mNGS data and quality control metrics

Raw mNGS data was analysed in the CZ ID sequencing pipeline
(IDseq) portal. IDseq is an open-source cloud-based bioinformat-
ics platform (Kalantar et al., 2020). The analysis of generated
sequence reads included 3 steps: host and quality filtration, align-
ment based assembly and assignment of reads and contigs to taxa,
and finally reporting and visualization which included application
of a background model. Briefly, if a read was incorporated into a
contig, it was given the taxonomic identifier belonging to the
National Centre for Biotechnology Information (NCBI) accession
number to which its parent contig was assigned. Reads for each
sample were subjected to quality control checks including a set
of filters, which required nucleotide reads per million sequenced
to be 500 or more (NT_rPM ≥ 500), average taxon length of
200 bp and Z score equal to one (Z Score = 1). The Z-score stat-
istic was computed due to the application of a background
model to remove taxa that may have been prevalent in water con-
trols and passed through filtration. The background correction
model was derived from negative water controls. Following appli-
cation of these filters, a consensus genome for a particular viral
infectious agent was generated and downloaded. Only available
viral gene segments were included in the analysis. For other
pathogen types (bacteria, fungi and others), the pipeline did not
provide options to create a consensus genome, thus, individual
contigs of 200 bp or more aligning to a specific section of the gen-
ome were downloaded for further analysis such as Basic Local
Alignment Search Tool (BLAST) search. With regards to infec-
tious disease agent load, the pipeline supported the determination
of the relative abundance of particular taxa based on reads align-
ing to sequences in the NCBI.

BLAST search, conserved domain search, phylogenetic
analysis, and pair-wise distances

BLAST search was performed using the query sequences against
the NCBI nucleotide sequences. The search parameters were left
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on default. The results were analysed for significant matches, and
some of the sequences formed part of the data set for phylogen-
etic analysis. Conserved domains (CD) in protein sequences were
identified through CD-Search tool in BLAST. Phylogenetic ana-
lysis was performed using MEGA11 software (Tamura et al.,
2021), employing the Maximum Likelihood method with the
General Time Reversible model for nucleotide sequences and
the LG + G model for amino acid sequences (Kimura, 1980).
The reliability of the phylogenetic tree was assessed using the
bootstrap method with 1000 replicates. Prior to the phylogenetic
analysis, the data set consisting of aligned sequences underwent a
model selection test within MEGA11. This was accomplished by
accessing the models tab and evaluating available options. A
model with the lowest Bayesian Information Criterion (BIC)
score was selected, as it was deemed the most appropriate for
accurately describing the evolutionary substitution pattern. To
understand the degree of genetic variation between the sequences
from this study and related organisms, pair-wise distances were
determined in MEGA 11 using aligned sequences.

Results

Identities of the collected ticks

The number of mNGS reads aligning to R. simus in the NCBI
database were 4, 811 higher in pool 1 than pool 2 (Table 1).
However, pool 1 contained numerous contigs that were shorter
in length, with an average contig size of 260 base pairs (bp), in
contrast to pool 2’s average contig size of 852 bp. The total num-
ber of reads across all assembled contigs for R. simus was almost
2-fold higher in pool 2 than pool 1. With regards to relative abun-
dance of nucleic acid associated with each R. simus taxon in the
sample, pool 2 from the bushes had high reads than pool 1
from the grass. Based on mNGS data and initial microscopic ana-
lysis, ticks were identified to be R. simus. The sequences were
deposited in the GenBank database under accession numbers
PP355687 (ssRNA, mitochondrial) and PP357248 (ITS) for the
first pool, as well as PP356686 (ssRNA) and PP375807 (ssRNA,
mitochondrial) for the second pool.

Microbial diversity

A total of 1,629,728 reads were determined from the 2 pools of
ticks but only 26.9% (437 694) remained for analysis after QC fil-
tering and removal of host reads. Further QC filtering to remove
low quality bases, short reads and low complexity reads resulted
in 382 720 reads that were analysed in this study.

Approximately 0.4% (1639/382 720) of the analysed reads
mapped to a viral sequence in the NCBI NT/NR database. The
reads came from pool 2. Overall, based on the set thresholds, a
total of 39 microbes were detected in the ticks. Bacteria were
the most abundant microbes at 82% (32/39) followed by fungi
at 15.4% (6/39) and viruses making up 2.6% (1/39).

Detection of a tick phlebovirus

The number of reads per million sequenced in pool 2 aligning to
phleboviruses in the NCBI NT/NR database was 1639 while the
total number of reads across all assembled phlebovirus contigs
(Contigs r) was 1055. The reads generated 3 contigs with 2 linked
to phleboviruses, the largest contig (6485 bp) aligned to the L seg-
ment and one (665 bp) to the S segment while the third (526 bp)
did not yield significant similarities after BLAST search in the
NCBI database. The presence of the M segment could not be
determined. Using the reference genome (GenBank accession #
KU375576.1) selected by the pipeline, the percentage of the L seg-
ment of the reference genome covered by atleast one read or con-
tig (Coverage breadth) was almost 100% with a coverage depth of
18.5×. The metrics for the nucleoprotein of the S segment were
not provided by the pipeline.

Analysis of the L and S gene sequences of the phlebovirus
sequence

Analysis of a portion (Genbank accession # OR996374.1) of the
6485 bp L segment encoding the RdRp protein showed that
RdRp spanned nucleotide positions 23–6485. Meanwhile, the
NP sequence (Genbank accession # PP986954.1) within the
665 bp S segment was found on positions 17–665. A CD-search
revealed that the RdRp protein sequence contained a conserved
RdRp domain, typical of viruses in the Phenuiviridae family
within the Bunyavirales order. This domain was situated between
nucleotides 1874 and 3964, aligning closely with previously
reported phleboviruses (Table 2). Additionally, the conserved
N-terminus of the sequence featured a conserved endonuclease
domain between nucleotides 218 and 457.

BLAST search and phylogenetic analysis of the viral sequences

BLAST search report of the segment L RdRp gene sequence of
LSK-ZM-102022 indicated 74.92% nucleotide similarity to phle-
bovirus isolate MG31 (GenBank: KY979166.1) detected in

Table 1. mNGS metrics for reads and contigs aligning to R simus

Metric

Value

Pool 1 Pool 2

r (number of reads aligning to taxon in the NCBI
NT/Nr database)

95 436 90 485

Total number of reads across all assembled
contigs (Contigs r)

49 010 82 811

Number of assembled contigs aligning to
Rhipicephalus simus

87 18

Average length (L) of the local alignment for all
contigs for all contigs and reads assigned to
Rhipicephalus simus

260 bp 852 bp

Reads per million (number of reads aligning to
the taxon in the NCBI NT or NR database, per
million reads sequenced)

97 436 140 565

Table 2. Location of the conserved RdRp and endonucleases domains on the L
segment of the query sequence (bold) against reference sequences

Virus accession No.

Nucleotide position of conserved
protein sequences on the L segment
of selected full length phleboviruses

RdPp NP

NC_005214.1 1825–3915 178–396

NC_027140.1 1810–3897 157–399

NC_078070.1 1813–3903 157–399

KF892046.1 1846–3924 184–432

ON872644.1 1846–3924 184–426

OR996374.1 1874–3964 218–457

MN069028.1 1837–3927 232–420

MN025508.1 1837–3942 196–432

ON812282.1 1858–3942 196–435
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Rhipicephalus bursa ticks from Turkey. Another BLAST search
using the S segment NP gene sequence indicated 72% nucleotide
similarity to a phlebovirus (Genbank: OM405139.1) reported in
Rhipicephalus sp in Romania. The M segment was not among the
sequences that mNGS was able to generate. Phylogenetically, the
RdRp (Fig. 1a and b) and NP (Fig. 2a and b) nucleotide and
amino acid sequences of LSK-ZM-102022 showed that the virus
had a distinct novel lineage in a basal relationship to a cluster
of related tick phleboviruses such as brown dog tick phlebovirus,
phlebovirus antigone, tick phlebovirus Anatolia, and other
tick phleboviruses. On both the RdRp and NP trees,
LSK-ZM-102022shared a common ancestor with this cluster of
tick phleboviruses

Nucleotide sequence comparison among phleboviruses

Analysis of RdRp and NP pair-wise distances revealed notable pos-
itional differences with reference sequences (Table 3). RdRp

nucleotide differences ranged from 19.5% to 32.6%, and amino
acids from 9.3% to 35.8%, respectively. In contrast, the NP nucleo-
tide sequences exhibited greater divergence, ranging from 30.4% to
47.1%, with amino acids differences ranging from 16.2% to 52.6%.
Lower values indicated shared substantial amount of genetic mater-
ial. The grouping based on pair-wise genetic distances mirrored the
phylogeny-based grouping (Fig. 1a, b, 2a and b). Overall, the
LSK-ZM-102022 phlebovirus sequence was genetically unique
based on nucleotide and amino acid distances. Its closest relatives
were tick phleboviruses from Turkey (Genbank accession #:
MG764524.1, MG764522.1, KY984485.1, MN069028.1,
KY979167.1 and KY979165.1) and Greece (Genbank accession #:
KU375577.1, KU375576.1). Others were brown dog tick phlebo-
viruses isolated from ticks in Romania (Genbank accession #:
MW561139.1, MW561137.1, OM405139.1), China (Genbank acces-
sion #: ON812282.1), and Trinidad and Tobago (Genbank accession
#: MN025508.1). The lowest pair-wise distance of 9.3%, based on
the RdRp amino acid sequences, was observed between

Figure 1. (a) Phylogenetic tree inferred based on partial RdRp gene sequences of the L segment, showing evolutionary relationships of phlebovirus isolate
LSK-ZM-102022(blue) from Zambia and reference sequences. The analysis involved 29 nucleotide sequences. There were a total of 6766 positions in the final data-
set. The reference sequences from GenBank are represented by accession numbers and strain names. Bootstrap values ≥60% are shown at branch nodes. The scale
indicates the number of substitutions per site. (b) Phylogenetic analysis of phlebovirus isolate LSK-ZM-102022(blue) RdPp protein based on the amino acid
sequences compared to reference sequences. The reference sequences from GenBank are represented by accession numbers and strain names. Bootstrap values
≥60% are shown at branch nodes. This analysis involved 29 amino acid sequences. There were a total of 515 positions in the final dataset.
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LSK-ZM-102022 and phlebovirus Antigone sequences (Genbank
accession #: KU375577.1, KU375576.1) from Greece. This similarity
was also noted between these sequences, but when comparing them
using the RdRp nucleotide sequences, the distance was 19.5%.

Discussion

The recent emergence of severe fever with thrombocytopenia syn-
drome virus (SFTSV) and Heartland virus (HRTV) among
humans underscores the urgent public health concern posed by

Figure 1. Continued.

Figure 2. (a) Phylogenetic tree, inferred based on partial NP gene sequences of the S segment, showing evolutionary relationships of phlebovirus isolate
LSK-ZM-102022 (blue) from Zambia and reference sequences. The analysis involved 12 nucleotide sequences. There were a total of 125 positions in the final data-
set. The reference sequences from GenBank are represented by accession numbers and strain names. Bootstrap values ≥60% are shown at branch nodes. The scale
indicates the number of substitutions per site. (b) Phylogenetic analysis of Phlebovirus isolate LSK-ZM-102022(blue) NP protein based on the amino acid sequences
compared to reference sequences. The reference sequences from GenBank are represented by accession numbers and strain names. Bootstrap values ≥60% are
shown at branch nodes. This analysis involved 12 amino acid sequences. There were a total of 90 positions in the final dataset. The scale indicates the number of
substitutions per site.
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phleboviruses (Li et al., 2016; McMullan Laura et al., 2012). These
pathogens demand immediate attention and proactive measures
to safeguard our communities from their potential impact. In
Zambia, Shibuyunji virus detected in Rhipicephalus sp ticks of
unknown species, remains the only known phlebovirus in the
country (Simulundu et al., 2021). Addressing this gap is crucial
for advancing knowledge and enhancing strategies to mitigate
potential public health risks associated with phleboviruses, par-
ticularly TBPVs. In the present study, a potentially novel TBPV
in R. simus ticks was found to occupy a distinct and lone evolu-
tionary lineage among TBPVs.

The TBPV sequence was an incidental discovery among 39
sequences aligning to microorganisms in 10 tick samples collected
during the search for mammarenaviruses in rodents (Munjita et al.,
2022). The small number of ticks included in the study was purely
because their initial collection was incidental and a 2-week follow
up to capture more ticks yielded nothing. The presence of lower
numbers of ticks can be attributed to fewer livestock or wild-animal
populations that may attract ticks to the area (Li et al., 2018;
Benyedem et al., 2022; Kumar et al., 2022), particularly that most
adult Rhipicephalus sp ticks are expected to be common from
December to April (Pegram et al., 1986). This highlights the critical
role of host populations in influencing tick abundance.

Ixodid ticks in the genus Rhipicephalus are closely related spe-
cies (Walker et al., 2000; Horak et al., 2002; Walker and
Bouattour, 2003; Xu et al., 2016; Nicholson et al., 2019). They
are known to harbour several pathogens of livestock and human
concern including phleboviruses (Beati et al., 1995; Xia et al.,
2015; Pereira et al., 2017; Nicholson et al., 2019; Rojas-Jaimes
et al., 2021). However, as far as reviewed literature suggests,
these findings present the first report of a TBPV in R. simus
ticks. The findings extend the species level host range of TBPVs
among ticks in the genus Rhipicephalus even though their epi-
demiology in ticks, animals, and humans in sub-Saharan Africa
remains understudied (Kobayashi et al., 2017; Simulundu et al.,
2021; Amoa-Bosompem et al., 2022; Ogola et al., 2023).
Meanwhile, the discovery of any pathogen in R. simus is always
of public health significance due to the ticks’ aggressive abilities

to infest and feed on humans (Horak et al., 2002). This unique
characteristic of R. simus makes it a powerful agent for transmit-
ting both novel and known zoonotic vector-borne pathogens from
wildlife to humans.

Analysis of the LSK-ZM-102022 phlebovirus sequence pro-
vided compelling insights into its genetic makeup and evolution-
ary relationships. Firstly, the study identified key genomic regions
within the L segment, crucial for understanding the virus’s
molecular characteristics. The RdRp protein, encoded by a seg-
ment spanning nucleotide positions 23–6485, exhibited a con-
served RdRp domain typical of Phenuiviridae family viruses,
specifically aligning with known phleboviruses (ICTV, 2024).
The domain’s conservation from nucleotides 1874–3964 suggests
functional similarities with other members of the Bunyavirales
order, highlighting the virus’s evolutionary lineage. The presence
of a conserved endonuclease domain within the L segment is typ-
ical of phleboviruses too (ICTV, 2024).

Phylogenetic analysis placed the LSK-ZM-102022-Tick
sequence in a basal relationship to a cluster of related tick phlebo-
viruses (Papa et al., 2016; Dinçer et al., 2017; Bratuleanu et al.,
2022), underscoring its evolutionary position within the
Phenuiviridae family. Notably, pair-wise genetic distance calcula-
tions for RdRp and NP sequences highlighted moderate diver-
gence, indicating potential adaptations and genetic drift within
these genomic regions. This diversity underscores the virus’s cap-
acity for genetic variability, which may influence its ability to
adapt to new hosts and environments. The closest genetic relatives
of LSK-ZM-102022 phlebovirus are identified as phleboviruses
from ticks in Turkey and Greece (Papa et al., 2016; Dinçer
et al., 2017), emphasizing regional associations and evolutionary
connections among tick-borne viruses. The findings provide crit-
ical insights into the virus’s epidemiology and evolutionary
dynamics, essential for anticipating and mitigating potential pub-
lic health risks associated with emerging tick-borne pathogens.

Overall, the genetic uniqueness and evolutionary relationships
elucidated in this study position LSK-ZM-102022 as a notable
member of the phlebovirus family, distinct yet closely related to
tick-associated phleboviruses worldwide (Papa et al., 2016;

Figure 2. Continued.
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Dinçer et al., 2017; Bratuleanu et al., 2022). It was unfortunate
that available RdPp sequences for Shibuyunji virus, only known
phlebovirus in Zambia before the findings from the current
study, were too short for any meaningful comparisons with
LSK-ZM-102022. Further research into their ecology, transmis-
sion dynamics and pathogenic potential will be crucial for enhan-
cing preparedness and response strategies against emerging
infectious diseases linked to tick vectors.

Conclusion

The identification of a potentially novel TBPV in R. simus ticks
highlights a significant addition to understanding the ecology

and epidemiology of phleboviruses. The discovery underscores
the urgent need for proactive measures to address emerging
pathogens, particularly in regions like Zambia where TBPVs
have been scarcely investigated. The genetic distinctiveness of
LSK-ZM-102022 within the Phenuiviridae family suggests unique
evolutionary adaptations that warrant further investigation into its
transmission dynamics and potential pathogenicity. Given the
aggressive feeding behaviour of R. simus ticks and their potential
to transmit pathogens to humans, understanding the ecology and
epidemiology of TBPVs in these vectors is critical. By expanding
the understanding of phlebovirus diversity and transmission
dynamics, the impact of these evolving threats can be mitigated.

Data availability statement. The data from which the results were gener-
ated for the current study may be available from the corresponding author
on reasonable request and on condition that access to the data is granted by
the CZ management.
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